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The MILAN Campaign
Studying Diel Light Effects on the Air–Sea Interface
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ABSTRACT: The sea surface microlayer (SML) at the air–sea interface is <1 mm thick, but it is 
physically, chemically, and biologically distinct from the underlying water and the atmosphere 
above. Wind-driven turbulence and solar radiation are important drivers of SML physical and 
biogeochemical properties. Given that the SML is involved in all air–sea exchanges of mass 
and energy, its response to solar radiation, especially in relation to how it regulates the air–sea 
exchange of climate-relevant gases and aerosols, is surprisingly poorly characterized. MILAN 
(Sea Surface Microlayer at Night) was an international, multidisciplinary campaign designed to 
specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research 
vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North 
Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried 
out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, 
a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of 
approaches employed and some initial results obtained during MILAN. Our observations of diel 
SML variability show, for example, an influence of (i) changing solar radiation on the quantity 
and quality of organic material and (ii) diel changes in wind intensity primarily forcing air–sea 
CO2 exchange. Thus, MILAN underlines the value and the need of multidiciplinary campaigns for 
integrating SML complexity into the context of air–sea interaction. 
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T
he sea surface microlayer (SML) occupies the uppermost tens to hundreds of micrometers 

of the ocean surface and is ubiquitous (Wurl et al. 2011). Consequently, it is in direct 

contact with the atmosphere and covers around 70% of Earth’s surface. Compared to the 

underlying bulk water, the SML is characterized by distinct biological and physicochemical 

properties (Cunliffe et al. 2013), which is important given that all air–sea exchanges of 

mass and energy must necessarily cross it. An improved understanding of the SML is thus 

essential for studying air–sea exchange processes that have important implications for global 

biogeochemical cycles, climate regulation, and air quality (Wurl et al. 2017).

The SML experiences instantaneous meteorological forcing by, for example, solar radiation, 

wind, and precipitation. Solar radiation directly influences the thermal and saline boundary 

layer with variable thicknesses on the order of 1,000 µm (Saunders 1967) and 200 µm (Kat-

saros 1980), respectively. Evaporation and precipitation have a strong influence on the thermal 

and saline properties of the SML (Schlössel et al. 1997). Furthermore, recent measurements 

show that large enrichment of organic material in the SML reduces evaporation from the sea 

surface (Wurl et al. 2018). The SML also experiences higher exposure to UV radiation than does 

the underlying water column, because light attenuation by optically active components and 

water itself reduce light levels exponentially with increasing depth. Whereas light levels in the 

SML always exceed 98% of surface irradiance, in coastal environments with large amounts 

of suspended and dissolved organic matter only around 10% of surface UV-B irradiance may 

reach 0.2–5 m depth (Smyth 2011; Tedetti and Sempéré 2006).

Wind-induced formation of small capillary waves and microscale breaking causes SML 

disruption (Ocampo-Torres et al. 1994). After disruption, reestablishment of the thermal 

skin layer occurs (Jessup et al. 2009) and depends on wind speed. Reestablishment occurs 

on a time scale of between several seconds and around 1 min, the latter being typical in the 

absence of wind (Jessup et al. 1995; Mobasheri 2006). If wind stress continues, larger waves 

form and break, promoting the turbulent mixing of near-surface water (Farmer et al. 1993). 

Wave breaking entrains air into the water column, forming air bubbles that rise upward to the 

SML where they eventually burst. This process concentrates material within the SML (Rob-

inson et al. 2019; Zhou et al. 1998) and causes rapid reformation of the SML within seconds 

(Cunliffe et al. 2013). However, for a certain fraction of the material, bubble bursting is also an 
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important route from the underlying bulk water via the SML into the atmosphere (Memery and 

Merlivat 1985). Sea spray aerosols arising from bubble bursting may act as cloud condensa-

tion nuclei, supporting the growth of low-level clouds (Latham et al. 2008) that impact ocean 

surface temperatures (Tanimoto and Xie 2002) and radiation fluxes (Bunker 1976; Curry and 

Ebert 1992) and, in consequence, Earth’s energy budget (Watanabe et al. 2018). Sea spray 

aerosols are a complex mixture of sea salt, organic material, and microorganisms (Bigg and 

Leck 2008; Quinn et al. 2015). Organic material in the SML shows strong ice-nucleating activ-

ity (Wilson et al. 2015), which impacts atmospheric properties, for example, cloud lifetime 

(Murray et al. 2012). The SML may additionally influence the formation of secondary organic 

aerosols via the photochemically induced volatilization of dissolved organics (Alpert et al. 

2017; Ciuraru et al. 2015) and is a source of atmospheric iodine via reaction of dissolved 

iodide with atmospheric ozone (Carpenter et al. 2013).

The SML controls air–sea gas exchange by acting as a diffusive boundary layer (Broecker 

and Peng 1974; Jähne 2009). According to classical gas exchange theory, the SML resembles a 

stagnant layer under low winds, when diffusion is the driving force for air–sea gas exchange. 

In the natural environment this theoretical stagnant layer does not hold true as microscale 

breaking and buoyancy fluxes occur. Increasing wind speed causes periodic, or at high wind 

speeds (>10 m s–1) probably permanent, SML disruption, and at some point turbulent mix-

ing controls air–sea gas exchange. Parameterizations for gas transfer velocities solely based 

on wind speed cannot fully account for in situ observations (Asher 2009; Ribas-Ribas et al. 

2018a; Wanninkhof 2014). For example, CO2 air–sea fluxes derived from wind-speed-based 

parameterizations typically have around twofold uncertainty (Wanninkhof 2014) due to 

other controlling variables, including surface-active organic material, bubbles, fetch, rain, 

and chemical enhancement, that affect the air–sea gas exchange of climate-relevant gases 

(Wanninkhof et al. 2009).

