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Abstract We study a new (large) class of algebras (that was introduced in Bavula in Math Comput Sci 11(3–

4):253–268, 2017)—the skew category algebras. Any such an algebra C(σ ) is constructed from a category C and a

functor σ from the category C to the category of algebras. Criteria are given for the algebra C(σ ) to be simple or

left Noetherian or right Noetherian or semiprime or have 1.

Keywords A skew category algebra · A simple algebra · A left Noetherian algebra · A semiprime algebra

Mathematics Subject Classification 16P40 · 16S35 · 16S34 · 16P60 · 16N60

1 Skew Category Algebras, Examples and Constructions

In this paper, K is a commutative ring with 1, algebra means a K -algebra. In general, it is not assumed that a

K -algebra has an identity element. Module means a left module. Missed definitions can be found in [1].

Let C be a category, Ob(C) be the set of its objects and Mor(C) be the set of its morphisms. For each objects

i, j ∈ Ob(C), C(i, j) is the set of morphisms f : i → j , the objects i = t ( f ) and j = h( f ) are called the tail and

head of the morphism f , respectively. For each object i ∈ Ob(C), ei is the identity morphism i → i .

Definition 1.1 ([2]) Let C be a category and σ be a functor from the category C to the category of unital K -algebras

over a commutative ring K (eg, K = Z or K is a field). So, for each object i ∈ Ob(C), Di := σ(i) is a K -algebra

and for each morphism

f : i �→ j, σ f : Di → D j

is a K -algebra homomorphism, and σ f g = σ f σg for all morphisms f and g such that t ( f ) = h(g). The direct sum

of left K -modules

C(σ ) =
⊕

f ∈Mor(C)

Dh( f ) f (1)
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where Dh( f ) f is a free left Dh( f )-module of rank 1, is a K -algebra with multiplication given by the rule: For all

f, g ∈ Mor(C), a ∈ Dh( f ) and b ∈ Dh(g),

a f · bg =

{

aσ f (b) f g if t ( f ) = h(g),

0 otherwise.
(2)

It is a trivial exercise to verify that the multiplication is associative. The K -algebra C(σ ) is called a skew category

K -algebra. If K = Z, the Z-algebra C(σ ) is called a skew category ring.

Definition 1.2 If the direct sum (1) admits an associative product which is given by the rule: For all f, g ∈ Mor(C),

a ∈ Dh( f ) and b ∈ Dh(g),

a f · bg =

{

aσ f (b)c( f, g) f g if t ( f ) = h(g),

0 otherwise,
(3)

where

c( f, g) ∈

{

Dh( f ) if t ( f ) = h(g),

{0} otherwise,
(4)

then it is called the twisted skew category K -algebra and is denoted by C(σ, c).

The categorical nature of the above classes of rings especially the categorical/explicit nature of their multiplica-

tions makes these classes important as far as various computational aspects are concerned.

Let 1i be the identity of the algebra Di . Then 1i ei ∈ Di ei ⊆ C(σ ) where i ∈ Ob(C). Abusing the notation, we

write ei for 1i ei . Then ei ∈ C(σ ).

The C-grading on C(σ ). By the very definition, the algebra C(σ ) is a C-graded algebra, that is

Dh( f ) f · Dh(g)g ⊆ Dh( f g) f g for all f, g ∈ Mor(C).

The algebra C(σ ) is a direct sum

C(σ ) =
⊕

i, j∈Ob(C)

C(σ )i j where C(σ )i j =
⊕

f ∈C( j,i)

Di f (5)

and for all i, j, k, l ∈ Ob(C),

C(σ )i jC(σ )kl ⊆ δ jkC(σ )il (6)

where δ jk is the Kronecker delta. In particular, for each i ∈ Ob(C), C(σ )i i is a K -algebra without 1, in general. For

each i, j ∈ Ob(C), C(σ )i j is a (C(σ )i i , C(σ ) j j )-bimodule.

The next two examples show that even for two simplest categories that contain a single object, a single loop or a

single invertible loop, the above construction gives apart from a skew polynomial ring or a skew Laurent polynomial

ring, new classes of rings.

