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The sodium-dependent neutral amino acid transporter
type 2 (ASCT2) was recently identified as a cell surface
receptor for endogenously inherited retroviruses of cats,
baboons, and humans as well as for horizontally transmit-
ted type-D simian retroviruses. By functional cloning, we
obtained 10 full-length 2.9-kilobase pair (kbp) cDNAs and
two smaller identical 2.1-kbp cDNAs that conferred sus-
ceptibility to these viruses. Compared with the 2.9-kbp
cDNA, the 2.1-kbp cDNA contains exonic deletions in its 3*
noncoding region and a 627-bp 5* truncation that elimi-
nates sequences encoding the amino-terminal portion of
the full-length ASCT2 protein. Although expression of the
truncated mRNA caused enhanced amino acid transport
and viral receptor activities, the AUG codon nearest to its
5* end is flanked by nucleotides that are incompatible
with translational initiation and the next in-frame AUG
codon is far downstream toward the end of the protein
coding sequence. Interestingly, the 5* region of the trun-
cated ASCT2 mRNA contains a closely linked series of
CUG(Leu) and GUG(Val) codons in optimal consensus
contexts for translational initiation. By deletion and site-
directed mutagenesis, cell-free translation, and analyses
of epitope-tagged ASCT2 proteins synthesized intracellu-
larly, we determined that the truncated mRNA encodes
multiple ASCT2 isoforms with distinct amino termini that
are translationally initiated by a leaky scanning mecha-
nism at these CUG and GUG codons. Although the full-
length ASCT2 mRNA contains a 5*-situated AUG initiation
codon, a significant degree of leaky scanning also oc-
curred in its translation. ASCT2 isoforms with relatively
short truncations were active in both amino acid trans-
port and viral reception, whereas an isoform with a 79-
amino acid truncation that lacked the first transmem-
brane sequence was active only in viral reception. We
conclude that ASCT2 isoforms with truncated amino ter-
mini are synthesized in mammalian cells by a leaky scan-
ning mechanism that employs multiple alternative CUG
and GUG initiation codons.

The broad specificity sodium-dependent neutral amino acid
transporter type 2 (ASCT2)1 was recently identified as a cell
surface receptor for a large and widely dispersed group of
retroviruses that includes endogenously inherited viruses of
cats, baboons, and humans, and the horizontally transmitted
avian reticuloendotheliosis viruses and type-D simian retro-
viruses (1–3). Furthermore, some of these viruses can
promiscuously use the related transporter ASCT1 as an aux-
iliary receptor (4). Although ASCT1 and ASCT2 both function
as exchangers for neutral amino acids, the specificity of
ASCT2 is broader and it includes glutamine (5–8). These pro-
teins are members of a large glutamate transporter superfam-
ily, which are believed to have a common membrane topology
(9) with a relatively large extracellular loop 2 (ECL2) that
typically contains two consensus sites for N-linked glycosyla-
tion. Consistent with the hypothesis that it has been a battle-
ground for virus-host co-evolution, the ECL2 of ASCT2 is crit-
ical for its retroviral receptor function and has been
hypervariable throughout mammalian evolution (4).

According to the ribosome-scanning model for translation,
protein synthesis in eukaryotes involves a process of 40 S
ribosomal subunit attachment to the 59 end of the mRNA,
followed by ATP-dependent movement down the mRNA until
an initiation codon is reached (10). Usually, but not always,
this initiation site is the first AUG(Met) codon. However, ini-
tiation only proceeds efficiently if the AUG occurs within the
Kozak consensus context (GCC(A/G)CCAUGG) in which the
most important features are the G at position 14 adjacent to
the AUG and the A/G at position 23 (11–16). Moreover, if the
first initiation site in a mRNA is used inefficiently, some of the
40 S ribosomal subunits will move through the site by a “leaky
scanning” process and may initiate translation at a down-
stream position (17). Interestingly, non-AUG codons such as
CUG(Leu), ACG(Thr), and GUG(Val) can also serve as low
efficiency initiation sites if they occur within the Kozak con-
sensus context (10, 18–27). In these cases, however, the initial
amino acid that is incorporated appears to be methionine,
apparently because these non-AUG codons can still form weak
base pairs with the initiator Met-tRNAMet (26, 28). A clear
illustration of these issues occurs with the Gag protein of
murine leukemia viruses, which is inefficiently initiated at a
CUG codon and then more efficiently by the leaked-through
ribosomes at a downstream AUG codon (29). This produces a
larger protein with an amino-terminal signal sequence that is
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inserted into the endoplasmic reticulum and is then expressed
as an N-glycosylated derivative on cell surfaces plus a smaller
more abundant Gag protein that is synthesized in the cytosol
(30). Another important example occurs with the Myc oncopro-
tein, which is translationally initiated at a non-AUG codon,
followed by leaky scanning through a series of suboptimal AUG
codons, resulting in production of multiple shorter Myc pro-
teins that have diverse functions (31, 32). There is evidence
that the efficiency of leaky scanning can be influenced by the
proliferative status of cells (32, 33). In addition to this leaky
scanning mechanism for producing protein isoforms with alter-
native amino termini, there are many examples in which dif-
ferential RNA splicing or use of alternative promoters can
produce a 59 truncated mRNA that lacks the first AUG codon,
resulting in initiation of a shorter protein from a downstream
AUG (34–43).

In this study we describe the properties of two ASCT2 cDNAs
that were reproducibly isolated from a human lymphocyte
cDNA library. Both the 2.1- and 2.9-kbp cDNAs encode ASCT2
proteins that are functionally active in amino acid transport
and in retroviral reception. Interestingly, the 2.1-kb mRNA
lacks a functional AUG initiation codon and is translationally
initiated by leaky scanning at multiple alternative in-frame
CUG and GUG codons, thereby producing a family of shortened
ASCT2 isoforms with diverse amino termini. Furthermore, the
2.9-kb mRNA also appears to be translationally initiated not
only at the AUG codon nearest to its 59 end but also to a
significant extent at the downstream CUG and GUG codons.
The leaky scanning of ASCT2 mRNAs was demonstrated not
only in a cell-free system but also in cells cultured in physio-
logical conditions. Surprisingly, truncated forms of ASCT2 that
lack TM1 and as many as 79 amino acids are processed to cell
surfaces in functionally active conformations.

