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ABSTRACT  
 

Sullivan, Lauren, M.S., May 2019                          Systems Ecology 

 

Colloidal and truly dissolved metal(loid)s in wastewater lagoons and their removal with floating 
treatment wetlands 
 

Chairperson: Dr. Benjamin P. Colman 

 

Climate change is predicted to cause continuing declines in late-season streamflow, thus 
increasing the relative contribution of wastewater effluent to surface water flows. Wastewater 
effluent represents a critical point source of metal and metalloid contamination to aquatic 
ecosystems and wastewater lagoons are the most common wastewater treatment system in the 
rural United States. Although the fraction of total wastewater metals and metalloids in 
“dissolved” forms (defined here as < 450 nm) likely drives the potential for negative effects on 
receiving waters, this broad operational definition lumps truly dissolved solutes (<1 nm) with 
small colloids and nanomaterials (1-450 nm; hereafter colloids). This size distinction may be 
important as colloidal particles and truly dissolved solutes differ in their interactions with aquatic 
organisms and likely would require different strategies for their removal from wastewater. One 
potential tool for improving metal(loid) removal in wastewater lagoons is floating treatment 
wetlands, which consist of hydroponically grown plants on floating mats. This study examined 
the distribution of metal(loid)s between truly dissolved and small colloidal size fractions in six 
wastewater lagoon systems. Additionally, the efficacy of floating treatment wetlands in 
removing metal(loids) and influencing the distribution of contaminants among truly dissolved 
and small colloidal size ranges was examined. In this survey of six lagoons, it was found that 
iron, lead, copper, manganese, and zinc were most abundant as small colloidal particles while 
aluminum, arsenic, and chromium were found mostly as truly dissolved solutes. The floating 
treatment wetlands were especially effective at removing those metal(loid)s that were abundant 
in colloidal forms, suggesting a potential role for floating treatment wetlands in enhancing 
wastewater lagoon efficiency for some metal(loid) contaminants. 
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1. Introduction 

 Droughts are expected to become more frequent and more extreme due to anthropogenic 

climate change (IPCC, 2014; Peterson et al., 2013) which in turn, is expected to both decrease 

late-season stream flows and increase the relative importance of wastewater effluent to surface 

water (Brooks et al., 2006; Chang & Bonnette, 2016; Drury et al., 2013; Lee & Rasmussen, 

2006; Naidoo & Olaniran, 2013). This shift has already been observed in arid and semi-arid 

regions around the world, where streams are becoming increasingly dependent on wastewater 

effluent to maintain base flows (Jin et al., 2017; Mimikou et al., 2000; van Vliet et al., 2013). 

Although wastewater effluent has the potential to decrease stress on freshwater organisms by 

maintaining flow in the face of drought, effluent also serves as a stressor by increasing the 

concentrations of nutrients, biological oxygen demand (BOD), metals, and metalloids (Holeton 

et al., 2011; Pottinger et al., 2013; Wakelin et al., 2008). 

Wastewater lagoons are a common form of wastewater treatment in the United States and 

around the world. Today, there are over 7,000 facultative lagoons used across the United States, 

occurring primarily in rural areas (U.S. EPA, 2012), including 105 municipal lagoon systems in 

Montana. These lagoons are bound by state regulations such as water quality-based effluent 

limits (WQBELs), and must comply with state water quality standards under the umbrella of the 

federal Clean Water Act (CWA) standards (U.S. EPA, 2016). Wastewater lagoons can be 

effective at meeting WQBELs when the size of the lagoons are appropriate for the level of inputs 

(Massoud et al., 2009).  

While wastewater lagoons can be effective at reducing BOD, nutrients, and pathogens, 

they are not necessarily intended to remove metals and metalloids (hereafter metal(loid)s). This 

may lead to the potential persistence of elevated metal(loid) concentrations in effluent (Karvelas 
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et al., 2003). It may be further expected that lagoons in mining impacted watersheds may have 

elevated levels of metal(loid)s due to higher background levels of metals as a result of mining 

disturbances. While the metals Zn, Cu, Ni, Co, and Cr are essential for metabolic and 

physiological processes in aquatic organisms, when in excess they can be toxic like the non-

essential metals Ag, Cd, Pb, and Hg, and the metalloid As (Fashola et al., 2016). Elevated 

metal(loid) inputs into aquatic systems can thus have deleterious effects on aquatic organisms 

with high concentrations potentially causing mortality, while chronic sublethal exposures may 

affect growth, morphology, and behavior (Fashola et al., 2016). The stress from metal 

contamination can be tolerated by only a subset of species often resulting in decreased 

biodiversity and shortened food webs (Hogsden & Harding, 2013). 

When discussing the forms of metals moving through ecosystems, historically, 

metal(loid) contaminants were defined as either (1) particles large enough to be retained by a 

filter and assumed to have low bioavailability, or (2) a “dissolved” fraction operationally defined 

as passing through a filter and assumed to have higher bioavailability (Hochella et al., 2008). 

However, much of what passes through standard filters (e.g., 450 nm) may not be dissolved 

solutes, but may instead exist as particles in the nanoparticle (1-100 nm) or small colloidal 

particle (100-450 nm) size ranges (Hassellov & von der Kammer, 2008) These small particles 

remain in suspension because their rate of molecular diffusion is greater than their settling 

velocity (Nystrand e al., 2012; Pugh et al., 1983; Schwab et al., 2015; Stumm & Morgan, 1996). 