Organic matter in natural waters is a complex mixture of substances, and material accu-

mulating in the SML includes organic gel particles (Wurl and Holmes 2008), polysaccharides 

(Sieburth et al. 1976), lipid-like material (Gašparović et al. 1998; Kattner and Brockmann 

1978), amino acids (Kuznetsova et al. 2004), and chromophoric dissolved organic matter 

(CDOM; Tilstone et al. 2010). The tendency is for many of these components to be of lower 

molecular weight than their analogs in the underlying water (Lechtenfeld et al. 2013). This 

may be coupled to in situ primary production (Chin et al. 1998; Passow 2002), allochthonous 

inputs of terrestrial material of either natural (e.g., Frew et al. 2006), or anthropogenic (Guitart 

et al. 2007) origin, and the photochemical and/or microbial reworking of higher molecular 

weight material (Schulz et al. 2013; Tilstone et al. 2010).

Many of the organic substances in the SML have a particularly high interfacial affinity, so 

are often called surface active substances (SAS) or surfactants. Surfactants in the SML are of 

mostly biological origin, for example, phytoplankton exudates (Z
^

utić et al. 1981), material 

released during zooplankton grazing (Kujawinski et al. 2002), and bacterial by-products 

(Satpute et al. 2010). In coastal waters there may be additional surfactant contributions from 

terrestrial sources (Pereira et al. 2016). Surfactants accumulate in the SML via diffusion at low 

wind or bubble scavenging at moderate to high winds, and have been shown to be present at 

wind speeds up to 13 m s–1 (Sabbaghzadeh et al. 2017). Laboratory and field experiments have 

shown surfactants to suppress air–sea gas exchange by up to 50% (Frew et al. 1990; Pereira 

et al. 2016; Ribas-Ribas et al. 2018b), and that neglecting this effect can greatly overestimate 

air–sea gas exchange rates (Mustaffa et al. 2020; Pereira et al. 2018; Salter et al. 2011). In 

addition, photochemical reactions involving SML organics have the potential to modify sur-

factant concentrations and compositions and can produce trace gases directly (Carpenter and 

Nightingale 2015). Photo-oxidation and dissolution of these and other organic components 

will feedback on aquatic ecosystems (Häder et al. 2015). For certain atmospheric gases, most 
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notably ground-level ozone (an air pollutant), chemical reactions taking place at the air–sea 

interface are a significant removal process (e.g., Ganzeveld et al. 2009).

Under certain conditions, the SML includes complex microbial communities embedded in 

a gel matrix leading to its description as a biofilm-like habitat (Wurl et al. 2016). Prominent 

examples are large cyanobacteria blooms floating at the sea surface (Sieburth and Conover 

1965; Wurl et al. 2018). While the SML is a challenging habitat for organisms, especially due to 

maximal exposure to solar radiation, it nevertheless has an inherently wide microbial diversity 

that is often distinct from the underlying water (Cunliffe and Murrell 2010; Hardy 1982; Joux 

et al. 2006; Stolle et al. 2011). Diel patterns in the abundance and activity of several types of 

organisms ranging from bacteria to phytoplankton and zooplankton close to or in the SML 

have been reported, presumably reflecting, at least in part, a solar radiation response (Carlucci 

et al. 1986; Holdway and Maddock 1983; Maki and Herwig 1991; Wandschneider 1979).

Study area

The Sea Surface Microlayer at Night (MILAN) experiment was conducted from 3 to 13 April 

2017 in the Wadden Sea region of the southeastern North Sea (Fig. 1; see sidebar). The Wad-

den Sea is one of the largest areas of intertidal flats worldwide (area ~104 km2) and is divided 

into several tidal basins. Phytoplankton dynamics in the Wadden Sea are strongly regulated 

by nutrients and solar radiation, which give rise to spring blooms between March and May 

(Colijn and Cadée 2003). It is for this reason that MILAN was planned for early to mid-April. The 

MILAN field site was in Jade Bay, one of the Wadden Sea’s largest basins, which is influenced 

Fig. 1. (a) Study area in the coastal North Sea using Ocean Data View (Schlitzer 2017). A detailed view of 

the drifting courses following tidal currents for the two diel cycles (b) cycle 01 and (c) cycle 03 is shown. 

Asterisk shows location of the land-based weather station and the aerosol sampler.

Table 1. Summary of field and laboratory experiments performed during MILAN (* = test experiment; 
# = experiment aborted due to strong wind).

Field 

experiments

Experiment start and 

end date/time (UTC) Location

High tide 

time (UTC)

Low tide 

time (UTC)

Sunrise 

time (UTC)

Sunset time 

(UTC)

Cycle 0*
Start: 3 Apr 2017/0930

Jade Bay 0608, 1826 —, 1209 0654 2007
End: 3 Apr 2017/1330

Cycle 1
Start: 4 Apr 2017/0715

Jade Bay
0658, 1920 0029, 1253 0651 2008

End: 5 Apr 2017/0930 0804, 2035 0126, 1359 0649 2010

Cycle 2#
Start: 6 Apr 2017/0830

Jade Bay 0930, 2205 0247, 1528 0646 2012
End: 6 Apr 2017/1500

Cycle 3
Start: 8 Apr 2017/0730

Jade Bay
—, 1212 0543, 1810 0642 2016

End: 9 Apr 2017/0900 0028, 1302 0639, 1858 0639 2018

Cycle 4
Start: 10 Apr 2017/1000 Wilhelmshaven 

Harbour

0113, 1342 0721, 1939 0637 2019

End: 11 Apr 2017/1000 0154, 1421 0802, 2021 0635 2021
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by semi-diurnal tides with a tidal 

range of up to 3.8 m (Götschenberg 

and Kahlfeld 2008). A large water 

volume (4 × 108 m3) flows in and 

out of Jade Bay during each rising 

and falling tide (Götschenberg and 

Kahlfeld 2008). However, direct 

freshwater discharge is relatively 

small, such that the usual salinity 

range is 29–32 psu (Götschenberg 

and Kahlfeld 2008), similar to that 

of offshore waters of the German 

bight (Otto et al. 1990).

