University of Montana ScholarWorks at University of Montana

Geography Faculty Publications

Geography

9-2019

Rock glaciers of the Beartooth and northern Absaroka ranges, Montana, USA

Zachary M. Seligman University of Montana, Missoula

Anna E. Klene University of Montana - Missoula

Frederick E. Nelson Michigan State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/geography_pubs

Part of the <u>Geography Commons</u>

Recommended Citation

Seligman, ZM, Klene, AE, Nelson, FE. Rock glaciers of the Beartooth and northern Absaroka ranges, Montana, USA. Permafrost and Periglac Process. 2019; 1–11. https://doi.org/10.1002/ppp.2019

This Article is brought to you for free and open access by the Geography at ScholarWorks at University of Montana. It has been accepted for inclusion in Geography Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Rock glaciers of the Beartooth and northern Absaroka ranges, Montana, USA

Journal:	Permafrost and Periglacial Processes
Manuscript ID	PPP-19-0010.R1
Wiley - Manuscript type:	Special Issue Paper
Date Submitted by the Author:	14-Jun-2019
Complete List of Authors:	Nelson, Frederick; Michigan State University, Department of Geography, Environment, and Spatial Sciences; Northern Michigan University, Department of Earth, Environmental, and Geographical Sciences Klene, Anna; University of Montana, Department of Geography Seligman, Zachary; University of Montana, Geography
Keywords:	mapping, Montana, periglacial, rock glacier, Rocky Mountains, climate change

1		
2		
3	1	
4		
5	2	
0		
/ Q	3	
0		
10	4	
11	5	
12	3	
13	6	Rock glaciers of the Beartooth and northern Absaroka ranges Montana USA
14	0	Nock glaciers of the bear tooth and northern Absaroka ranges, wontana, OSA
15	7	
16	8	
17	0	
18	9	
19	10	
20	11	
21	12	
22	13	
23	14	
24 25	15	Zachany M. Saligman ¹ Anna E. Klong ¹ and Erodorick E. Nolson ^{2,3}
25	15	Zachary M. Selightan, Anna L. Kiene, and Tederick L. Nelson
20	16	
28	17	¹ Department of Geography, University of Montana, Missoula MT 59812, USA
29	18	
30	19	² Department of Geography, Environment, and Spatial Sciences, Michigan State University, East
31	20	Lansing MI 48824, USA
32	21	
33	22	³ Department of Earth Environmental and Geographical Sciences, Northern Michigan
34	22	University Marguette MI 408EE LISA
35	25	University, Marquette Mi 49855, USA
36	24	
3/ 20		
20		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50		
52		
53		
54		
55		
56		
57		
58		
59		http://mcmapuscriptcontrol.com/pap
60		nup://mc.manuscriptcentral.com/ppp

2		
3	25	
4	26	
5	20	Abetreet
6	27	ADSTRACT
7 8 9	28	Six-hundred and sixty rock glaciers in the northern Absaroka and Beartooth Ranges of south-
10 11	29	central Montana were digitized and evaluated using geographic information systems
12 13 14	30	technology and an array of topographic and environmental parameters. Beartooth rock glaciers
15 16	31	are larger, occur at higher elevations, receive more precipitation, and are subject to colder
17 18 19	32	temperatures than northern Absaroka rock glaciers. Elevation is strongly correlated with rock
20 21	33	glacier activity. Comparative analysis of these adjacent mountain ranges indicates that
22 23 24	34	Beartooth geomorphic landscapes are shifting from predominantly glacial to periglacial
25 26	35	regimes, and that the northern Absarokas have largely completed this transition. Because
27 28 29	36	glaciers are declining in response to climatic warming, rock glaciers could soon become the
30 31	37	most important source of ice in the region.
32 33 34	38	
35	39	KEYWORDS
36 37 38	40	climate change, ground ice, mapping, Montana, periglacial, rock glacier, northern Absaroka
39 40	41	Range, Beartooth Range, Rocky Mountains, water resources
41 42 43	42	
44		
45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55		
56		
57		
58		
ンプ		

1

2		
3		
4		
5		
6		
7		
8		
a		
1	^	
1	1	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	Ŕ	
1	0	
ו ר	9 0	
2	U	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
- ว	7	
2 ว	, o	
2	0 0	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
2	7	
כ ר	/ 0	
3	8 0	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
т Л	ر م	
+	ט ר	
4	/ c	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	د م	
כ ר	0 7	
5	/	
5	8	
-	n	

60

44 **1. INTRODUCTION**

45 As global warming proceeds, water resources derived from glaciers and mountain snowpacks 46 are increasingly threatened. Although rock glaciers have been studied for more than a century,¹ 47 looming water deficits in many arid and semi-arid mountainous regions have intensified 48 interest in these features. Because most rock glaciers are well insulated by a veneer of earth 49 materials, the substantial ice volumes contained in them are being considered as alternative, 50 longer-term sources of water.² Accompanying this increased interest is a burgeoning scientific 51 literature concerned with rock glaciers, including a large number of regional inventories (e.g. ^{3,4,5,6,7,8,9}. Further evidence of the increasing scientific and societal importance of rock glaciers is 52 53 the International Permafrost Association's recently established "Action Group on Rock Glacier 54 Inventories and Kinematics".¹⁰

55 Basic mapping of periglacial landforms in the Middle and Northern Rocky Mountain physiographic provinces (pp. 365-404)¹¹ has not been carried out extensively, despite the 56 57 widespread occurrence of periglacial features and recent technological advances that make 58 such undertakings feasible. Although several localized rock-glacier studies have been conducted 59 in parts of the U.S. states of Montana^{12,13} and Wyoming,^{14,15,16} there have been very few 60 exhaustive inventories over extensive areas of this region. Johnson et al.¹⁷ produced an inventory in the Lemhi Range in the adjacent state of Idaho, Legg¹⁸ worked in Glacier National 61 62 Park in Montana, and Florentine¹⁹ documented a series of rock glaciers in southwest Montana 63 that partially overlaps Seligman's²⁰ earlier study, albeit using highly divergent methods of data collection (cf. Section 3.1 below and Florentine (pp. 11-12)¹⁹. 64

This paper represents the first such survey conducted in the northern Absaroka and Beartooth Ranges of Montana. Here, we summarize the differences between rock glaciers in the two ranges with respect to several topographic and environmental parameters based upon a survey by Seligman,²⁰ report similarities and differences in these parameters between the two ranges, and explore how the results can be interpreted in the context of Quaternary and contemporary climatic changes.

2. STUDY AREA

The Absaroka and Beartooth ranges span the border between the U.S. states of Montana and Wyoming (Figure 1), near Yellowstone National Park. These adjacent mountain ranges are among the highest in the region, and prominently display the effects of both glacial and periglacial processes. The Beartooth and northern Absaroka ranges are, respectively, the first and fourth highest mountain ranges in Montana.