It may be important to split rather than lump ‘truly dissolved’ solutes (<1nm) from small 

colloidal particles and nanomaterials (hereafter small colloids, 1-450 nm), and compare these to 

the ‘suspended particulate matter’ (SPM), which consists of large colloids (450-1000 nm) and 

larger particles (>1000 nm; Nystrand et al., 2012; Yang et al., 2015).  
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Thinking about the distribution of contaminants among these different sizes may help to 

understand the behavior, biogeochemical cycling, and transport of trace metals in aquatic 

systems (Auffan et al., 2009; Baalousha et al., 2011) including wastewater lagoons. On one end 

of the size continuum, truly dissolved contaminants are thought to be mobile, readily taken up by 

organisms, and thus have the potential to be highly toxic (Nystrand et al., 2012; Schwab et al., 

2015). On the other end of the size continuum, suspended particulate matter may be less toxic as 

it has a lower surface area per unit volume, which contributes to lower solubility, reactivity, and 

a decreased ability to sorb and release contaminants (Auffan et al., 2009). It is also expected that 

larger SPM is more prone to sediment out of suspension as its settling velocity exceeds its 

molecular diffusion velocity (Auffan et al., 2009). Additionally, SPM is less readily ingested by 

most aquatic organisms with the exception of filter feeders (Nystrand et al., 2012; Sigg et al., 

2000). Sitting between SPM and truly dissolved solutes, particles in the small colloidal fraction 

can be highly reactive (Weltens et al., 2000) because the surface area to volume ratio increases as 

particle size decreases (Auffan et al., 2009) and this high reactivity makes them capable of 

concentrating contaminants (Yang et al., 2015). Contaminants in this size range can enter aquatic 

food webs through several mechanisms including direct uptake, passive uptake by diffusion, and 

uptake through ingestion of other organisms and their internal or sorbed contaminants (Hogsden 

& Harding, 2013; Schwab et al., 2015; Weltens et al., 2000). Thus, for certain organisms, the 

small colloidal fraction may be more bioavailable than even the dissolved fraction, while for 

others it may be less (Nystrand et al., 2012).  

Despite the potential importance of this colloidal fraction, much about its fate and 

transport remains unknown. This distinction between small colloidal particles and truly dissolved 

solutes may be important as they likely differ in their interactions with aquatic organisms and 
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would require different strategies for their removal from wastewater. Understanding the 

distribution of metals across size fractions is an important first step in understanding how these 

metal(loid)s behave in wastewater lagoons. It could also inform how to best manage lagoons for 

metal(loid) removal, and inform the food web implications for receiving waters of colloid 

metal(loid)s in effluent.  

Given that effluent with elevated metals can have ecological impacts across all levels of 

the food web, and given the high cost of replacing and maintaining lagoon systems with higher 

efficiency wastewater treatment systems, there is a need for lower-cost approaches to improving 

wastewater lagoon efficiency. One relatively new approach for increasing lagoon efficiency is 

the addition of floating treatment wetlands (FTWs), which consist of buoyant mats planted with 

an assemblage of plants. As the plant roots extend into the water column, they create a large 

surface area through which nutrients and metals can be taken up and sequestered by plants and 

the periphyton—the collection of algae, bacteria, and fungi that colonize the roots (Faulwetter et 

al., 2011; Hubbard et al., 2004; Tanner & Headley, 2011). The roots also serve as a source of 

labile carbon which can fuel the growth of planktonic and attached heterotrophic microbes and 

stimulate the removal of excess nitrogen (N), phosphorous (P), and metals (Shahid et al., 2018), 

which may then be delivered to the sediment as the periphyton sloughs off the roots (Borne et al., 

2013; Tanner & Headley, 2011).  

In a range of lab and field trials FTWs have been tested for their efficacy in stormwater 

and wastewater experiments. In those studies focused on stormwater management, FTWs have 

proven to have the potential to remove Nitrogen (N), Phosphorus (P), and metals including Cu, 

Pb, Zn, through accumulation, sorption, and precipitation (Figure 1; Borne et al., 2013; Ladislas 

et al., 2015; Stewart et al., 2008; Van de Moortel et al., 2010). Studies examining FTWs in 
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wastewater lagoons have largely focused on their ability to remove N and P, but few studies have 

focused on their ability to remove metal(loid)s in wastewater lagoons where concentrations are 

likely to be higher. Finally, we did not find studies exploring the effect of FTWs on the 

distribution of contaminants among size fractions.   

 

Figure 1. Conceptual model of how metal(loid) particles move through a system with FTWs.  

 

The goals of this study were to: 1) characterize the concentration of metal(loid)s and their 

distribution among size fractions in wastewater lagoons; 2) investigate the effect of FTWs on 

metal(loid) concentration; 3) understand the effect of FTWs on the size distribution of 

metal(loid)s; and 4) determine if FTWs have a similar effect on metal(loid)s under high and low 

concentrations. To examine the concentration and size distribution of metal(loid)s in wastewater 

lagoons, a field survey of six different wastewater lagoon systems was conducted. To examine 

the effects of FTWs on metal(loid) concentration, distribution among size fractions, and efficacy 
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of FTWs at low and high concentration, a mesocosm experiment using wastewater lagoon water 

from one of the systems included in our field survey was conducted.   

2. Materials and methods 
2.1 Field Sites 

To characterize the total metal(loid) concentration and the distribution of metal(loid)s 

between small colloids and truly dissolved solutes in wastewater lagoons, we selected six 

wastewater treatment lagoons to sample which are located in a mining-influenced watershed of 

western Montana. The six different lagoon systems differed in their size, the number of lagoons 

in series, and whether or not they were aerated. We sampled all of the lagoons at each facility, 

though we only report data on the terminal lagoons.  All systems either discharge directly into 

the adjacent river or indirectly through infiltration into the alluvial aquifer.  

