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Stotter, Sara, M.S. Spring 2019            Geosciences 
 
Determining the Precambrian structure and thermotectonic evolution of the central Ruby Range, 
southwest Montana 
 
Chairperson: Dr. Julia Baldwin 
 

The Ruby Range in southwestern Montana is a fundamental location within the Archean 
Wyoming craton for examining Precambrian crustal architecture and determining the thermotectonic 
evolution of the region. Monazite, zircon, and garnet geochronology from each of the three major units 
within the Ruby Range reveal two distinct metamorphic age populations: an older population ca. 2.55-
2.45 Ga (the Tendoy orogeny) and a second, younger population ca. 1.78-1.72 Ga (the Big Sky 
orogeny). Phase equilibria modeling for the Big Sky orogeny within the confines of the Mine Gulch 7.5’ 
quadrangle reveal discrete pressure-temperature (P-T) histories for each of the three major structural 
units within the range. The Christensen Ranch metasedimentary suite yields peak metamorphic 
pressures of  ~7 kbar, however peak temperatures increase from the top of the unit towards the base 
from ~700 °C to ~760 °C. The Dillon Gneiss yielded peak metamorphic conditions of ~8.4 kbar and 
~760 °C, and the Elk Gulch Suite on average yielded peak conditions of ~8.8 kbar and ~770 °C. 
Additionally, new mapping interpretations from the Mine Gulch quadrangle reveal that all three units 
within the Ruby Range are closely structurally related, sharing an entwined Precambrian metamorphic 
and deformational history. Furthermore, the separation of the ca. 2.45 Ga garnet leucogneiss from the 
Dillon Gneiss as a distinct unit within the range ascribes wide spread crustal melting to the Tendoy 
orogeny. Combining these new observations with previous work aid in constraining a revised tectonic 
history for southwestern Montana between ~2.55-1.72 Ga. Prior to ~2.55 Ga, sediment accumulated on 
the margin of the Wyoming province and was followed by continental collision, the Tendoy orogeny, 
between ~2.55-2.45 Ga. A second cycle of sedimentation on the cratonic margin initiated immediately 
after the conclusion of the Tendoy orogeny and lasted between ~2.45-1.8 Ga. Between ~2.1-2.0 Ga, the 
Wyoming Province experienced a short period of extensional tectonism resulting in the emplacement of 
mafic dikes and sills. Between ~1.9-1.8 Ga, the Wyoming Province began to subduct beneath the 
Medicine Hat Block, ultimately culminating in the collision between the two continents resulting in the 
Big Sky orogeny between ~1.78-1.72 Ga. 
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1. Introduction 

Deciphering the Precambrian thermotectonic evolution of the Wyoming craton is crucial to 

understanding the crustal assembly and modification of Laurentia. A key location for examining this 

Precambrian crustal architecture is the Ruby Range, one of several basement-cored Laramide uplifts 

located on the northwestern margin of the Wyoming craton in southwestern Montana (Figure 1). The 

Ruby Range is located within the Montana Metasedimentary Terrane (MMT), which is distinguished 

from surrounding terranes by the presence of distinctive metasupracrustal sequences and intercalated 

volcanics within a variety of volumetrically abundant quartzofeldspathic gneisses (Mogk et al., 1992). A 

metasedimentary sequence comprised of thick marble packages suggestive of passive margin sediments 

occurs along the western flank of the range. This feature suggests that rocks in this region have likely 

preserved the geologic record of regionalized tectonic processes at the cratonic margin during the 

Proterozoic. Examining the late Archean to Proterozoic evolution of the Ruby Range will not only 

elucidate the tectonic history of the MMT, but will also aid in revealing how continents form, how they 

grow, and how they stabilize through time.  

 This study integrates the mapping of the Mine Gulch 7.5’ quadrangle with petrological analysis 

and pressure-temperature (P-T) phase equilibria modeling to place quantitative constraints on the 

Proterozoic metamorphic and tectonic evolution of rocks in the central portion of the Ruby Range. 

