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Sex pheromone communication, acting as a prezygotic barrier to
mating, is believed to have contributed to the speciation of moths
and butterflies in the order Lepidoptera. Five decades after the
discovery of the first moth sex pheromone, little is known about
the molecular mechanisms that underlie the evolution of phero-
mone communication between closely related species. Although
Asian and European corn borers (ACB and ECB) can be interbred in
the laboratory, they are behaviorally isolated from mating natu-
rally by their responses to subtly different sex pheromone isomers,
(E)-12- and (Z)-12-tetradecenyl acetate and (E)-11- and (Z)-11-
tetradecenyl acetate (ACB: E12, Z12; ECB; E11, Z11). Male moth
olfactory systems respond specifically to the pheromone blend
produced by their conspecific females. In vitro, ECB(Z) odorant
receptor 3 (OR3), a sex pheromone receptor expressed in male
antennae, responds strongly to E11 but also generally to the Z11,
E12, and Z12 pheromones. In contrast, we show that ACB OR3,
a gene that has been subjected to positive selection (ω = 2.9),
responds preferentially to the ACB E12 and Z12 pheromones. In
Ostrinia species the amino acid residue corresponding to position
148 in transmembrane domain 3 of OR3 is alanine (A), except for
ACB OR3 that has a threonine (T) in this position. Mutation of this
residue from A to T alters the pheromone recognition pattern by
selectively reducing the E11 response ∼14-fold. These results sug-
gest that discrete mutations that narrow the specificity of more
broadly responsive sex pheromone receptors may provide a mech-
anism that contributes to speciation.

nubilalis | furnacalis

Sex pheromone communication in the Lepidoptera (moths and
butterflies) has fascinated scientists of different disciplines for

more than a century (1). Ninety-eight percent of the extant species
form a relatively recent monophyletic lineage termed the Ditrysia
(2) that is characterized by the use of long-distance sex pheromone
communication to mediate mating behavior. Female moths syn-
thesize and emit blends of long chain fatty acid derivatives from
a pheromone gland at the tip of their abdomen. This “calling
behavior” attracts male moths from distances of up to 100 m (3).
In many cases, closely related species can only be differentiated
on the basis of subtle changes to the chemical structure and/or
ratios of their sex pheromone blends (3, 4). Male moths typically
respond with high specificity only to the sex pheromone blend
produced by conspecific females. Of several potential barriers
leading to reproductive isolation, mate-selection behavior by
moths is one of the strongest (5). The specificity of this com-
munication channel is thought to have contributed to the esti-
mated 500,000 species of Lepidoptera (2, 3).
Although the first moth sex pheromone, bombykol, was dis-

covered 5 decades ago (6), little is known about the molecular
mechanisms that underlie the evolution of new sex pheromone
blends between closely related species. Female sex pheromone

production and male detection and response are under the control
of different genes (7, 8). Recent studies have identified genetic loci
associated with pheromone production and detection that account
for the segregation of closely related moth species or races (9, 10).
A lineage of conserved odorant receptor (OR) genes expressed in
male moth antennae, represent the primary genes responsible for
detecting and discriminating female-produced sex pheromones
(11–14). The response profile of the sex pheromone receptors
(15), or their expression pattern (16), can directly account for the
attractive behavioral response of transgenic male silk moths. The
specificity of male response, conferred by the sex pheromone
receptors, is believed to be subject to strong stabilizing selection
that reduces variation in favor of mate selection efficiency (3). The
molecular mechanisms that enable male moths to respond to new
female pheromones during the evolution of the sexual commu-
nication channel remains a long-standing question.
In the moth genus Ostrinia, sex pheromones have been identi-