To examine the ability of FTWs to remove metal(loid)s from wastewater under low and 

high wastewater concentrations, we conducted a mesocosm experiment with and without FTWs 

at the Missoula Wastewater Treatment Facility (Missoula, MT). Twelve mesocosms were 

established; six mesocosms had FTWs and six did not (Figure 1-A in the appendix). Mesocosms 

consisted of 300-gallon stock tanks (Rubbermaid, Atlanta, USA) with liners made of 12 mil 

black/white Dura Skrim polyethylene sheeting (Americover, Escondido, USA). All mesocosms 

were filled with groundwater that was passed through a carbon block filter to remove dissolved 

and particulate matter (CFB-PLUS20BB, Pentek, Pittsburgh, USA). FTWs were 50.8 x 99.06 x 

16.51 cm, and were sized to give 20% coverage of the mesocosms. Seeds and bareroot emergent 

macrophytes were selected and planted into the FTWs. Transplanted bareroot species were: Sium 

suave, Equisetum hymale, Juncus arcticus, Carex aquatilis, and Schoenoplectus acutus (Fourth 

Corner Nurseries, Bellingham, USA). The FTWs were seeded with equal amounts of 
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Calamagrostis canadensis, Mentha arvensis, and Helianthus anuus (Prairie Moon Nursery, 

Winona, USA; Figure 2-A in the appendix). The planting medium consisted of a mix of 1/3 

rockwool and 2/3 peat in each pre drilled 3 inch deep planting hole. FTWs were established for 

2.5 months (Figure 3-A in the appendix) with daily watering and with weekly cycling of water 

between all mesocosms in order to achieve similar water chemistry between all mesocosms. 

To test the efficacy of FTWs in removing metal(loid)s under high or low concentrations 

of these contaminants, 2000 gallons of water was collected and hauled in a septic pump truck 

from one of the field sampling sites with known heightened levels of metal(loid)s. Six high 

concentration mesocosms and six low concentration mesocosms were established, with three of 

each concentration (high or low) and each cover type (FTW or open). Mesocosms were first 

drawn down to either 93 gallons or 195 gallons and then received either 195 gallons or 93 

gallons of wastewater for the high and low concentration mesocosms, respectively.   

2.2 Field Site Procedures 

Field sampling at wastewater lagoons was carried out over a three day period in July 

2017. At each pond, water samples for metal(loid) concentration were collected from three 

separate locations along the shoreline of the lagoon (50 mL). Samples were collected from the 

middle of the water column using a telescoping water sample dipper (Bel-Art, Wayne, USA) and 

stored in a cooler on ice until processing. At each replicate location, water was characterized for 

dissolved oxygen, pH, conductivity, and temperature using a YSI Professional Series Probe 

(YSI, Yellow Springs, USA). 

Mesocosm sampling occurred over the course of five weeks during August and 

September 2017. To account for rapid changes, water samples were collected four times on day 

one, once per day for the next three days, and every five days thereafter for the remainder of the 
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five-week experiment. All samples were kept on ice until processing (< 1 day). Given the 

possible role of environmental conditions on driving metal(loid) biogeochemistry, environmental 

parameters (pH, conductivity, temperature, and dissolved oxygen) were measured at each 

sampling time point using a YSI Probe. At the end of the mesocosm experiment, benthic organic 

matter was collected from all twelve mesocosms, dried at 60 degrees Celsius, and then 

pulverized.   

2.3 Filtration of Water Samples 

Water samples were split into three fractions: unfiltered; filtered (<450 nm; small 

colloids, nanoparticles, and truly dissolved solutes); and ultrafiltered ( < 1 nm; truly dissolved). 

Tower filtration was used for the < 450 nm fraction and centrifugal filtration with 1 kDa 

ultrafiltration centrifuge filters (Microsep, Pall Corporation, Port Washington, USA) was used to 

obtain the <1 nm fraction. A small volume of sample water was filtered through both the 450 nm 

and 1 kDa filter and discarded prior to collecting sample filtrate in order to allow the most 

representative samples through the filters. Using the whole water and two filtrates, the 1-450 nm 

(colloidal), and >450 (suspended particular matter; SPM) size fractions were calculated. After 

filtration was completed, samples were acidified to 1% concentrated nitric acid for preservation. 

2.4 Laboratory Analysis 

Preserved water samples and benthic OM were quantified for a suite of 13 major and 

trace elements using an inductively coupled plasma mass spectrometer (ICP-MS; Agilent7500cx, 

Santa Clara, USA). Detection limits for ICP-MS water sample analysis are located in Table 1. 

Analytes that were below the detection limit were set to ½ the detection limit (Clark, 1998). For 

those metal(loid)s where all of the samples had concentrations at or below the detection limit (V, 
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Se, Co, Ni in both the field collection and mesocosm experiment; Cr in the mesocosm 

experiment), their data were removed from analysis. 

Table 1. Limits of detection of field lagoon and mesocosm water samples for inductively coupled plasma mass spectrometry 
(ICP-MS) analysis.  

 
 

2.5 Data Processing and Statistical Analyses 

 In both the field survey and mesocosm study, truly dissolved (< 1nm) metal(loid) 

concentrations were taken directly from the ultrafiltered samples, while colloidal (1-450 nm) and 

SPM (> 450 nm) metal(loid) concentrations were calculated. The SPM fraction was calculated as 

the difference between the unfiltered and <450 nm filtered samples, while the colloidal fraction 

was calculated as the difference between the < 450 nm and < 1 nm filtrates. In calculating these 

differences, there were several instances where the difference would yield negative numbers. In 

those cases where the concentration of an element was 15% higher in the smaller size class than 

in the larger size class, that sample was removed from further analysis for that element in that 

fraction. For samples that were 0 to 15% higher in the smaller size class than in the larger, 

concentrations were set to be equivalent between the two size classes. All analyses were 

conducted in R version 3.1.2 (R Core Team, 2015).   