Originally, it was assumed that all rocks within the Wyoming Province were Archean in age, however 

Giletti (1966) determined that the basement rocks of southwestern Montana experienced a regional ~1.6 

Ga thermal resetting event based on isotopic K-Ar and Rb-Sr ages. More recent work has expanded on 

this precedent, revealing that Precambrian basement in southwestern Montana experienced profound 

thermal reworking at both ca. 2.45 Ga and during the 1.78 Ga Big Sky orogeny 
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Figure 1. Simplified map of Archean basement provinces of southwest Laurentia with Wyoming 
province basement exposures colored by terrane. The study area, the Ruby Range, is bounded by the red 
box Modified after Foster et al. (2006) and Muller and Frost (2006). 
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(Roberts et al., 2002; Kellogg et al., 2003; Harms et al., 2004; Brady, et al., 2004; Cheney et al., 2004; 

Jones, 2008; Cramer, 2015). Mapping and evaluating the structural relationships of the major units 

within the Ruby Range on the 7.5’ quadrangle scale will allow for an improved understanding of the 

more generalized crustal architecture of the MMT during these two crucial times in the Precambrian 

history of the Wyoming craton. Combining these new interpretations with petrologic observations of 

peak mineral assemblages alongside associated P-T constrains revealed will further elucidate the nature 

of both Paleoproterozoic thermotectonic events. Ultimately, studying cratonic margins such as this will 

aid in a better understanding of how Earth’s crust has changed in the past and will allow us to compare 

ancient tectonic processes to modern ones.    

 

2. Geologic Setting 

2.1. Regional geology 

The Wyoming Province is an Archean craton that underlies parts of Montana and Wyoming, and 

is considered to be part of the initial core of the North American continent (Figure 1). It is one of seven 

provinces that comprise North America (or Laurentia), in addition to the Hearne, Rae, Slave, Nain, 

Superior, and Burwell Provinces. U-Pb detrital zircon ages from the Beartooth Mountains, the Tobacco 

Root Mountains, and the Ruby Range indicate that the Wyoming Province formed during a period of 

significant crustal growth between 3.4 and 3.2 Ga (Mueller et al., 1998). The Wyoming Province can be 

subdivided into three geologically distinct terranes: the Beartooth-Bighorn Magmatic Terrane (BBMT), 

the Southern Accreted Terranes (SAT), and the Montana Metasedimentary Terrane (MMT). The BBMT 

is dominated by the presence of 3.0-2.8 Ga tonalitic-trondhjemitic-granodioritic metaplutonic rocks, in 

addition to lesser amounts of high-K granites and granodiorites (Mogk et al., 1992; Mueller and Frost, 

2006; Frost et al., 2006). The SAT is characterized by magmatic and tectonic activity (ca. 2.67-2.68 Ga 
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and ca. 2.72 Ga) which is slightly younger than that of the BBMT (ca. 2.75-2.95) (Chamberlain et al., 

2003; Mueller and Frost, 2006; Frost et al., 2006). These terranes are comprised of sequences of felsic, 

mafic, and ultramafic volcanics, in addition to metasedimentary rocks including pelitic schist, quartzite, 

and iron formation thought to have formed during Late Archean calc-alkalic magmatism and tectonism, 

most likely representing a period of crustal growth (Mueller and Frost, 2006). The MMT, the terrane in 

which the Ruby Range is located, is comprised of younger, Late Archean quartzite, pelite, and carbonate 

rock associations intercalated with older Archean ca. 3.2-3.0 Ga quartzofeldspathic gneisses in which 

belts of metasupracrustal sequences are preserved (Mogk et al., 1992; Mueller et al., 1993, 2004; 

Mueller and Frost, 2006). 

 The aerial extent of the Wyoming Province is defined by three Proterozoic collisional orogens: 

the Black Hills Orogen to the east, the Cheyenne Belt to the south, and the Great Falls Tectonic Zone 

(GFTZ) to the northwest (Harms et al., 2004; Brady, et al., 2004; Mueller et al., 2005; Mueller and 

Frost, 2006) (Figure 1). The Black Hills Orogen represents the collision of the Wyoming Province with 

the Superior Province between 1.77-1.71 Ga, not to be confused with the older, 1.86-1.79 Ga Trans-

Hudson orogen (Hearne-Superior convergence) to the north (Dahl et al., 1999). The Cheyenne Belt, 

located on the southern margin of the Wyoming Province, is the tectonic suture zone which records the 

collision between the Wyoming Craton and Paleoproterozoic Yavapai Province between 1.78-1.72 Ga 

(Chamberlain, 1998; Whitmeyer and Karlstrom, 2007). The northwestern margin of the Wyoming 

Province, the GFTZ, has thus been interpreted as recording ocean basin closure followed by collision 

between the Wyoming Province and Medicine Hat Block, another Archean terrane, between 1.78-1.72 

Ga.  

 Giletti (1966) first assessed the timing and nature of metamorphism within the MMT along the 

northwestern margin of the Wyoming Province. Prior to Giletti’s work, it was inferred that all rocks in 
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the Wyoming Province were Archean in age. Based on K-Ar and Rb-Sr ages, Giletti (1966) reasoned 

that the basement rocks of southwest Montana experienced a regional 1.6 Ga thermal resetting event. In 

contrast, rocks immediately to the southeast of this zone yielded older K-Ar and Rb-Sr ages between 

3.2-2.1 Ga, indicating that rocks in this area have not been thermally reset by a regional metamorphic 

event (Giletti, 1966). This boundary of isotopic resetting has since become known as ‘Giletti’s Line’ 

(Giletti, 1966) (Figure 2). Later, James and Hodge (1980) confirmed Giletti’s regional 1.6 Ga thermal 

resetting event, and ascribed regional metamorphism and deformation to a 2.75 Ga orogeny.  