[Figure 1 near here]

81 The Absaroka Mountains form part of the Absaroka-Gallatin volcanic field, the largest 82 such field in the Middle and Northern Rocky Mountains. Volcanism in this region occurred along 83 two subparallel, northwest trending belts defined by hypabyssal plutons that extend for roughly 84 150 km.²¹ Topography developed in the Absarokas consists of the remnants of a highly 85 dissected plateau displaying the rugged, sculpted results of extensive glaciation, including 86 cirques, horn peaks, arêtes, U-shaped valleys, and prominent moraines. In this study we focus on the "Northern Absaroka Range" (hereafter "northern Absarokas"), which lies almost entirely
within the state of Montana.²² Of the many peaks rising above 3000 m.a.s.l. in the northern
Absarokas, Tumble Mountain (3449 m) is the tallest; at least 10 peaks in the range exceed
3300 m. Rock glaciers are the most prominent periglacial landforms in the northern Absarokas.
One feature at Galena Creek, south of the present study area, has played a prominent role in
the history of rock-glacier research.^{14-16, 23}

The Beartooth Mountains are dominated by metamorphosed Precambrian granite uplifted roughly 50 million years ago.²⁴ Granite Peak, at 3904 m.a.s.l., forms the highest topographic point in Montana, and several other peaks exceed 3800 m. Glaciated terrain on the northeast side of the Beartooths consists of deeply eroded glacial valleys (Figure 2A). Moraines occur in all valleys above 2750 m.a.s.l. In some major valleys they extend to below 1500 m and are considered to be of early to late Pinedale (Late Pleistocene) age. Younger moraines of Late Holocene age occur at the foot of existing glaciers and in circues that were deglaciated recently (pp. F38).²⁵ Cirque glaciers, remnants of multiple Pleistocene glacial advances,²⁶ occur at higher elevations in the heads of the prominent U-shaped valleys. Ice-rich rock glaciers and talus accumulations are the principal currently active periglacial features within many of these valleys.

Discontinuous, high-elevation plateau-like surfaces are widespread in the Beartooths, separated by the large glacial troughs (pp. 381).¹¹ Except in the southwest part of the range, most of these tracts remained unglaciated throughout the Quaternary and are festooned with periglacial features, including tors, blockfields, large-diameter sorted patterned ground, and palsas.^{27,28,29,30} A typical Beartooth Plateau surface is illustrated in Figure 2B. Permafrost has

2 3 4	109	been reported in several non-rock-glacier locations in the Beartooth Plateau at elevations									
5 6 7	110	above 2950 m). ²⁸⁻³¹									
8 9	111	[Figure 2 near here]									
10 11 12	112	3. METHODS									
13 14	113	3.1 Rock glacier inventory									
15 16 17	114	Digital aerial photos with 1 \times 1 m resolution, flown in August 2005, 32 were used to identify									
18 19	115	possible rock glaciers in the study area. A total of 660 rock glaciers and rock-glacier complexes									
20 21 22	116	were identified and hand-digitized. Several criteria were utilized to ensure consistency in the									
22 23 24	117	recognition of features as rock glaciers:									
25 26	118	(1) Morphology. Rock glaciers appear as lobate or tongue-shaped flowing masses of ice									
27 28 29	119	(Figure 2C), rock, and debris, ³³ and are morphologically distinct from talus fields, rockfalls, and									
30 31	120	moraines.3									
32 33 34	121	(2) Indications of motion. Signs of flow associated with rock glaciers include parabolic									
35 36 27	122	ridges and furrows (Figure 2D) on better-developed features ^{34,35} and a teardrop or 'tongue'									
37 38 39	123	shape (Figure 2G) is often associated with smaller, less complex rock glaciers.									
40 41 42	124	(3) Frontal slope. Active rock glaciers usually have steep frontal slopes (Figure 2E). ³⁶									
45 44 45	125	(4) Debris provenance. Rock glaciers have identifiable debris sources (Figure 2F), such as									
46 47 48	126	cirques or cliffs above them. ³³									
49 50	127	(5) Positional relation to glacial cirques. The presence of a cirque glacier or glacial cirque									
51 52 53	128	valley above a potential rock glacier (Figure 2G) is indicative of rock-glacier formation, based on									
54 55 56 57 58 59	129	the model developed by Potter et al. ¹⁶									

1 2		
2 3 4	130	Figure 2 illustrates the primary morphological characteristics of rock glaciers in the study
5 6 7	131	area.
8 9	132	
10 11	133	3.2 Topographic, geologic, and environmental parameters
12 13	134	Digital elevation models (DEMs) at 10 $ imes$ 10 m resolution were obtained from the U.S. Geological
14 15 16	135	Survey. ³⁷ Slope and aspect layers were calculated from the DEMs using ArcGIS Spatial Analyst. ¹
17 18	136	ArcGIS Solar Analyst was used to calculate incoming solar radiation, based on a DEM, at site-
19 20 21	137	specific latitudes. A sun map of the sky was used to estimate mean annual incoming solar
22 23	138	radiation for the study area. ³⁸ Absaroka and Beartooth lithologies were extracted from Zientek
24 25 26	139	et al. ³⁹ Parameter data were extracted in ArcGIS for each pixel lying within each rock-glacier
20 27 28	140	polygon. Pixel values within each individual rock-glacier polygon were averaged using ArcGIS
29 30 31	141	Zonal Statistics. For analysis, means of each variable were used.
32 33	142	The direction faced by each rock glacier was calculated from "mean surface aspect" (the
34 35 36	143	average aspect of DEM pixels within a rock glacier polygon) and statistical procedures designed
37 38	144	for periodic (circular) data ^{40,41,42} were applied to the resulting data set. The Kuiper and Watson
39 40 41	145	U ² tests for departure from uniformity (the null hypothesis) were applied to the empirical
42 43	146	frequency distributions of rock glacier orientation data for the two ranges. The two-sample
44 45 46	147	Uniform-Scores test was applied to examine the proposition that the empirical frequency
40 47 48 49	148	distributions of Absaroka and Beartooth rock glaciers differ.
50 51	149	Meteorological stations are scarce within the study area. Interpolated precipitation
52 53 54 55	150	estimates from the "Parameter – elevation Regressions on Independent Slopes Model"
56 57		¹ ESRI, Redlands, CA.

2	
3	151
4	
5	1.50
6	152
7	
8	153
9	
10	154
11	154
12	
13	155
14	
15	150
16	130
17	
18	157
19	
20	150
21	158
22	
23	159
23	10)
25	1.00
25	160
20	
27 20	161
20	101
29	167
30 21	102
51	
3Z	163
33 24	
34 25	164
35	10.
36	1.65
3/	165
38	
39	166
40	
41	1(7
42	16/
43	
44	168
45	
46	160
4/	109
48	
49	170
50	
51	171
52	1/1
53	
54	172
55	
56	
57	
58	
59	

1

(PRISM)⁴³ for the Absarokas are approximately 100–130 cm yr⁻¹ at the highest elevations, while 52 the Beartooths receive an estimated 150–180 cm yr⁻¹. PRISM used U.S. National Weather 53 Service observations of temperature and precipitation, and employed digital elevation models 54 (DEMs) to interpolate climatic parameters on varying timescales. This approach has been 55 shown to reproduce climate patterns in mountainous terrain better than many other 56 techniques.⁴⁴ Averages of January and July temperatures during the 1991–2009 period, 57 calculated for the Monument Peak Snotel station (45.217°N, 110.333°W; 2697 m.a.s.l.) were -9°C and 12°C respectively.⁴⁵ Descriptive statistics for the topographic and environmental 58 59 parameters are listed in Table 1. [Table 1 near here] 50 51 52 3.3 Rock-glacier activity classification Activity level was assessed in the field for 80 rock glaciers. An additional 40 rock glaciers were 53 classified by activity level using only aerial photos, DEMs, and prior knowledge of field sites. 54 55 Rock glaciers were evaluated according to a set of criteria derived from the literature (Table 2) 56 that relate surface characteristics to recent movement and thus determine whether a rock glacier is modern or relict (this does not account for possible reactivation of "relict" features, 57 which can be initiated by decreased temperature or increased water supply).⁴⁶ Specific criteria 58 59 used include: (a) shallower, less well-defined frontal slopes Figure 2H) that indicate loss of ice 70 cores³⁶; (b) thermokarst development upslope of the rock-glacier terminus (Figure 2H), also 71 indicative of ice core loss³⁶; and (c) encroachment of vegetation (Figure 2I), indicative of relict, or at least inactive forms.³⁶ 72