Example 1 Let C be a category that contains a single object, say 1, and Mor(C) = {x i | i ∈ N} where e := x0 is the

identity morphism. So, C(σ ) = De ⊕ Dx ⊕· · ·⊕ Dx i ⊕· · · where D = σ(1) and ed = σe(d)e and x i d = σ i
x (d)x i

for all i ≥ 1 where σe and σx are ring endomorphisms of D such that σeσx = σxσe = σx and σ 2
e = σe.

• If σe = idD then C(σ ) = D[x; σx ] is a skew polynomial ring.

• If σe �= idD then C(σ ) is not a skew polynomial ring since ed = σe(d)e and, in general, σe(d)e �= de for all

d ∈ D (since σe �= idD). For example, let D = D1 × D2 × D3 and σe and σx are the projections onto D1 × D2

and D1, respectively. Then eD3 = 0.

Example 2 Let C be a category that contains a single object, say 1, and Mor(C) = {x i | i ∈ Z} where e := x0 is

the identity morphism (xx−1 = x−1x = e). The functor σ is determined by the algebra D = σ(1) and its algebra

endomorphisms σe, σx and σx−1 such that

σ 2
e = σe, σeσx±1 = σx±1σe = σx±1 and σxσx−1 = σx−1σx = σe.

Then C(σ ) = ⊕i∈Z Dx i .
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• If σe = idD then σx−1 = σ−1
x and C(σ ) = D[x±1; σx ] is a skew Laurent polynomial ring.

• If σe �= idD then C(σ ) is not a skew Laurent polynomial ring. For example, let D = D1 × D2 be a direct product

of algebras and σe = σx = σx−1 be the projection onto D1. Then eD2 = 0 and x D2 = x−1 D2 = 0.

Example 3 Let C be a category that contains a single object, say 1, and the monoid C(1, 1) is generated by elements

x and y subject to the defining relation yx = e. The functor σ is determined by the algebra D = σ(1) and its three

algebra endomorphisms σx , σy and σe such that

σyσx = σe.

The skew category algebra C(σ ) is called the skew semi-Laurent polynomial ring [2]. It is a new class of rings.

Suppose, for simplicity, that σe = idD . Then the ring C(σ ) is generated by a ring D and elements x and y subject

to the defining relations:

yx = 1, xd = σx (d)x and yd = σy(d)y for all d ∈ D.

We denote this ring by D[x, y; σx , σy]. In particular, D[x, y; τ, τ−1] where τ is an automorphism of D.

Example 4 Let n ≥ 1 be a natural number and Mn be the matrix units category:

Ob(Mn) = {1, . . . , n}, Mn(i, j) = {E j i } and Ei j E jk = Eik for all i, j, k.

Let D be a ring and f1, . . . , fn be its automorphisms. Define σ by the rule σ(i) = D and σ(Ei j ) = fi f −1
j . The

skew category algebra

Mn(σ ) = ⊕n
i, j=1 DEi j

is called the skew matrix ring where the multiplication is given by the rule

d Ei j · d ′Ekl = δ jkd fi f −1
j (d ′)E jl for all d, d ′ ∈ D.

The skew graph rings and the skew tree rings.

Definition 1.3 ([2]) Let Ŵ = (Ŵ0, Ŵ1) be a non-oriented graph without cycles where Ŵ0 is the set of vertices and Ŵ1

is the set of edges. If, in addition, Ŵ is connected then it is called a tree. So, any non-oriented graph without cycles

is a disjoint union of its connected components which are trees. Let Ŵ be the category groupoid associated with Ŵ:

Ob(Ŵ) = Ŵ0, for each i ∈ Ob(Ŵ), Ŵ(i, i) = {ei i }, for distinct i, j ∈ Ob(Ŵ) such that (i, j) ∈ Ŵ1, Ŵ(i, j) = {e j i }

and Ŵ( j, i) = {ei j }, ei j e j i = ei i and e j i ei j = e j j . Let σ be a functor from Ŵ to the category of rings. Then Ŵ(σ )

is called the skew graph ring. If Ŵ is a tree then Ŵ(σ ) is called the skew tree ring. We say that the functor σ is of

isomorphism type if σ(ei j ) : σ(i) → σ( j) is a unital ring isomorphism for all (i, j) ∈ Ŵ1.