MATERIALS AND METHODS

Cells and Viruses—Human TE671 and mouse NIH3T3 cells were
maintained in Dulbecco’s modified Eagle’s medium with low glucose
and 10% fetal bovine serum, Chinese hamster ovary (CHO) cells were
maintained in Dulbecco’s modified a-medium with 10% fetal bovine
serum, and HEK293T cells were maintained in Dulbecco’s modified
Eagle’s medium with high glucose and 10% fetal bovine serum.

LacZ(RD114), lacZ(BaEV), lacZ(SRV-1), and lacZ(SRV-2) pseudotype
viruses were generated as previously described (3). LacZ(RD114) was
produced by TELCeB6/RDF-7 helper-free packaging cells (44). Lac-
Z(BaEV) was rescued by infection of mink Mv-1-Lu cells harboring a
lacZ vector with a replication competent BaEV stock (45). LacZ(SRV-1)
and lacZ(SRV-2) were produced from TELCeB6 cells infected with rep-
lication-competent SRV-1 and SRV-2.

Expression Vectors—hASCT2 and DhASCT2 cDNA expression vec-
tors were generated as follows. The hASCT2 and DhASCT2 cDNAs were
isolated by PCR (upstream primer, 59-GATCCCAGTGTGCTGGAAAG-
39; downstream primer, 59-GGTGGGGTCTTTCATTCC-39) (see Ref. 46
for PCR conditions) using genomic DNA isolated from lacZ(RD114)
positive NIH 3T3 cellular clones that had been previously transduced
with a retroviral cDNA library (3). The PCR products were subse-
quently cloned into the pcDNA3.1V5His-TOPO mammalian expression
vector (Invitrogen). DhASCT2 cDNAs with various truncations at the 59
end were generated by PCR using DhASCT2 cDNA as template, with a
downstream primer (59-CCGGGGTTTACATGACTGATT-39) and the
following upstream primers: D35, 59-CAGCAGGCGGCTACTGCGGTT;
D48, 59-CTGCCTTCGAGCCAACCTGCT-39; D67, 59-GCGCTGGGACT-
GGGGGTGTCGG-39; D96, 59-CTGCTGCGTCTGCTGCGGATGATCA-
39; D106, 59-CCGCTGGTGGTGTGCAGCTTG-39. Mutant truncated
DhASCT2 cDNAs were generated using the downstream primer de-
scribed above and the following upstream primers: M102A, 59-
CTGCTGCGGGCGATCATCTTG-39; LA1D67, 59-GCGGCGGGAGCGG-
GGGTGTCG-39; LA2D67, 59-GGGGGTGCGGCGGCGTTGGGCCCG-39;
L23 MDh,59-CAGCGGCGGAGCCCACCGCCAACGGGGGCATGGCGC-
TGGCC39;LA1D67(AUG), 59-GGGGGTGCGATGGCGTTGGGC-39. The
PCR products were cloned into pcDNA3.1V5His-TOPO vector. For
constructing the expression vectors of hASCT2- and DhASCT2-Myc tag
fusion protein, the cDNAs were isolated by PCR using the same down-

stream primer (59-TTGCGGCCGCCATGACTGATTCCTTCTC-39 con-
taining a NotI restriction site (underlined sequence)) and the following
upstream primers: hASCT2, 59-TAAAGCTTATGGTGGCCGATCCTCC-
T-39 containing a HindIII restriction site (underlined sequence); DhA-
SCT2, 59-CAGCGGCGGAGCCCACCGCCAACG-39. The PCR products
were‘ cloned into pcDNA3.1-MycHis-version C mammalian expression
vector (Invitogen). All cDNAs were sequenced by the Microbiology and
Molecular Immunology core facility, and by the Vollum Institute core
facility on the PE/ABD 377 sequencer using dye terminator cycle-se-
quencing chemistry (Applied Biosystems, Foster, CA).

Transfection—Stable expression of hASCT2 and DhASCT2 in CHO
cells was achieved by transfection of the corresponding expression vec-
tors using the SuperFect transfection reagent (Qiagen). Transfected
cells were selected with G418 sulfate (1 mg/ml) and resistant colonies of
cells were pooled 1–2 weeks after addition of selection. Resistant cells
were then analyzed for susceptibility to the lacZ pseudotype viruses
outlined above. NIH 3T3 cells transiently expressing hASCT2,
DhASCT2, or truncated hASCT2 proteins were generated by transient
transfection of the corresponding cDNA expression vectors using Su-
perFect transfection reagent. Transfection of target cells was carried
out in 24-well tissue culture plates. The transfected cells were subse-
quently tested for susceptibility to lacZ pseudotype viruses 24 h post-
transfection. Normalization of transfection efficiencies was analyzed by
co-transfecting the pLIB-EGFP (CLONTECH) reporter vector for the
green fluorescent protein together with expression vectors for wild-type
and mutant forms of hASCT2 and DhASCT2. The results suggested
that the transfection efficiencies were the same for the vectors being
compared in each assay.

Infection—Target cells transiently transfected with hASCT2,
DhASCT2, or truncated DhASCT2 expression vectors were incubated
overnight with serial dilutions of lacZ(RD114), lacZ(BaEV), lacZ(SRV-
1), or lacZ(SRV-2). Infected cells were analyzed by staining with X-Gal
(5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside) using a previously
described protocol (47). LacZ pseudotype titers were expressed as the
number of blue colony forming units obtained per milliliter of viral
supernatant. The titers reported were averages of three infection
studies.

Amino Acid Transport—The amino acid transport function of
hASCT2, DhASCT2, and truncated DhASCT2 were analyzed in
HEK293T cells. Briefly, HEK293T cells were transiently transfected
with the corresponding cDNA expression vectors using the SuperFect
Reagent. The initial rate of L-[3H]alanine uptake was analyzed 24 h
post-transfection using a previously described procedure (48). Alanine
uptake values reported are average of 3 uptake studies.