fied from eight species (17). The Asian corn borer (ACB, Ostrinia
furnacalis) and the European corn borer (ECB, Ostrinia nubilalis),
are part of a closely related lineage termed group III, which also
includes Ostrinia scapulalis, Ostrinia zaguliaevi, and Ostrinia zealis.
Three other species, Ostrinia latipennis, Ostrinia ovalipennis, and
Ostrinia palustralis, constitute a more distantly related lineage
termed group II (17–19) (Fig. S1). Collectively these species use
(E) and (Z) isomers of tetradecenyl acetate and tetradecenol in
distinct combinations to define their pheromone specificity. With
the exception of ACB, group III species use varying ratios of (E)-
11- and (Z)-11-tetradecenyl acetate (E11 and Z11) in their sex
pheromone blend (17). Further, two races of ECB produce and
respond to opposite ratios of the E11 and Z11 pheromones, ECB
(E) and ECB(Z), respectively (20). ACB is unique within the
Ostrinia, having evolved to use an acetate pheromone with a shift
in the location of the double bond, (E)-12- and (Z)-12-tetrade-
cenyl acetate (E12 and Z12) (Fig. S1) (21, 22). ACB and ECB
provide an unprecedented opportunity to elucidate molecular
mechanisms underlying the shift in specificity of the male moth in
response to a new pheromone structure produced by the female.
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Five different sex pheromone receptors have recently been
identified from ECB(Z) and O. scapulalis. A few of these recep-
tors have been functionally characterized in vitro using Xenopus
oocytes (13, 14), a system that is well established for recording
responses of insect ORs (12). Some of these receptors responded
broadly to sex pheromone components in general (13, 14), but
others like ECB(Z) OR6 were found to respond almost exclusively
to Z11, the primary pheromone produced by ECB(Z) females
(14). We cloned the orthologous receptors from ACB and ana-
lyzed their sequences, finding no evidence for changes in gene
expression levels between the two closely related species. However,
tests of molecular evolution of the protein-coding sequences sug-
gested that the ACB OR3 lineage had been uniquely subjected to
positive selective pressure. Responses in Xenopus oocytes con-
firmed an evolved function of ACB OR3 that exhibited an in-
creased selectivity to E12 and Z12 pheromones compared with its
ECB(Z) OR3 ortholog. A single amino acid polymorphism at
position 148 of the predicted third transmembrane domain
(TMD3) controlled the selective response. The data suggest that
discrete mutations in OR genes can result in cladogenic changes in
pheromone recognition patterns.

Results
Sixteen pheromone receptors, orthologs of ECB(Z) ORs 1 and
3–6 (14), were cloned from the male antennae of ACB, ECB(E),
and ECB(Z) (GenBank accession nos. JN169130–42). Insects
reared at the New York State Agricultural Experiment Station
(NYSAES) were used because they have served as a historical
genetic stock for experiments comparing the different species
and races (23–25). To avoid biasing the coding region sequence,
each ORF was cloned using primers designed to recognize the 3′
and 5′ UTR of the OR sequences (14).

No Evidence for Changes in OR Gene Expression Between ACB and
ECB. ACB and ECB(Z) antennae were assayed by quantitative
PCR (qPCR) for changes in OR gene regulation that might be
associated with new function. Consistent with its functional role as
an obligate dimer partner in the neuron membrane, OR cor-
eceptor (Orco) was expressed as highly as the reference gene,
RpS3, and without significant sexual bias (Fig. S2). ORs 1 and 3–6
were all expressed at significantly higher levels in male antennae,
consistent with their role in detecting female-produced sex pher-
omone (Fig. S2). On average, the expression levels of ORs 1 and
3–6 were at least 106-, 545-, 75-, 23-, and 362-fold higher in male
compared with female corn borer antennae, respectively. Notably,
no significant differences in OR gene expression levels were
detected between ACB and ECB(Z).

Evidence for Positive Selection Acting on ACB OR3. In addition to
the 16 sequences reported here, 38 orthologous sequences (13)
representing eight different Ostrinia species were downloaded
from the National Center for Biotechnology Information Gen-
Bank and used to construct a neighbor-joining phylogenetic tree
(Fig. 1). In general the receptor nomenclature reported in ref. 14
is used, except in Fig. 1, where receptors reported in ref. 13 re-
tain their original name as published. These 54 sequences form
five orthologous lineages, each with 100% bootstrap support,
and all belong to the Lepidoptera pheromone receptor lineage.
OR1 sequences form two separate lineages with 92% bootstrap
support (Fig. 1). The two OR1 lineages share 83% nucleotide
identity, but without knowledge of their gene synteny, it is dif-
ficult to determine whether they represent different genes or
alleles; therefore, OR1 was treated as a single lineage for anal-
yses of sequence evolution.
To investigate evolutionary pressures acting on the coding