Theorem 1.4 Let Ŵ be a finite tree, n = |Ŵ0| and the functor σ be of isomorphism type. Suppose that for some

i ∈ Ŵ0 the ring Di = σ(i) is a semiprime, left (resp., right) Goldie ring and Ql(Di ) (resp., Qr (Di )) is its left

(resp., right) quotient ring. Then Ŵ(σ) is a semiprime, left (resp., right) Goldie ring and Ql(Ŵ(σ )) ≃ Mn(Ql(Di ))

(resp., Qr (Ŵ(σ )) ≃ Mn(Qr (Di ))) where Mn(R) is a matrix ring over a ring R. In particular, the left (resp., right)

uniform dimension of Ŵ(σ ) is ndl (resp., ndr ) where dl (resp., dr ) is a left (resp., right) uniform dimension of Di .

Proof (Sketch). Let CD j
be the set of regular elements of the ring D j = σ( j). All the rings D j are isomorphic.

The set of regular elements S = ⊕n
j=1CD j

e j j is a left Ore set of Ŵ(σ) such that S−1Ŵ(σ) is a semisimple Artinian

ring. Furthermore, S−1Ŵ(σ) ≃ Mn(Ql(Di )). Hence, Ql(Ŵ(σ )) ≃ Mn(Ql(Di )), and so Ŵ(σ) is a semiprime, left

Goldie ring. The rest is obvious. ⊓⊔

As a result we have the following corollary.

Corollary 1.5 Let Ŵ be a finite non-orientable graph, i.e., Ŵ =
∐ν

s=1 Ŵ(s) is a disjoint union of finite trees Ŵ(s).

Then
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1. The skew graph ring Ŵ(σ) is a direct product
∏ν

s=1 Ŵ(s)(σs) of skew tree rings where σs is the restriction of the

functor σ to Ŵ(s)(σs).

2. If the trees Ŵ(s) (s = 1, . . . , ν) satisfy the conditions of Theorem 1.4 then Ql(Ŵ(σ )) ≃
∏ν

s=1 Ql(Ŵ
(s)(σs))

(resp., Qr (Ŵ(σ )) ≃
∏ν

s=1 Qr (Ŵ
(s)(σs))) is a direct product of semiprime, left (resp., right) Goldie rings, and

so it is a semiprime, left (resp., right) Goldie ring.

2 Properties of Skew Category Algebras

In this section, criteria are given for a skew category algebra C(σ ) to be left/right Noetherian or semiprime or simple.

The ideal a and the algebra C(σ ).

Lemma 2.1 Let D be a ring and σ ′ be its ring endomorphism such that σ ′2 = σ ′. Then D = σ ′(D) ⊕ ker(σ ′) and

the restriction homomorphism σ ′|σ ′(D) : σ ′(D) → σ ′(D), d �→ d is the identity automorphism.

Proof Straightforward. ⊓⊔

By (5), the formal sum

e =
∑

i∈Ob(C)

ei

determines two well-defined maps:

e· : C(σ ) → C(σ ), a �→ ea and · e : C(σ ) → C(σ ), a �→ ae.

Clearly, the map ·e is the identity map id on C(σ ) but the kernel a of the map e· is equal to

a(C(σ )) := a :=
⊕

f ∈Mor(C)

ah( f ) f

where ai := ker(σei
) and σi := σei

: Di → Di is a K -algebra endomorphism, and (e·)2 = e·. Since σ 2
i = σi ,

Di = σi (D) ⊕ ai for all i ∈ Ob(C), (7)

by Lemma 2.1.

C(σ ) = C(σ ) ⊕ a where C(σ ) :=
⊕

f ∈Mor(C)

σh( f )(Dh( f )) f (8)

is a K -subalgebra of C(σ ) such that the maps (e·)|
C(σ )

: C(σ ) → C(σ ), c �→ c and (·e)|
C(σ )

: C(σ ) → C(σ ),

c �→ c are the identity map on C(σ ).

Lemma 2.2 The set a is an ideal of the algebra C(σ ) such that C(σ )a = 0, a C(σ ) = a and a
2 = 0.

Proof C(σ )a = C(σ ) · e · a = 0, the rest is obvious. ⊓⊔

The next theorem shows that the algebra C(σ ) is also a skew category algebra.

Theorem 2.3 1. The subalgebra C(σ ) of C(σ ) is also a skew category algebra C(σ ) = C(σ ) where for each

i ∈ Ob(C), σ(i) := σi (Di ) and for each f ∈ C(i, j), σ f := σ f |σi (Di ) : σi (Di ) → σi (Di ), d �→ σ f (d).