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
28	
29	
3U 31	
วา วา	
22 22	
27	
25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

173 To estimate the activity status of the 540 rock glaciers not investigated in the field or 174 examined on air photographs, a logistic regression was performed using the 120 field- and 175 remotely-verified rock glaciers. The five variables listed in Table 2 (elevation, area, slope, 176 linearized aspect, potential insolation, and estimated precipitation), along with estimated 177 temperature data and lithology (coded as two dummy variables) were used to build the 178 regression model, which employed a backwards stepwise procedure. At each step the variable 179 with the least weight was eliminated from the model until a desired p value <0.05 was reached. 180 Further details are provided in Seligman.²⁰ Binary logistic regression produces logits, the 181 logarithmically transformed odds of whether a selected binary categorical variable will occur 182 based on input from independent variables.⁴⁷ 183 184 [Table 2 near here]

185 **3.4 Elevation Trend**

186 To assess if rock glaciers in the study area form part of a regional climate-related elevation 187 trend, data from several previous studies in the USA's Pacific Northwest were used to examine 188 the relation between rock-glacier elevation and increasing distance from the Pacific Ocean. 189 A 1056 km transect was constructed from Mt. Cameron (47.82°N, 123.32°W) in the 190 Olympic Mountains of western Washington State to the approximate centroid of the combined 191 northern Absaroka and Beartooth study areas in the east (45.25°N, 110.00°W). The mean 192 elevation of a group of rock glaciers (1720 m) in the precipitation shadow of Mt. Cameron 193 forms the westernmost data point in the transect.⁴⁸ Mean elevation of rock glaciers in the 194 Cascade Mountains of Washington State (2120 m) was derived from features inventoried by

1									
2 3 4	195	Weidenaar ⁴⁹ in his "Lake Chelan", "North Cascades Southern Part", and "South Cascades" study							
5 6 7	196	areas. Rock glaciers in Idaho's Lemhi Range were reported as lying at elevations ">2600 m". The							
, 8 9	197	elevations of individual rock glaciers were not reported so that value was used. ¹⁷ This group of							
10 11	198	rock glaciers lies a substantial distance south of the transect; a cosine transformation was used							
12 13 14	199	to project this location onto the transect line. ⁵⁰ Mean rock-glacier elevation was computed as							
15 16	200	2760 m for lobate and tongue-shaped rock glaciers in the Tobacco Root Mountains of							
17 18 10	201	southwestern Montana, ⁵¹ and 2830 m in the combined Absaroka and Beartooth inventories.							
20 21	202	The average elevation of individual rock glaciers in the respective samples was used to compute							
22 23 24	203	an agglomerated mean elevation for each sample (i.e., for each data point).							
25 26	204	Because uncertainties associated with data grouping exist in both the independent							
27 28 29	205	(latitudinal/longitudinal) and dependent (elevation) variables, error was partitioned between							
30 31	206	the two variables using a reduced major axis (RMA) line ⁵² to represent the relation between							
32 33 34	207	distance along the transect and mean elevation at the sample locations.							
35 36	208								
37 38 39	209	4. RESULTS							
40 41	210	4.1 Rock glacier distribution							
42 43 44	211	Figure 3 shows the distribution of the 270 Absaroka and 391 Beartooth rock glaciers.							
45 46	212	Topographic and climatic parameters are substantially different between the two mountain							
47 48 49	213	ranges (Table 2). Beartooth rock glaciers generally lie at higher elevations (2 00 m) than those							
50 51	214	in the northern Absarokas (Figure 4; Table 1). This partly reflects the fact that parts of the							
52 53 54	215	Beartooth Mountains are higher in elevation than the northern Absaroka Range, with many							
55 56	216	peaks over 3800 m. Beartooth rock glaciers are also larger. Approximately 5% of Beartooth rock							
57 58 59		10							
60		http://mc.manuscriptcentral.com/ppp							

1 2							
3 4	217	glaciers are larger than any found in the northern Absarokas. Slope angles of rock glaciers do					
5 6 7	218	not differ significantly between ranges, with mean slopes of approximately 20°.					
7 8 9	219	[Figures 3 and 4 near here]					
10 11	220	Lithology is significantly different between the two ranges. Layered granitic gneiss					
12 13 14	221	constitutes 90% of the bedrock in the Beartooths (pp. F15-F18) ²⁵ and nearly 90% of Beartooth					
15 16	222	rock glaciers are derived from these and other less extensive metamorphic rocks. Although					
17 18	223	some northern Absaroka rock glaciers have lithological composition similar to those of the					
19 20 21	224	Beartooths, almost half are volcanic in origin. A few rock glaciers in the northern part of both					
22 23	225	ranges occur in rocks of plutonic igneous origin.					
24 25 26	226	Florentine ¹³ concluded that the largest proportion of rock glaciers in her southwest					
27 28	227	Montana study area occurs in areas of foliated rocks, in which topography conducive to the					
29 30 31	228	creation of rock glaciers is best developed. Strongly foliated rocks also provide abundant clastic					
32 33 34 35	229	material to developing rock glaciers. Results from the current investigation are in agreement					
	230	with Florentine's conclusions, with the majority of rock glaciers occurring in areas of layered					
30 37 38	231	metamorphic rocks (Figure 5).					
39 40	232						
41 42 42	233	[Figure 5 near here]					
43 44 45	234						
46 47	235	4.2 Influence of environmental parameters					
48 49	236	Morris ⁵³ concluded that preservation of ice cores within the rock glaciers of his southern					
50 51	237	Colorado study area was influenced by rockfall intensity and topoclimatic parameters, including					
52 53 54	238	elevation, reduction of incident radiation by topographic screening, and position of cirque					
55 56	239	headwalls with respect to wind-drifting and snow avalanches. Other studies have examined					
57 58							
59 60		http://mc.manuscriptcentral.com/ppp 11					

rock-glacier development and preservation through annual radiation receipts,¹⁷ lithology and
 other geological controls, and morphology and topography.⁵⁴