In Vitro Translation—A rabbit reticulocyte lysate in vitro translation
kit (Promega) was used to generate proteins encoded by hASCT2,
DhASCT2, and truncated DhASCT2 mRNAs. The corresponding cDNA
expression vectors (see above) were used as templates together with
[35S]methionine radiolabel, and reagents provided by the rabbit reticu-
locyte lysate in vitro translation kit, to generate [35S]methionine-la-
beled receptor proteins encoded the hASCT2, DhASCT2, D35, D48, D67,
D96 and D106 mRNAs. The xenotropic and polytropic murine leukemia
virus receptor (X-receptor) (46, 49, 50) mRNA was used as a control.
Protein samples were analyzed by electrophoresis in 10% polyacryl-
amide gels in the presence of 0.1% SDS. The gels were subsequently
exposed overnight to a Kodak Scientific Imaging film.

Immunoblot Analyses—HEK293T cells expressing ASCT2 receptors
were generated by transient transfection of the corresponding cDNAs
using SuperFect transfection reagent (Qiagen). Cell lysates of trans-
fected cells were prepared 48 h post-transfection. For total cell extracts,
the cells were scraped off the culture dishes in cold phosphate-buffered
saline and centrifuged at 200 3 g at 4 °C for 5 min. The cell pellet was
then resuspended in lysis buffer (50 mM Tris-HCl (pH 8.8), 150 mM

NaCl, 0.1% SDS, 1% Nonidet P-40, 0.5% sodium deoxycholate, protease
inhibitor mixture), and incubated on ice for 30 min. The cell debris and
nuclei were removed by centrifugation of the samples at 15,000 3 g at
4 °C for 10 min. Three micrograms of total protein cell lysate were
either treated with or untreated with N-glycosidase F (2 h; 37 °C) and
subsequently analyzed by electrophoresis in 10% polyacrylamide gels in
the presence of 0.1% SDS. For studies of surface ASCT2 receptors
expression HEK293T transiently transfected with the corresponding
cDNAs were surface biotinylated by the addition of 2 mM sulfo-NHS-
LC-Biotin (Pierce, Rockford, IL) to 2 3 107 cells for 1 h at 4 °C. The
reaction was quenched with 20 mM glycine for 15 min. Washed cells
were lysed in lysis buffer as described for total cell extracts. The bio-
tinylated molecules were precipitated with streptavidin-agarose beads
(Life Technologies, Inc.) at 4 °C. Beads were washed three times with
lysis buffer and resuspended in 20 ml of lysis buffer. 10 ml of beads were
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treated with N-glycosidase F (2 h; 37 °C). The treated and untreated
beads were boiled with an equal volume of 2 3 Lammeli sample buffer
and subsequently analyzed by electrophoresis in 10% polyacrylamide
gels in the presence of 0.1% SDS. The proteins were then transferred to
nitrocellulose filters, which were then treated with 5% milk powder in
phosphate-buffered saline. The nitrocellulose blots were probed with
anti-myc tag monoclonal antibody 9E10 (Sigma) and developed by using
a horseradish peroxidase-conjugated goat anti-mouse antibody (South-
ern Biotechnology Associates, Inc.) and an enhanced chemilumines-
cence kit (NEN Life Research Products, Boston, MA).

Oocyte Transport Assays—Capped cRNAs were synthesized in vitro
as previously described (5, 51) using pOG1-hASCT2 and pOG1-
DhASCT2 plasmids as templates. 50 ng of the cRNAs were injected into
stage V Xenopus laevis oocytes 3–5 days before analysis. Uptake of
radiolabeled amino acid was measured by incubating oocytes in wells
containing 10 mM L-[3H]alanine (1 mCi/mmol; Amersham Pharmacia
Biotech) for 10 min. Oocytes were then rapidly washed with Ringer’s
solution, transferred into a scintillation vial, lysed in 1% SDS, and
radioactivity was measured. Specific transport was calculated by sub-
tracting the mean uptake measured in uninfected oocytes from the
uptake measured in injected cells.

RESULTS

Cloning of a Truncated Retroviral Receptor, DhASCT2—Pre-
viously, we isolated 12 human cDNAs that caused rodent cells
to become susceptible to infections by the RD114 feline endog-
enous retrovirus (3). As we reported, 10 of these cDNAs had
sizes of 2.9 kbp and encoded the full-length human ASCT2
(hASCT2) protein (7). Furthermore, another laboratory inde-
pendently identified hASCT2 as the receptor for these same
retroviruses (2). The other two cDNA clones that we isolated,
which we term DhASCT2, had sizes of 2.1 kbp and identical
sequences that will be further described below. These larger
and smaller cDNAs are compatible with the sizes of major and
minor mRNA components that were detected by Northern blot
analyses of RNAs from different human tissues (3, 7). As shown
in Table I, stable expression of the 2.1-kbp DhASCT2 cDNA in
CHO cells caused susceptibility to infections by lacZ
pseudotypes of RD114, baboon endogenous virus (BaEV), and
type-D simian retroviruses (SRV-1 and SRV-2). These results
strongly suggest that the 2.1-kbp DhASCT2 cDNA encodes a
functional receptor for RD114, BaEV, and SRVs.

General Implications of the hASCT2 and DhASCT2 cDNA
Sequences—Fig. 1A shows a diagrammatic comparison of the
2.9-kb hASCT2 and 2.1-kb DhASCT2 mRNAs based on their
cDNA sequences. These mRNAs are closely related except for a
truncation of 627 bases in the 59 region and smaller deletions of
41 and 70 bases in the 39-untranslated region of the DhASCT2
mRNA. In addition, there is a G to C base substitution in the
coding region that would cause a Val to Leu substitution near
the carboxyl-terminal end of the DhASCT2 protein. As indi-
cated in Fig. 1A, the predicted 2.9-kb hASCT2 mRNA contains
a large 59-untranslated sequence of 590 bases and would be
expected to encode a full-length hASCT2 protein of 541 amino
acids. On the contrary, as further indicated below, the sequence
of the 2.1-kb DhASCT2 mRNA does not provide an unambigu-
ous indication about the encoded protein.