During MILAN we performed 

several field experiments in Jade 

Bay (Table 1), including two full 

diel cycles over 25 h that we pres-

ent in this paper: cycle 01 on 4–5 

April 2017 and cycle 03 on 8–9 

April 2017 (Fig. 1). During each 

cycle, the radio-controlled cata-

maran Sea Surface Scanner (S3) 

and at least one of the research 

vessels (R/Vs) Senckenberg, Ot-

zum, or Zephyr followed a pas-

sively drifting CO2 buoy (Fig. 1). 

Meteorological conditions and 

water current speed and direc-

tion throughout the entire water 

column were recorded continu-

ously from the research vessels, 

supported by observations from 

land-based weather stations. 

Water column physical properties 

were profiled every hour using 

sensors for conductivity, tempera-

ture, and density. S3 is equipped 

with diverse sensors to measure 

physicochemical properties (e.g., 

conductivity, temperature, fluo-

rescent dissolved organic matter) 

of the SML and from 1 m water 

depth, referred to throughout this 

paper as underlying water (ULW; 

Ribas-Ribas et al. 2017). S3 ad-

ditionally collected large-volume 

water samples (20 L) from the 

SML and the ULW for subsequent 

analyses in the laboratory, for 

laboratory experiments using a 

Fig. SB1. Overview of sampling platforms used and laboratory 

experiments conducted during the MILAN campaign. Sampling 

platforms in the field included (a),(b) the radio-controlled catama-

ran S3 to sample the SML and ULW; (c),(d) a free-drifting buoy to 

measure air–sea exchange of CO2; and (e),(f) three R /Vs to sample 
the water column. Land-based instruments were installed (g) to 

record meteorological data at the Institute for Chemistry and 

Biology of the Marine Environment building and (h) to sample 

ambient aerosols. Laboratory experiments involved a (i) gas-

exchange tank, (j) a solar simulator, (k) a sea spray simulation 

chamber, and (l) microsensor studies.

MILAN Objectives

Most of our knowledge about SML properties and its functional roles 
derives from observations made during daytime, which is largely a conse-
quence of logistical constraints in the field. Thus, the motivation behind 
MILAN was the urgent need to study the extent of diel variability in the 
coupling between meteorological forcing, SML physico-chemical and 
biological properties, and the air–sea exchange of, for example, CO2 and 
aerosol particles.

The several field platforms and laboratory experiments comprising 
MILAN (Fig. SB1) together addressed the following overarching research 
questions:

1) Does solar radiation cause diel changes in microbial community compo-
sition and food web functioning in the SML that are distinct from those 
in the underlying bulk water?

2) Does the concentration and composition of organic material and other 
biogeochemically active chemical components (e.g., iodide) in the SML 
reflect diel patterns of biological and/or photochemical turnover?

3) Is the diel variability of organic material (e.g., surfactants) and biologi-
cal productivity in the SML sufficient to influence CO2 fluxes across the 
SML?

4) Does the composition of organic matter in sea spray aerosol depend on 
diel transformation of organic material in the SML?
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Fig. 2. Mean sea level pressure (hPa) in blue to green contours and wind normalized at 10-m height (black 

vector arrows) for cycles (a) 01 and (b) 03. Low-level cloud fraction for cycles (c) 01 and (d) 03. All data were 

generated from average ERA-Interim (Dee et al. 2011). The location of Jade Bay is shown by the blue box.

gas-exchange tank, a solar simulator, and a sea spray simulation chamber, and for microsen-

sor experiments. All technical details regarding field measurements and laboratory analyses 

can be found in the online supplemental material (https://doi.org/10.1175/BAMS-D-17-0329.2).

Measurement highlights

Meteorological and hydrological conditions. Precise measurements of meteorological and 

hydrological conditions are crucial for an understanding of processes in the upper ocean 

and its interaction with the atmosphere. During MILAN we used two weather stations, that 

is, a land-based system on the institute building at the shoreline (Institute for Chemistry and 

Biology of the Marine Environment) and a system in the field (on the masts of S3), to measure 

air temperature and wind speed and direction. Furthermore, we measured water temperature 

and salinity in the SML (<1 mm) and in the ULW (=1 m) using S3 and from 1.2 to 2.0 m water 

depth using a CTD (conductivity–temperature–depth) package.

Transitions between low and high pressure systems were prevalent during MILAN, influenc-

ing the intensity of near surface winds. During cycle 01, a low pressure system developed (Fig. 

2a), causing wind speed to increase at the end of cycle 01 (Fig. 3e). During cycle 03, higher 

sea level pressure over the European continent (Fig. 2b) induced a redistribution of the wind 

flow, causing decreasing wind speeds (Fig. 3f). Throughout the MILAN campaign low clouds 

covered between 50% and 70% of the study region (Figs. 2c,d). Cover by low clouds was less 
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extensive during cycle 01 than during cycle 03, where increasing cloudiness caused a rapid 

decrease in surface radiation after noon (Figs. 3a,b).

Jade Bay is influenced by strong tidal currents that must be taken into account of when 

considering the meteorological forcing of sea surface properties. The maximum current speed 

in the surface water layer was higher during ebb tide (approximately 1.2 m s–1 for cycle 01 

and 1.4 m s–1 for cycle 03) than during flood tide (approximately 1 m s–1) (Fig. 4). The current 

direction during ebb tides was about 330° and during flood tides about 150°.