For the field survey of wastewater lagoons, the SPM, colloidal, and truly dissolved 

fractions were averaged across samples from all three replicate sampling locations from each 

terminal lagoon (Rmisc R Package). To quantify the percentage of colloidal metal(loid)s within 

the traditionally defined dissolved (<450 nm) fraction we used the equation: 

%	𝐶𝑜𝑙𝑙𝑜𝑖𝑑𝑎𝑙 = *+,-.	/0
1,-.	/0	

× 100                                                  
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 To determine the effect of FTWs on metal(loid) concentrations the natural log 

transformed response ratio was calculated: 

 ln𝑅𝑅 = ln	 89:;<
8=>?

 
 

where RR is the response ratio, 𝑋ABC/ is the mean concentration in open mesocosms and 𝑋DEF  is 

the mean concentration in FTW mesocosms calculated for each analyte as measured at each time 

point for each treatment type (high, low).  Uncertainty was calculated using 95% confidence 

intervals for each point.  

 

Error (E) =	𝑙𝑛 𝑅𝑅 ×HIJKL9:;<∗*.OPQ
RBC/

S
T
+ I(KL=>?∗*.OP)

DEF
S
T
 

 

where 𝑜𝑝𝑒𝑛	 is the mean concentration in open mesocosms, 𝐹𝑇𝑊 is the mean concentration in 

FTW mesocosms, and SDOpen, and SDFTW are the standard deviation for Open and FTW 

mesocosms, respectively. All of these values were previously calculated using summary statistics 

(Rmisc R Package). Upper and lower bounds of the 95% confidence intervals were calculated by:  

 
𝐶𝐼	𝑢𝑝𝑝𝑒𝑟 = 𝑙𝑛𝑅𝑅 + 𝐸; 	𝐶𝐼	𝑙𝑜𝑤𝑒𝑟 = 𝑙𝑛𝑅𝑅 − 𝐸 

    

 To quantify the percent of metals removed during the mesocosm experiment, all 

metal(loid) concentrations were first converted to masses at each timepoint by multiplying the 

concentration of each element by the measured water volume at the start of the experiment 

adjusted for evaporation. Changes in water volume were accounted for by assuming that the only 

changes in conductivity were due to evaporation and precipitation. The percent removal was then 

calculated as: 
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%	𝑅𝑒𝑚𝑜𝑣𝑒𝑑 = 100 − (
𝑀𝑎𝑠𝑠hi/jk
𝑀𝑎𝑠𝑠i/ilijk

∗ 100) 

 

To quantify the effect of FTWs on metal(loid) concentrations, generalized linear mixed 

effect models (lme4 R Package) were fit to each response variable. A model was fit to each 

response variable including the fixed effects of cover (FTW, open), treatment (high, low), size 

fraction (truly dissolved, colloidal, and SPM), nested within time (day of experiment). 

Generalized linear mixed effect modeling (GLMM) was used to include a random effect 

(mesocosm number) to account for mesocosm level differences in the model. Parameters were 

analyzed using Gamma distribution and log link. Models were tested by analysis of variance 

(ANOVA) and chi squared results to determine the effect of independent variables and 

interaction terms.  To determine at what levels differences occurred for our fixed effects, post 

hoc comparisons were performed using Tukey HSD within lsmeans (lsmeans R package), with α 

= 0.05 as the threshold for significance tests.  

3. Results 

3.1 Field Lagoons 
3.1.1 Environmental Data 

 Lagoon waters represented a range of pH, conductivity, temperature and dissolved 

oxygen conditions (Table 2). Site 3 had the highest temperature at 19.7 while site 6 had the 

lowest temperature recorded at 7.1. Dissolved oxygen (% saturation) was greatest at site 1 at 

109.6 with site 6 at the lowest recorded levels of 77.5. Specific conductivity was found to be 

lowest at site 4 (181.7 µS/cm) while site 5 had the highest at 645.3 µS/cm. The pH of site 3 was 

the lowest at 7.8 while site 2 was recorded at the highest of 10.5.  
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Table 2. Details information of field lagoons. Physicochemical data recorded is recorded here as the mean of replicates from the 
terminal pond. 

 
 
 
 
3.1.2 Metal(loid) characterization 

The concentration of metal(loid)s varied widely across the terminal lagoons at the six 

treatment systems sampled (Figure 2A), with all elements having a colloidal component. Mean 

concentrations were as high as 231 µg/L  for Fe, down to 0.9 µg/L for Pb. Coefficients of 

variation ranged from a high of 2.09 for Al down to 0.66 for As. For the distribution of the eight 

focal elements measurable in the < 450 nm fraction, most either had median values that were 

largely colloidal (25 to 50% colloidal), or mostly colloidal (>50 %; Figure 2B). The percent 

colloidal varied by element with Fe and Pb appearing predominantly in the colloidal fraction at 

>75% and >60%, respectively. The metals Cu, Mn, and Zn were intermediate in their percent 

colloidal, ranging from 30% to 60% colloidal. The distribution of Al and Cr had much lower 

amounts in the colloidal fraction, ranging from 15% to 30%, while arsenic had the lowest 

colloidal fraction with a median of 10%.  

 

  

Site Aeration
No. 

lagoons in 
series

Temperature 
(Celsius)

DO (% Sat)
Specific 

Conductivity
pH

1 Aerated 3 8.2 109.6 293.9 8.56
2 Non-Aerated 3 14.5 88.2 442 10.5
3 Aerated 2 19.7 83.6 273.3 7.8
4 Non-Aerated 2 15.3 89.2 181.7 9.1
5 Non-Aerated 1 14.8 82.7 645.3 8.4
6 Non-Aerated 1 7.1 77.5 292.7 9.7
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Figure 2. Boxplot represent the first quartile, median, and third quartile, red dot represents the mean, whiskers represent 
minimum and maximum values. A) Comparison of metal(loid) concentration across all terminal lagoons. B) Comparison of 
percent colloidal of all elements in the terminal lagoons of all field sites. N=6 for all elements except n=5 for Cr and n=4 for As. 

