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Abstract For the algebras � in the title of the paper, a classification of simple modules is given, an explicit

description of the prime and completely prime spectra is obtained, the global and the Krull dimensions of � are

computed.
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1 Introduction

Let D be a ring and A = D[x; σ, δ] be a skew polynomial ring where σ is an automorphism of D and δ is a

σ -derivation of D (for all a, b ∈ D, δ(ab) = δ(a)b + σ(a)δ(b)). The ring A is generated by D and x subject to the

defining relations xa = σ(a)x + δ(a) for all elements a ∈ D. When D is a Dedekind domain, a classification of

simple A-modules is given in [4]. This is a large class of rings. A machinery is developed in [4] to cover all possible

situations (non-commutative valuations, etc).

The algebra

� = K [X ]

[

Y ; δ := f
d

d X

]

=
⊕

i≥0

K [X ]Y i

is a particular example of the ring A where σ = id is the identity automorphism of the polynomial ring K [X ],

f ∈ K [X ] and δ = f d
d X

is a K -derivation of K [X ] (δ(X) = f ). If f = 1 (or, more generally, f ∈ K ×\{0}) then

the algebra �(1) is the Weyl algebra

A1 = K 〈X, ∂ | ∂ X − X∂ = 1〉 ≃ K [X ]

[

Y ;
d

d X

]

.

In 1981, a classification of simple A1-modules was obtained by Block (over the field of complex numbers) in [9]

(see also [2,3] for an alternative approach via generalized Weyl algebras in a more general situation).
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Recently, classifications of simple weight modules are obtained for some classical algebras (the Euclidean

algebra, the Schrödinger algebra, the universal enveloping algebra U (sl2 ⋉ V2)), see [5–7]. In these classifications,

classifications of all simple modules over certain subalgebras of the Weyl algebra A1 that contain the polynomial

algebra K [X ] (the, so-called, polyonic algebras) play a crucial role. The polyonic algebras are investigated in [8].

Each polyonic algebra contains the algebra � = �( f ) for some non-scalar polynomial f ∈ K [X ] which play an

important role in studying of its properties. This is the main reason why we decided to collect main properties of

the algebras � in this paper. In particular, a classification of simple �-modules is given in Sect. 2 (Lemma 2.1 and

Theorem 2.10). This classification can be derived from [4] but we give different and simpler proofs which are based

on generalized Weyl algebras rather than skew polynomial rings.

An ideal p of a ring R is called a completely prime ideal if the factor ring R/p is a domain. A completely prime

ideal is a prime ideal. The sets of prime and completely prime ideals of the ring R are denoted by Spec(R) and

Specc(R), respectively.

In Theorem 1.1, a classification of prime and completely prime ideals of the algebra � is given, the Krull and

global dimensions of the algebra � are found. The algebra � is a Noetherian domain of Gelfand-Kirillov dimension

2.

Theorem 1.1 Let K be a field of characteristic zero, � = K [X ][Y ; δ := f d
d X

] where f ∈ K [X ]\K . Let f =

p
n1

1 · · · p
ns
s be a unique (up to permutation) product of irreducible polynomials of K [X ]. Then

1. The Krull dimension of � is Kdim(�) = 2.

2. The global dimension of � is gldim(�) = 2.

3. The elements p1, . . . , ps are regular normal elements of the algebra � (i.e. pi is a non-zero-divisor of � and

pi� = �pi ).

4. Spec(�) = Specc(�) = {0,�pi , (pi , qi ) | i = 1, . . . , s; qi ∈ Irrm(Fi [Y ])} where Fi := K [X ]/(pi ) is a

field and Irrm(Fi [Y ]) is the set of monic irreducible polynomials of the polynomial algebra Fi [Y ] over the

field Fi in the variable Y . If, in addition, the field K is an algebraically closed and λ1, . . . , λs are the roots of

the polynomial f then Spec(�) = {0,�(X − λi ), (X − λi , Y − μ) | i = 1, . . . , s; μ ∈ K }.

The proof of Theorem 1.1 is given in Sect. 3.