regions of Ostrinia sex pheromone receptor genes, we estimated
the rates of synonymous (dS) and nonsynonymous (dN) nucleo-
tide substitutions in the five gene lineages using branch-specific

models (26, 27). For OR lineages 1, 4, and 5 the one ratio model
(M0) was not rejected (Table S1). The normalized dN/dS ratio (ω)
for each of these lineages was significantly less than 1 (Fig. 1),
consistent with purifying selection. The free ratio model (M1) was
a significantly better fit than M0 for OR lineages 3 and 6,
suggesting that selective pressure varies among different branches
within these lineages (Table S1). Although the number of se-
quences in the OR6 lineage is small, the branch leading to ACB
OR6 seems to have been released from purifying selection (ω = 1;
Fig. 1), and may reflect the lack of Z11 pheromone production
by ACB females. The OR3 gene lineage produced the most in-
teresting results. The branch leading to the three ancestral group
II species (O. latipennis, O. ovalipennis, and O. palustralis) ex-
hibited strong evidence for purifying selection (ω = 0.2, P < 0.001).

Fig. 1. Evidence of positive selection acting on the coding sequence of ACB
OR3. A total of 54 nucleotide sequences representing eight species and five
OR gene lineages were analyzed for evidence of selection. Bootstrap values
for major branches are shown as a percentage of n = 1,000 replications. The
normalized nonsynonymous to synonymous substitution rate (ω) is shown
for significant groupings. ORs 1, 4, and 5 have one uniform ω for all branches
in the gene lineage, whereas ORs 3 and 6 have two or more rates (ω) for
branches within the gene lineage. ω > 1 was observed only for ACB OR3,
suggesting that positive selection has acted on this branch. OR nomenclature
follows their original publication (13, 14). O. furnacalis (ACB), O. latipennis,
O. ovalipennis, O. nubilalis [ECB(E)] and [ECB(Z)], O. palustralis, O. scapulalis,
O. zaguliaevi, and O. zealis.
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With the exception of ACB, the branch leading to all group III
species seems to have been subject to neutral or relaxed purifying
selection. Only the branch leading to ACB OR3, and not the
branch leading to ECB(E) and ECB(Z), yielded a ω value greater
than 1, providing evidence for positive selection acting on ACB
OR3 (Fig. 1; ω = 2.9, P = 0.008).

OR3 from ACB Displays Greater Response Specificity to E12 and Z12
Pheromones. With evidence of positive selection acting on ACB
OR3, we compared its functional response in vitro with its ECB
(Z) ortholog. Previously, insect ORs have been characterized as
ligand-gated nonselective cation channels, although the mecha-
nisms of channel activation and function remain unresolved
(28, 29). Insect ORs are unique in that they all require Orco as
a chaperone and coreceptor to functionally express both in vivo as
well as in isolated expression systems (12, 30). Here, we use the
Xenopus oocyte system to assay the response of OR3 from ACB
and ECB(Z) to the four group III pheromones with isomers at
position 11 and 12 (E11, Z11, E12, and Z12). Each receptor was
coexpressed with the obligate Orco partner from ECB(Z)
(GenBank accession no. ADB89179); ECB(Z) and ACB Orco
(GenBank accession no. BAJ23261) have identical amino acid
sequences. Pheromone application to voltage-clamped oocytes
expressing the receptor pairs caused an inward current that was
concentration-dependent and saturable. E11 or E12 (1 μM) was
applied at the end of each experiment for ECB(Z) and ACB
OR3, respectively, to normalize the response of each pheromone
(Fig. 2 A and B).
A concentration–response analysis of each pheromone showed

that ECB(Z) OR3 responded to all four pheromones but had the
highest affinity and largest response for E11 (EC50 = 12.5 nM;
Fig. 2C and Table 1), a response pattern very similar to its
ortholog from the closely related species O. scapulalis (13). In
contrast, ACB OR3 responded with the highest affinity and

efficacy to E12 and Z12 pheromones (EC50 = 7.0 and 9.6 nM,
respectively; Fig. 2D and Table 1), suggesting it has evolved
specificity for the ACB female mating pheromone that contains
equal amounts of E12 and Z12 (Fig. S1). The 14-fold lower affinity
of ACB OR3 for E11 (EC50 = 179 nM; Table 1) compared with
ECB(Z) OR3 was the most notable difference.