 

Interestingly, of the four environmental variables recorded, surprisingly few were found 

to be correlated to the percent colloidal (Table 3). The elements Al, Cr, Fe, and Zn were not 

significantly correlated with any of the environmental variables (i.e., pH, DO, specific 

conductivity, or temperature). Of the eight metal(loid)s analyzed, only Pb was found to be 

correlated (p < 0.0001) with pH. Temperature was found to be weakly correlated with only Al (p 

< 0.05) and Zn (p < 0.05). The specific conductivity was correlated with Cu (p < 0.0001), Mn (p 

< 0.05), and Pb (p < 0.0001). Specific conductivity was found to be the most significant of the 

environmental variables in determining the percent colloidal. However, it was only significant 

for colloidal Cu (p < 0.001), Mn (p < 0.05), and Pb (p < 0.05; Figure 3). Dissolved oxygen was 

significantly related to percent colloidal Pb (0.05) and As (p < 0.001). 
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Table 3. Significance (p value) for each environmental variable, tested using generalized linear mixed effect models for each 
element. Only displaying data where significance was determined. Significance level is annotated as ‘***’ (significant at 0.0001) 
and’.’ (significant at 0.10). 

 

 
Figure 3. The percent colloidal for Mn, Cu, and Pb plotted against specific conductivity. Line represents the model fit of only 
fixed variables from generalized linear mixed effect model. Deviance represents the model fit.  

3.2 Mesocosms 

3.2.1 Patterns in pH, temperature, conductivity, and dissolved oxygen 

Open mesocosms generally had significantly higher pH values than FTW mesocosms (p 

< 0.001) for most of the duration of this experiment for both concentration treatments (Figure 

4D). In the high concentration treatment, pH levels started out similar under both cover types, 

while in the low concentration treatment, even at 0.1 Days the pH values were slightly higher in 

the open mesocosms. While pH remained relatively constant and circum-neutral in FTW 



 15 

mesocosms—with means ranging from 7.3 [7.2 to 7.5] to 7.7 [7.6 to 7.8] in high concentration 

mesocosms and from 7.5 [7.4 to 7.7] to 8.2 [8.0 to 8.3] in low concentration mesocosms—pH in 

open mesocosms steadily rose during the course of the first ten days of the experiment. Open 

mesocosms reached a maximum pH by Day 10 of 8.5 [8.4 to 8.7] in the high treatment and 9.5 

[9.3 to 9.6] in the low treatment (Figure 4D). From Day 10 onward, the general temporal patterns 

in open mesocosms continued to be similar in both low and high treatments as pH declined until 

reaching 7.4[7.3 to 7.5] at Day 18  (high) and 8.2 [8.1 to 8.4] at Day 24 (low) before again rising 

until the end of the experiment at Day 33. 

In the high concentration treatments, neither temperature (Figure 4A) nor specific 

conductivity (Figure 4B) were significantly different between open and FTW mesocosms; 

however, in the low concentration treatment, mesocosms with FTWs were found to have 

significantly higher temperatures (p < 0.001) between Days 10-15 and again at Day 28, while 

specific conductivity was significantly different from Day 3 through to the end of the 

experiment. While the temperature differences were significant, the magnitude was < 1 ℃. For 

specific conductivity, the differences were up to 83 µS/cm. 

Dissolved oxygen (DO) was significantly lower (p < 0.001) in the presence of FTWs for 

both high and low concentration treatments (Figure 3C).  In both FTW and open mesocosms 

receiving either high or low concentration treatments, there was an initial rapid decline in DO 

during the first hours of the experiment, followed by fluctuating levels throughout the 

experiment. Mean DO ranged from 9.8 [8.1 to 11.9] to 38.3 [31 to 46] % saturation in the high 

treatment FTW mesocosms, from 17.6 [14 to 20] to 57 [46 to 69] in the low treatment FTW 

mesocosms, 11.6 [9.5 to 14] to 67.8 [55 to 82] % in the high open mesocosms, and 68.7 [55 to 

82] to 113.3 [93.3 to 137.6] % in the low open mesocosms. 
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Figure 4. Environmental data from mesocosm experiment. The different treatments (high,low) are displayed in panels on the 
right, blue and green represent cover open and FTW cover type. The shading around the lines represent the 95% confidence 
intervals.  Dissolved oxygen y-axis is logged. 

 

 
3.2.2 Effect of FTW’s on total metal(loid) concentration over time 

 In the high concentration treatment (1/3 groundwater and 2/3 lagoon water), mesocosms 

with FTWs had lower concentrations of all metal(loid)s compared to open mesocosms. This can 

be seen clearly in the natural log response ratio (lnRR), where positive values indicate higher 
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concentrations in open mesocosms, negative values indicate higher concentrations in FTW 

mesocosms, and non-overlap of error bars and the origin indicates a significant difference 

between open and FTW (Figure 5A). At the beginning of the experiment, all metal(loid)s were at 

similar concentrations in FTW and open mesocosms, but as early as Day 2 there was divergence 

for Cu, Pb, Fe, and Zn, which all have lower concentrations in mesocosms with FTWs. While As 

was the least affected by the presence of FTWs, it still had significantly lower concentrations in 

the presence of FTWs.   

In the low concentration treatment (2/3 groundwater, 1/3 lagoon water), the extent of the 

differences between FTW and open cover types was muted in comparison to the high 

concentration treatment (Figure 5B). By Day 2, FTW mesocosms had significantly lower Cu, Pb, 

and Fe concentrations. Unlike in the high concentration treatment, this effect was not consistent 

throughout the experiment, with Pb, Cu, and Fe all moving between being significantly lower in 

mesocosms with FTWs than the open mesocosms, and with As lower in FTW mesocosms only 

on Day 33. Interestingly, Zn is significantly higher in the FTW mesocosms on Days 8, 13, and 

18.  
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Figure 5. Natural log of the Response Ratio (Open/FTW). Error bars represent 95% confidence intervals. A) High concentration 
wastewater represented by solid dots B) Low concentration treatments represented by X. 