2 Classification of Simple �-Modules

In this section, ‘module’ means left module, K is an algebraically closed field of characteristic zero, � =

K [X ][Y, δ = f d
d X

] where f ∈ K [X ]\K . The algebra � is a Noetherian domain. The aim of the section is to

give a classification of simple �-modules (Lemma 2.1 and Theorem 2.10).

The element f is a regular normal element of �. It follows from

f Y = Y f − f ′ f = (Y − f ′) f, where f ′ =
d f

d X
,

that the element f is a normal element of � (i.e. � f = f �). It determines a K -automorphism ω f of the algebra

�:

f u = ω f (u) f, u ∈ �,

ω f : X �→ X, Y �→ Y − f ′.

The algebra � can be identified with a subalgebra of the first Weyl algebra A1 by the map

� → A1, X �→ X, Y �→ f ∂. (1)

The Weyl algebra A1 is a generalized Weyl algebra. The Weyl algebra A1 is a simple Noetherian domain with

restricted minimum condition, i.e. any proper left or right factor module of A1 has finite length, [10].
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Definition, [1,2]. Let D be a ring, σ be an automorphisms of D and a be a central element of D. A generalized

Weyl algebra (GWA) A = D(σ, a) of degree 1, is the ring generated by D and by two indeterminates X and Y

subject to the relations [1,2]: For all α ∈ D,

Xα = σ(α)X and Yα = σ−1(α)Y, Y X = a and XY = σ(a).

The algebra

A =
⊕

n∈Z
An

is a Z-graded algebra, where An = Dvn, vn = Xn (n > 0), vn = Y −n (n < 0), v0 = 1.

The Weyl algebra A1 is a GWA,

A1 = D(σ, a = H), X ↔ X, ∂ ↔ Y, ∂ X ↔ H, D = K [H ],

with coefficients from a polynomial ring K [H ] where σ ∈ AutK K [H ] and σ : H → H − 1.

We denote by � f (resp., A1, f ) the localization of the ring � (resp., A1) at the powers of the element f , i.e.

� f = S−1
f �, (resp., A1, f = S−1

f A1) where S f = { f i , i ≥ 0}.

By (1), � f is a subalgebra of A1, f such that

� f = A1, f . (2)

The algebras � and A1 can be considered as subalgebras of A1, f ,

� ⊆ A1 ⊆ � f = A1, f . (3)

The algebra A1, f is a simple Noetherian domain with restricted minimum condition.

�̂( f − torsion). The sets of isoclasses of �-modules �̂ and of A1-modules Â1 are disjoint unions of f -torsion

(M f = 0) and f -torsionfree (M f �= 0) simple �-modules and A1-modules, respectively,

�̂ = �̂( f − torsion)
∐

�̂( f − torsionfree), (4)

Â1 = Â1( f − torsion)
∐

Â1( f − torsionfree). (5)

Lemma 2.1 is a classification of simple f -torsion �-modules.

Lemma 2.1 Let λ1, . . . , λs be the roots of the polynomial f . Then

�̂( f − torsion) = {[�/�(X − λi , Y − μ)] | i = 1, . . . , s; μ ∈ K }.

All these �-modules are 1-dimensional and they are the only simple finite dimensional �-modules (by Theorem

2.10).

Proof Each simple f -torsion �-module M is annihilated by the (normal) element f ( f M = 0). So, in fact, the

�-module M is a simple module over the factor algebra

�/( f ) = K [X, Y ]/( f )

which is isomorphic to the factor algebra of the polynomial ring K [X, Y ] in two variables at the ideal ( f ) generated

by f , and the equality in the lemma follows.

Let N be a simple �-module. Then the map

fN : N → N , n �→ f n

is either 0 or a bijection ( f is normal in �). In the second case N is, in fact, a simple (� f ≡ A1, f )-module, so

dimK N = ∞, since A1, f is a simple infinite dimensional algebra. If the module N is finite dimensional, then

f N = 0, i.e. [N ] ∈ �̂( f − torsion). ⊓⊔
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�̂( f − torsionfree). The sum of all simple submodules of a �-module M is called the socle of M which is

denoted by soc�M . It is the largest semisimple submodule of M . A �-module N is called �-socle (or, socle, for

short) provided soc�N �= 0. Denote by Â1(�-socle) the set of isoclasses of simple �-socle A1-modules. The proof

of the following lemma is evident (see [2, Lemma 3.4] for details).