2. For all i ∈ Ob(C), σ i = idσ(i).

3. a(C(σ )) = 0.

4. The maps e· and ·e are the identity maps on C(σ ).

Proof 1. Statement 1 follows from (8) and the fact that σ jσ f = σ f = σ f σi for all elements f ∈ C(i, j).

2–4. Statement 2 is obvious. Then statements 3 and 4 follow from statement 2. ⊓⊔
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The ideal a is a C-graded ideal of the algebra C(σ ). Furthermore,

a =
⊕

i, j∈Ob(C)

ai j

where ai j =
⊕

f ∈C( j,i) ai f ⊆ C(σ )i j , 0 = ai jakl ⊆ δ jkail for all i, j, k, l ∈ Ob(C). Since C(σ ) = C(σ )

(Theorem 2.3.(1)), the factor algebra

C(σ ) = C(σ )/a =
⊕

f ∈Mor(C)

Dh( f ) f ⊆ C(σ )

is a C-graded algebra where Di = Di/ai = im(σi ). Furthermore,

C(σ ) =
⊕

i, j∈Ob(C)

C(σ )i j where C(σ )i j = C(σ )i j/ai j (9)

and C(σ )i jC(σ )kl ⊆ δ jkC(σ )il for all i, j, k, l ∈ Ob(C).

Theorem 2.4 (Criterion for C(σ ) to be a left Noetherian algebra) The algebra C(σ ) is a left Noetherian algebra iff

the following conditions hold

1. the set Ob(C) is a finite set,

2. the ideal a is a finitely generated abelian group,

3. for every object i ∈ Ob(C), the K -algebra C(σ )i i is a left Noetherian algebra, and

4. for all objects i, j ∈ Ob(C) such that i �= j , the left C(σ )i i -module C(σ )i j is finitely generated.

Proof The algebra C(σ ) =
⊕

j∈Ob(C) C(σ )∗ j is a direct sum of nonzero left ideals where

C(σ )∗ j :=
⊕

i∈Ob(C)

C(σ )i j .

So, the algebra C(σ ) is a left Noetherian algebra iff the set Ob(C) is a finite set and all the left ideals C(σ )∗ j are

Noetherian left C(σ )-modules iff |Ob(C)| < ∞, the left C(σ )-module a is Noetherian and all the left C(σ )-modules

C(σ )∗ j =
⊕

i∈Ob(C)

C(σ )i j

are Noetherian (since C(σ ) = C(σ ) ⊕ a is a direct sum of left C(σ )-modules) iff conditions 1 and 2 hold (since

C(σ )a = 0, Lemma 2.4) and the left C(σ )i i -module C(σ )i j is Noetherian for all i, j ∈ Ob(C) (since each left

C(σ )-submodule M of C(σ )∗ j is a direct sum

M = eM =
⊕

i∈Ob(C)

ei M

where ei M is a left C(σ )i i -submodule of C(σ )i j and the functor from the category of all C(σ )i i -submodules of

C(σ )i j to the category of all C(σ )-submodules of C(σ )∗ j ,

N → C(σ )N =
⊕

k∈Ob(C)

C(σ )ki N

is faithful since eiC(σ )N = C(σ )i i N = N ) iff statements 1–4 hold. ⊓⊔

Proposition 2.5 (Criterion for C(σ ) to be a right Noetherian algebra) The algebra C(σ ) is a right Noetherian

algebra iff the following conditions hold

1. the set Ob(C) is a finite set,

2. for every object i ∈ Ob(C), the K -algebra C(σ )i i is a right Noetherian algebra, and
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3. for all objects i, j ∈ Ob(C) such that i �= j , the right C(σ ) j j -module C(σ )i j is finitely generated.

Proof The algebra C(σ ) =
⊕

i∈Ob(C) C(σ )i∗ is a direct sum of nonzero right ideals where

C(σ )i∗ =
⊕

j∈Ob(C)

C(σ )i j .