- Results from the directional statistical analysis indicate the operation of strong topoclimatic controls over rock-glacier location in the northern Absarokas and Beartooths. Rock glaciers in both ranges appear to be controlled by the same topoclimatic factors. They are most common on N-NE facing exposures, although they occur over a wide range of aspect (Figure 6). Statistical descriptors for the sample circular frequency distributions are nearly identical (Table 3), and the relative numbers of rock glaciers in histogram bins around the circle are similar between the two ranges. Results from the Watson U² (pp. 180-182⁴⁰; pp. 71)⁴¹ and Kuiper (pp. 173-180⁴⁰; pp. 66-67)⁴¹ tests for preferred direction demonstrate that features in both ranges depart significantly from the uniform distribution. Rock glaciers in both ranges exhibit a strong preference for N to NE exposures, indicating that radiation receipts are an important factor in determining their locations. The two-sample Uniform Scores test (pp. 197-201⁴⁰; pp. 122-123)⁴¹ indicates that there is no statistical difference in the orientation of rock glaciers between the northern Absaroka and Beartooth ranges (Table 3). Beartooth rock glaciers were estimated to receive only about 3% higher levels of insolation than those in the northern Absarokas, consistent with the result from the Uniform Scores test. Beartooth rock glaciers were estimated to receive somewhat more (+14 cm yr⁻¹) mean annual precipitation than those in the northern Absarokas. [Figure 6 and Table 3 near here]

- **4.3 Activity status**

Page 13 of 42

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	
60	

262 Only elevation, a surrogate for lapse-rate influenced temperature, emerged from the 263 logistic regression as a strongly significant variable (inclusion of estimated temperature involved problems of colinearity). A Hosmer and Lemeshow⁴⁷ goodness-of fit-statistic was used 264 265 to test whether observed values of rock-glacier activity differed from predicted. Predicted 266 values did not differ from observed (p = 0.233). A traditional chi-squared test for model fit was also employed,⁴⁷ and showed a significant relation between predictor and response variables (p 267 268 <<0.05). The resulting equation was used to calculate probabilities for the "modern" activity 269 classification for the remaining 540 rock glaciers, which were then mapped to show the 270 distribution of activity probability.

271 The resulting map (Figure 7) and histogram (Figure 8) of probabilities show substantial 272 differences between the two ranges. More than 30% of Beartooth rock glaciers have a 70% or 273 higher probability of being modern, while only 8% of northern Absaroka rock glaciers do. Although elevation alone does not explain the variability in rock-glacier activities entirely, 274 275 results from the logistic regression supports its use to estimate and analyze rock-glacier 276 location. A larger proportion of rock glaciers in the Beartooths are of glaciogenic origin than in 277 the northern Absarokas, and this may be a contributing factor to the higher incidence of 278 "modern" rock glaciers in the Beartooth Range.

280 ²

279

- -
- **4.4. Elevation trend**

Results from the reduced major axis analysis demonstrate that a strong relation (r = 0.972)

283 exists between rock-glacier elevation and distance from the Pacific Ocean along the transect

[Figures 7 and 8 near here]

(Figure 9). Mean rock glacier elevation rises at a rate of about 1.0 m km⁻¹ over the transect, an apparent response to the gradient of climatic continentality inland from the Pacific Ocean. [Figure 9 near here] **5. DISCUSSION** 5.1 Rock glacier elevation trend Although a nearly 200 m difference exists between mean rock-glacier elevation in the Beartooth and northern Absaroka Ranges (Table 1), there is considerable overlap in their altitudinal frequency distributions (Figure 4). The difference in mean elevation between the two ranges appears to be controlled to a large extent by the existence of terrain at higher elevations in the Beartooths than in the northern Absarokas, as detailed in Section 4.1. In a broader context, however, the mean elevation of rock glaciers in the study area is consistent with the gradient of rock-glacier elevation in the larger Pacific Northwest (PNW) region of the USA (Figure 9). This reflects a regional response to climatic continentality, as is the case with glacial cirques in the PNW (p. 72),⁵⁵ and is consistent with Humlum's^{56,57} demonstration of a close relation between the elevation trends of rock glaciers and glacial equilibrium-line altitudes in Greenland. The rock-glacier elevation trend in the PNW is also similar to the trends of other periglacial features, including cryoplanation terraces,⁵⁸ blockfields, 50 solifluction features, ⁵⁹ and large-scale patterned ground in northwestern North America and elsewhere.⁶⁰ Viewed from this broader perspective, the difference in mean rock-glacier elevation between the Beartooths and northern Absarokas is a reflection of relatively local variations in topography, topoclimate, and lithology.

The relation between rock-glacier elevation and distance from moisture sources illustrated in Figure 9 should be considered the result of a preliminary analysis based on sparse data, and without differentiation between active/inactive features, glaciogenic/periglacial origin, or feature morphology. The increasing availability of detailed rock-glacier inventories in North America² should facilitate the application of sophisticated spatial-analytic techniques in the near future.

5.2 Glacial-Periglacial Transition

Evaluation of rock-glacier locational parameters in the Beartooth and northern Absaroka ranges provides insights into the glacial history of the region. Assuming that both ranges were subject to similar paleoclimatic trends owing to their proximity, deductions can be made regarding climatic effects on rock-glacier genesis, as well as controls on glacial landscape evolution.

According to Locke,⁶¹ East Grasshopper Glacier, one of the larger glaciers in the Beartooth Range, currently falls below glacial climatic boundaries. This conclusion is supported by research documenting substantial thinning of this glacier since the mid-20th century.⁶² The Beartooth Range currently contains only a few circue glaciers similar to the Grasshopper Glacier (71 according to Graf⁶³ and 21 according to Locke),⁶¹ and glaciogenic rock glaciers are presently the dominant glacial feature in many of these valleys. In contrast, the entire northern Absaroka Range currently contains only two possible cirque glaciers (on northern aspects of Mt. Cowen and Marten Peak), which may more appropriately be classified as snowfields (nine glaciers were present on these peaks according to Graf).⁶³ This relative distribution provides important

Permafrost and Periglacial Processes

327 context for analyzing potential shifts along the continuum from glacial to periglacial
 328 landscapes⁶⁴ in these two proximal mountain ranges.

Valleys in the Beartooth Mountains fit into a geomorphic model in which a landscape with a significant glacial component is transformed into one that is increasingly periglacial.⁶⁵ Most rock glaciers in the Beartooths have characteristics indicating a glaciogenic origin, as they are large in size and often have formed below cirque glaciers. Periglacial rock glaciers are, however, also common in the Beartooths.

Graf⁶³ described cirque glaciations as a series of cyclic events. As local climate becomes more glacial, accumulation exceeds ablation, and glaciers grow. If climate then becomes milder, ablation is greater than accumulation and glaciers recede. Local topography then exerts increasing influence on glacial systems relative to macroclimate through shading by cirque walls, topographically induced snow accumulation, and increased avalanching.⁶³ At this point in deglaciation, glaciers are at a minimum and are either retreating or disappearing, leaving more cirque headwall available for erosion. Eroded debris is subsequently added to the persisting glacial ice below, and as debris accumulation exceeds ice accumulation, glaciogenic rock glaciers can form. Through this process, glaciogenic rock glaciers are one step in the evolution of glacial landscapes.