Lemma 2.2 1. The canonical map

(·) f : �̂( f − torsionfree) → Â1, f (� − socle), [M] �→ [M f := A1, f ⊗� M]

is a bijection with inverse [N ] → [soc�(N )].

2. Each simple f -torsionfree �-module has the form

Mm := �/� ∩ m (6)

for some maximal left ideal m of the ring A1, f . Two such modules are isomorphic, Mm ≃ Mn, iff the A1, f -

modules A1, f /m and A1, f /n are isomorphic. ⊓⊔

Lemma 2.3 Let λ1, . . . , λs be the roots of the polynomial f . Then

Â1( f − torsion) = {[Mi := A1/A1(X − λi )] | i = 1, . . . , s}.

Proof As a vector space the module Mi can be identified with the polynomial ring K [y] in a variable y = ∂ +

A1(X − λi ) and

∂y j = y j+1, X y j = λi y j + · · · for j ≥ 0

where by three dots we denote the sum of elements of smaller degree in the variable y. Thus the linear operator

X − μ : Mi → Mi , m �→ (X − μ)m, m ∈ Mi ,

is nilpotent if and only if μ = λi ; otherwise, X − μ is an isomorphism of the vector space Mi . From this fact it

follows that the A1-modules {Mi } are simple and non-isomorphic.

Now, let [M] ∈ Â1( f − torsion). Then there exists i such that M is an epimorphic image of Mi , hence M ≃ Mi .

⊓⊔

Theorem 2.4 The map

Â1( f − torsionfree) = Â1\{[M1], . . . , [Ms]} → Â1, f , [M] �→ [M f ]

is bijective.

Proof The map above is well defined and injective.

Let [N ] ∈ Â1, f . Then N ≃ A1, f /J for some nonzero maximal left ideal J of A1, f . Then I = J ∩ A1 �= 0 and

A1/I is a A1-submodule of N . The A1-module A1/I has finite length [10], thus it contains a simple A1-submodule,

say M . Then N ≃ M f which means that the map above is surjective. ⊓⊔

Recall that D = K [H ]. The localization B = S−1 A1 of the Weyl algebra A1 at the Ore set S = D\{0} is a skew

Laurent polynomial ring

B = K (H)[X, X−1; σ ], σ (H) = H − 1,

with coefficients from the field K (H) of rational functions. The algebra B is a right and left Euclidean domain with

respect to the ‘length’ function

l : B\{0} → N := {0, 1, 2, . . .}, l(αXm + β Xm+1 + · · · + γ Xn) = n − m, α �= 0, γ �= 0 ∈ K (H),

hence, it is a right and left principal ideal domain.
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We have

Â1 = Â1(D − torsion)
∐

Â1(D − torsionfree)

where a simple A1-module M belongs to the first (resp., second) set if S−1 M = 0 (resp., S−1 M �= 0).

For λ ∈ K set O(λ) := λ+Z. We say that scalars λ and μ are equivalent, λ ∼ μ, if either O(λ) = O(μ) �= Z or

both λ and μ belong either to (−∞, 0] := {i ∈ Z | i ≤ 0} or to [1,∞) := {i ∈ Z | i ≥ 1}. Then ∼ is an equivalence

relation on K . Let K/ ∼ be the set of equivalence classes of K under ∼. So, the elements of the set K/ ∼ are

distinct sets λ + Z where λ /∈ Z and the two sets (−∞, 0] and [1,∞). Notice that Z = (−∞, 0]
∐

[1,∞).