Single Amino Acid Polymorphism Provides a Significant Adaptive
Mutation. We conducted mutagenesis experiments to determine
residue(s) responsible for the shift in pheromone specificity
(Fig. 3). ACB OR3 differs from ECB(Z) OR3 at 47 amino acid
positions, and all but three are located in the first half of the
protein. We successively mutated 27 of these positions on the basis
of their location within predicted transmembrane and extracellu-
lar domains expected to interact with the pheromone ligand, to
the corresponding ECB(Z) OR3 residue (Fig. S3). Using this
approach we identified mutation T148A within the predicted third
TMD of ACB OR3 (Fig. 4A) as affecting the receptor’s affinity
for E11, increasing it ∼12-fold (Fig. 3 and Table 1). ACB OR3
has a threonine at position 148, whereas all other orthologs known
from Ostinia species, including ECB, have an alanine (Fig. 4B).
The response profile of the converse mutation in ECB(Z) OR3
(A148T) looked strikingly similar to wild-type ACB OR3, with an
increased selectivity for E12 and Z12 (Fig. 3). Overall, the con-
centration–response profiles of the complementary mutants indi-
cate that the unique identity of residue 148 as Thr or Ala accounts
for the receptor’s response to E11. Mutation of Thr-148 to Ala
shifts ACB OR3’s EC50 for E11 from 179 to 15.3 nM, resembling
the wild-type ECB(Z) EC50 of 12.5 nM (Fig. 3B and Table 1). The
EC50 of the converse mutation ECB(Z) OR3A148T is shifted op-
positely, to 110 nM from the wild-type 12.5 nM. Mutations ECB
(Z) OR3A148T and ACB OR3T148A had no statistically significant
effect on the affinities or relative efficiencies observed for Z11,
E12, or Z12 (Table 1 and Fig. S4). However, ECB(Z) OR3 had

ACB 
OR3

ECB(Z)
OR3

1000

E12E11
1 10 30 100 1000100 1000 10003010

E11E12
1

20 nA

1000 s

20 nA

1000 s

C

A B

D

Fig. 2. ACB OR3 responds preferentially to the (E)-12- and (Z)-12-tetradecenyl acetate pheromones produced by ACB females. (A and B) Representative
traces show membrane currents in Xenopus oocytes coexpressing OR3 receptors from ECB(Z) (A) and ACB (B) with the obligate partner Orco. A saturating
dose of E11 or E12 (1 μM) was applied at the end of each experiment for ECB(Z) OR3 or for ACB OR3, respectively, to normalize the response of each
pheromone. (C and D) Concentration-dependence of ECB(Z) OR3 (C) and ACB OR3 (D) responses to E11 (diamonds), Z11 (triangles), Z12 (circles), and E12
(squares) pheromones. The responses were normalized to saturating (1 μM) concentrations of E11 [ECB(Z)] or E12 (ACB) pheromones applied at the end of
the experiment.
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slightly higher affinity for Z11 than ACB OR3, and T148A in-
creased the affinity of ACB OR3 for Z11, whereas A148T de-
creased affinity of ECB OR3 for Z11. Consistent with previous
topology determinations of insect ORs (30–32), OR3 is predicted
to have seven transmembrane domains with an intracellular N
terminus and an extracellular C terminus (Fig. 4A; TOPCONS,
topcons.net). Residue 148 is located within TMD3 near the
extracellular surface.