 The GFTZ is located to the northwest of Giletti’s Line, and is a broad zone of northeast trending, 

high-angle thrust faults that extends from northeastern Idaho to southern Canada (Harms et al., 2004; 

Burger, et al., 2004; Gifford et al., 2014). For some time, the origin of the GFTZ has been up to debate 

due to lack of exposure. The only surficial expression of the GFTZ is found in the Little Belt Mountains, 

where rocks are dominated by 1.86 Ga calc-alkaline intrusives (Foster et al., 2007). The rocks of the 

Little Belt Mountains have also been found to exhibit a geochemical character consistent with such 

observed at subduction zones, which supports the idea that the GFTZ marks the suture zone between the 

Wyoming Province and Medicine Hat Block (Mueller et al., 2002; Vogl et al., 2004). This collisional 

tectonothermal event has been termed the Big Sky orogeny, and has been best documented within the 

Tobacco Root Mountains which lies approximately 40 km to the northwest of the Ruby Range (Harms et 

al., 2004).  Architecturally, the Ruby Range, Tobacco Root Mountains, the Highland Mountains, and the 

northern part of the Gravelly Range all comprise the metamorphic core of the orogen (Harms et al., 

2004).  

 The Big Sky orogeny has been characterized as an upper amphibolite to lower granulite facies 

metamorphic event which occurred between 1.78-1.72 Ga, with a clockwise P-T path recording peak 
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Figure 2. Map of southwest Montana exhibiting location of basement exposures colored by terrane and 
position of Giletti’s Line. The study area, the Ruby Range, is bounded by a red box. Modified from 
Mogk et al. (1992). 
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Sky orogeny (Harms et al., 2004). 
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 A pre-Big Sky orogeny tectonothermal event has additionally been identified throughout the 

MMT. Kellogg et al. (2003) conducted U-Pb TIMS analyses on zircons from a series of high-grade 

felsic gneisses in the Tendoy and Beaverhead Mountains of southwestern Montana which are located 

approximately 50 miles south of the Ruby Range. The study yielded Paleoproterozoic ages of 2.45 Ga 

from three separate localities in the region, which have been interpreted to represent the age of granitic 

plutonism, metamorphism, and crustal consolidation in southwest Montana (Kellogg et al., 2003). 

Similar 2.45 Ga ages have also been observed in garnet and monazite from a quartz-feldspar-biotite 

gneiss in the Tobacco Root Mountains to the north of the Ruby Range (Dahl et al., 2002; Roberts et al., 

2002b). Similar 2.45 Ga ages were subsequently identified within in two major units from the Ruby 

Range by Jones (2008) as evidenced by metamorphic overgrowths of monazite in addition to zircon 

cores.  The identification of 2.45 Ga ages in the Ruby Range in addition to several adjacent Laramide 

uplifts in southwestern Montana suggest that the Paleoproterozoic metamorphism of the MMT was 

widespread (Jones, 2008). 

 

2.2. Ruby Range 

The Ruby Range is located along the northwestern margin of the Wyoming Province, and is one 

of several metamorphic blocks that was uplifted during the Laramide orogeny. William Heinrich and 

J.C. Rabbitt were the first to conduct an in-depth study of the geology of the Ruby Range in the late 

1940’s and 1950’s. These workers determined that the Ruby Range is comprised of lesser amounts of 

diabase dikes, peridotite intrusives, aplites, pegmatites, and quartz veins, and is dominated by three 

primary suites. These units were subsequently named the pre-Cherry Creek rocks, the Cherry Creek 

Group, and the Dillon Granite Gneiss (Heinrich, 1960). Garihan (1973) also used these three unit 

subdivisions for his mapping work in the Ruby Range during the 1970’s and early 1980’s. In the 1990’s, 
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Harold James proposed a new nomenclature based on new stratigraphic interpretations. He termed the 

units, from youngest to oldest, the Christensen Ranch Metasedimentary Suite (CRMS), the Dillon 

quartzofeldspathic gneiss (DQFG), and the older gneiss and schist (OGS). For this study, we will also be 

using the CRMS, however we have decided to rename the DQFG the Dillon Gneiss (DG) and the OGS 

the Elk Gulch Suite (EGS) based on its type locality identified within the Ruby Range (Figure 3).  