The near-surface air temperature measured from S3 (
3
S

a
T ) during MILAN was mild. Diel 

cycles of 
3
S

a
T  showed a maximum air temperature range of about 5°C (cycle 03). While these diel 

differences generally followed the influence of solar radiation (Figs. 3a,b), land–sea breeze 

effects, due to our coastal study site, might have cause additionally day/night variation of air 

temperature. Ongoing analyses of the relation among wind speed and direction, solar radia-

tion, and air temperature will unravel the main drivers of diel temperature changes during 

MILAN. The main day-to-day variations of air temperature were associated with changes in 

the mean sea level pressure (Figs. 2a,b). The water temperature measured with the CTD (
CTD

w
T ) 

varied by <1°C during each cycle, ranging from 8.9° to 9.7°C during cycle 01 and from 9.7° to 

10.3°C during cycle 03 (Fig. 3). Due to solar heating, temperatures in the SML (
SML

w
T ) and in 

the ULW (
ULW

w
T ) were higher compared to 

CTD

w
T  around noon, and 

SML

w
T  and 

ULW

w
T  showed similar 

overall temporal dynamics, with a difference between SML and ULW of about ±0.5°C (Fig. 3c).

Fig. 3. Solar radiation (black circles) and photosynthetically active radiation (PAR; 410–655 nm, blue circles) 

for cycles (a) 01 and (b) 03. Air temperature (black line), water temperature in the SML (blue line), ULW 

(red line), and surface layer CTD (gray circles) for cycles (c) 01 and (d) 03. Wind speed for cycles (e) 01 and 

(f) 03 measured at the land-based weather station.



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y F E B R UA RY  2 0 2 0 E153

Temperature–salinity dia-

grams constructed from the 

CTD data revealed very little 

temporal change during cycle 

03 (Fig. 5). Mean CTD salinity 

during the day was 32.89 and 

during the night 32.86 psu, 

while mean CTD temperature 

was 9.97°C during the day and 

9.92°C during the night. The 

depth of CTD measurements 

represents the penetrating 

depth of our free-drifting buoy; 

consequently, our sampling 

strategy consistently targeted 

the same water mass. Com-

pared to the CTD, we observed 

stronger temporal variability of 

temperature and salinity in the 

SML and ULW throughout cycle 

03. Salinity ranged from 29.2 to 

32.1 psu in the SML and from 

31.7 to 34.4 psu in the ULW. 

Temperature ranged from 8.8° 

to 12.1°C in the SML and from 

8.6° to 11.0°C in the ULW. This 

contrasting behavior between 

measurements from the SML 

and ULW, as measured by S3, 

versus measurements from 

the CTD is deserving of further 

consideration, especially in relation to how the complex bathymetry of Jade Bay along with 

meteorological forcing influences the mixing of saline North Seawater with less saline water 

of the inner Jade Bay. This significant difference between the SML and ULW implies the pres-

ence of two distinct water layers within the uppermost 1 m of the water column.

Light-driven changes in organisms inhabiting the SML. The metabolic activity of organisms, 

especially of microorganisms, determines the production, degradation, and modification of 

organic material in the surface ocean (Azam and Malfatti 2007). The underlying processes 

of primary production and respiration also directly influence the concentration and air–sea 

fluxes of, for example, CO2 (Calleja et al. 2005). Primary production by phytoplankton is gen-

erally light dependent, but excessive radiation levels may cause inhibition of photosynthesis 

(van de Poll et al. 2006). During MILAN cycles 01 and 03 we observed similar diel patterns for 

the relative concentration (SML versus ULW) of the photosynthetic pigment chlorophyll-a, an 

index of phytoplankton biomass, especially during the first half of both cycles (Fig. 6a). The 

relative concentration is expressed as the enrichment factor (EF), that is, the concentration 

of a parameter X in the SML versus ULW (EF = X[SML]/X[ULW]). Chlorophyll-a was generally 

lower in the SML than in the ULW (EF < 1), as reported previously (Falkowska 2001). During 

both cycles, lowest EFs were observed around noon, and despite large variability in the data 

collected, these dynamics indicate that SML accumulation of phytoplankton may be radiation 

Fig. 4. Current velocities measured during (a) cycle 01 and (b) cycle 03. 

Data were recorded in 3.6–4.6 m water depth (cycle 01) and 1.7–2.7 m 

water depth (cycle 03).
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dependent (Fig. 6b). Detailed 

analyses of specific phyto-

plankton groups will help in 

the future to refine previously 

observed diel, species-specific 

migration of planktonic organ-

isms (Wandschneider 1979). 

Preliminary results indicate a 

radiation-dose dependent ac-

cumulation of cryptophytes in 

the SML at low levels of solar 

radiation (Fig. 6d), even though 

their diurnal dynamics were 

very irregular (Fig. 6c).

Bacteria are integral mem-

bers of the gelatinous matrix of 

the SML (Wurl et al. 2016), and 

their activity and community 

composition may change due 

to changing solar radiation 

(Santos et al. 2009; Stolle et al. 

2011). Bacterial abundance 

was often higher in the SML 

than in the ULW and the data 

contained a temporal signal, 

particularly during the first 

half of each cycle (Fig. 6e) 

when increased enrichment 

was evident even at high radia-

tion levels (Fig. 6f). While these 

results imply that bacterial 

enrichment of the SML is not 

negatively affected by solar radiation, other features of the data need further detailed analy-

ses. For example, the strongest bacterial depletion was at night, when wind speed was very 

low. While low wind speed usually favors the enrichment of bacteria in the SML (Rahlff et al. 

2017), microbial food web interaction in the SML (Joux et al. 2006), for example, enhanced 

protist feeding on bacteria during nighttime, is possible.

Diel patterns of organic material in the SML. DissolveD organic matter. Organic matter in 

natural waters is a complex mixture of molecules and understanding the variability in the 

composition of the dissolved organic matter (DOM) bulk pool will help to unravel its produc-

tion and degradation pathways. During cycle 03, dissolved organic carbon concentrations 

in the SML and ULW ranged between 2.6 and 2.8 mg L–1 (Fig. 7a) without any significant 

enrichments in the SML compared to the ULW (EF = 0.97–1.05).