Fig. 1B shows the sequence of the full-length hASCT2 pro-

tein, which indicates the amino acid numbering system that we
will use below to describe the hASCT2 and DhASCT2 proteins.
The sequence has been annotated to show the DhASCT2 open
reading frame and the site of the Val to Leu substitution
described above. In addition, we have indicated the locations of
the 10 hydrophobic potential TM sequences and the two con-
sensus sites for N-linked glycosylation that occur in the puta-
tive ECL2 region between TM3 and TM4. Consistent with the
absence of an amino-terminal signal sequence and with the
transmembrane topology implied in Fig. 1B, previous evidence
has indicated that the hASCT2 amino terminus is in the cy-
tosol, that the presumptive ECL2 sequence between TM3 and
-4 is N-glycosylated at both positions and that it is exposed on
the cell surfaces where it comprises a critical site for virus
attachment, and that the carboxyl terminus is also cytosolic (4).

The AUG(Met-102) Codon Is Not the Initiation Site for
DhASCT2 Synthesis—Although the data in Table I clearly in-
dicates that the DhASCT2 protein is a functional retroviral
receptor, suggesting that it must contain the critical ECL2
residues described above, the sequence of the DhASCT2 mRNA
does not provide an unambiguous indication about the encoded
protein. Fig. 2A shows the initial 299-nucleotide sequence of
the DhASCT2 mRNA. As can be seen by comparison of Figs. 1
and 2, the DhASCT2 open reading frame begins with the AA-
EPT . . . sequence corresponding to amino acid position 14. The
first AUG codon in the DhASCT2 mRNA corresponds to AUG-
(Met-102), which is boxed in Fig. 2A. However, as indicated in
Fig. 3, the nucleotides flanking AUG(Met-102) do not conform
to the Kozak consensus sequence required for translational
initiation. Moreover, the next downstream AUG corresponds to
AUG(Met-229), which also lacks a Kozak consensus sequence
and is too far downstream to include the ECL2 region that is
critical for viral reception.

To further analyze this issue, we first generated 59 deletions
in the DhASCT2 cDNA. As indicated in Fig. 2A, these deletions
eliminated portions of the DhASCT2 open reading frame from
the encoded mRNAs. These deletion mutants and other site-
directed mutants that we employed are diagrammed in Fig. 2B.

As shown in Fig. 4, NIH 3T3 fibroblasts that were tran-
siently transfected with the D35, D48, and D67 expression
constructs became highly susceptible to infections with the
lacZ(RD114) virus, suggesting that the deleted mRNAs encode
functional receptors and that an initiation site for DhASCT2
receptor synthesis is located downstream of nucleotide 162
(start of D67). In contrast, the D96 construct did not confer
susceptibility to this virus, despite the presence of the AUG-
(Met-102) in this mRNA, and the D106 mRNA was similarly
inactive. Furthermore, we mutated the AUG(Met-102) codon to
GCG(Ala) (Fig. 2B), and found that the M102A mutant was
fully active as a viral receptor (Fig. 4). These results strongly
suggest that AUG(Met-102) is not an initiation codon for pro-
tein synthesis. Furthermore, synthesis of a functional
DhASCT2 receptor must initiate at a site between nucleotides
162 (start of D67 mRNA) and 249 (start of D96 mRNA) that is

TABLE I
Susceptibility of CHO cells expressing hASCT2 and DhASCT2 to RD114, BaEV, SRV-1, and -2

CHO cells transfected with hASCT2 and DhASCT2 (CHO/hASCT2 and CHO/DhASCT2, respectively) cDNA expression vectors were tested for
susceptibilities to lacZ(RD114), lacZ(BaEV), lacZ(SRV-1), and lacZ(SRV-2) pseudotype viruses. Human TE671 cells served as a positive control for
all of these viruses. The titers are averages of three independent infection studies.

Target cell
Titer of lacZ pseudotype (CFU/ml)

RD114 BaEV SRV-1 SRV-2

TE671 3.5 3 106 3.7 3 105 3.1 3 104 2.3 3 106

CHO ,3 0 ,3 0
CHO/hASCT2 5.9 3 105 8.0 3 104 1.1 3 105 1.9 3 105

CHO/DhASCT2 9.5 3 104 1.5 3 104 6.5 3 104 3.3 3 104
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in-frame with the hASCT2 protein coding sequence. Accord-
ingly, the upstream amino-terminal region of hASCT2 includ-
ing TM1 must be unnecessary for folding and processing of a
functional receptor protein.

Synthesis of DhASCT2 Initiates at Several CUG(Leu)
Codons—Interestingly, the sequence of DhASCT2 mRNA be-
tween nucleotides 162 and 249 contains four CUG(Leu) codons
that are all in the open reading frame (see Fig. 2A). Moreover,

FIG. 1. Comparison of the full-length and truncated ASCT2 mRNAs and proteins. A, a diagrammatic comparison of the 2.9-kb hASCT2
mRNA with the truncated 2.1-kb DhASCT2 mRNA. The DhASCT2 mRNA shows high degree of sequence identity to hASCT2 mRNA except for a
deletion of 627 bases in the 59-untranslated region and two deletions of 41 and 70 bases in the 39- untranslated region. In addition, there is a G
to C substitution in the potential coding region (open box). B, amino acid sequences of hASCT2 and putative DhASCT2 proteins. The potential
coding region of DhASCT2 is nearly identical to hASCT2 except for the following sequences. The DhASCT2 open reading frame (ORF) begins with
the AAEPT . . . sequence, which corresponds to amino acid 14 of hASCT2. The DhASCT2 protein contains a valine to leucine substitution in the
COOH terminus corresponding to amino acid 512 of hASCT2. A line above the amino acid sequence indicates the potential TM segments whereas
asterisks indicate the potential N-linked glycosylation sites.

