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Dynamics of a one-dimensional Holstein polaron: the

multiconfigurational Ehrenfest method

Lipeng Chen1 a, Maxim F. Gelin1, and Dmitrii V. Shalashilin2

1Department of Chemistry, Technische Universität München, Garching D-85747, Germany

2School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract

We have extended the multiconfigurational Ehrenfest (MCE) approach to investigate the dynam-

ics of a one-dimensional Holstein molecular crystal model. It has been shown that the extended

MCE approach yields results in perfect agreement with benchmark calculations by the hierarchy

equations of motion method. The accuracies of the MCE approach in describing the dynamical

properties of the Holstein polaron over a wide range of exciton transfer integral and exciton-phonon

coupling are carefully examined by a detailed comparison with the fully variational multiple Davy-

dov D2 ansatz. It is found that while the MCE approach and the multi-D2 ansatz produce almost

exactly the same results for small transfer integral, the results obtained by the multi-D2 ansatz

start to deviate from those by the MCE approach at longer times for large transfer integral. A

large number of coherent state basis functions is required to characterize the delocalized features

of the phonon wave function in the case of large transfer integral, which becomes computationally

too demanding for the multi-D2 ansatz. The MCE approach, on the other hand, uses hundreds to

thousands of trajectory guided basis functions and converges very well, thus providing an effective

tool for accurate, efficient simulation of polaron dynamics.

a Electronic address: chen0846.chen@tum.de
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I. INTRODUCTION

Accurate simulations of coupled electron-nuclear dynamics are still a challenging task due

to the so-called “curse of dimensionality”: the size of the basis set scales exponentially with

the number of degrees of freedom (DOFs). A particularly promising technique alleviating

this computational bottleneck is based on the idea which expands the nuclear wave function

as a linear combination of time-dependent Gaussian basis functions [1–3]. This idea can be

traced back to the seminal work of Heller [3], who proposed to use frozen Gaussian (FG)

coherent states (CSs) (Gaussian with a fixed width) to describe nuclear dynamics semi-

classically. Various approaches using trajectory guided basis sets of frozen Gaussian CSs

have been developed to provide powerful numerical tools for accurate simulations of multi-

dimensional electron-nuclear dynamics. The method of multiple spawning (MS) [4–6] uses

adaptive Gaussian basis sets to adequately treat nonadiabatic dynamics involving several

coupled potential energy surfaces (PESs). When the wavepackets approach strong nonadia-

batic coupling regimes, a process called spawning is utilized to generate more Gaussians on

another PES. Because the Gaussians on two different PESs quickly become decoupled, the

basis set must be continuously increased in order to follow the dynamics more accurately.

The methods of variational Multiconfigurational Gaussians (vMCG) [7, 8] and Davydov

ansatz (DA) [9–12], on the other hand, use a grid of trajectory guided FGs with both the

trajectories of FGs and their amplitudes determined from the full variational principle. The

Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH) method [13] uses

conventional MCTDH basis functions to treat few most important modes, while the rest

of modes are described by FGs. While those fully variational methods (vMCG, DA, G-

MCTDH) can achieve formally exact descriptions of quantum dynamics of coupled electron-

nuclear systems, they become rather expensive and suffer from numerical instabilities as the

number of DOFs increases.

The method of coupled CS (CCS) developed by Shalashilin and Child [14–16] is somewhat

between MS and fully variational methods. The CCS method describes the wavefunction

on a basis of coherent states which are propagated using the Hamiltonian averaged over the

Gaussians. This brings some quantum effects to CCS trajectories, and the CCS method is

thus considerably more accurate than the semiclassical alternatives. Since the CCS trajec-

tories are independent from each other, the CCS method requires much fewer computational
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resources than fully variational methods. The CCS method has been successfully applied

to many different multi-dimensional systems, 10D Henon-Heiles potentials [17], the Fermi-

resonance and intra-molecular energy transfer in the CHD3 molecule [18], the modelling

of the absorption spectrum of the 24D pyrazine model [19], the calculation of high-order

harmonic generation spectra [20]. The fermion coupled coherent states (F-CCS) method

was developed to simulate the double ionization of He in intense laser fields [21]. Quite

recently, CCS method has been extended to simulate the quantum dynamics of indistin-

guishable bosons in the second-quantization formalism [22]. A further generalization of the