Discussion
In the insect order Lepidoptera, pheromone emission by females
and detection by males constitutes a species-specific communi-
cation channel that serves as a behavioral prezygotic barrier to
mating, enabling closely related species to coexist in the same
region (3). A variety of evolutionary mechanisms have been pro-
posed to act on the communication channel, including stabilizing

selection, asymmetric tracking, reinforcement, and communi-
cation interference (3, 33, 34). How the specificity of the
communication channel changes during speciation, including
the molecular mechanisms of male detection, has remained
a key question (3, 34). We find that a single amino acid poly-
morphism in ACB OR3 provides a major adaptive mutation
that narrows its response specificity to correspond to the E12
and Z12 pheromones produced by the ACB females (21, 22).
Interestingly, purifying selection acting on the OR3 lineage of
group II species seems to be relaxed in group III species that
include the ACB (Fig. 1). Neutral rather than purifying selection
acting on the ancestral ACB OR3 gene may have resulted in more
nonsynonymous substitutions from which the unique threonine
polymorphism was positively selected.
In many cases the pheromone communication channel of

closely related lepidopteran species differs by the ratio of in-
dividual components used in the blend, and not by changes in the
chemical structure. Down-regulation of the bombykol receptor
in the antennae of male silkmoths was recently shown to alter the
male response (16). We did not detect any changes in expression
of the Ostrinia pheromone receptors in ACB and ECB(Z) an-
tennae (Fig. S2), similar to results obtained using closely related
Heliothis moth species (35). It was concluded that interspecific
sequence differences, rather than regulation of gene expression,
underlie the species-specific male response of Heliothis (35). In
support of this hypothesis, introgression of a discrete genomic
region encoding four sex pheromone receptors explained the
different responses of Heliothis subflexa and Heliothis virescens
males to the pheromone components (9).
Ostrinia species provide an excellent model to elucidate the

molecular mechanisms underlying the evolution of male moth
olfactory response to new pheromone structures and blends.
Although the majority of species studied to date use different
ratios of E11 and Z11 as their pheromone, ACB is unique in the
genus using an acetate pheromone blend with a shift in the lo-
cation of the double bond, E12 and Z12 (Fig. S5). This subtle
structural change imparts species specificity in the communica-
tion channel. Currently, E12 and Z12 are unique pheromones
within Lepidoptera [The Pherobase (36)], suggesting that one or
more of ACB’s receptors have evolved specificity during or after
its speciation. We analyzed five pheromone lineages representing
eight species (13, 14) for evidence of positive selection. On the
basis of normalized nonsynonymous/synonymous nucleotide
substitution ratios in the receptor coding region (ω; Fig. 1), OR
lineages 1, 4, and 5 exhibited evidence of strong purifying selection
(ω = 0.4, 0.4, and 0.1, respectively). OR5 cloned from both group

ECB(Z) Wt

A

B

WT
ACB OR3 ECB OR3

A148T

20 nA 10 nA 10 nA

800 s

ACB Wt

ECB(Z) A148T

ACB T148A

Fig. 3. Identity of amino acid residue 148 of ACB and ECB(Z) OR3 deter-
mines differential affinity for E11. (A) Representative traces show mem-
brane currents in oocytes coexpressing ACB OR3, ECB(Z) OR3, and ECB(Z)
OR3A148T with Orco, in respose to 10-nM doses of E11, Z11, E12, and Z12.
(B) Concentration-dependence of ECB(Z) OR3 (filled squares), ACB OR3
(filled circles), ECB(Z) OR3A148T (open squares), and ACB OR3T148A (open
circles) receptors to E11. The responses were normalized to a saturating
1-μM concentration of E11 applied at the end of the experiment.

Table 1. Affinity and efficiency of ACB and ECB(Z) OR3 responses to four pheromones

Ligand

ACBOR3 ECB(Z)OR3 ACBOR3 T148A ECB(Z)OR3 A148T

EC50 (nM ± SEM)
Relative
efficiency EC50 (nM ± SEM)

Relative
efficiency EC50 (nM ± SEM)

Relative
efficiency EC50 (nM ± SEM)

Relative
efficiency

E11 179 ± 80 1 12.5 ± 3.7 1 15.3 ± 3.1 1 110 ± 30 1
n = 5 n = 5 n = 5 n = 5

Z11 25 ± 7.7 1.34 ± 0.21 18.7 ± 2.5 0.72 ± 0.20 6.3 ± 0.75 1.24 ± 0.26 47.5 ± 4.8 1.08 ± 0.07
n = 5 n = 5 n = 5 n = 5