Truncated Isoforms of a Transporter/Viral Receptor27224
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three of these codons, CUG(Leu-68), CUG(Leu-70), and
CUG(Leu-79) are flanked by nucleotides that conform to the
Kozak consensus requirement as shown in Fig. 3. Since CUG
codons can be used as initiation sites, we simultaneously mu-
tated both the CUG(Leu-68) and CUG(Leu-70) codons to GC-
G(Ala) in the context of the D67 mRNA to generate the double
mutant LA1D67 (see Fig. 2B). As shown in Fig. 4, NIH 3T3 cells
transiently expressing LA1D67 were approximately as suscep-
tible to lacZ(RD114) infections as cells expressing the unmu-
tated D67 construct. This suggested that CUG(Leu-79) might
be an initiation codon for DhASCT2 receptor synthesis. Conse-
quently, we mutated the CUG(Leu-79) codon to GCG(Ala) in
the context of the LA1D67 mutant to generate the LA2D67
mutant, and we found that this eliminated receptor activity
(see Fig. 4), confirming that CUG(Leu-79) is an initiation codon
for the DhASCT2 receptor. To further analyze the CUG(Leu-
68), CUG(Leu-70), and CUG(Leu-79) codons, we simulta-

neously mutated these codons to GCG(Ala) in the context of the
DhASCT2 mRNA to generate the LA2Dh mutant. Interestingly,
as shown in Fig. 4, the LA2Dh mutant was active as a viral
receptor. This strongly suggests that sequences upstream of
nucleotide 162 in DhASCT2 mRNA can also function as initia-
tion sites for protein synthesis. Accordingly, this upstream
region of the DhASCT2 mRNA contains two additional in-
frame CUG(Leu) codons (at positions 23 and 25) and five
tightly clustered GUG(Val) codons (at positions 59, 60, 62, 63,
and 66) that all have excellent Kozak consensus sequence con-
texts (see Figs. 2 and 3). We believe that at least one of these
GUG(Val) codons is likely to be important for initiation because
the D35 and D48 mutants are reproducibly several times more
active as receptors than the D67 mutant (see Fig. 4). Further
support for the idea that CUG(Leu) and GUG(Val) codons occur
in sequence contexts compatible with translational initiation
was obtained by mutating the CUG(Leu-23) codon to

FIG. 2. Sequence and mutagenesis
of the 5* region of the DhASCT2
mRNA. A, sequence of the initial 299 nu-
cleotides of the DhASCT2 mRNA. The en-
coded amino acid sequence is indicated
below the mRNA sequence. The amino
acid positions, as indicated below the res-
idue, correspond to the numbering system
for the full-length hASCT2 protein (see
also Fig. 1). The arrows indicate the start
of the 59 deleted DhASCT2 mRNAs and
the nomenclature of the deleted mRNAs
corresponds to the position of the amino
acid encoded by the first codon in the se-
quence. The potential initiator codons are
indicated by a line above the mRNA se-
quence. The predicted AUG (Met-102) ini-
tiator codon is outlined by a box. B, dia-
gram of the open reading frame of
DhASCT2 mRNA and the 59-deleted
mRNAs. The 39-untranslated region for
all mRNAs were removed (see “Materials
and Methods”). The mutant mRNAs that
we employed are also shown.
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AUG(Met-23). As shown in Fig. 4, the L23MDh mutant was an
enhanced receptor for lacZ(RD114) infections. Considered to-
gether, these results indicate that DhASCT2 synthesis initiates
at several non-AUG codons, including CUG(Leu-79) and at

least one of the other CUG or GUG codons that are highlighted
in Fig. 2A and identified in Fig. 3.

The clustering of these numerous CUG(Leu) and GUG(Leu)
in-frame codons in Kozak consensus contexts into this 59 region
of the DhASCT2 mRNA as shown in Figs. 2 and 3 is highly
significant. If these potential initiation sites were random, they
would have been expected to occur in all three reading frames.
Moreover, 10 of the 15 in-frame CUG(Leu) and GUG(Val)
codons in this region occur in excellent Kozak consensus con-
texts (i.e. with A/G at the 23 end and G at 14), whereas such
contexts occur elsewhere in the hASCT2 mRNA at frequencies
of only ;0.2. This conclusion was supported by a codon prefer-
ence analysis of hASCT2 mRNA. Codon usage was highly de-
viant from the expected Homo sapiens bias in this region but
not in other regions of the hASCT2 mRNA (results not shown).

DhASCT2 mRNA Encodes Truncated Protein Isoforms—To
analyze the proteins encoded by DhASCT2 mRNA, we initially
used a rabbit reticulocyte lysate in vitro translation system (see
“Materials and Methods”). Fig. 5 shows an electrophoretic anal-
ysis of L-[35S]methionine-labeled receptor proteins encoded by
DhASCT2 mRNA and by the 59 deleted mRNAs D35, D48, D67,
D96, and D106. We used the receptor protein for xenotropic and
polytropic murine leukemia viruses (X-receptor) (46, 49, 50) as
our control. This receptor has an apparent size of 80 kDa (Fig.
5), which is in agreement with its predicted size. We also
analyzed the receptor encoded by hASCT2 mRNA. Unexpect-
edly, hASCT2 mRNA encoded two proteins, with a prominent
protein product that had an apparent size of ;54–56 kDa, and
a less prominent product of ;50 kDa. This result suggests that
protein synthesis partially initiates at the predicted AUG
codon and may also initiate at a downstream non-AUG codon.
As observed in Fig. 5, the DhASCT2 mRNA encoded an array of
proteins of various sizes with prominent protein products of
;46 and 40 kDa whereas the D35 and D48 mRNAs encoded a
prominent protein product of only 40 kDa. Based on the se-
quence evidence in Fig. 2, these differences imply that
CUG(Leu) codons at positions 23 and 25 are probably used for
initiation by the DhASCT2 mRNA. Similarly, the D67 mRNA
also encoded a prominent protein product of only 40 kDa.
However, we consistently observed less receptor protein en-
coded by D67 mRNA compared with that encoded by D35 and
D48 mRNAs. This result suggests that efficient in vitro trans-
lation at the CUG(Leu-79) codon might require sequences up-
stream of nucleotide 162 or that the GUG(Val) codons may be
stronger initiation sites than CUG(Leu-79). Although, the D96
mRNA did not encode a functional receptor (Fig. 4), several
smaller protein products were encoded by the mRNA suggest-
ing that sequences further downstream of the AUG(Met-102)