CCS method, the multi-configurational Ehrenfest (MCE) method [23, 24], has been pro-

posed to treat nonadiabatic dynamics involving two or several electronic PESs. In the MCE

method, the wave function is represented by an ensemble of Ehrenfest trajectories guided by

quantum averaged Hamiltonian, which can thus characterize the dynamics in the classically

forbidden regions. The idea behind the MCE method is that in a multidimensional system

the Ehrenfest trajectory is not far away from the variational trajectory used in the fully

variational methods. Hence the utilization of an ensemble of Ehrenfest trajectories can in

principle provide formally exact descriptions of quantum dynamics of multidimensional sys-

tems. Two versions of the MCE method have been proposed, the first version, MCEv1, was

shown to be an efficient and numerically accurate method for the description of dynamics

of high dimensional model systems. It was demonstrated that for the spin-boson model, the

MCEv1 method with only 50-200 Ehrenfest configurations can yield results which are in

good agreement with those calculations by multi-layer MCTDH (ML-MCTDH) [25] for up

to 2000 DOFs [23]. The second version, MCEv2 was developed for the on-the-fly ab initio

calculations of ultrafast nonadiabatic dynamics of photo-excited molecules [26–28].

In this paper, we extend the MCEv1 method to study polaron dynamics of the Holstein

model. The Holstein molecular crystal model describes a lattice of two-level molecules

interacting with a bath consisting of intra- and intermolecular vibrational modes. This model

has been widely used to investigate the charge and energy transport in organic materials and

natural light harvesting complexes [29, 30]. The dynamical properties of the Holstein polaron

have been simulated previously by the dynamical mean-field theory [31], the continuous-time

quantum Monte Carlo [32], the time-evolving block-decimation method [33], the variational

exact diagonalization [34], and the Davydov ansatz [35, 36]. The purpose of this paper

is to demonstrate that a fully trajectory based quantum method with simple Ehrenfest
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trajectories can simulate dynamical properties of the Holstein polaron rather accurately.

The rest of the paper is organized as follows. In Sec. II we introduce the model Hamiltonian

and the MCEv1 method. In Sec. III, numerical results on the dynamical properties of the

Holstein polaron are shown and discussed. Conclusions are drawn in Sec. IV.

II. THEORY

A. The Holstein model

We consider a one-dimensional ring consisting of N identical molecules, each described as

a two level system coupled with a vibrational mode. The Hamiltonian of the one-dimensional

Holstein molecular crystal model can be written as [37, 38]

Ĥ =
∑

n

Ωn(Q)â†nân +
∑

m 6=n

Jm,n(Q)â†mân + Ĥph, (1)

where â†n(ân) is the creation (annihilation) operator of an exciton, described as a two level

system at the nth site. Q denotes the nuclear coordinates, and Ĥph is the bath (phonon)

Hamiltonian. By adopting the Einstein phonons, Ĥph takes the form

Ĥph = ω0

∑

n

b̂†nb̂n (2)

where ω0 is the dispersionless phonon frequency, and b̂†n(b̂n) is the phonon creation (annihi-

lation) operator for the nth site.

Taking a Taylor expansion of Ωn(Q) and Jmn(Q) to first order in nuclear coordinates Q

and considering only nearest-neighbor coupling, one obtains

Ĥ = Ω
∑

n

â†nân − J
∑

n

â†n(ân+1 + ân−1) + Ĥph + Ĥdiag

ex−ph + Ĥo.d.
ex−ph, (3)

where Ω = Ωn(Q = 0) is the site energy, J is the nearest-neighbor transfer integral

Jm,n(Q = 0) = −Jδm,n±1, and Ĥdiag

ex−ph and Ĥo.d.
ex−ph are the diagonal and off-diagonal exciton-

phonon coupling Hamiltonians, respectively,

Ĥdiag

ex−ph = −gω0

∑

n

â†nân(b̂
†
n + b̂n), (4)

Ĥo.d.
ex−ph =

1

2
φω0

∑

n,l

[

â†nân+1

(

b̂†l + b̂l

)

(δn+1,l − δn,l) + â†nân−1

(

b̂†l + b̂l

)

(δn,l − δn−1,l)
]

. (5)
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The parameters g and φ are the diagonal and the off-diagonal exciton-phonon coupling

strength, respectively. Since the exciton number operator N̂ex =
∑

n â
†
nân commutes with

the Hamiltonian Ĥ, the first term (Ω
∑

n â
†ân) of Eq. 3 is a constant operator which can be

neglected. Thus the Hamiltonian Ĥ can be simplified as

Ĥ = Ĥex + Ĥph + Ĥdiag

ex−ph + Ĥo.d.
ex−ph (6)

with a simplified form of the exciton Hamiltonian

Ĥex = −J
∑

n

â†n (ân+1 + ân−1) (7)