Periglacial rock glaciers are the result of excessive debris accumulation in a cold, nonglacial environment⁵⁴ owing to avalanching of ice and rock. Consistently cold temperatures, not glacial geomorphology, constitute a primary control on formation (cf. ⁶⁶). In the northern Absarokas, most rock glaciers appear to be of periglacial origin, although glaciogenic rock glaciers can also be found in the Absaroka Range.^{15,16} Periglacial rock glaciers are present on

valley sides and may have begun their initial growth as pronival ramparts during more recent
 cold events, as hypothesized for morphologically similar rock glaciers in the nearby Lemhi
 Range.¹⁷

Analysis of the characteristics between ranges supports a conceptual model involving an ongoing shift from predominantly glacial to predominantly periglacial landscape processes in Beartooth valleys. Although there are many similarities between rock glaciers in the northern Absarokas and the Beartooths, those in the latter range are higher in elevation, receive more precipitation, and are subject to lower annual temperatures.²⁰ As warming followed the glacial maximum, climatic conditions in the Beartooths maintained a higher likelihood of sustaining glacial conditions and preserving glacial ice relative to the northern Absarokas. With continued warming and glacier recession, however, the shift toward periglacial conditions is becoming more apparent.

While glaciers are barometers of change in precipitation and temperature,^{61,67} glaciogenic rock glaciers, by their existence, signal a decline in precipitation or an increase in temperature relative to previous conditions. In some areas, their frequent occurrence at elevations similar to glaciers appears to reflect the onset of conditions that are too dry to maintain contemporary glaciers.^{68,69} Moreover, owing to the formation of an insulating rock mantle, rock glaciers may exhibit a slow response to changes in temperature. A marked increase in annual temperature would, therefore, have to persist over decades or even centuries⁷⁰ to yield a significant response.

369 Temperature increases in the instrumental climate record over the past century in areas 370 of the nearby Canadian Rockies correspond to a decline in glacial mass balance.⁷¹ Similarly,

anomalous interaction of high summer temperatures and low winter snow accumulation has led to unprecedented glacial recession in Glacier National Park, Montana, beginning in the early 20th century.⁷² Increased summer temperatures affecting glacier recession in other Rocky Mountain areas are likely to also be the source of changes in northern Absaroka and Beartooth high-elevation areas. In the wake of widespread glacier recession, rock glaciers may become the principal vestiges of glacial ice in the Beartooth region, as they appear to currently be in the

- 377 northern Absarokas.

6. CONCLUSIONS

More than 650 rock glaciers were mapped within the study area and described using several topographic and climatic variables. Distinct differences are apparent between northern Absaroka and Beartooth rock glaciers with respect to size, elevation, precipitation, and lithology. The Beartooth rock glaciers are larger, higher in elevation, and receive more precipitation. Inferences from these comparisons indicate that, while Beartooth glacial geomorphology is shifting from glacial to periglacial, the higher elevations of the northern Absarokas are already governed largely by periglacial conditions.

Basic understanding of these rock glaciers is important because glacial decline is increasing in response to climate warming. Rock glaciers may soon become an important source of meltwater in the region. The inventory described here has potential to become a useful source of information about water resources in the Middle and Northern Rocky Mountains. Results from the analyses presented here can also serve as baseline data for assessing the importance of rock glaciers with respect to alpine stream ecology and

1 2											
3 4	393	biodiversity,73	and	climatic-driven	changes ⁷⁴	in	the	northern	Absaroka	and	Beartooth
5 6 7	394	Mountains.									
$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 31\\ 32\\ 31\\ 32\\ 32\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 51\\ 52\\ 53\\ 51\\ 52\\ 52\\ 53\\ 51\\ 52\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 52\\ 53\\ 52\\ 53\\ 51\\ 52\\ 53\\ 51\\ 52\\ 53\\ 52\\ 53\\ 51\\ 52\\ 53\\ 52\\ 52\\ 52\\ 53\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52$	394 395 396	Mountains.									
55 56											
57 58 59											19
60				http://	/mc.manuscrij	ptcer	ntral.c	om/ppp			17

1 2		
3 4	397	
5	398	ACKNOWLEDGMENTS
6 7	399	Dan Seifert of the Custer National Forest Ranger District and Don Evans from the U.S. Forest
8 9 10	400	Remote Sensing Applications Center provided funding and aerial photos. Ryan Rock (University
11 12	401	of Montana) provided helpful advice and assistance with literature. ZMS expresses special
13 14 15	402	thanks to Greg Pederson for providing initial inspiration. We are grateful to two anonymous
15 16 17	403	reviewers for comments and suggestions that led to improvements in the paper.
18 19	404	
20 21 22	405	
23 24		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
42		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 50		
58 59		20
60		http://mc.manuscriptcentral.com/ppp

59

60

406 407	REFERENCES
	¹ Kaufmann V. The evolution of rock glacier monitoring using terrestrial photogrammetry: The
	example of Äusseres Hochebenkar rock glacier (Austria). Austrian Journal of Earth
	Sciences. 2012; 105(2): 63-77.
	² Jones DB, Harrison S, Anderson K, Betts RA. Mountain rock glaciers contain globally significan
	water stores. Nature Geosciences, 2018; 8: 2834. DOI:10.1038/s41598-018-21244-w
	³ Millar C, Westfall RD. Rock-glaciers and related periglacial landforms in the Sierra Nevada, CA,
	USA: Inventory, distribution and climatic relationships. Quaternary International, 2008;
	188(1): 90-104.
	⁴ Kellerer-Pirklbauer A, Lieb GR, Kleinferchner H. A new rock glacier inventory of the eastern
	European Alps. Austrian Journal of Earth Sciences, 2012; 105: 78-93.
	⁵ Scotti R, Brardinoni F, Alberti S, Frattini P, Crosta GB. A regional inventory of rock glaciers
	and protalus ramparts in the central Italian Alps. Geomorphology, 2013; 186: 136-149.
	DOI: 10.1016/j.geomorph.2012.12.028
	⁶ Rangecroft S, Harrison S, Anderson K, McGrath J, Castel AP, Pacheco P. A first rock glacier
	inventory for the Bolivian Andes. Permafrost and Periglacial Processes, 2014; 25(4): 333-
	343. DOI: 10.1002/ppp.1816
	⁷ Janke JR, Ng S, Bellisario A. An inventory and estimate of water storage in firn fields, glaciers,
	debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile.
	Geomorphology, 2017; 296: 142-152. DOI: 10.1016/j.geomorph.2017.09,002

⁸ Onaca A, Ardelean F, Urdea P, Magori, B. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors. *Geomorphology*, 2017; 293B: 391-404.

⁹ Wang X., Liu L, Zhao L, Li Z, Liu G. Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry. *The Cryosphere* 2017; 11: 997-1014. DOI: 10.5194/tc-11-997-2017

¹⁰ Delaloye R, Barboux C, Bodin X, Brenning A, Hartl L, Hu Y, Ikeda A, Kaufmann V, Kellerer-

Piklbauer A, Lambiel C, Liu L, Marcer M, Rick B, Scotti R, Takadema H, Trombotto LD. Vivero S, Winterberger M. Rock glacier inventories and kinematics: A new IPA Action Group. In: Deline P, Bodin X, Ravenel, L. (eds.) 5th European Conference on Permafrost— Book of Abstracts, 23 June—1 July 2018. Chamonix, France: Laboratoire EDYTEM—

UMR5204, Université Savoie Mont Blanc, 392-393, 2018.

¹¹ Thornbury WD. *Regional Geomorphology of the United States*. New York: Wiley, 1965.