The DOM composition also varied little between the SML and the ULW in terms of percent-

age contribution (humic substances, 47%–49%; low molecular weight neutrals, 32%–34%; 

building blocks, 12%–13%; biopolymers, 6%–7%; and low molecular weight acids, 1%; 

Fig. 7a). While some variations in SML enrichment were observed across the DOM composi-

tion pools (data not shown), a clear description of any diel patterns must await our complete 

analysis of all the samples collected. Nevertheless, some potential production pathways may 

Fig. 5. Temperature–salinity (T–S) diagram of (a) the SML and (b) the ULW 

and at the surface layer CTD (1.3–2 m depth) during cycle 03. Day and night 

measurements for SML and ULW are shown in red and blue, respectively.
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Fig. 6. Biological parameters including (a),(b) chlorophyll-a; (c),(d) the relative abundance of the phytoplankton 

group chryptophytes; and (e),(f) bacterial abundance during cycles 01 (green) and 03 (blue). Results are shown 

as EF (relative concentration of a parameter x in the SML vs ULW, i.e., EF = X[SML] /X[ULW]). EFs are plotted 

(left) over time and (right) against solar radiation. Night samples taken at very low wind speed (≤1 m s–1) are 

marked (yellow asterisk).

Fig. 7. (a) DOM composition of the different fractions identified in 

samples from the SML and ULW from cycle 03. Additionally, dissolved 

organic carbon (DOC) concentration is shown as black diamonds. Error 

bars show standard deviation (n = 9). (b) The EF of the DOM fraction 

“biopolymers” (i.e., EF = SML[biopolymers] /ULW[biopolymers]) is plotted against chlorophyll-a.
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be identified, as the enrichment of biopolymers in the SML followed patterns of chlorophyll-

a enrichment in the SML (Fig. 7b). Further detailed analyses will unravel which substrate 

classes of the DOM pool may be linked to primary or secondary producers, and whether these 

are influenced by diel radiation signals. Furthermore, while overall DOM composition is very 

similar in the SML and ULW, the molecular composition may differ strongly (Lechtenfeld et al. 

2013). We noted that while the concentration of humic substances remained relatively stable 

throughout the cycle, the humics nitrogen content was variable over time, suggesting either 

a change in DOM supply or some reworking of humic substances.

light absorbance anD fluorescence properties of DissolveD of organic matter. Chromophoric 

dissolved organic matter (CDOM) is the light-absorbing fraction of the DOM pool. CDOM is 

ubiquitous in coastal and open ocean environments, and often dominates light attenuation in 

marine waters. CDOM is subject to photochemical and photobiological reactions (Mopper et al. 

2015) and is a tracer of deep ocean biogeochemical cycles and circulation (Nelson and Siegel 

2013). Marine CDOM can be released by phytoplankton and additionally produced by microbial 

degradation of DOM (Nelson and Siegel 2013). A fraction of CDOM fluoresces following excita-

tion and is thus referred to as fluorescent dissolved organic matter (fDOM).

CDOM absorbance (measured at a wavelength of 355 nm) in the SML was different between 

cycle 01 and 03, both in terms of absolute values and temporal variability (Fig. 8a). The most 

obvious difference between the cycles was observed during the night, when either highest 

(cycle 01) or lowest (cycle 03) values were measured. While these patterns currently cannot be 

easily explained by single forcing factors (e.g., tidal currents, wind speed, solar radiation), we 

Fig. 8. (a) Absorption coefficient (m–1) of CDOM at 355 nm wavelength (λ) in SML samples during cycle 01 

(green) and cycle 03 (blue). (b) EF of a(355 nm) (i.e., EF = SML[a(355 nm)] /ULW[a(355 nm)]) against solar radiation. 

Night samples taken at very low wind speed (≤1 m s–1) are marked (yellow asterisk). (c) High resolution 

(0.1 Hz) of in situ fDOM in the SML and ULW, and (d) histogram of EF of fDOM in the SML during day and 

night at different wind regimes.
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observed that the enrichment of CDOM in the SML tends to be negatively related to radiation 

intensity (Fig. 8b). Such changes in CDOM are consistent with CDOM photobleaching (Helms 

et al. 2008), but further consideration of other important production/degradation mechanisms, 

for example, by microorganisms in the SML compared to the ULW, will be needed to elucidate 

the main driver of CDOM turnover for each cycle studied.

The temporal variability of fDOM in the SML and ULW was very similar throughout cycle 

03, but with generally higher values in the SML (Fig. 8c). This SML enrichment in fDOM was 

significantly higher at night (median = 1.57, n = 611) than during daytime (median = 1.38, 

n = 800) but it was driven by differences in wind speed rather than changes in radiation in-

tensity. During the day, fDOM enrichment was significantly higher at moderate (2.5–5 m s–1) 

compared to low (0–2.5 m s–1) wind speed, whereas during the night the highest enrichments 

were observed for low wind speed (Fig. 8d).

surfactant Dynamics unDer natural anD artificial raDiation exposure. Surfactants are or-

ganic compounds with strong interfacial affinities that reflect molecular structures. They 

are adsorbed at the air–sea interface, stabilizing the SML. During MILAN, surfactants in 

both the SML and the ULW showed characteristics typical of hydrophilic substances, such 

as humic material, proteins, and polysaccharides. We found contrasting temporal dynamics 

of surfactants in the SML and ULW of cycle 03 (Fig. 9a). While ULW surfactant concentration 

decreased during the night, we observed higher nighttime concentrations of surfactants in 

the SML, which is significant given that the relative standard deviation of the measurement 

is <5% (supplemental material). Photochemical production during the night can be excluded 

and wind-induced turbulent transport was probably minor due to low wind speeds (Fig. 3f). 

These observations therefore suggest a strong nighttime biological surfactant production in 

the SML.