The phonon and exciton-phonon coupling Hamiltonians can be further written in the phonon

momentum space as

Ĥph =
∑

q

ωq b̂
†
q b̂q, (8)

Ĥdiag

ex−ph = − g√
N

∑

n,q

ωqâ
†
nân

(

eiqnb̂q + e−iqnb̂†q

)

, (9)

Ĥo.d.
ex−ph =

φ

2
√
N

∑

n,q

ωq

{

â†nân+1

[

eiqn(eiq − 1)b̂q +H.c.
]

+ â†nân−1

[

eiqn(1− e−iq)b̂q +H.c.
]}

(10)

Here H.c. denotes the Hermitian conjugate, b̂†q(b̂q) is the creation (annihilation) operator of

a phonon with frequency ωq

b̂†q = N−1/2
∑

n

eiqnb̂†n, b̂†n = N−1/2
∑

q

e−iqnb̂†q (11)

In this paper we parametrise the Holstein model in terms of the parameters of the phononic

modes. We take ωq = ω0 [1 +W (2|q|/π − 1)] as the dispersion relation for phonons, where

q = 2πl/N represents the phonon momentum index with l = −N
2
+ 1, · · · , N

2
. ω0 is the

central energy of the phonon band and is set to unity as the energy unit, W is the band

width between 0 and 1.
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B. The multi-configurational Ehrenfest method

In the MCEv1 method, the wave function can be written as a combination of M -

configurations

|Ψ(t)〉 =
M
∑

k=1

(

N
∑

n=1

akn(t)â
†
n|0〉ex

)

|zk(t)〉 =
M
∑

k=1

(

N
∑

n=1

akn(t)â
†
n|0〉ex

)

exp

[

∑

q

(

zkq b̂
†
q − z∗kq b̂q

)

]

|0〉ph

(12)

Here, akn and zkq represent exciton amplitudes and phonon displacements, respectively. k

and n are the configuration index and the site number in the molecular ring. The equations

of motion for a set of wave function parameters akn, zkq can be obtained from the Dirac-

Frenkel time-dependent variational principles [39, 40]. The corresponding Lagrangian L is

formulated as

L = 〈Ψ|i ∂̂
∂t

− Ĥ|Ψ〉

=
i

2

M
∑

k,j

N
∑

n

{

[a∗knȧjn − ȧ∗knajn] + a∗knajn
∑

q

(

zkqż
∗
kq + żkqz

∗
kq − zjqż

∗
jq − żjqz

∗
jq

2
+ z∗kqżjq − zjqż

∗
kq

)

}

Rkj − 〈Ψ|Ĥ|Ψ〉 (13)

with

Rkj = 〈zk|zj〉 = exp

{

∑

q

z∗kqzjq −
1

2

(

|zkq|2 + |zjq|2
)

}

(14)

and

〈Ψ|Ĥ|Ψ〉 = Etot = Eex + Eph + Ediag + Eod (15)

Eex = 〈Ψ|Ĥex|Ψ〉 = −J
M
∑

k,j

∑

n

a∗kn (aj,n+1 + aj,n−1)Rkj (16)

Eph = 〈Ψ|Ĥph|Ψ〉 =
M
∑

k,j

∑

n

a∗knajn
∑

q

ωqz
∗
kqzjqRkj (17)

Ediag = 〈Ψ|Ĥdiag

ex−ph|Ψ〉 = − g√
N

M
∑

k,j

∑

n

a∗knajn
∑

q

ωq

(

eiqnzjq + e−iqnz∗kq
)

Rkj (18)

Eod = 〈Ψ|Ĥo.d.
ex−ph|Ψ〉 = φ

2
√
N

M
∑

k,j

∑

n

∑

q

ωqRkj

{

a∗knaj,n+1

[

eiqn(eiq − 1)zjq + e−iqn(e−iq − 1)z∗kq
]

+a∗knaj,n−1

[

eiqn(1− e−iq)zjq + e−iqn(1− eiq)z∗kq
]

}

(19)
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Variation of the coefficient akn yields the equations of motion for ajn,

M
∑

j

{

iȧjn + iajn
∑

q

[

z∗kqżjq −
żjqz

∗
jq + zjqż

∗
jq

2

]

}

Rkj

=−J
M
∑

j

(aj,n+1 + aj,n−1)Rkj

+
∑

j

ajn
∑

q

ωqz
∗
kqzjqRkj

− g√
N

∑

j

ajn
∑

q

ωq

(

eiqnzjq + e−iqnz∗kq
)