FIG. 3. Comparison of the nucleotide sequence flanking the
potential AUG(Met), CUG(Leu), and GUG(Val) initiator codons
in DhASCT2 mRNA, with the eukaryotic consensus sequence
(Kozak sequence) required for translational initiation (12, 13).
The numerical positions of the nucleotides in reference to the initiator
codon are shown above the Kozak sequence. The potential initiator
codons are underlined and nucleotides that match the consensus se-
quence are boxed. Efficient initiation of translation only proceeds when
the initiator codon is flanked by a G at position 14 and A/G at position
23 (11–16). As observed in this figure, nucleotides flanking AUG(Met-
102) codon do not conform to the Kozak sequence whereas nucleotides
flanking AUG(Met-01), and the indicated CUG(Leu) and GUG(Val)
codons are highly related to the Kozak sequence.

FIG. 4. Susceptibility of NIH 3T3 cells expressing hASCT2,
DhASCT2, and mutant DhASCT2 proteins to infection with the
lacZ(RD114) virus. NIH 3T3 cells were transiently transfected with
the hASCT2, DhASCT2, or mutant DhASCT2 expression constructs and
quantitatively tested for sensitivity to lacZ(RD114) 48 h post-transfec-
tion. The mutant DhASCT2 constructs were generated as described
under “Materials and Methods.” The titers of infection are averages of
three infection assays.

FIG. 5. SDS-polyacrylamide gel electrophoresis of the proteins
encoded by hASCT2, DhASCT2, and 5*-deleted DhASCT2
mRNAs. The receptor proteins were synthesized by in vitro translation
and labeled with L-[35S]methionine. pcDNA3.1VH is the mammalian
expression vector (Invitrogen); X-receptor is the receptor for xenotropic
and polytropic murine leukemia viruses (46, 49, 50).
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codon can function as weak initiator codons in this cell-free
system. Together, these results suggest that the DhASCT2
mRNA encodes several proteins.

Truncated Forms of hASCT2 Are Active Amino Acid Trans-
porters—Because the truncated proteins encoded by the
DhASCT2 mRNA were retroviral receptors, we inferred that
they must fold into functionally active proteins that are at least
partially processed to cell surfaces. Consequently, we deter-
mined whether they can also function as transporters for neu-
tral amino acids. Initially, we addressed this issue by tran-
siently transfecting the hASCT2 and DhASCT2 cDNA
expression vectors into HEK293T cells (see “Materials and
Methods”) for subsequent analyses of initial rates of L-[3H]ala-
nine uptake. As shown in Fig. 6, cells transfected with the
full-length hASCT2 expression vector reproducibly had an el-
evated level of L-[3H]alanine uptake compared with the control
HEK293T cells that were transfected with the vector alone or
with the human feline leukemia virus subgroup C receptor
(hFLVCR). In contrast, cells that expressed DhASCT2 had only
a small elevation in the uptake of the L-[3H]alanine in this
assay system (see Fig. 6) (n 5 3).

Although the above results would be consistent with the idea
that the DhASCT2 receptor might be only weakly active as an
amino acid transporter, an alternative interpretation would be
that the DhASCT2 proteins are fully active transporters but
are expressed on cell surfaces at lower levels than the full-
length hASCT2 protein. The latter interpretation would be
compatible with previous evidence that non-AUG initiation
codons are generally used at substantially lower efficiencies
than standard AUG initiation codons. Moreover, it is conceiv-
able that some of the DhASCT2 isoforms might be processed to
cell surfaces with relatively low efficiencies. Indeed, the latter
possibility is supported by evidence described below. To ad-
dress these quantitative issues more directly, we mutated the
first CUG(Leu-23) codon that our previous data had implicated
as an initiation site for DhASCT2 (see above) into an AUG
codon to generate the L23 MDh mutant (see Fig. 2B). As de-

scribed above, the L23MDh mutant was highly active as a viral
receptor, consistent with the improved expression of this pro-
tein on cell surfaces (see Fig. 4). Expression of this L23MDh
mutant in HEK293T cells substantially enhanced L-[3H]ala-
nine uptake compared with control cells or to cells expressing
DhASCT2 (see Fig. 6). This result suggests that a low transla-
tional efficiency at the non-AUG initiation codons must be at
least partly responsible for the reduced level of L-[3H]alanine
uptake activity of the DhASCT2 mRNA as seen in Fig. 6.
Furthermore, the L23MDh protein, which lacks 23 amino acids
at the amino-terminal end is an active amino acid transporter.

To obtain additional evidence pertinent to this matter, we
used the LA1D67 mutant which contains the D67 truncation
with additional mutations of CUG(Leu-68) and CUG(Leu-70) to
GCG(Ala) codons. As described above, the only initiation codon
in this LA1D67 mRNA that encodes a functional viral receptor
is the CUG(Leu-79) site. Consequently, we mutated this
CUG(Leu-79) codon to form an AUG(Met-79) mutant in the
context of LA1D67, thereby generating the LA1D67(AUG) mu-
tant (Fig. 2B). Expression of the LA1D67(AUG) protein in NIH
3T3 fibroblasts caused the cells to become highly susceptible to
infection with the lacZ(RD114) virus (Fig. 4). Infection titers
were ;30-fold higher than the titers on LA1D67-expressing
cells, implying an enhanced expression of the LA1D67(AUG)
protein, consistent with the leaky scanning model for protein
synthesis. However, expression of the LA1D67(AUG) mRNA in
HEK293T cells did not increase L-[3H]alanine uptake compared
with the background in negative control cells (data not shown).
These results suggest that the NH2-terminal residues between
amino acids 23 and 79 are critical for the transport function of
ASCT2 but not for its receptor function.