E12 7.0 ± 0.96 3.75 ± 0.63 13.6 ± 4.7 0.65 ± 0.11 7.0 ± 1.09 1.07 ± 0.5 22.9 ± 5.9 1.75 ± 0.26
n = 5 n = 5 n = 5 n = 5

Z12 9.6 ± 1.8 3.61 ± 0.31 20.7 ± 2.4 0.71 ± 0.06 8.4 ± 1.36 1.10 ± 0.14 24.0 ± 6.7 1.60 ± 0.41
n = 5 n = 5 n = 5 n = 5

The EC50 values were estimated by fitting the dose–response data to the simple binding isotherm (I = Imax*[pheromone]/(EC50 + [pheromone])). The
amplitude measured in response to a saturating (1-μM) dose of the respective pheromones was normalized to that measured for E11. The number of
experiments (n = 5) performed for wild-type ACB and ECB(Z) OR3, and complementary mutations ECB(Z) OR3A148T and ACB OR3T148A, are listed below the
EC50 value. EC50 values were analyzed by two-way ANOVA. Pheromones (P = 0.001) and receptors (P = 0.006) were significant factors, as was their interaction
(P = 0.003). The E11 response for ACB OR3 and ECB(Z) OR3A148T were not significantly different from each other but were the only two conditions that were
significantly different compared with other receptor and pheromone combinations (P < 0.05, Tukey honestly significant difference test).
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II and group III species in the Ostrinia genus responded specifi-
cally to (E)-11–14:OH (37), suggesting that its function has been
conserved within the genus. Most functional genes are subject to
strong purifying selection that reduces nonsynonymous poly-
morphisms in these genes (38, 39). Only the branch leading to
ACB OR3 showed signs of positive selection, ω = 2.9 (Fig. 1), and
it responded in vitro with more specificity to the E12 and Z12
pheromones compared with its ECB(Z) ortholog (Fig. 2).
The unique threonine amino acid at position 148 of ACB OR3

narrows the response spectrum of the receptor by reducing its
affinity for E11 by 14-fold compared with ECB(Z) OR3 (Fig. 3
and Table 1). Mutating this position back to alanine (ACB
OR3T148A) restores sensitivity to E11. Further, the sensitivity of
ECB(Z) OR3 to E11 can be reduced by mutating alanine 148 to
threonine (Fig. 3B and Table 1). Thus, this single mutation in
predicted TMD3 of ACB OR3 (Fig. 4) significantly narrows its
pheromone selectivity pattern. Smaller changes in affinity to
other pheromones were noted, and although other polymorphic
domains in the receptor may underlie these slight differences,
they were not statistically significant (Table 1).
Often the response spectra of the OR and the olfactory

neuron that express it are the same (40–42). O. scapulalis OR3
(BAI66606.1), 99% identical to ECB(Z) OR3 in this study, is
expressed in pheromone-sensitive olfactory neurons (13). The
in vitro response of ACB, ECB(E), and ECB(Z) OR3 to the
four pheromones is almost identical to the response profile of
pheromone-sensitive olfactory neurons on male antennae, char-
acterized using single sensillum electrophysiology (43, 44). Each
sensillum typically houses three different olfactory neurons that
have been identified by their spike amplitude: small, intermediate,
or large. The response spectra of ECB(E) and (Z) OR3 is similar

(E11 > E12 > Z11 > Z12) and corresponds closely to that of the
small spiking neuron of ECB(Z) and the large spiking neuron of
ECB(E). These results suggest a race-associated change in the
location of their expression. The large spiking neuron of ACB
responds best to E12 and Z12, whereas its small spiking neuron
responds specifically to E12. These results suggests that the ACB
large spiking neuron phenotype could have resulted from a T148A
mutation of an ancestral ECB(E) OR3 allele because both are
associated with the large spiking neuron. The existence of an ACB
small spiking neuron that responds specifically to E12 suggests
that another OR has evolved different specificity in this system.
Additional candidate sex pheromone receptor genes have been
identified recently, by sequencing ECB genomic DNA (45).
Ostrinia species have been used as a model to study the evo-