Rkj

+
φ

2
√
N

∑

j

aj,n+1

∑

q

ωq

[

eiqn(eiq − 1)zjq + e−iqn(e−iq − 1)z∗kq
]

Rkj

+
φ

2
√
N

∑

j

aj,n−1

∑

q

ωq

[

eiqn(1− e−iq)zjq + e−iqn(1− eiq)z∗kq
]

Rkj (20)

We can also apply the variational principle to |zj〉, yielding equations of motion for |zj〉
which is equivalent to those of fully variational methods. The equation of motion for |zj〉
can be explicitly derived as

−i

M
∑

j

∑

n

a∗knȧjnzjqRkj − i

M
∑

j

∑

n

a∗knajnżjqRkj −
i

2

M
∑

j

∑

n

a∗knajnzjqRkj

∑

p

(

2z∗kpżjp − żjpz
∗
jp − zjpż

∗
jp

)

= J
M
∑

j

∑

n

a∗kn (aj,n+1 + aj,n−1) zjqRkj −
M
∑

j

∑

n

a∗knajn

(

ωq +
∑

p

ωpz
∗
kpzjp

)

zjqRkj

+
g√
N

M
∑

j

∑

n

a∗knajnωqe
−iqnRkj +

g√
N

M
∑

j

∑

n

a∗knajnzjq
∑

p

ωp

(

eipnzjp + e−ipnz∗kp
)

Rkj

− φ

2
√
N

M
∑

j

∑

n

ωqa
∗
kn

[

aj,n+1e
−iqn(e−iq − 1) + aj,n−1e

−iqn(1− eiq)
]

Rkj

− φ

2
√
N

M
∑

j

∑

n

(

a∗k,n+1ajn + a∗knaj,n+1

)

zjq
∑

p

ωp

[

eipn(eip − 1)zjp + e−ipn(e−ip − 1)z∗kp
]

Rkj (21)

Eqs (20) and (21) are the equations of motion for the Holstein polaron dynamcis with

the multiple Davydov D2 ansatz. In the MCEv1 method a simpler choice of trajectories is
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made. Each zj follows its own Ehrenfest equation [23]

iżj =
∂HEhr

j

∂z∗j

HEhr
j =

〈Ψj|Ĥ|Ψj〉
〈Ψj|Ψj〉

|Ψj〉 =
N
∑

n

ajnâ
†
n|0〉ex|zj〉 (22)

with

〈Ψj|Ĥ|Ψj〉

=−J
∑

n

a∗jn (aj,n+1 + aj,n−1)

+
∑

n

a∗jnajn
∑

q

ωqz
∗
jqzjq

− g√
N

∑

n

a∗jnajn
∑

q

ωq

(

eiqnzjq + e−iqnz∗jq
)

+
φ

2
√
N

∑

n

∑

q

ωq

{

a∗jnaj,n+1

[

eiqn(eiq − 1)zjq + e−iqn(e−iq − 1)z∗jq
]

+a∗jnaj,n−1

[

eiqn(1− e−iq)zjq + e−iqn(1− eiq)z∗jq
]

}

(23)

and

〈Ψj|Ψj〉 =
∑

n

a∗jnajn (24)

Finally we have the equation of motion for zjq as follows

iżjq =

∑

n a
∗
jnajnωq(zjq − g√

N
e−iqn) + φ

2
√
N

∑

n ωqe
−iqn

(

a∗jnaj,n+1(e
−iq − 1) + a∗jnaj,n−1(1− eiq)

)

∑

n a
∗
jnajn

(25)

The norm of the wave function can be calculated as

N(t) = 〈Ψ(t)|Ψ(t)〉 =
M
∑

k,j

∑

n

a∗knajnRkj (26)

Then the reduced single-exciton density matrix ρmn(t) can be written as

ρmn = 〈Ψ(t)|â†mân|Ψ(t)〉 =
M
∑

k,j

a∗kmajnRkj (27)
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The exciton probability Pex(t, n) and the phonon displacement Xph(t, n) are usually used

to characterize the dynamical properties of the Holstein polaron. The exciton probabilities

Pex(t, n) = ρnn(t)(n = 1, 2, · · · , N) can be simply obtained from the diagonal elements of

the reduced density matrix. The phonon displacement Xph(t, n
′) in real space at the n′-th

site is calculated by

Xph(t, n
′) = 〈Ψ(t)|(b̂n′ + b̂†n′)|Ψ(t)〉

=
1√
N
〈Ψ(t)|

∑

q

(e−iqn′

b̂†q + eiqn
′

b̂q)|Ψ(t)〉

=
1√
N

M
∑

kj

∑

n,q

a∗knajnRkj

[

e−iqn′

z∗kq + eiqn
′

zjq

]