- ¹² Goolsby, JE. East Rock Glacier of Lone Mountain, Madison County, Montana. M.S. thesis, Montana State University, 1972.
- ¹³ Florentine CE. *Regional context, internal structure, and microbial investigation of the Lone Peak Rock Glacier, Big Sky, Montana*. M.S. thesis, Montana State University, 2011.
- ¹⁴ Potter N Jr. Ice-cored rock-glacier, Galena Creek, northern Absaroka Mountains, Wyoming. *Geological Society of America Bulletin,* 1972; 83(10): 3025-3058.

¹⁵ Ackert P. Jr. A rock-glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming. *Geografiska Annaler. Physical Geography, 1998;* 80A(3/4): 267-276.

_	
16	Potter N Jr, Steig EJ, Clark DH, Speece MA, Clark GM, Updike AB. Galena Creek rock-glacie
	revisited—new observations on an old controversy. Geografiska Annaler, 1998; 80A
	4): 251-265.
17	Johnson BG, Thackray GG, Van Kirk R. The effect of topography, latitude, and lithology on
	rock-glacier distribution in the Lemhi Range, central Idaho, USA. Geomorphology, 20
	91(1-2): 38-50.
18	Legg BN. Rock Glacier Morphology and Morphometry in Glacier National Park, Northwest
	Montana, USA. M.S. thesis, Texas State University, 2016.
1	⁹ Florentine C, Skidmore M, Speece M, Link C, Shaw CA. Geophysical analysis of transverse
	ridges and internal structure at Lone Peak Rock Glacier, Big Sky, Montana, USA. Jou
	of Glaciology, 2014; 60(221): 453-462. DOI: 10.3189/2014JoG13J160
20	Seligman ZM. Rock Glacier Distribution, Activity and Movement, Northern Absaroka and
	Beartooth Ranges, MT, USA. M.S. thesis, University of Montana, Missoula, 2009. Th
	present paper is based on data from this thesis. These data are available upon
	reasonable request from Prof. A.E. Klene (<u>anna.klene@umontana.edu</u>).
21	Chadwick RA, Belts of eruptive centers in the Absaroka-Gallatin volcanic province, Wyom
	and Montana. Geological Society of America Bulletin. 1970: 81(1): 267-274.
22	Peakbagger, Northern Absaroka Range, https://www.peakbagger.com/range.aspx?rid=14
	Last accessed 13 January 2019
2:	Parceb D. The problem of the ice cored rock disciprine IP. Ciardina IP. Shreder IF. Vitek ID.
2.	
	KOCK Glaciers. Boston: Allen & Unwin, 45-53, 1987.

²⁴ Sarc	os JE, Intelandi SJ, Wolfe AP, Engstrom DR. Recent changes in the diatom community
	structure of lakes in the Beartooth Mountain Range, U.S.A. Arctic, Antarctic, and Alpine
	Research, 2003; 35: 18-23.
²⁵ Sime	ons FS, Armbrustmacher TJ, van Joy RM, Zilka MT, Federspiel FE, Ridenouer J. Beartooth
	Primitive Area and vicinity, Carbon, Park, Stillwater, and Sweet Grass Counties,
	Montana, and Park County, Wyoming: an evaluation of the mineral potential of the
	area. U.S. Geological Survey Bulletin 1391-F, Washington, DC, 1979, 125 pp.
²⁶ Graf	f WL Quantitative analysis of Pinedale landforms, Beartooth Mountains, Montana and
	Wyoming. Arctic and Alpine Research, 1971; 3(3): 253-261.
²⁷ Smit	th HTU. Cryopedologic phenomena in the Beartooth Mountains, Wyoming-Montana.
	Geological Society of America Bulletin, 1950; 60: 1503.
²⁸ Pier	ce WG. Permafrost and thaw depressions in a peat deposit in the Beartooth Mountains,
	northwestern Wyoming. U.S. Geological Survey Professional Paper 424B, 1961; 154-150
²⁹ Johr	nson PL, Billings WD. The alpine vegetation of the Beartooth Plateau in relation to
	cryopedogenic processes and patterns. Ecological Monographs, 1962; 32(2): 105-135.
³⁰ Heic	del B, Fertig W, Mellman-Brown S., Houston KE, Dwire KE. Fens and their rare plants in th
	Beartooth Mountains, Shoshone National Forest, Wyoming. General Technical Report
	RMRS-GRT-369. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky
	Mountain Research Station, 110 pp.
³¹ Colli	ins EI, Lichvar RW, Evert EF. Description of the only known fen-palsa in the contiguous

2	
3	
4	
5	
6 7	
/ 0	
0 0	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
24 25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50 57	
57 58	
59	
60	

³² United F	arm Services Agency: National Agricultural Imagery Program (NAIP), Natural-color
aeria	l photos of Montana (1 $ imes$ 1 m resolution), 2005.
http:	<pre>//nris.mt.gov/nsdi/orthophotos/naip_2005.asp Last accessed 4 January 2019.</pre>
³³ Humlum O	. Origin of rock-glaciers: Observations from Mellemfjord, Disko Island, central West
Gree	nland. Permafrost and Periglacial Processes, 1996; 7(4): 361-380.
³⁴ White SE. I	Rock-glacier studies in the Colorado Front Range, 1961-1968. Arctic and Alpine
Rese	arch 1971; 3(1): 43-64.
35 Chueca J, A	A Julián. Movement of Besiberris Rock Glacier, central Pyrenees, Spain: Data from a
10-ye	ear geodetic survey, Arctic, Antarctic, and Alpine Research, 2005; 37(2): 163-170.
³⁶ Roer I, Nye	nhuis M. Rockglacier activity studies on a regional scale: Comparison of
geon	norphological mapping and photogrammetric monitoring. Earth Surface Processes
and L	andforms, 2007; 32(12): 1747-1758.
³⁷ United Sta	tes Geological Survey National Mapping Program. Digital Elevation Models.
<u>https</u>	://catalog.data.gov/dataset/national-elevation-dataset-ned-1-3-arc-second-
<u>dowr</u>	nloadable-data-collection-national-geospatial Last accessed 4 January 2019.
³⁸ Fu P, Rich	PM. Design and implementation of the Solar Analyst: An ArcView extension for
mode	eling solar radiation at landscape scales.
http:	//professorpaul.com/publications/fu_rich_1999_esri.pdf . Last accessed 4 January
2019	
³⁹ Zientek MI	., Derkey PD, Miller RJ, Causey JD, Bookstrom AA, Carlson MH, Green NG, Frost TP,
Boler	neus DE, Evans KV, Van Gosen BS, Wilson AB, Larsen JC, Kayser HZ, Kelley WN,
Assm	us KC, Spatial databases for the geology of the northern Rocky Mountains – Idaho,

Montana, and Washington. Open File Report 2005 – 1235. U.S. Department of the Interior, U.S. Geological Survey, Idaho Geological Survey, Montana Bureau of Mines and Geology, 2005. http://pubs.usgs.gov/of/2005/1235/ Last accessed 4 January 2019. ⁴⁰ Mardia KV. *Statistics of Directional Data*. New York: Academic, 1972. ⁴¹ Fisher NI. *Statistical Analysis of Circular* Data. Cambridge: Cambridge University Press; 1993. ⁴² Kovach Computing Services. Oriana, version 4.02, 2013. http://www.kovcomp.com Last accessed 10 January 2019. ⁴³ PRISM (Parameter-Elevation Regressions on Independent Slopes Model). 30-arcsec NORMALS (1971 – 2000) for temperature and precipitation. http://www.prism.oregonstate.edu/ Last accessed 4 January 2019. ⁴⁴ Daly C., Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor JH, Curtis J, Pasteris JJ. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 2008; 28: 2031-2064. ⁴⁵ Natural Resources Conservation Service. Historical average temperatures for Site 635, Montana. https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=635&state=mt Last accessed 4 January 2019. ⁴⁶ Giardino RF, Vitek JD. The significance of rock glaciers in the glacial-periglacial landscape continuum. Journal of Quaternary Science, 1988; 3(1): 97-103. ⁴⁷ Hosmer, D. and S. Lemeshow. 1989. *Applied Logistic Regression*. New York: Wiley. ⁴⁸ Welter SP. Geomorphic Character, Age and Distribution of Rock Glaciers in the Olympic Mountains, Washington. M.S. thesis, Portland State University, 1987.