To complement the field studies, we investigated the effect of solar radiation on surfactants 

in discrete water samples experimentally, using a solar simulator. Surfactants increased dur-

ing the irradiation of unfiltered SML samples. In the example in Fig. 9b, surfactants in an 

irradiated SML sample taken during cycle 03 initially increased by ~9% over the first 3 h of 

irradiation, showing an ~18% increase at 24 h irradiation. In dark controls, surfactants initially 

increased by ~4%, showing a 9% increase at 24 h incubation. Temperature controls (dark, 

4°C) showed no net change until 24 h incubation, increasing by ~4%. Temperature controls 

consistently remained below dark controls, and dark controls below irradiated subsamples.

The observed difference between dark (~20°C) and temperature (4°C) controls confirms a 

temperature effect on surfactant production during laboratory irradiations. Irrespective of this, 

the larger overall changes in surfactants in the irradiated samples relative to both dark and 

Fig. 9. (a) Variability of surfactant concentration in the SML (triangles) and ULW (squares), and EF (circles) 

during cycle 03. (b) Changes in SML surfactant concentration during irradiance (red diamonds) compared 

to dark (black diamonds) and temperature controls (open diamonds) in the solar simulator.
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temperature controls demon-

strate a net photochemical pro-

duction of surfactants during 

irradiation. Our findings show 

that photochemical transforma-

tions of surfactants should be 

accounted for when evaluating 

their enrichment in the SML.

Diel turnover of lipiDs. Lipids 

are an important food source to 

the aquatic food web, because 

they are carbon-rich and have 

very high energetic values. Lip-

ids can form a condensed layer 

at the air–sea interface that can 

substantially influence mate-

rial exchange (e.g., of gases) 

within the marine boundary 

layer (Gladyshev 2002). Since 

the molecular structure of lip-

ids determines their reactivity, 

characterizing marine lipids at 

the molecular level may help to 

identify their various sources and the processes responsible for their degradation and trans-

formation (Christodoulou et al. 2009; Van Mooy et al. 2006).

Lipid concentrations in our nutrient rich Jade Bay (Colijn et al. 2002) were much higher 

compared to oligotrophic regions (Gašparović et al. 2014). Phytoplankton are the main lipid 

producer in the ocean (Gašparović et al. 2014) and membrane lipids, for example, glycolipids 

and phospholipids, were substantial contributors to the lipid pool in our samples. During 

both cycles, we observed a large variability of particulate lipid concentrations in SML and 

ULW samples with either higher or lower concentrations occurring in the SML (Figs. 10a,b). 

Interestingly, during nighttime of both cycles, we observed higher lipid degradation indices 

in the SML compared to the ULW (Figs. 10c,d). Although confirmation through an analysis 

of the whole dataset is needed, this preliminary observation indicates that degradation pro-

cesses likely differ between SML versus ULW and time of day.

organic gel-like particles. The gelatinous matrix of the SML comprises a complex mixture of 

intertangled molecules and particles. Among the latter, transparent exopolymer particles (TEP) 

and Coomassie stainable particles (CSP) are especially important SML constituents (Galgani 

et al. 2016; Wurl and Holmes 2008). Increasing accumulation of gel-like particles leads to the 

formation of a biofilm-like structure in the SML, possibly causing a reduction in gas exchange 

across the SML (Wurl et al. 2016). During MILAN, CSP concentrations in the SML were on aver-

age lower than in the ULW (Fig. 11a). In contrast, TEP concentrations were not significantly 

different between SML and ULW (Fig. 11b), which might be related to overall high levels of 

particulate organic carbon (POC) in the SML, as TEP attachment to POC may cause TEP to sink 

out of the SML (Jennings et al. 2017). Both gel particle types did not show consistent changes 

between day and night. Further analyses will unravel whether or not CSP depletion in the SML 

is related to a lower production of proteinaceous material by phytoplankton (as indicated by 

lower chlorophyll-a values in the SML), or by higher protein degradation potential in the SML.

Fig. 10. (a),(b) Concentrations of particulate lipids and (c),(d) their deg-

radation index of some SML and ULW samples taken during cycle 01 

(green) and 03 (blue). Error bars show standard deviation of duplicate 

measurements.
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Iodide dynamics in the SML. The reaction of iodide with ozone 

at the sea surface is an important removal process for tropo-

spheric ozone (Ganzeveld et al. 2009), and it releases reactive 

iodine-containing gases to the atmosphere that participate in 

further atmospheric chemical reactions that ultimately affect 

air quality and climate (Carpenter et al. 2013; Sherwen et al. 

2017). Rates of both ozone loss and air–sea iodine flux are 

dependent on iodide concentrations at the air–sea interface 

(Carpenter et al. 2013). Although progress has been made in 

predicting iodide concentrations in bulk near-surface seawater 

(Chance et al. 2014; Sherwen et al. 2019), to date there are very 

few measurements of iodide concentrations in the SML itself 

(Chance et al. 2014).

The iodide concentrations observed in this study 

(168–241 nmol L–1, average 205 nmol L–1, n = 8) are within 

the range of previous measurements made in shelf regions 

(Truesdale et al. 2003; Truesdale et al. 2001), reflecting a 

general trend for higher iodide in coastal and estuarine waters 

at similar latitudes (Chance et al. 2014), but diel variation of 

iodine speciation in the SML itself has not previously been 

investigated. A study in the tropical Atlantic found no signifi-

cant variation in near surface (<10 m), open ocean iodide con-

centrations during 24 h sampling (Chance et al. 2014). During 

MILAN, cycle 01 showed no difference between iodide levels 

in samples collected 1.5 h after dawn, and samples collected 

at sunset, consistent with a lack of diel variation. Meanwhile, 

during cycle 03, iodide concentrations in both the SML and 

ULW were higher in samples collected 3 h after sunset (night-

time) than those collected ~4 h after dawn (daytime) (Fig. 12). 