(28)

The initial state of system is prepared to have one exciton on a single site i, and phonon

modes are initially in the vacuum state, i.e., |Ψ(0)〉 = â†i |0〉ex|z0〉, where |z0〉 = |0〉ph =

|00 · · · 0〉ph. Then a set of M CS basis functions |zk〉(k = 1, · · · ,M) is selected to represent

|z0〉. For this purpose, a uniformly distributed noise within the range [−ǫ, ǫ] (ǫ = 10−12)

is added to phonon displacements (both the real and imaginary part), and the quantum

superposition sampling [41] is then used to determine the exciton amplitudes.

III. RESULTS AND DISCUSSION

We first compare results obtained by the MCEv1 method with benchmark calculations

by the hierarchy equations of motion (HEOM) method [42]. Fig. 1 shows the time evolution

of the exciton probability Pex(t, n) for the cases of J=0.2, W=0.5, g=0.3, φ=0, N=10 (left

column) and J=0.1, W=0, g=0, φ=0.3, N=10 (right column). For both cases, the MCEv1

results (with configuration M = 400) are in perfect agreement with the HEOM results (see

Figs. 1(a-b) and (d-e)). The exciton probability difference ∆Pex(t, n) between two methods

is found to be about four orders of magnitude smaller than the value of Pex(t, n) (see Figs.

1(c,f)). It is worth mentioning that the comparisons between two methods are restricted

to the small system size and weak exciton-phonon coupling strengths because the HEOM

method becomes computationally unfeasible for systems of many two-level molecules which

are moderately to strongly coupled to intra- and inter-molecular vibrational modes. Fur-

thermore, the HEOM method is unable to capture explicit information on bosonic dynamics

since the boson DOFs are traced out in reduced density matrix approaches. The wave
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function propagation method, on the other hand, allows for exploration of boson dynamics

of coupled electron-boson systems. The MCEv1 method, in particular, is demonstrated to

yield accurate polaron dynamics of the Holstein model over broad parameter regimes ranging

from weak to strong exciton-phonon couplings.

We then compare the exciton probability Pex(t, n) and the phonon displacement Xph(t, n)

obtained from the MCEv1 method with those from the multiple Davydov D2 ansatz [35].

It is noted that multi-D2 ansatz is essentially the same as the ansatz used in the MCEv1

method (see Eq. 12), the number of Ehrenfest configurations M in the MCEv1 method is

called the multiplicity M in the multi-D2 ansatz. The only difference is that in the multi-D2

ansatz, the variational principle is employed to obtain the coupled equations of motion of the

variational parameters for both electronic and nuclear DOFs, while the equation of motion

for nuclear part is determined by the Ehrenfest dynamics in the MCEv1 method (Eq. 25).

Using a trajectory guided basis set rather than that of full variational principle results in a

huge reduction of computational cost. The MCEv1 method uses hundreds to thousands of

trajectories and can thus treat quantum dynamics of larger systems rather accurately.

Fig. 2 displays the time evolution of the exciton probability Pex(t, n) (left column) and the

phonon displacement Xph(t, n) (right column) obtained with the MCEv1 method (M = 800)

and the multi-D2 ansatz (M = 32) for the weak diagonal exciton-phonon coupling g = 0.4.

One can clearly observe that both methods produce nearly the same time-dependent Pex(t, n)

and Xph(t, n). The differences ∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and

multi-D2 ansatz are negligible, about four and three orders of magnitude smaller than the

corresponding Pex(t, n) and Xph(t, n), respectively. The exciton wave packets propagate

from the initial site n = 0 to the entire chain with the velocity v ≈ ω0/2π, which triggers

phonon deformations along the exciton path due to the exciton-phonon coupling. It is

also found that a pair of localized phonon wave packets travel at group velocities ±vq with

vq = ∂ωq/∂q = 2W .