⁴⁹ Weidenaar M. <i>Rock Glaciers in the Eastern Cascades, Washington</i> . Science honors thesis,
Central Washington University, 2013.
⁵⁰ Park Nelson KJ, Nelson FE, Walegur MT. Periglacial Appalachia: Paleoclimatic significance
blockfield elevation gradients, eastern U.S.A. Permafrost and Periglacial Processes,
2007; 18(1): 61-73. DOI: 10.1002/ppp.574.
⁵¹ Gustin AR. The Distribution, Morphology, and Temporal Signature of Rock Glaciers in the
Tobacco Root Mountains, Montana. M.S. thesis, Indiana University, 2013.
⁵² Till R. The use of linear regression in geomorphology. <i>Area</i> , 1973; 5(4): 303–308.
⁵³ Morris SE. Topoclimatic factors and the development of rock-glacier facies, Sangre de Cri
Mountains, southern Colorado. Arctic and Alpine Research, 1981; 13(3): 329-338.
⁵⁴ Humlum O. The geomorphic significance of rock-glaciers: Estimates of rock-glacier debris
volumes and headwall recession rates in west Greenland. Geomorphology, 2000; 35
2): 41-67.
⁵⁵ Porter SC, Pierce K., Hamilton TD. Late Wisconsin mountain glaciations in the western Ur
States. In: Wright HE Jr. (ed.) Late-Quaternary Environments of the United States, vo
The Late Pleistocene (SC Porter, Ed.). Minneapolis: University of Minnesota Press, 1
⁵⁶ Humlum O. Altitudinal trends of talus-derived lobate rock glaciers on Disko, central west
Greenland. Geografisk Tidsskrift, 1984; 84(1): 35-39.
⁵⁷ Humlum O. The climate significance of rock glaciers. <i>Permafrost and Periglacial Processe</i>
1998; 9(4):375-395, DOI: 10.1002/(SICI)1099-1530(199810/12)9:4%3C375::AID-
PPP301%3E3.0.CO;2-0.
http://mc.manuscriptcentral.com/ppp

⁵⁸ Ne	lson FE, Nyland KE. Periglacial cirque analogs: Regional trends of cryoplanation terrace
	elevation in eastern Beringia. Geomorphology, 2017; 293: 305-317. DOI:
	10.1016/j.geomorph.2017.05.005
⁵⁹ Pév	vé TL. Quaternary Geology of Alaska. U <i>.S. Geological Survey Professional Paper 1975</i> ; 83
	1-145.
⁶⁰ Gra	f K. Vergleichende Betrachtungen zur Solifluktion in verschiedenen Breitenlagen.
	Zeitschrift für Geomorphologie Supplementband, 1973; 16, 104-154.
61 Loc	ke WW. Present climate and glaciation of western Montana, USA. Arctic and Alpine
	Research, 1989; 21(3): 234-244.
62 Sei	ert D, Chatelain E, Lee C, Seligman Z, Evans D, Fisk H, Maus P. Monitoring alpine climate
	change: Beartooth Mountains, Custer National Forest. RSAC-0115-RPT1. Salt Lake City
	UT: Department of Agriculture, Forest Service, Remote Sensing Applications Center,
	2009.
⁶³ Gra	f WL. Cirques as glacier locations. Arctic and Alpine Research, 1976; 8(1): 79-90.
⁶⁴ Pol	lard, W. Periglacial processes in glacial environments. In: Menzies J, van den Meer J. (ed
	Past Glacial Environments. Amsterdam: Elsevier, 537-564, 2017.
65 Clai	rk DH, Steig E, Potter N, Gillespie, AR. Genetic variability of rock-glaciers. Geografiska
	Annaler, Physical Geography, 1998; 80A(3/4): 175-182.
66 Ber	thling I, Etzelműller B. The concept of cryo-conditioning in landscape evolution.
	<i>Ouaternary Research</i> , 2011: 75: 378-384, DOI: 10.1016/i.ares.2010.12.011

⁶⁷ She	a JM, Marshall SJ. Atmospheric flow indices, regional climate, and glacier mass balance in
	the Canadian Rocky Mountains. International Journal of Climatology, 2007; 27(2): 233-
	247.
68 Braz	zier V, Kirkbride M, Owens IF. The relationship between climate and rock-glacier
	distribution in the Ben Ohau Range, New Zealand. Geografiska Annaler, Physical
	Geography, 1998; 80A(3-4): 193-207.
⁶⁹ Hur	nlum O. Active layer thermal regime at three rock-glaciers in Greenland. Permafrost and
	Periglacial Processes, 1998; 8(4): 383-408.
⁷⁰ Bre	nning A. Geomorphological, hydrological and climatic significance of rock-glaciers in the
	Andes of central Chile (33 – 35°S). Permafrost and Periglacial Processes, 2005; 16(3):
	231-240.
⁷¹ Luc	kman BH. Landscape and climate change in the central Canadian Rockies during the $20^{ ext{th}}$
	century. The Canadian Geographer, 1998; 42(4): 319-336.
⁷² Ped	erson GT, Fagre DB, Gray ST, Graumlich LJ. Decadal-scale climate drivers for glacial
	dynamics in Glacier National Park, Montana, USA. Geophysical Research Letters, 2004;
	31: L12203. DOI: 10.1029/2004GL019770
⁷³ Thie	es H, Nickus U, Tolotti M, Tessadri R, Krainer K. Evidence of rock glacier melt impacts on
	water chemistry and diatoms in high mountain streams. Cold Regions Science and
	Technology, 2013; 96: 77-85. DOI: 10.1016/j.coldregions.2013.06.006
⁷⁴ Nac	hlinger J, Delany DL. Potential climatic refugia in semi-arid, temperate mountains: Plant
	and arthropod assemblages associated with rock glaciers, talus slopes and their forefield
	wetlands, Sierra Nevada, California, USA. Quaternary International, 2015; 387: 106-221.