So, the algebra C(σ ) is a right Noetherian algebra iff the set Ob(C) is a finite set and all right ideals C(σ )i∗

are Noetherian right C(σ )-modules iff |Ob(C)| < ∞ and the right C(σ ) j j -module C(σ )i j is Noetherian for all

i, j ∈ Ob(C) iff |Ob(C)| < ∞, the rings C(σ )i i are right Noetherian and the right C(σ ) j j -modules C(σ )i j are

finitely generated for all i �= j . ⊓⊔

Example 5 Let C: 1
f

→ 2 and the functor σ is as follows: σ(1) = Q, σ(2) = R, σe1 = idQ, σe2 = idR and

σ f : Q → R, q �→ q. Then the algebra C(σ ) is isomorphic to the lower triangular matrix algebra

(

Q 0

R R

)

. By

Theorem 2.4, the algebra C(σ ) is left Noetherian but not right Noetherian, by Proposition 2.5 (since RQ is not a

finitely generated right Q-module).

Example 6 Let C: 1
f

→ 2 and the functor σ is as follows: σ(1) = K [t] is a polynomial algebra in the variable t over

K , σ(2) = K , σe1 : K [t] → K [t], t �→ 0; σe2 = idK : K → K and σ f : K [t] → K , t �→ 0. Then a = t K [t]e1

is not a finitely generated Z-module. So, the algebra C(σ ) is not a left Noetherian algebra, by Theorem 2.4. Since

the algebra C(σ )11 = K [t]e1 is not a right Noetherian algebra, the ring C(σ ) is not a right Noetherian ring, by

Proposition 2.5.

Lemma 2.6 (Existence of 1 in C(σ )) The algebra C(σ ) has 1 iff the set Ob(C) is a finite set and σei
= idDi

for all

i ∈ Ob(C). In this case, e =
∑

i∈Ob(C) ei is the identity of the algebra C(σ ).

Proof (⇒) Suppose that 1 is an identity of C(σ ). Then necessarily the set Ob(C) is a finite set, otherwise 1a = 0

for some nonzero element a of C(σ ). The 1 =
∑

i, j 1i j where 1i j ∈ C(σ )i j . The equalities 1e j = e j = e j 1 for all

j ∈ Ob(C) imply that 1 =
∑

i∈Ob(C) ei = e. Then, necessarily σei
= idDi

for all i ∈ Ob(C).

(⇐) Clearly, e is the identity of the algebra C(σ ). ⊓⊔

Lemma 2.7 Suppose that n = |Ob(C)| < ∞. If I is an ideal of C(σ ) such that ei I ei = 0 for all i ∈ Ob(C) then

I n+1 = 0.

Proof By (8), C(σ ) = C(σ ) ⊕ a. Hence, I ⊆ I ⊕ a where I = (I + a)/a =
∑

i, j∈Ob(C) ei I e j ⊆ C(σ ). Notice that

I
n

= 0 since ei I ei = 0 for all i ∈ Ob(C). Now,

I n+1 ⊆ (I + a)n+1 ⊆ I
n+1

+ aI
n

= 0

since a
2 = 0 and C(σ )a = 0 (Lemma 2.2). ⊓⊔

Recall that a ring is a semiprime ring if the zero ideal is the only nilpotent ideal.

Theorem 2.8 (Criterion for C(σ ) to be a semiprime algebra) Suppose that n := |Ob(C)| < ∞. Then the following

statements are equivalent.

1. The algebra C(σ ) is a semiprime algebra.

2. The algebras C(σ )i i are semiprime where i ∈ Ob(C) and, for all distinct i, j ∈ Ob(C), ai jC(σ ) j i �= 0 and

C(σ ) j i ai j �= 0 for all nonzero elements ai j ∈ C(σ )i j .

3. The algebras C(σ )i i are semiprime where i ∈ Ob(C) and each ideal I of C(σ ) such that ei I ei = 0 for all

i ∈ Ob(C) is equal to zero.
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Proof Since |Ob(C)| < ∞, the direct product of algebras D :=
∏

i∈Ob(C) C(σ )i i is a semiprime algebra iff all the

algebras C(σ )i i are semiprime.

(1 ⇒ 2) If b is a nonzero nilpotent ideal of the ring D and (b) = C(σ )bC(σ ) is the ideal of C(σ ) generated by b

then

(b)k ⊆ (b
⌊ k

n2 ⌋
) for all k ≥ 1

where for a real number r , ⌊r⌋ := max{z ∈ Z | z ≤ r}, and so the ideal (b) of the algebra D is a nilpotent ideal.

Therefore, the ring C(σ )i i must be semiprime for all i ∈ Ob(C).