The causes of these observed differences are not yet clear. Our 

data show that under certain conditions, iodide concentra-

tions might be enhanced in the SML. However, the extent of 

this enhancement does not appear to reflect any particular 

day–night contrast.

Air–sea gas exchange of CO2. 

We used a free-drifting buoy to 

measure temporal change in 

the partial pressure of CO2 in a 

chamber floating on top of the 

sea surface (Ribas-Ribas et al. 

2018a), allowing us to estimate 

the gas transfer velocity of CO2 

(k; cm h–1) with high spatial 

and temporal resolution com-

pared to other techniques. 

Our k estimates (Fig. 13) are 

within the range previously 

estimated in Jade Bay during 

daytime (Ribas-Ribas et al. 

Fig. 11. Box-and-whisker plot of the 

abundance of (a) CSP and (b) TEP of SML 

and ULW samples taken during day and 

night. Combined data of cycles 01 and 03 

are shown. The boxes show the median 

(line) and the range of data from the 25th 

and 75th percentiles (n = 8–10).

Fig. 12. Iodide concentrations in filtered ULW and SML samples taken 

during cycle 01 (green) and cycle 03 (blue). Error bars show range (where 

n = 2) or standard deviation (where n > 2) of replicate measurements.
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2018a). We observed no significant differences in k between day (mean ± sd, 5.4 ± 3.5 cm 

h–1) and night (mean ± sd, 5.1 ± 5.1 cm h–1). However, with k categorized in terms of low 

(0–2.5 m s–1), medium (2.5–5 m s–1), and high (5–10 m s–1) wind speed bins (Fig. 13b), there 

was a significant difference between day and night for the low wind bin (Mann–Whitney 

U test, W = 66, p value = 0.006, n = 18; Fig. 13c), but there was no day–night difference for 

either the moderate or high wind bins.

In the equatorial Pacific, McGillis et al. (2004) reported day–night variation of k, and CO2 fluxes. 

They found increases in CO2 fluxes of up to 40% during nighttime, reflecting coincident strong 

increases in vertical convective velocity. They concluded that diel heating cycles can sometimes 

affect k to a larger extent than does wind speed. In Jade Bay during spring, oscillating insola-

tion was not as pronounced as in the equatorial Pacific, and turbulent mixing was probably the 

dominant process driving gas exchange. Yang et al. (2019) showed diel variability in CO2 flux 

associated with diel variability in near surface pCO2. We also observed diel variability in near 

surface pCO2, ranging from 542 µatm at 1800 UTC to 635 µatm at 0700 UTC. Under these calm 

conditions, it seems possible to have a vertical gradient in pCO2 from the measured depth (1.2 m) 

to the water surface, which would have influenced the gas transfer velocity estimates.

Microsensor studies. To evaluate the respective scales of diffusive and turbulent transport at the 

sea surface, we used microsensors (Revsbech and Jørgensen 1986) to obtain high-resolution O2
 

and pH microprofiles in an aquarium filled with Jade Bay water. Both microsensors had 25–50 

µm tip diameters; the pH microsensor was pH sensitive over a tip length of approximately 200 µm.

Figure 14 shows example O2 and pH microprofiles, and the data show O2 supersaturation 

indicative of net photosynthesis, similar to previous experiments conducted with Jade Bay 

water during summer (Rahlff et al. 2019). Diffusive O2 transport is evidenced by the linear 

increase in O2 concentration from 0 µm to approximately 500 µm depth. Below this diffusive 

boundary layer, a large change in the O2 concentration gradient indicates a shift to dominance 

by turbulent transport, even in an aquarium with no active stirring except that caused by tem-

perature differences. As the thickness of the diffusive boundary layer decreases with increasing 

turbulence, this confirms that in most natural systems diffusive transport resistance is within a 

nonturbulent layer, only fractions of a millimeter deep, and may be even less than in our tank 

study. The thickness of the diffusive boundary layer under highly turbulent conditions cannot 

be determined by microsensor profiling, as the sensor itself will create increased turbulence 

around the sensor tip (Glud et al. 1994). That means that the effective diffusive boundary layer 

thickness under such conditions has to be determined from rate of bulk gas exchange between 

water and overlying gas phase.

Fig. 13. Box-and-whisker plots of the gas transfer velocities k for (a) day and night, (b) different wind speed 

bins, and (c) day and night for the low wind speed bin (<2.5 m s–1). The boxes show the median (line) and 

the range of data from the 25th and 75th percentiles; whiskers represent the 5th and 95th percentiles.
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In the bulk water, pH was 

alkaline during accompanying 

CO2 consumption (Fig. 14), con-

firming a net photosynthetic his-

tory, while surface water pH was 

more than 0.1 units lower due 

to CO2 uptake from the air. The 

diffusive boundary layer thus 

exerts a strong resistance to H+ 

diffusion across the uppermost 

~500 µm of the sea surface.

Ambient and nascent aerosol 

particles. The chemical com-

position of ambient aerosol 

particles varied strongly during 

MILAN (Fig. 15). Ammonia, ni-

trate, and sulfate were always 

the dominant inorganic ions. 

Organic carbon, including both 

water soluble and water-insol-

uble components, contributed 

on average 25% to the identified aerosol mass. Elemental carbon is a tracer of anthropogenic 

sources, for example, biomass burning, and was on average 5 times higher than in “clean” 

marine samples (Cavalli et al. 2004), indicating a strong anthropogenic signal in Jade Bay. 

Nevertheless, clear marine source signals were evidenced by elevated sodium and chloride 

concentrations (e.g., between 5 and 7 April) and/or by significant concentrations of methane 

sulfonic acid, a decay product of the marine trace gas dimethyl sulfide.

Air mass origin determines the residence time of aerosol particles over the ocean and 

may eventually influence aerosol composition. We calculated the backward trajectories for 

96 h prior to sampling (details in van Pinxteren et al. 2010) which additionally showed large 

Fig. 14. Example gradients of oxygen (red) and pH (blue) across the air–sea 

interface measured with microsensors in an aquarium filled with Jade 

Bay water.