1								
2	400							
4	408							
5	409						- 100	
6	410		Absa	roka	Beartoo	th	Difference	
7	411		Rock G	Glaciers	Rock Gla	aciers	(Absaroka minus Bea	rtooth)
ð g	412							
10	413		mean	2732	2929		197	
11	414	Elevation (m)	min	2093	2239		146	
12	415		max	3072	3443		371	
13	416							
14 15	417							
16	418		mean	65,274	143,63	7	78,363	
17	419	Area (m²)	min	1,444	3,23	35	1,792	
18	420		Max	471,480	3,281,40)8	2,809,928	
19 20	421							
20 21	422							
22	423		mean	19		20	1	
23	424	Slope	min	5		5	0	
24	425	(degrees)	max	35		38	3	
25 26	426							
20 27	427							
28	428							
29	429		Mean	1337		1381	44	
30	430	Insolation	min	923		987	64	
31 22	431	(kWh/m²)	max	1674		1712	68	
5∠ 33	432							
34	433							
35	434							
36	435		mean	89		103	14	
3/	436	Precipitation	min	52		69	17	
30 39	437	(cm)	max	117		169	52	
40	438							
41	439							
42	440							
43 44	441							
44 45	442	Table 1. Mear	n, minin	num, and maxi	mum valu	es of topo	ographic and environment	al parameters,
46	443	Absaroka and	Bearto	oth rock glacie	rs.	•	0	. ,
47	444			0				
48								
49 50								
51								
52								
53								
54								
55 56								
57								
58								
59				http:	//mc man	crintcontro	al com/ppp	
60				nup:	, / mc.manu	scipicentia		

1 ว					
2 3	445		Modern Active	Modern Possibly Inactive	Relict
4	446		Modelli, Active	wodern, i ossibly mactive	Kellet
5 6	447	Surface	smooth	can be smooth with blocky	dominantly blocky; has
7	448			sections; has circular or	heavily pitted surface
8	449			elongated pits	indicative of thermokarst
9	450			<u> </u>	
10 11	451	Lichen	little or no lichen	crests of ridges lichenized;	rock surfaces completely
12	452			furrows lichen-free	lichen covered
13 14	453 454				
15 16	455	Surface Clasts	angular, unweathere	ed, less sorted; slightly	highly weathered; unsorted
10	456		size sorted	weathered	
18	457				
19 20	458 459	Front and Side Slopes	≥ 35°	≥ 35°	< 35°
21	460	Frontal Slope Stability	unstable, with large	fresh less sorted: slightly weathered	low angled: stable
22 23	461		angular clasts at bas	e	
24	462				
25	463				
26 27	464	Vegetation	no vegetation cover	partly or fully vegetated	well-developed soils;
27	465	-	_		all surfaces colonized by
29	466				vegetation
30	467				
31 32	468				
33	469				
34	470	Table 2. Criteria used to asse	ess rock-glacier activity, based	d on those developed by Clark et al., ^{Error! Boo}	okmark not defined. Chueca and
35	471	Julian, ³⁵ Johnson et al., ¹⁷ Mil	lar and Westfall, ³ and Roer a	nd Nyanhuis. ³⁶ See Seligman ²⁰ for further c	letails.
36 37	472				
38					
39					
40					
41 42					
43					
44			L., 11		
45 46			http://m	c.manuscriptcentral.com/ppp	
40 47					

Range	n	mean vector	normalized resultant length	median	circular variance	circular std. dev.	Watson U ²	Kuiper
Absaroka	270	39.0°	0.182	40°	0.818	105.7	0.504*	2.506†
Beartooth	391	36.0°	0.174	45°	0.826	107.2	0.631*	2.680†
Combined Sample	661	37.6°	0.178					
*significant a	nt <i>p</i> <0.0	05						
*significant a	nt p <0.0)1						
		Two-samp	le Uniform Scores (Ma	rdia-Watson-V	Vheeler) test fo	or equality of p	opulations	
			W = (0.163	p = 0.922			
Table 3. Res orientation i statistics are orientation k Computing S	ults fror n both r very sin petween ervices.	n circular sta anges differ nilar for the rock glacier 2	atistical tests. One-samp significantly from the n two ranges. Formal resu rs in the two ranges. Pro	ble (Watson U ² ull hypothesis ults from the t ocedures used	² and Kuiper) cir that samples w wo-sample Unif are described ir	cular statistica ere drawn fron form Scores tes n detail in Marc	l tests indicate tl n a uniform distr st indicate no dif dia, ⁴⁰ Fisher, ⁴¹ ar	hat rock gl ibution. Sa ference in nd Kovach
			http://	mc.manuscriptce	entral.com/ppp			

Figure 1. Shaded relief map of the study area (dotted outline), showing location north of Yellowstone National Park (dashed), along the Montana/Wyoming state border (long dashed line), with highways, cities, and locations mentioned in the text labeled. Inset map shows location of study area in the northwestern USA.

168x121mm (300 x 300 DPI)

Figure 2. Morphological characteristics of rock glaciers and other periglacial forms in the study area. (A) Rock Creek Valley near U.S. Highway 212 in southeast portion of study area. Note cirque, possibly occupied by a glaciogenic rock glacier, on far valley wall, and talus forms in foreground. Photo by FEN, September 1985. (B) Plateau-like inter-valley surface near U.S. Highway 212 and Beartooth Basin Summer Ski Area. Note disintegrating tor and large-diameter sorted stripes. Photo by FEN, July 1978. (C) Emigrant Peak Rock Glacier, showing ridge-and-furrow microtopography indicative of movement. (D) Beartooth Mountain Rock Glacier, a glaciogenic feature, showing well-developed indications of activity. (E) Silver Run Rock Glacier, developed from ice glacier at higher elevation. (F) The Bear's Tooth Rock Glacier, showing steep frontal slope indicative of ice core and movement. (G) Arrastra Lake Rock Glacier, a tongue-shaped rock glacier ~1.5 km N of Mineral Mountain, showing sources of clastic material from backwall. (H) East Fork Emigrant Creek Rock Glacier, inactive rock glacier, showing shallow slopes, thermokarst pits, and encroachment by trees. (I) Saddleback Mountain Rock Glacier, inactive rock glacier, showing well-established forest atop the rock glacier. Photos C through I by ZMS, Summer 2008.

165x135mm (299 x 299 DPI)

http://mc.manuscriptcentral.com/ppp

Figure 3. Map showing hand-digitized rock glaciers in the northern Absaroka (left, light gray) and Beartooth (right; dark gray) ranges. The study area (dotted), Yellowstone National Park (dashed), the Montana/Wyoming state borders (long dashed line), are shown and highways and cities labeled. Inset map shows location of study area in the northwestern USA.

168x121mm (300 x 300 DPI)

Figure 5. Percentage frequency of rock glaciers by lithology in the northern Absaroka and Beartooth ranges.

79x49mm (300 x 300 DPI)

Figure 7. Map of the probabilities of rock glaciers being classified as "modern" (Table 2). The study area (dotted), Yellowstone National Park (dashed), and Montana/Wyoming state border (long dashed line), are shown and highways and cities labeled. Inset map shows location of study area in the northwestern USA.

168x121mm (300 x 300 DPI)

Figure 8. Percentage frequency of the probability of rock glaciers predicted to be "modern" in the Absaroka and Beartooth ranges.

79x49mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/ppp

Figure 9. (A) Map of rock-glacier locations along a linear transect from the Olympic Mountains of Washington state to the northern Absaroka/Beartooth study area in Montana. Data from additional transect locations in the Cascades, Lemhi, and Tobacco Root Mountains were used. See text for details. (B) Graph of the elevations of mean rock-glacier elevation against distance from Pacific moisture sources along the transect in (A). Reduced major axis line indicates that rock-glacier elevation increases at a rate of 1.04 m km-1 from west to east along the transect.

79x114mm (300 x 300 DPI)