lution of sex pheromone communication between closely related
species for more than 3 decades. The discovery of a Δ14-desa-
turase gene uniquely expressed in the pheromone gland of ACB
that produces its unique pheromone advanced the understanding
of evolutionary differences between ECB and ACB (46). In-
terestingly, it was also discovered that 3–4% of ECB males can
respond to both the ECB and ACB pheromones, suggesting that
variability in the breadth of male response required to track new
pheromones exists in the population (46, 47). ECB possesses
pheromone-sensitive olfactory neurons that can respond to all
four pheromones, and altering the tuning profile of this broadly
responsive neuron could explain the evolution of the male ACB
olfactory response (23). Adding to this body of knowledge, we
have identified a single mutation to ACB OR3 that produces
a major shift for specificity to the new ACB pheromone.

Materials and Methods
Insects. Colonies of bivoltine ECB(E) and univoltine ECB(Z), collected from corn
fields in western New York state in the late 1990s, aremaintained on artificial
diet (23–25). For gene expression studies batches of antennae from 1- to 3-d-
old adults were collected from ECB(Z) male and female moths (n = 95, 59,
and 111 female, and 96, 67, and 120 male moths). The ACB colony originated
from the National Institute of Crop Sciences, South Korea, and rearing is the
same as described for ECB. ACB antennae dissected at NYSAES, preserved in
RNAlater (Ambion), and shipped to Bozeman in three batches of 50–75 moths
per batch per sex.

Cloning Full-Length ORs. ECB and ACB antennae were prepared for RNA
extraction using previously published methods (48). Full-length ORs were
amplified from male ACB, ECB(E), and ECB(Z) antennal cDNA using primers
designed to the 3′ and 5′ UTRs. Amplification reactions were performed
using Phusion High-Fidelity DNA polymerase (Finnzymes), and at least three
different clones were sequenced from both directions for each gene (14).

Phylogenetic and Sequence Analysis. PAL2NAL software was used to generate
a multiple codon alignment (49, 50) from the MUSCLE amino acid alignment
and the corresponding nucleotide sequences of the Ostrinia ORs. A phyloge-
netic tree was created using MEGA 4 based on the multiple codon alignment
(51). The neighbor-joining method was used to estimate evolutionary dis-
tances in units of base substitutions per site (52). Tests of selection were per-
formed using the codeml procedure implemented in the PAML 4.4 package
(26) that estimates ratios of the normalized nonsynonymous (dN) to syn-
onymous (dS) substitution rate (ω) by the maximum likelihood method (53)
(SI Materials and Methods).

Quantitative Real-Time PCR. qPCR was performed as described previously (48).
ORs 1, 3, 4, and 5 primer sets spanned an intron, and the absence of PCR
products resulting from contaminating genomic DNA was confirmed by gel
electrophoresis and melting temperature analysis. Expression levels less than
10−3 of RpS3 were conservatively estimated at 0.001 for calculating fold
differences between male and female antennae.

Receptor Functional Analysis. ORs were cloned into the expression vector
pGEMHE and analyzed using the Xenopus ooctye assay (14) (SI Materials and
Methods). Individual point mutations were incorporated into the cDNA using
the QuikChange Site Directed Mutagensis Kit (Agilent). Data were analyzed
offline with Axograph X (v1.3.1) and Kaleidagraph (v4.04) software.

Fig. 4. OstriniaOR3 sequences showing the unique threonine (T) for alanine
(A) substitution at position 148 within TMD3 of ACB OR3. (A) A TOPCONS
(topcons.net) model of ACB OR3 with position 148 illustrated by a black
circle. The residues included in the alignment in Fig. 4B are highlighted in
gray. (B) Clustal alignment of the predicted TMD3 of OR3 from eight Ostrinia
species. O. furnacalis (ACB), O. latipennis, O. ovalipennis, O. nubilalis [ECB(E)
and ECB(Z)], O. palustralis, O. scapulalis, O. zaguliaevi, and O. zealis.
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