Fig. 15. The respective contribution of different chemical species to the composition of the PM1 aerosol 

particles including the main inorganic ions as well as organic carbon differentiated between water soluble 

organic carbon (WSOC) and water-insoluble organic carbon (WISOC). The residence time of the air masses 

over water and ice (RT “water and ice”) is also shown.



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y F E B R UA RY  2 0 2 0 E162

fractions of the aerosol samples collected during MILAN to be of marine origin, especially in 

the second half of the campaign. Varying day and night contributions to the organic carbon 

content requires further analysis of the primary and secondary organic carbon constituents.

To improve our understanding of how the organic matter pool in the ULW and the SML 

influences the flux and composition of nascent sea spray aerosols, and to derive further in-

sights into the qualitative and quantitative transfer of marine organic material into aerosols, 

we generated nascent sea spray aerosols using a laboratory sea spray aerosol chamber (Salter 

et al. 2014) in parallel with ambient aerosol collection. The chamber excludes ambient air (e.g., 

anthropogenic aerosol) and solar radiation so that any chemical evolution of the chamber 

water is minimized. Alongside measurements of the size and number of particles generated 

in the chamber, analyses of the chemical composition of the particles were also conducted. 

Preliminary results revealed significant enrichment of surfactants in the nascent aerosols as 

well as specific classes of the organic carbon pool such as amino acids.

Summary and outlook

MILAN was a truly multidisciplinary, international study involving scientists from the fields 

of marine (micro)biology, biogeochemistry, marine chemistry, atmospheric chemistry and 

physics, and physical oceanography. It combined diverse approaches in the field and in the 

laboratory to study the diel properties of the SML and their effects on the air–sea exchange 

of climate-relevant gases and aerosols.

MILAN took place in Jade Bay, which is strongly tidally influenced. The large amounts 

of suspended material in the water may partly account for the strong variability observed, 

for example, regarding the biomass and abundance of organisms. Tidal currents generally 

influence water column properties such as salinity and temperature. During both cycles we 

followed a free-drifting buoy, and hourly CTD measurements (depth 1.2–2 m) confirm that we 

were able to follow the same water mass (Fig. 5). Nevertheless, salinity and temperature were 

clearly different between the SML and ULW, suggesting that the SML represents a distinct water 

layer. SML material and organisms are often recruited from the ULW (Cunliffe et al. 2013), 

and this transport might be a function of tidal currents velocities. The preliminary analysis 

of our initial results presented in this publication did not reveal any relationships between 

current velocities and the enrichment of material and organisms in the SML. Nevertheless, 

addressing potential tidal effects will be an important focus of our definitive detailed analysis 

and interpretation. This is currently in progress in all the participating laboratories.

Our initial results point to a radiation dependence of several SML processes. Some of these 

support previous observations and conclusions, such as increasing lipid degradation in the 

SML during the night, which most likely reflects diel changes in the relative importance of 

phytoplankton production and bacterial degradation. Some of our findings, for example, the 

dose-dependent enrichment of the phytoplankton group cryptophytes in the SML, will help 

to refine our knowledge of the species-specific occurrence of SML inhabitants. Other results 

were seemingly contradictory. For example, while experiments with the solar simulator clearly 

implied daytime surfactant production, surfactant concentrations in the field were actually 

highest at night, which has not been reported before. Such contrasts highlight a need to 

unravel the microbiological and photochemical turnover of surfactants to better understand 

their dynamics in the natural environment. Another interesting observation of MILAN is 

that while CDOM enrichment in the SML tends to decrease under highest radiation levels, 

indicative of well-known photobleaching as the main CDOM sink (Nelson and Siegel 2013), 

CDOM absolute concentrations in the SML do not necessarily follow this pattern. Eventually, 

the dynamics of organisms and organic material within the SML will feedback into air–sea 

exchange processes, and our initial data suggest that day and night CO2 fluxes might differ 

if wind speed is low (<2.5 m s–1).
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An important overall conclusion from MILAN is that while prior information on SML func-

tion obtained from observational and experimental campaigns carried out during daytime 

is undoubtedly of great value, future progress in our understanding will require additional 

information on day–night contrasts. MILAN has shown how the combination of expertise 

from diverse disciplines as well as the combination of field and laboratory experiments is 

the most appropriate approach to achieve this. We are convinced that strengthening the links 

between disciplines is an important step to deepen the first insights presented here and to 

further unravel the complexity of air–sea interaction (Engel et al. 2017).

MILAN was performed in the coastal zone, which is of strong importance for biogeochemi-

cal cycles (Gattuso et al. 1998), especially considering the strong anthropogenic forcing in 

coastal habitats (Jickells 1998). Coastal oceans are additionally important areas for air–sea 

gas exchange (Upstill-Goddard 2006) and the formation of new aerosol particles (O’Dowd 

and Hoffmann 2005). Nevertheless, while in coastal regions like Jade Bay high numbers of 

suspended particles greatly inhibit downward light penetration (Tedetti and Sempéré 2006), 

in more oligotrophic systems with lower suspended particle concentrations the contrasting 

effects of radiation on the biogeochemical properties of the SML and ULW will likely be quite 

different. Future studies should therefore target a broad range of oceanic regions and seasons 

(e.g., summer phytoplankton blooms), and we hope that MILAN will stimulate further diel 

studies of air–sea interface processes. In light of the global importance of matter and energy 

exchange across the SML, the focus of these should be on improving our understanding of 

the long- and short-term effects of climate change. We predict that in a future ocean, changes 

in wind regimes, radiation intensities and precipitation rates will greatly modify SML prop-

erties, leading to subsequent feedbacks affecting many aspects of air–sea interaction (Wurl 

et al. 2017).
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