Proposition 2.5 ([2, Theorem 3.1]) The map

K/ ∼ → Â1(D − torsion), [Ŵ] �→ [L(Ŵ)],

is a bijection, where

1. If Ŵ = O(λ) �= Z, then L(Ŵ) = A1/A1(H − λ).

2. If Ŵ = (−∞, 0], then L(Ŵ) = A1/A1 X.

3. If Ŵ = [1,∞), then L(Ŵ) = A1/A1(H − 1, Y ). �

Corollary 2.6

Â1(D − torsion, f − torsion) =

{

{[L((−∞, 0]) = A1/A1 X ]} if 0 is a root of f (X),

∅ if 0 is not a root of f (X).

Proof Straightforward. ⊓⊔

Corollary 2.7 Let [M] ∈ Â1(D − torsion, f − torsionfree).

1. If M = A1/A1 X (i.e. 0 is not a root of f , by Corollary 2.6) then M is a simple f -torsionfree �-module with

M = M f .

2. If M �= A1/A1 X then soc� M = soc� M f = 0. The set �̂ (D−torsion, f −torsionfree) is equal to {A1/A1/X}

if 0 is not a root of f and ∅, otherwise.

Proof 1. As a vector space the module M = A1/A1 X has the basis {yi = ∂ i + A1 X, i ≥ 0}, and

∂yi = yi+1, X yi = −iyi−1 and Y yi = f (0)yi+1 +
∑

0≤ j≤i

μ j y j ,

for some scalars μ j ∈ K . Now, it is obvious that the �-module M is a simple f -torsionfree �-module ( f (0) �= 0).

Moreover, the linear map fM : M → M , m �→ f m is a bijection, hence, M = M f .

2. Since � f = A1, f , soc� M = soc� M f . Let M belongs to the first (resp., third) class of modules from

Proposition 2.5 , i.e.

M = L(Ŵ), Ŵ = O(λ) �= Z (resp., Ŵ = [1,∞)).

The element 1̄ = 1 + A1(H − λ) (resp., 1̄ = 1 + A1(H − 1, Y )) is a canonical generator of the A1-module M . In

both cases, for i ≥ 0, set x i = X i 1̄. In the first case, for i < 0, set x i = μi∂
−i 1̄, μi ∈ K . The scalars μi can be

chosen in such a way that (in both cases) X x i = x i+1 for all possible i . Degree argument shows that the module

M contains a strictly descending chain of �-submodules

M ⊃ f M ⊃ · · · ⊃ f n M ⊃ · · · with
⋂

n≥0

f n M = 0.

Suppose that N := soc�M �= 0, then, in a view of Lemma 2.2 and Theorem 2.4, N is an essential simple

�-submodule of both M f and M , hence 0 �= N ⊆ ∩n≥0 f n M = 0, a contradiction. ⊓⊔
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An element of a ring is called regular if it is not a zero divisor. Given a ring A and a multiplicatively closed

subset S of A which consists of regular normal elements. Let B = S−1 A be the localization of A at S.

Theorem 2.8 Let A, B, and S be as above and let m be a maximal left ideal of B. The following are equivalent.

1. The A-module Mm := A/A ∩ m is simple.

2. The socle socA(Mm) �= 0.

3. A = As + A ∩ m for all s ∈ S.

⊓⊔

Remark. If S = { f n, n ≥ 0} for some regular normal element f of A, then the last condition of this lemma is

equivalent to A = A f + A ∩ m. We shall use this fact in what follows. In general situation, it suffices to check

whether the third condition holds only for generators of the monoid S.

Proof The implications (1 ⇒ 2) and (1 ⇒ 3) are obvious.

(2 ⇒ 1) If socA(Mm) �= 0 then it is a simple A-module which for some s ∈ S is equal to

(As + A ∩ m)/A ∩ m ≃ As/As ∩ m ≃ A/A ∩ ms−1 = ωs(A)/ωs(A ∩ m) ≃ ω−1
s Mm,

where ω−1
s Mm is the twisted A-module Mm by the automorphism ω−1

s of A (the element s is regular and normal).

Since the A-module ω−1
s Mm is simple, so is Mm.

(3 ⇒ 1) If J is a left ideal of A which contains A ∩ m but does not coincide with it, then, by the maximality of

m, S−1 J = B. Therefore J ∩ S �= ∅. Let s ∈ J ∩ S. Then J ⊇ As + A ∩m = A, that is Mm is a simple A-module.