Additional evidence concerning the potential transporter ac-
tivity of proteins encoded by DhASCT2 mRNA was obtained by
expressing this mRNA in X. laevis oocytes. This system is
advantageous for studies of ASCT2-dependent transport be-
cause it has a low background of endogenous transport activity.
Using previously described methods (5, 51), we expressed
ASCT2 and DhASCT2 cRNAs in X. laevis oocytes and subse-
quently measured transport by incubating them for 10 min
with 10 mM L-[3H]alanine (1 mCi/mmol). Reproducibly, the oo-
cytes injected with these cRNAs had similar rates of L-[3H]ala-
nine uptake that were at least 10 times greater than the control
oocytes. For example, in one experiment the oocytes injected
with hASCT2 cRNA had a specific uptake rate above back-
ground of 7.6 1 0.4 pmol/min (n 5 5), whereas those injected
with the DhASCT2 cRNA had a specific uptake rate of 7.7 1 0.4
pmol/min (n 5 5). Similar results were obtained by measuring
uptake by two-electrode voltage clamp methods (5, 51). These
results strongly support our conclusion that the DhASCT2
mRNA encodes at least one active form of the transporter.

Synthesis of hASCT2 and DhASCT2 Proteins in Mammalian
Cells—To identify the hASCT2 and DhASCT2 proteins synthe-
sized intracellularly, we added a Myc epitope coding sequence
onto the 39 ends of the open reading frames and we then
expressed these cDNAs in HEK293T cells. Since hASCT2 con-
tains N-linked but not O-linked oligosaccharides (4) the ex-
tracted cellular proteins were incubated in the presence or
absence of protein N-glycanase before electrophoresis and
Western immunoblotting with the Myc-specific monoclonal an-
tibody. As shown in Fig. 7 the proteins encoded by both mRNAs
were heterogeneously N-glycosylated as indicated by their in-
creased electrophoretic mobilities after digestions with protein
N-glycanase. Moreover, the glycoprotein(s) encoded by the
hASCT2 mRNA were more extensively processed to higher Mr

forms than those encoded by the DhASCT2 mRNA, implying
that the full-length hASCT2 protein may be more efficiently

FIG. 6. Uptake of L-[3H]alanine by HEK293T (293T) cells and
HEK293T cells expressing hASCT2, DhASCT2 or the L23 MDh
mutant. 293T cells were transiently transfected with pcDNA3.1V5His
(vector only), or with expression vectors for FLVCR, hASCT2,
DhASCT2, or L23 MDh, and uptake of L-[3H]alanine was measured 24 h
post-transfection. The transfections of these expression vectors were
equally efficient as shown by co-transfection studies using the pLIB-
EGFP reporter vector (see “Materials and Methods”). Each expression
vector was assayed for amino acid uptake in three separate culture
wells.
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processed through the Golgi apparatus than the DhASCT2
proteins. In addition, higher Mr components compatible with
oligomerization were also visible in these blots. From the per-
spective of this paper, however, we consider it most interesting
that the DhASCT2 proteins are clearly highly heterogeneous
even after exhaustive digestion with protein N-glycanase (see
Fig. 7, DhASCT2 treated with and without PGNase F). More-
over, the protein N-glycanase-digested hASCT2 protein was
also slightly heterogeneous (see Fig. 7). Although the majority
of this hASCT2 protein has a uniform apparent size of 55–60
kDa, ;10% of the total appears to consist of smaller compo-
nents that co-electrophorese with the deglycosylated isoforms
encoded by the DhASCT2 mRNA. Since all of the detected
proteins have carboxyl-terminal Myc tags, these results
strongly suggest that the diverse hASCT2 and DhASCT2 pro-
teins differ in the sizes of their amino termini. Similar results
were observed in four independent repeats of this experiment.

We then analyzed the cell surface expression of hASCT2 and
DhASCT2 proteins using a cell-membrane-impermeant bioti-
nylation reagent. Extracts from surface-biotinylated HEK293T
cells transiently expressing hASCT2 and DhASCT2 proteins
were adsorbed onto streptavidin-agarose beads and the affinity
purified proteins were then either treated or untreated with
N-glycanase before electrophoresis and Western immunoblot-
ting with the Myc-specific monoclonal antibody (see Fig. 8B).
As a control for this analysis, we also examined the total
protein extracts that had not been adsorbed onto streptavidin-
agarose beads (Fig. 8A). The results confirm that truncated
hASCT2 isoforms encoded by both the full-length and
DhASCT2 mRNAs are expressed to substantial extents on cell
surfaces. However, proteins encoded by the full-length hASCT2
mRNA are expressed several times more abundantly than pro-
teins encoded by the DhASCT2 mRNA. These results also sug-
gest the presence of hASCT2 and DhASCT2 oligomers in the
cell extracts. Interestingly, several of the smallest truncated
ASCT2 isoforms appear to have been processed to cell surfaces
more efficiently in the presence of an excess of full-length
hASCT2, implying that their processing might have been facil-
itated by hetereo-oligomer formation with the full-length
protein.

DISCUSSION

This study suggests that the 2.1-kb DhASCT2 mRNA that we
functionally cloned from a human lymphocyte cDNA library is
translationally initiated by a leaky scanning mechanism (10) at
multiple alternative in-frame CUG(Leu) and GUG(Val) codons,
resulting in synthesis of an ensemble of ASCT2 protein iso-
forms with progressively more truncated amino-terminal ends.
According to this leaky scanning model, the 40 S ribosomal
subunits with their associated initiation factors would attach to

the 59 end of DhASCT2 mRNA and would move by an energy-
dependent mechanism down the mRNA until they reach an
initiation codon (10). If this initiation codon is an AUG in a poor
Kozak consensus context or a non-AUG (e.g. CUG or GUG) in a
strong Kozak context, then initiation may occur inefficiently,
and many of the 40 S ribosomal subunits will scan through the
site and proceed to the next potential initiation codon. The
DhASCT2 mRNA provides an extreme example of this process
because it lacks any in-frame AUG initiation site and appears
to be entirely initiated at a series of non-AUG codons. Al-
though each of these non-AUG codons appears to be used
inefficiently, together they result in production of a substan-
tial quantity of heterogeneous DhASCT2 proteins (e.g. see
Fig. 7) that are processed to cell surfaces (Fig. 8) where they
function to different extents in amino acid transport (e.g. see
Figs. 6) and in retroviral reception (Fig. 4). These results
could not be explained by alternative models for protein
synthesis initiation that involve differential mRNA splicing
or internal ribosome entry site mechanisms (10).