Fig. 3 illustrates the exciton probability Pex(t, n) (left column) and the phonon dis-

placement Xph(t, n) (right column) obtained with the MCEv1 method (M = 1000) and the

multi-D2 ansatz (M = 32) for an intermediate diagonal coupling g = 0.8. Both methods

yield almost the same exciton and phonon wave packets, showing that the exciton and cen-

ter V-shaped phonon wave packets travel with the velocity v ≈ ω0/4π which are nearly

half of those for the weak diagonal coupling g = 0.4, while the outer independent V-shaped

10



Figure 1. Time evolution of the exciton probability Pex(t, n) for the cases of J=0.2, W=0.5, g=0.3,

φ=0, N=10 (left column) and J=0.1, W=0, g=0, φ=0.3, N=10 (right column) obtained with the

MCEv1 method (panels (a), (d), configuration M = 400) and the HEOM method (panels (b), (e)),

respectively. The differences ∆Pex(t, n) between the HEOM method and the MCEv1 method are

also displayed in panels (c,f).
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Figure 2. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon dis-

placement Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configura-

tion M = 800) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 32). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.1, W=0.5, g=0.4, φ=0, N=16.
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phonon wave packets are nearly unchanged. The differences ∆Pex(t, n) and ∆Xph(t, n) be-

tween the MCEv1 method and multi-D2 ansatz are found to be about three and two orders

of magnitude smaller than the corresponding Pex(t, n) and Xph(t, n), respectively.

The time evolution of the exciton probability Pex(t, n) and the phonon displacement

Xph(t, n) obtained with the MCEv1 method (M = 400) and the multi-D2 ansatz (M = 32)

for the strong exciton-phonon coupling g = 1.6 are depicted in Fig. 4. Both methods

capture the self-trapping features of polaron dynamics, illustrating that the exciton wave-

packets as well as the phonon deformations induced by the strong exciton-phonon coupling

are completely localized to the initial excitation site. It is shown again that the differences

∆Pex(t, n) and ∆Xph(t, n) are very small, about three and two orders of magnitude smaller

than the corresponding Pex(t, n) and Xph(t, n), respectively.

The time evolutions of the exciton energy Eex(t), the phonon energy Eph(t), the exciton-

phonon coupling energy Ediag(t) and the total energy Etot(t) are plotted in Figs. 5(a-c),

which correspond to the cases shown in Figs. 2-4, respectively. For all three cases, the

energies obtained by multi-D2 ansatz (open circles) are in perfect agreement with those

obtained with the MCEv1 method (solid line).

The time evolution of the exciton probability Pex(t, n) and the phonon displacement

Xph(t, n) obtained by the MCEv1 method and the multi-D2 ansatz for three values of larger

transfer integral J = 0.2, 0.5, 0.8 are displayed in Figs. 6-8. As shown in Fig. 6, both MCEv1

method (M = 1000) and the multi-D2 ansatz (M = 32) provide accurate descriptions of

polaron dynamics, yielding almost the same exciton probability and phonon displacement

(see Figs. 6(c) and (f) for the differences ∆Pex(t, n) and ∆Xph(t, n)). As the transfer integral

J is increased from 0.1 to 0.2, one can readily see that the exciton becomes more mobile

because the propagation speed of the exciton is proportional to the exciton transfer integral

J [43].

Fig. 7 illustrates the time evolution of the exciton probability Pex(t, n) and the phonon

displacement Xph(t, n) at a larger transfer integral J = 0.5. It is found that a larger

M is needed for both MCEv1 method (M = 1400) and multi-D2 ansatz (M = 56) in

order to accurately characterize the polaron dynamics. This is because a large transfer

integral leads to a delocalized phonon wave function which is difficult to describe by the

superposition of coherent states. As discussed in Ref. [35], the relative error (a quantity

used to quantify the accuracy of a trial state) of the multi-D2 ansatz monotonically increases

13



Figure 3. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon displace-

ment Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configuration

M = 1000) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 32). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.1, W=0.5, g=0.8, φ=0, N=16.
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Figure 4. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon dis-

placement Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configura-

tion M = 400) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 32). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.1, W=0.5, g=1.6, φ=0, N=16.
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Figure 5. The time evolution of the exciton energy Eex(t), the phonon energy Eph(t), the exciton-

phonon coupling energy Ediag(t) and the total energy Etot(t) are displayed for J=0.1, W=0.5,

g=0.4, φ=0, N=16 (a), J=0.1, W=0.5, g=0.8, φ=0, N=16 (b) and J=0.1, W=0.5, g=1.6, φ=0,

N=16 (c), which correspond to the cases shown in Figs. 2-4, respectively. The solid line and

open circles correspond to results obtained with the MCEv1 method and the multi-D2 ansatz,

respectively.

with the transfer integral J . Furthermore, like many fully variational methods, the multi-

D2 ansatz is known to suffer from numerical instabilities for a large M . This problem can

be solved by pseudo-inverse of the coefficient matrix using the singular value decomposition

during the numerical integration of the differential equations. However, computing a pseudo-

inverse of a large matrix is computationally very demanding, which restricts the multiplicity

M to a relatively small value. The MCEv1 method, on the other hand, can use hundreds

to thousands of trajectories to capture the accurate dynamical properties of the Holstein

polaron for large transfer integral J . As shown in Figs. 7 (c) and (f), the exciton probability

and the phonon displacement calculated by multi-D2 ansatz start to deviate slightly from

those by the MCEv1 method after t/(2π/ω0) > 3.