⊓⊔

Â1(D − torsionfree). Let us recall a description of Â1(D − torsionfree) from [2]. In the set S = K [H ]\{0}

consider the relation <: α < β if there are no roots λ and μ of the polynomial α and β respectively and such that

λ − μ is non-negative integer.

Definition, [2]. An element b = Y mβ−m +· · ·+β0 ∈ A1, m > 0, all βi ∈ D, is called l-normal if β0 < β−m and

β0 < H , (i.e. the polynomial β0 has no root from {0, 1, 2, . . .} and there are no roots λ and μ of the polynomials

β0 and βm respectively with λ − μ ∈ {0, 1, 2, . . .}).

Theorem 2.9 ([2, Theorem 3.8]) Let b = Y mβ−m + · · · + β0 ∈ A1, m > 0, all βi ∈ D, be an l-normal and

irreducible element in B. Then

Mb := A1/A1 ∩ Bb

is a simple D-torsionfree A1-module. Two such A1-modules are isomorphic, Mb ≃ Mc, iff B/Bb ≃ B/Bc as

B-modules. Each simple D-torsionfree A1-module is isomorphic to some Mb. ⊓⊔

Set

B f := S−1
f B = A1, f ⊗� B = � f ⊗� B

for the localization of the (left) �-module B at S f . Then the algebra A1, f = � f can be considered as a (A1, f = � f )-

submodules of B f . For any nonzero b ∈ B, (Bb) f = B f b.

Theorem 2.10 is a classification of simple f -torsionfree �-modules.

Theorem 2.10 Let b = Y mβ−m + · · · + β0 ∈ A1, m > 0, all βi ∈ D, be an l-normal and irreducible element in

B such that

1. � = � f + � ∩ B f b (= � f + � ∩ Bb), and

2. the simple B-module B/Bb is not isomorphic to any of modules B/B(X −λ) where λ runs through the nonzero

roots of f .
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Then

Mb := �/� ∩ Bb (= �/� ∩ B f b)

is a simple f -torsionfree �-module. Two such �-modules are isomorphic, Mb ≃ Mc, iff B/Bb ≃ B/Bc as

B-modules.

Each simple f -torsionfree �-module is isomorphic either to some Mb or to the module M = A1/A1 X from

Corollary 2.7, if 0 is not a root of f (the �-module M is not isomorphic to any Mb). The condition 1 above is

equivalent to the condition that � = �(X − λi ) + � ∩ B f b (= �(X − λi ) + � ∩ Bb) for all roots λi of the

polynomial f .

Each simple f -torsionfree �-module is infinite dimensional.

Proof By Lemma 2.2,

[M] ∈ �̂( f − torsionfree) ⇔ [M f ] ∈ Â1, f (� − socle)

and M = soc�(M f ) ≃ �/�∩m for some maximal left ideal m of A1, f . By Corollary 2.7, either M f ≃ A1/A1 X (0

is not a root of f ) or M f ∈ Â1, f (D − torsionfree,�− socle). In the first case, M = soc�(M f ) = M f = A1/A1 X

(Corollary 2.7).

In the second case, by Theorems 2.4 and 2.9,

M f ≃ (Mb) f = A1, f /A1, f ∩ B f b

for some l-normal irreducible element b from Theorem 2.9. Note that the left ideal m = A1, f ∩ B f b of A1, f is

maximal. By Lemma 2.3 and Theorem 2.9, [Mb] ∈ Â1(D − torsionfree, f − torsionfree) iff the second condition

of the theorem holds. Now,

soc�(M f ) = soc�(Mb) f = soc�(�/� ∩ A1, f ∩ B f b) = soc�(�/� ∩ B f b). (7)

By Theorem 2.8 and by the Remark after it,

soc�(M f ) �= 0 iff � = � f + � ∩ (A1, f ∩ B f b) = � f + � ∩ B f b.

In this case,

soc�(M f ) = �/� ∩ (A1, f ∩ B f b) = �/� ∩ B f b.