3.2.3 Distribution of elements among size fractions in the presence and absence of FTWs  

The distribution of metal(loid)s among size fractions changed over time, and differed by 

element though patterns were generally similar for both high and low concentration treatments. 

For Pb and Fe (Figure 6), as well as for Cu and Mn (Figure 7), the SPM and the small colloid 
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fractions were dominant. In contrast, Zn (Figure 8A) was roughly equally divided among 

fractions and As was highest in the truly dissolved fraction (Figure 8B). For Pb, Cu, Zn, Mn, and 

Fe, there was an initial rapid decrease in SPM which coincided with a rapid increase in the 

colloidal fraction for both FTW and open mesocosms. This was followed by either a stable or 

declining concentration in the colloidal fraction in FTW mesocosms. In open mesocosms, in 

contrast, the colloidal metal(loid) concentrations continued to increase for all elements with the 

exception of As. The patterns for SPM were similar for Pb and Fe, in that open systems had 

significantly higher concentrations (p < 0.001- p < 0.01) while FTWs had lower. Differences 

were less clear for SPM metal(loids) under low concentration treatments. Arsenic showed high 

concentrations in the truly dissolved fraction while indicating no difference in the concentration 

under the presence of FTWs.  
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Figure 6. Concentrations of Pb (A) and Fe (B) under two cover types with green representing mesocosms with FTW and blue 
representing mesocosms left open. The figure is faceted along the top by the three size fractions: >450 nm (SPM), 1-450 nm 
(colloidal), <1 nm (truly dissolved). High and low indicate high concentration wastewater treatment or low concentration 
wastewater treatment. The shading around the line represents the 95% confidence interval. 
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Figure 7. Temporal trends in concentrations of Cu (A), Mn (B), and Al (C) under two cover types with green representing 
mesocosms with FTW and blue representing mesocosms left open. The figure is faceted along the top by the three size fractions: 
>450 nm (SPM), 1-450 nm (colloidal), <1 nm (truly dissolved). High and low indicate high concentration wastewater treatment 
or low concentration wastewater treatment. The shading around the line represents the 95% confidence interval. There is no time 
point for Cu in the SPM size at time point 5 and for Al in the colloidal at time point 33 as they were lost in censoring.  
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Figure 8. Temporal trends in concentration of As and Zn under two cover types with green representing mesocosms with FTW 
and blue representing mesocosms left open. The figure is faceted along the top by the three size fractions: >450 nm (SPM), 1-450 
nm (colloidal), <1 nm (truly dissolved). High and low indicate high concentration wastewater treatment or low concentration 
wastewater treatment. The shading around the line represents the 95% confidence interval. 
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3.2.4 Influence of FTW’s on metal(loid) distribution among size fractions and benthic organic 

matter  

 In the high concentration treatment, FTWs generally led to a decrease in the 

concentration of metal(loid)s in the water column and an increase in concentrations in benthic 

organic matter; in the low concentration treatment, the differences were more variable but the 

trends were similar. The effects of FTWs on SPM in the high concentration treatment was 

strongest for Al, Pb, and Zn (Figure 9), while all other metals have 95% confidence intervals 

crossing the zero line. The effect of FTWs was most distinct on the colloidal size fraction with a 

strong effect on all metals, but not on the metalloid As. The most marked difference was for Al, 

though Cu, Fe, Mn, Pb, and Zn all had similar declines in the FTW mesocosms as compared to 

the controls. In the truly dissolved fraction, FTWs had only a modest effect on truly dissolved Cu 

and to some extent Mn. Interestingly, there was a corresponding increase in the concentrations of 

metal(loid)s in the benthic organic matter of the mesocosms with FTWs (Figure 9). While there 

were some effects of FTWs in the low concentration treatment, and while the trends were similar 

to the high concentration treatment, the results were much more variable and only occasionally 

were they significant (Figure 10).  
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Figure 9. Natural log of the Response Ratio (Open/FTW) for truly dissolved (<1 nm), colloidal (1-450 nm), suspended 
particulate matter (>450 nm), and the benthic organic matter from final timepoint (Day 33) of the experiment under high 
treatment. Error bars represent 95% confidence intervals.  

. 

 

Figure 10. Natural log of the Response Ratio (Open/FTW) for truly dissolved (<1 nm), colloidal (1-450 nm), suspended 
particulate matter (>450 nm), and the benthic organic matter from final timepoint (Day 33) of the experiment under low 
treatment. Error bars represent 95% confidence intervals. 
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3.2.5 Percent metal(loid) removal under high and low treatment  

 The percent mass metal(loid) removal varied by element (Figure 11) and treatment. 

Mesocosms with FTWs, were shown to have no significant difference in percent Pb removal 

under high and low treatments. The metalloid As was the only analyte which had a greater 

removal under low treatment. All other metals in mesocosms with FTWs had a greater percent 

removal under high treatment. In open systems, there was no difference in percent removal 

between high and low treatment for As, Fe, Pb, or Zn. While Al, Cu, and Mn showed greater 

removal under high treatment systems in open cover types.  