The time evolution of the exciton probability Pex(t, n) and the phonon displacement

Xph(t, n) at an even larger transfer integral J = 0.8 are shown in Fig. 8. It is well known

that the systems with large transfer integral pose a challenging case for the multi-D2 ansatz

[35] as is clearly demonstrated in Figs. 8(c) and 8(f). One can readily see that the differences

∆Pex(t, n) and ∆Xph(t, n) between the multi-D2 ansatz (M = 56) and the MCEv1 method

(M = 1600) become relatively large as compared to the value of Pex(t, n) and Xph(t, n) after

t/(2π/ω0) > 3. Nevertheless, the overall agreement between the multi-D2 ansatz and the

MCEv1 method is satisfactory.

The system energies, including the exciton energy Eex, the phonon energy Eph, the
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Figure 6. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon displace-

ment Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configuration

M = 1000) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 32). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.2, W=0.5, g=0.3, φ=0, N=16.

17



Figure 7. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon displace-

ment Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configuration

M = 1400) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 56). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.5, W=0.5, g=0.3, φ=0, N=16.
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Figure 8. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon displace-

ment Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configuration

M = 1600) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 56). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.8, W=0.5, g=0.3, φ=0, N=16.
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Figure 9. The time evolution of the exciton energy Eex(t), the phonon energy Eph(t), the exciton-

phonon coupling energy Ediag(t) and the total energy Etot(t) are displayed for J=0.2, W=0.5,

g=0.3, φ=0, N=16 (a), J=0.5, W=0.5, g=0.3, φ=0, N=16 (b) and J=0.8, W=0.5, g=0.3, φ=0,

N=16 (c), which correspond to the cases shown in Figs. 6-8, respectively. The solid line and

open circles correspond to results obtained with the MCEv1 method and the multi-D2 ansatz,

respectively.

exciton-phonon coupling energy Ediag and the total energy Etot for three values of the trans-

fer integral, J=0.2, 0.5, 0.8 are plotted in Fig. 9, which correspond to the cases shown in

Figs. 6-8. It is found that the energies calculated by the multi-D2 ansatz match perfectly

those calculated by the MCEv1 method for the case of J = 0.2, while the disparity of the

energies calculated by the multi-D2 ansatz and the MCEv1 method starts to emerge after

t/(2π/ω0) > 3 for the case of J = 0.5 and becomes relatively large for the case of J = 0.8.

Fig. 10 illustrates the convergence with regard to the number of configurations used in the

MCEv1 method for the challenging case of J=0.8, W=0.5, g=0.3, φ=0, N=16 (see Figs. 8

and 9(c)). The time evolution of the exciton Pex(t, n) with n = 0 (left panel) and the phonon

energy Eph(t) (right panel) calculated by the MCEv1 method (with configuration M =1,

200, 600, 1200, 1600) are compared with those by the multi-D2 ansatz (with multiplicity

M = 56). It should be noted that MCEv1 with M = 1 (the Ehrenfest method) is equivalent

to the variational method with the single D2 ansatz [44]. It is found that the accuracy

of the MCEv1 method is significantly enhanced with M , and the results obtained by the

MCEv1 method with configuration M = 200 are close to those of the multi-D2 ansatz with

multiplicity M = 56. As the configuration M used in the MCEv1 method increases, both

Pex(t, 0) and Eph(t) gradually converge to the exact results. This means that the multi-

D2 ansatz with M=56 is not fully converged, but increasing M would be computationally

demanding. On the other hand, the MCEv1 method can afford larger basis set size and full
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Figure 10. Time evolution of the exciton probability Pex(t, n) with n = 0 (left panel) and the

phonon energy Eph(t) (right panel) obtained with the MCEv1 method (with configuration M =

1, 200, 600, 1200, 1600) and the multi-D2 ansatz (with multiplicity M = 56). The parameters are

J=0.8, W=0.5, g=0.3, φ=0, N=16.

convergence can be achieved.