Let us show that (in this case) the natural �-module epimorphism

ϕ : Mb = �/� ∩ Bb → �/� ∩ B f b, λ + � ∩ Bb → λ + � ∩ B f b,

is an isomorphism. Note that

ker ϕ = � ∩ B f b/� ∩ Bb.

The A1-module Mb is a submodule of (Mb) f ≃ M f . So,

soc�(M f ) = soc�(Mb) = soc�(�/� ∩ Bb).

By assumption soc�(M f ) �= 0, then it is a simple essential f -torsionfree �-submodule of M f . If ker ϕ �= 0, then

soc�(M f ) ⊆ ker ϕ, but ker ϕ is an f -torsion �-module, a contradiction.

Let Mb and Mc be as in the theorem. By Lemma 2.2, Mb ≃ Mc as �-modules ⇔ A1, f ⊗� Mb ≃ A1, f ⊗� Mc

as A1, f -modules. Since

A1, f ⊗� Mb ≃ A1, f /A1, f ∩ B f b ≃ (Mb) f ,

by Theorem 2.4, the above A1, f -modules are isomorphic iff Mb ≃ Mc as A1-modules, so, by Theorem 2.9,

B/Bb ≃ B/Bc as B-modules.
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The condition 1 of the theorem is equivalent to the condition that � = �(X − λi ) + � ∩ B f b (= �(X − λi ) +

� ∩ Bb) for all roots λi of the polynomial f (since the elements X − λi are regular normal elements of � and λi

are the roots of f ).

By Lemma 2.1, each simple f -torsionfree �-module is infinite dimensional. If 0 is not a root of f , then the

modules M = A1/A1 X and Mb (from the theorem) are not isomorphic, since the linear map X M : M → M ,

m �→ Xm is locally nilpotent but ker XMb
= 0. ⊓⊔

3 The Prime Ideals, the Krull and Global Dimensions of the Algebra �

In this section, K is a field of characteristic zero (not necessarily algebraically closed) and f = p
n1

1 · · · p
ns
s is a

nonscalar polynomial of K [X ] where p1, . . . , ps are irreducible, co-prime divisors of f (i.e. K [X ]pi + K [X ]p j =

K [X ] for all i �= j). The aim of this section is to give a proof of Theorem 1.1.

Proof of Theorem 1.1 3. The elements p1, . . . , ps are regular normal elements of the algebra � since

Y pi = pi (Y − p−1
i f ) and X pi = pi X.

4. The algebra � is a domain, hence 0 ∈ Specc(�).

Since

�/�pi ≃ Fi [Y ] (8)

is a polynomial algebra with coefficients in the field Fi (since Y X − XY = f ∈ �pi ), the ideal �pi is a completely

prime ideal of �.

By (3), � f = A1, f is a simple algebra (as a localization of a simple Noetherian algebra). If p is a nonzero prime

ideal of the algebra � then f n ∈ p for some natural number n ≥ 1. Hence, pi ∈ p for some i , by statement 3. By

(8), p = (pi , gi ) for some monic irreducible polynomial gi of the polynomial algebra Fi [Y ].

1. By [11, Theorem 6.5.4.(i)], Kdim(�) ≤ Kdim(K [X ]) + 1 = 1 + 1 = 2.

Since pi is a regular normal element of the algebra �,

Kdim(�) ≥ Kdim(�/�pi ) + 1
(8)
= Kdim(Fi [Y ]) + 1 = 1 + 1 = 2,

by [11, Theorem 6. 5.9]. Therefore, Kdim(�) = 2.

2. By [11, Theorem 7.5.3.(i)], gldim(�) ≤ gldim(K [X ]) + 1 = 1 + 1 = 2.

By (8), gldim(�/�pi ) = gldim(Fi [Y ]) = 1 < ∞. Now, by [11, Theorem 7.3.5.(i)],

gldim(�) ≥ gldim(�/�pi ) + 1
(8)
= gldim(Fi [Y ]) + 1 = 1 + 1 = 2.

Therefore, gldim(�) = 2. ⊓⊔

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
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were made.
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