 

 
Figure 11. Percent metal(loid) mass removal. Black points represent high treatment and grey points represent low treatment. 
Error bars represent the standard error.  
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4. Discussion 

 This study characterized the percentage of “dissolved” metal(loid)s that was colloidal in 

six wastewater lagoons in a mine-waste contaminated watershed, quantified the effect of FTWs 

on total metal(loid) concentration, and identified patterns of metal(loid) size distribution in the 

presence and absence of FTWs.  Results from this study provide added insights into the 

prevalence and biogeochemistry of colloidal metal(loid)s in wastewater lagoons and suggest 

FTWs may be useful in removing metal(loid)s, particularly in the colloidal size fraction.  

4.1 Colloidal particles are an important form of metal(loid)s in lagoons 

The percentage of metal(loid)s found in the colloidal fraction (1-450 nm; Figure 2B) was 

>25% of what passes through a 450 nm filter for seven out of the eight elements we examined, 

and was up to 75% in the case of Fe. While As was consistently below 25% colloidal, it still had 

a median of 10% colloidal and the highest sample was 20% colloidal. These data are in marked 

contrast to the assumption inherent within the historical operational definition of dissolved, that 

suggests elements in this fraction are largely free ions or ions bound by low molecular weight 

organic matter (Buffle and Leppard, 1995; Hoffmann et al., 1981). The findings presented here 

from wastewater lagoons are consistent with those reported in studies of metal(loid) colloids in 

freshwater systems (Kimball et al., 1995; Trostle et al., 2016; Yang et al., 2015).  

There are several factors that are commonly thought to drive the speciation and 

partitioning of metal(loid)s including redox potential, ionic strength, pH, and dissolved organic 

matter concentration (Zhang et al., 2018).  Given that the lagoons sampled were fairly well 

oxygenated, we expected the redox potential to be positive and likely above 0.4 mV. For 

elements such as Pb and Fe, if we assumed that speciation had equilibrated based on the pH and 

Eh of the lagoons, we would expect both of these metals to exist as insoluble metal hydroxides or 
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carbonates. Depending on the size of the particles formed, organic coatings they acquired, and 

the nature of the steric and/or electrostatic forces that may have stabilized or destabilized them, 

the resulting particles could have stayed in suspension or aggregate and form larger SPM and 

precipitate; based on our observed patterns, they are likely forming small stable particles that are 

remaining in suspension. 

While the divalent metals Cu, Mn, Zn, and trivalent Al were also all associated with the 

colloidal fraction, they also had sizeable concentrations in the dissolved fraction. Based solely on 

their expected partitioning between dissolved phases and solid phases in the pH range observed 

in the lagoons (7.1 to 10.7), we would expect all of these to tend towards solid oxide or 

hydroxide forms in the lagoons though it may be that these elements were not at equilibrium with 

regards to the Eh or pH of the surface water at the time of sampling. Alternatively, it may be that 

the higher percentage of these elements in the truly dissolved fraction represents ions chelated by 

low molecular weight organic matter.  

It is important to note that for all of these elements, while we know the proportion that 

was found in the colloidal size range and truly dissolved, we can only speculate as to the forms 

they were in. Although it is reasonable to assume some component of the colloidal metals were 

found as metal/metal-oxide colloidal-scale particles, it is also possible that some of them were 

sorbed on the surface of other metal/metal-oxide particles as has been observed for silver on 

TiO2 (Kim et al., 2012) or as has been observed for the metalloid As on ferrihydrite (Yang et al., 

2015). For elements like Cu, which have a known high affinity for chelation in organic matter, it 

may be that they were in the colloidal fraction as metal ions bound by ligand exchange to high 

molecular weight organic matter (Cabaniss, 1988; Karthikeyan & Elliot, 1999).  
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Our data provide evidence that conductivity may play a factor in the percent colloidal Cu, 

Mn, and Pb, but neither pH or temperature were found to have strong relationships with percent 

colloidal for any of these metals. As specific conductivity increased between different field 

lagoons, the concentration of Cu, Mn, and Pb declined. This observation is consistent with 

published patterns showing that increased ionic strength, which is correlated to specific 

conductivity, leads to declining colloidal stability. This phenomenon is driven by the fact that, as 

ionic strength increases, it can weaken the electrostatic repulsion that can be essential for 

promoting colloidal stability (El Badwy et al., 2010). This reduction of electrostatic repulsion 

could lead to aggregation and sedimentation. It was surprising to not see relationships between 

pH or temperature with percent colloidal, given the role that pH can play on surface charge, and 

that lower temperatures can drive increased aggregation. This suggests that colloidal stability in 

these systems is likely driven more strongly by other parameters, such as dissolved organic 

matter or even the activity of aquatic organisms which may regenerate colloids from aggregates 

thereby promoting their persistence in the water column.  

4.2 Floating treatment wetlands decreased DO and pH 

In mesocosms with FTWs, both DO and pH were lower than they were in open 

mesocosms regardless of the treatment concentration (Figure 4C and  4D). The driver of both of 

these was likely a difference in the balance between primary productivity and respiration in the 

mesocosms with FTWs compared to those without. In the presence of FTWs, DO was likely 

lower due to increased heterotrophic respiration from the added presence of root biomass and its 

associated periphyton. The FTWs, while only occupying 20% of the surface area of the 

mesocosms, would have decreased light entering the mesocosms and thus suppressed 

productivity by the phytoplankton, which would have also contributed to lower DO. This 
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decrease in DO should also be accompanied by a decreased pH due to an accumulation of 

carbonic acid associated with increased respiration; this is indeed the pattern we observe and 

which has been observed in other studies on FTWs (Borne et al., 2013b;  Van de Moortel et al., 

2010; White & Cousins, 2013). These proposed mechanisms are consistent with those presented 

in Pedersen et al., 2013, though Neori et al., 2000 and Headley and Tanner, 2012 posits that 

decreased pH could also be from organic acids released from the roots and chemical reactions 

that occur in the enhanced treatment zone beneath the FTW. 