Suppose that there exists a nonzero element ai j ∈ C(σ )i j for some distinct objects i and j such that either

ai jC(σ ) j i = 0 or C(σ ) j i ai j = 0. Then (ai j )
2 = (ai jC(σ ) j i ai j ) = 0, a contradiction.

(2 ⇒ 1) Since all rings C(σ )i i are semiprime, the ideal a is equal to zero, by Lemma 2.2. Therefore, if J is a

nilpotent ideal of C(σ ) then necessarily J =
⊕

i, j∈Ob(C) Ji j where Ji j = ei Je j . Furthermore, all Ji i = 0 since

the rings C(σ )i i are semiprime (and J m
ii ⊆ J m for all m ≥ 1). Suppose that J �= 0. We seek a contradiction. Then

Ji j �= 0 for some i �= j . Then, by the assumption, either C(σ ) j i Ji j is a nonzero nilpotent ideal of the algebra C(σ ) j j

or Ji jC(σ ) j i is a nonzero nilpotent ideal of the algebra C(σ )i i , a contradiction.

(1 ⇒ 3) The algebras C(σ )i i are semiprime for all i ∈ Ob(C), by the implication (1 ⇒ 2). By Lemma 2.7,

each ideal I of C(σ ) such that ei I ei = 0 for all i ∈ Ob(C) is a nilpotent ideal, so it must be zero (since C(σ ) is a

semiprime ring).

(3 ⇒ 1) If I is a nilpotent ideal of C(σ ) then for each i ∈ Ob(C), Ii i is a nilpotent ideals of the semiprime ring

C(σ )i i , and so Ii i = 0. Then, we must have I = 0, by the second assumption of statement 3. ⊓⊔

Theorem 2.9 (Simplicity criterion for C(σ )) The algebra C(σ ) is a simple algebra iff the following conditions hold

1. a = 0,

2. for every i ∈ Ob(C), the ring C(σ )i i is simple,

3. for all distinct i, j ∈ Ob(C), C(σ )i j is a simple (C(σ )i i , C(σ ) j j )-bimodule (in particular, C(σ )i j �= 0), and

4. C(σ )i jC(σ ) jk �= 0 for all i, j, k ∈ Ob(C).

Proof (⇒) Let Ci j = C(σ )i j .

(i) a = 0, by Lemma 2.2.

(ii) For every i ∈ Ob(C), Ci i is a simple ring: Suppose that b is a proper ideal of the ring Ci i then (b) is a proper

ideal of C(σ ) since (b) ∩ Ci i = b, a contradiction.

(iii) For all distinct objects i, j ∈ Ob(C), Ci j �= 0: Suppose that Ci j = 0 for some distinct objects i and j . Then

the ideal (Ci i ) of C(σ ) is a proper ideal since (Ci i ) ∩ C j j = C j iCi iCi j = 0, a contradiction.

(iv) For all distinct objects i, j ∈ Ob(C), Ci j is a simple (Ci i , C j j )-bimodule: Suppose that b is a proper (Ci i , C j j )-

sub-bimodule of Ci j then (b) is a proper ideal of the algebra C(σ ) since (b) ∩ Ci j = b, a contradiction.

(v) Ci jC jk �= 0 for all objects i, j, k ∈ Ob(C): The statement (v) holds in the following cases i = j = k (by

(ii)), i = j or j = k (by (iii)). Suppose that i = k and Ci jC j i = 0, we seek a contradiction. Then the ideal

(Ci j ) of C(σ ) is a proper ideal since (Ci j ) ∩ Ci i = Ci jC j i = 0, a contradiction. Suppose that Ci jC jk = 0 for

some distinct i , j and k. Then the ideal (Ci j ) of C(σ ) is a proper ideal since (Ci j ) ∩ Ckk = CkiCi jC jk = 0, a

contradiction.

(⇐) Suppose that conditions 1–4 hold. By conditions 1–3, condition 4 can be replaced by condition 4′: Ci jC jk = Cik

for all i, j, k ∈ Ob(C). Let J be a nonzero ideal of C(σ ). We have to show that J = C(σ ). By condition 1, ei Je j �= 0

for some i and j . By conditions 2 and 3, Ji j = J ∩ Ci j = Ci j . By condition 4′, Cst = CsiCi jC j t ⊆ J for all s, t .

This means that J = C(σ ), as required. ⊓⊔
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