Fig. 11 displays the time evolution of the exciton probability Pex(t, n) and the phonon

displacement Xph(t, n) calculated by the MCEv1 method (M = 1400) and the multi-D2

ansatz (M = 44) for the off-diagonal coupling case of J=0.1, W=0.0, g=0.0, φ=0.4, N=16.

It is found that the exciton is self-trapped in the initial site during the first phonon period

t < 2π/ω0, and correspondingly, there is minor lattice distortions in this time period regime.

Then the exciton starts to spread over the molecular ring with the velocity v ≈ ω0/π due

to the combined effect of the transfer integral and the off-diagonal exciton-phonon coupling.

Both MCEv1 method and multi-D2 ansatz reproduce the accurate dynamical properties of

the Holstein polaron for the off-diagonal coupling case, and the agreement between them is

quite good. This is also reflected in the Fig. 12 where the system energies calculated by the

multi-D2 are in very good agreement with those calculated by the MCEv1 method except

the minor deviations at longer times.

IV. CONCLUSIONS

In summary, we have extended the MCEv1 method to study the polaron dynamics of the

Holstein molecular crystal model. The validity of the method has been checked by comparing
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Figure 11. Time evolution of the exciton probability Pex(t, n) (left column) and the phonon dis-

placement Xph(t, n) (right column) obtained with the MCEv1 method (panels (a), (d), configura-

tion M = 1400) and the multi-D2 ansatz (panels (b), (e), multiplicity M = 44). The differences

∆Pex(t, n) and ∆Xph(t, n) between the MCEv1 method and multi-D2 ansatz are also displayed in

panels (c,f). The parameters are J=0.1, W=0.0, g=0.0, φ=0.4, N=16.
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Figure 12. The time evolution of the exciton energy Eex(t), the phonon energy Eph(t), the exciton-

phonon coupling energy Eod(t) and the total energy Etot(t) are displayed for J=0.1, W=0.0, g=0.0,

φ=0.4, N=16, which correspond to the case shown in Fig. 10. The solid line and open circles

correspond to the results obtained with the MCEv1 method and the multi-D2 ansatz, respectively.

the computed exciton probability with benchmark results from the hierarchy equations of

motion approach, demonstrating that the MCEv1 method can provide numerically accurate

and computationally efficient descriptions of polaron dynamics in the presence of diago-

nal and off-diagonal exciton-phonon couplings. The accuracies of the MCEv1 method in

characterizing the dynamical properties of the Holstein polaron over a wide range of exciton

transfer integral and exciton-phonon coupling strength are carefully examined by comparing

with the fully variational multi-D2 ansatz. It is found that both methods produce quite accu-

rate exciton probability, phonon displacement as well as system energies over a broad range

of diagonal exciton-phonon couplings for a small transfer integral. As the transfer integral

increases, a larger number of CS basis functions is required to obtain numerically accurate

results due to the delocalized features of the phonon wave function. However, increasing the

basis size is computationally too demanding for the multi-D2 ansatz since the numerical in-

tegration of differential equations involves the pseudo-inverse of the large coefficient matrix,
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which restricts the number of CS basis functions to a relatively small value. On the other

hand, the equations of motion of the CS basis are determined by the Ehrenfest dynamics in

the MCEv1 method, leading to huge savings in computational costs. The MCEv1 method

can thus use hundreds to thousands of trajectories to yield correct dynamical properties

of the Holstein polaron for large transfer integral. While both methods give very accurate

polaron dynamics at short times, the results obtained by the multi-D2 ansatz are not easy

to converge and they start deviating from those of the MCEv1 method at longer times for

the case of large transfer integral. For the off-diagonal exciton-phonon coupling considered

here, both MCEv1 method and multi-D2 ansatz are shown to be capable of depicting the

accurate dynamical properties of the Holstein polaron.

It is straightforward to extend the MCEv1 method to study the drift of charge carriers in

an external electric field by employing a Holstein model with a phase-factor modified transfer

integral [34, 45]. The concept of the polaron states (the quantum mixture of the exciton

and intramolecular vibrational modes) is also important to explain the mechanism of the

singlet fission processes in organic crystal materials [46–48]. In addition, recent experiments

in cavity quantum electrodynamics (QED) have pointed to the importance of the polariton

states (quantum mechanically mixed atomic and photonic states) in the descriptions of the

strong light-matter interaction. The MCEv1 method can be straightforwardly extended

to investigate those processes. Finally, it is also of great interest to integrate the MCEv1

method into the nonlinear response function formalism to simulate third-order spectroscopic

signals [49–51]. Work in these directions is in progress.
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