Based on previous FTW research, we expected to see differences in temperature, but we 

only detected minimal differences (Figure 4A). This could be due to our use of 20% coverage 

which may not have been enough to affect a noticeable difference in temperature. Additionally, 

given that our mesocosms were aboveground, there was interception of solar radiation by the 

sides of the mesocosms as well as the surface of the water, further reducing any likely 

differences. Finally, the lack of a difference could also be an artifact of our 9:30 am water 

collection and physicochemical measurement time. It may be that later in the day we would have 

seen more striking differences.  

4.3 Total metal(loid)s removed varied by element  

In accordance with our expectations, we found the presence of FTWs was associated with 

a decrease in metal(loid) total concentrations, with the greatest decreases for  Al, Cu, Fe, Mn, Pb,  

and Zn with little effect on As concentrations (Figure 5A, B).  The effect was most distinct in 

high concentration mesocosms, and those metal(loid)s which were most effectively removed in 

the presence of FTWs were the same metal(loid)s that showed a significant decline in the 

colloidal concentration over time compared to open mesocosms. This suggests that the decrease 
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in total concentration of metal(loid)s may have been driven by the more efficient removal of 

colloidal metal(loid)s by FTWs.   

4.4 Distribution of metal(loid)s among size fractions varied temporally 

 Consistent with our expectations, we saw rapid sedimentation of materials in the SPM 

fraction in the initial days of our experiment, presumably due to the elevated settling velocity of 

the larger particles in this size fraction (Figures 6-8). Interestingly, as SPM concentrations were 

dropping, we also saw an increase in the colloidal fraction for most elements (Al, Cu, Fe, Mn, 

Pb). This suggests that redistribution of elements among size fractions is a dynamic process 

taking place on relatively short timescales. This may be driven by disruption of aggregates in the 

SPM fraction by the activity of zooplankton and benthic macroinvertebrates. It may also have 

been biogeochemical processes driving dissolution of metal(loid)s in SPM which could then 

form colloids. Though we saw an increase in the colloidal fraction as SPM declined, we did not 

see a similar increase in the truly dissolved fraction during times when the colloidal fraction 

declined.  

Following this initial period, mesocosms with FTWs began to have lower concentrations 

of metal(loid)s than open mesocosms, especially in the high treatment and in the colloidal size 

fraction (Figures 6-8). FTWs may facilitate the removal of colloidal metal(loid) particles through 

sorption of the particles to the periphyton growing on the roots of the FTW plants. This is 

consistent with the mechanism proposed in studies examining the role of FTWs in reducing 

turbidity in stormwater ponds. In one such study, FTWs were found to remove 2-3 fold more fine 

clays (<400 nm) than open water controls (Tanner and Headley, 2011). In terms of the longer 

term fate of these sorbed metals, it has been hypothesized that they are trapped in the periphyton 

initially, but that the periphyton likely sloughs off and transports the sorbed particles to the 
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sediment (Borne et al., 2013; Tanner and Headley, 2011). Moreover, it has also been suggested 

that the increased supply of organic compounds (labile carbon) from FTW plants may stimulate 

coagulation and flocculation, causing these larger particles to settle to the sediment layer.  

Some insights into this difference between FTW mesocosms and open mesocosms can be 

gleaned from research into the fate, transport, and impacts of silver nanoparticles (AgNPs) in 

aquatic systems. When studied in aquatic mesocosms with dense submersed macrophyte 

vegetation, AgNPs were rapidly removed from the water column (Colman et al., 2014). In 

contrast, a whole lake AgNP addition experiment in the Experimental Lakes Area (ELA) in 

Ontario found persistence of AgNPs and no signs of agglomeration (Furtado et al., 2015).  It may 

be that in systems with an increased amount of surface area be it submersed macrophytes or the 

roots of plants growing in FTWs, the increased surface area in the system may facilitate greater 

sorption, leading to enhanced removal from the water column.  

4.5 Metal(loid)s in benthic organic matter 

 The results from this experiment show a greater contribution of metal(loid)s in the 

benthic layer of mesocosms containing FTWs. This result suggests that metal(loid)s were being 

removed from the water column to the benthic layer more effectively in systems with FTWs vs. 

open.  We propose that this increase in metal(loid) concentrations in the benthic layer of FTW 

systems may be driven in part or in total by the entrapment of colloids and SPM in periphyton, 

which then sloughs off the roots and accumulates in the benthic layer (Figure 12). There was 

very little difference in the truly dissolved concentrations (Figure 9), suggesting that 

accumulation of dissolved solutes in the periphyton or uptake by plant roots may be less 

important for removal from the water column than might be expected.  
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Figure 12. Conceptual model displaying the observed pathways of metals in this FTW mesocosm experiment.  

5. Conclusion   

Combining a field survey and mesocosm experiment we were able to show that colloidal 

metal(loid) particles are an important form to consider in wastewater lagoons and that FTWs are 

effective in removing colloidal metal(loids) from the water column. This study also suggests that 

colloidal metal(loid)s are likely an important form to consider in stream ecosystems receiving 

wastewater effluent, especially when considering the increasing contribution of wastewater 

effluent to streams in arid and semi-arid regions around the world. Colloidal metal(loid)s may be 

transported and move through aquatic food webs differently than particulate or dissolved forms. 

Understanding the distribution of elements among colloidal and truly dissolved fractions may 

also be important in optimizing mechanisms to remove metal(loid) contaminants from 

wastewater prior to discharge into streams.  
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Appendix 

 
Figure 1-A. Experimental design for mesocosm experiment. Light blue mesocosms represent low concentration wastewater 
treatments and dark blue mesocosms represent high concentration wastewater treatments. Green rectangles represent presence 
of FTW.  

 
Figure 2-A. Schematic of planting design for all FTWs in Experiment 2. 
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Figure 3-A. Photograph of FTW in mesocosm.  
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