The structure of the available DhASCT2 cDNAs suggests
that the mRNA might have been transcribed from an alterna-
tive TATA-less promotor in the hASCT2 gene. This hypothesis
is consistent with the fact that the upstream sequences present
in the full-length hASCT2 mRNA are highly GC-rich (2, 3, 7),
and that a minor ASCT2 mRNA component of ;2.1 kb has been
previously observed in Northern blot analyses of RNAs from
some human tissues, with highest amounts apparent in pan-
creas and in the HT-2 and Caco-2 human intestinal cell lines (3,
7). The deletions in the 39-untranslated region of the DhASCT2
mRNA also suggest that it was spliced differently than the
full-length mRNA (see Fig. 1), supporting the conclusion that it
represents a natural mRNA component. As mentioned above,
the abundance of these in-frame CUG and GUG codons in
optimal Kozak consensus contexts in this specific region of the
hASCT2 mRNA is also inconsistent with a random model and
strongly supports the idea that they perform an important

FIG. 7. Western blot analysis of total cell lysates, with and
without N-glycosidase F, prepared from HEK293T cells tran-
siently expressing myc-tagged hASCT2 and DhASCT2. The cell
lysates were prepared 48 h post-transfection (see “Materials and Meth-
ods”). Three micrograms of total cell lysate protein treated with (1) or
without (2) N-glycosidase F (PNGase F) were analyzed by SDS-poly-
acrylamide gel electrophoresis.

FIG. 8. Identification of ASCT2 proteins on the surface of
HEK293T cells. HEK293T cells transiently expressing myc-tagged
hASCT2 and DhASCT2 proteins were surface-biotinylated as described
under “Materials and Methods.” Samples of the total protein cell lysate
were also used in a parallel analysis. The biotinylated proteins were
then purified by affinity chromatography. The samples that were un-
treated (2) or treated (1) with N-glycosidase F (PNGase F) were ana-
lyzed by Western immunoblotting with anti-myc tag monoclonal anti-
body 9E10 (Sigma). A, total cellular myc-tagged hASCT2 and DhASCT2
proteins; B, myc-tagged hASCT2 and DhASCT2 proteins that were
biotinylated on cell surfaces and then affinity purified prior to immu-
noblot analysis.
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function in protein synthesis. In this context it is relevant that
59 truncated mRNAs have been previously described for other
members of the glutamate transporter family (52). Further
studies of hASCT2 mRNAs are in progress to evaluate these
issues.

Surprisingly, our results also imply that translation of the
full-length hASCT2 mRNA results in synthesis of a small
proportion of NH2-terminal truncated isoforms. Because the
full-length mRNA contains a 59 situated AUG initiation
codon at position 1 in an excellent Kozak consensus context
(see Fig. 3), the scanning model would predict efficient initi-
ation at this site, with minimal initiation at the downstream
CUG and GUG codons. Although the results in Figs. 7 and 8
partially support this expectation, careful inspection of this
data implied that ;10% of the intracellular and cell surface
protein encoded by this mRNA may have been translationally
initiated at these downstream non-AUG codons. Thus, in
Western blots, smaller forms of this protein were detected,
and these co-electrophoresed precisely with the proteins en-
coded by the DhASCT2 mRNA (see Fig. 7). Since all of these
proteins contain the Myc-tag at their COOH termini and
were fully deglycosylated, this suggests that they differ at
their NH2-terminal ends. Moreover, translation of the full-
length hASCT2 mRNA in a reticulocyte cell-free system also
reproducibly yielded both full-length and truncated protein
products (e.g. see Fig. 5) and expression of this mRNA in
Xenopus oocytes also has yielded several NH2-terminal trun-
cated isoforms (data not shown). These results imply that a
significant degree of leaky scanning can occur in the trans-
lation of mRNAs that have 59 situated AUG codons in suita-
ble Kozak consensus contexts. Leaky scanning has also been
reported to be dramatically increased in rapidly growing cells
and to be sensitive to environmental conditions (10, 32).
Presumably, such truncated isoforms could have physiologi-
cally important functions. For example, they might have
different lifetimes or subcellular locations or regulatory prop-
erties, either alone or in hetero-oligomeric complexes with
the full-length proteins.

We conclude that the cytosolic NH2-terminal region of full-
length hASCT2 at least to position 23 is not essential for
amino acid transport or viral receptor functions, and that a
truncated isoform lacking 79 amino acids including TM1 (i.e.
mutant LA1D67(AUG)) is active in viral reception but not in
transport (see Figs. 4, and 6). These conclusions are compat-
ible with other evidence that the middle and carboxyl-termi-
nal regions are most important for the amino acid selectivity
of ASCT1 and ASCT2 and for the Na1-dependent transporter
functions of the glutamate transporters (9, 53). Previous ev-
idence has also indicated that other members of this trans-
porter family form oligomers (54) and have NH2-terminal
truncated isoforms (52). The evidence in Figs. 7 and 8 implies
that the truncated DhASCT2 isoforms might also form het-
ero-oligomers with each other and possibly with the full-
length ASCT2 protein.

It is conceivable that the unusual diversity of hASCT2
amino termini might be related to the fact that this protein
has played a critical role in retroviral infections and in host-
retroviral co-evolution (2–4). Furthermore, infections by ret-
roviruses generally cause severe down-modulation of recep-
tor expression on cell surfaces, with potential pathogenic
consequences (2). Indeed, it has been proposed that expres-
sion of the envelope glycoprotein of the human endogenous
retrovirus HERV-W in placenta may be responsible for
hASCT2-dependent cell-cell fusion to form syncytiatropho-
blasts (1, 55). From these perspectives, it will be important to
learn how infections by viruses that use hASCT2 may alter

expression or processing of these hASCT2 isoforms and con-
versely how expression of these isoforms may modulate in-
fections and pathogenesis. This is especially intriguing be-
cause changes in cellular growth rates and in physiological
conditions can dramatically alter the efficiency of leaky scan-
ning (10, 32).
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