 The CRMS is a complex sequence of metasedimentary and intercalated volcanic rock that occurs 

along the western flank of the Ruby Range. The sequence incudes an abundance of calcitic and 

dolomitic marbles, calc-silicate, amphibolite, quartzite, pelitic schist and gneiss, garnet leucogneiss, and 

mylonitic garnet leucogneiss, in addition to minor amounts of metaconglomerate, anthophyllite-gedrite 

rocks, and banded iron formation. The Dillon Gneiss comprises the spine of the range, and is dominated 

by quartzofeldspathic gneiss, granitic gneiss, pelitic gneiss, amphibolite, lesser amounts of both garnet 

leucogneiss and mylonitic garnet leucogneiss, and minor dolomitic and calcitic marble. The protolith of 

the Dillon Gneiss is ambiguous in nature, and the unit has been interpreted as having both sedimentary 

and igneous origins (Jones, 2008). The EGS is the structurally deepest unit within the range, and is 

primarily composed of biotite gneiss, augen gneiss, pelitic gneiss, migmatite, hornblende gneiss, 

amphibolite and minor gedrite gneisses. The lack of marble and iron formation within the EGS is a 

defining characteristic of the unit that distinguishes it from the CRMS. Additionally, pods of meta-

ultramafic rocks, ranging from ~1 m to hundreds of meters in length are present throughout all of the 

basement units in the Ruby Range (Desmarais, 1981). 

 Metamorphism in the Ruby Range was first believed to have occurred at 2.75 Ga based on Rb-Sr 

whole-rock dating from a suite of quartzofeldspathic gneisses (James and Hedge, 1980). Ten years later, 

James (1990) proposed two separate periods of metamorphism, an upper amphibolite facies event at 
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Figure 3. Simplified schematic diagram of the Ruby Range showing the divisions between the Christensen Ranch Metasedimentary 
Suite, the Dillon Gneiss, and the Elk Gulch Suite. Black box outlines the location of the Mine Gulch 7.5’ quadrangle.
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2.75 Ga and a second 1.65 Ga event related to retrograde metamorphism associated with regional 

thermal resetting as first proposed by Giletti (Giletti, 1966; James, 1990b). 

More recently, monazite and zircon geochronology have identified three distinct age populations 

within the Ruby Range which includes an igneous population at 2.77 Ga and two metamorphic 

populations at 2.45 Ga and 1.78 Ga (Roberts et al., 2002; Dahl et al., 2002; Kellogg et al., 2003; Harms 

et al., 2004; Brady, et al., 2004; Jones, 2008; Mueller et al., 2012; Alcock et al., 2013) (Table 1). The 

2.77 Ga event represents the intrusive age of the Dillon Gneiss (DG) based on isotopic dating (Jones, 

2008). Jones additionally proposed two possible protoliths for the DG: either the DG was formed from 

arkosic sediments derived from the Beartooth arc terrane, or that the DG originated as a volcanic ash 

deposit associated with the 2.78 Ga Beartooth arc (Jones, 2008). Two metamorphic age populations 

were further supported by work conducted by Cramer (2015), which confirmed that monazite grew 

during two distinct phases between 1.79-1.72 Ga and 2.52-2.45 Ga. The 2.45 Ga and 1.78 Ga ages, 

respectively, correspond to the aforementioned cryptic 2.45 Ga crustal melting and metamorphic event 

and Big Sky orogeny which affected the entirety of the MMT. 

Dahl (1979, 1980) was the first to determine P-T constraints for peak metamorphic conditions in 

the Ruby Range from two localities; Kelly Creek situated in the northwestern corner of the range and 

Carter Creek located along the western flank. The study utilized garnet-pyroxene geothermometry on a 

series of amphibolites, mafic granulites, metapelites, dolomitic marbles, and metamorphosed iron 

formation, and yielded peak P-T conditions of 724 ± 50 °C and 7.2 ± 1.2 kbar from the Kelly Creek 

locality and 675 ± 45 °C and 6.2 ± 1.2 from the Carter Creek locality (Dahl, 1980).A few years later, 

Desmarais (1981) conducted additional P-T work on ultramafic rocks from the range and yielded similar 

conditions of 710 °C and 5-7 kbar. In 2015, Hamelin conducted P-T work from a transect of metapelites 

within the CRMS, and estimated peak metamorphic temperatures during the Big Sky orogeny to be 
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Table 1.  
 
Summary of previously reported ages of Ruby Range monazite and zircon geochronology. EMPA and LA-ICPMS ages are reported with 2s 
errors, whereas SHRIMP ages are 1s errors.  
 

Unit Rock Type Mineral 
Dated 

Big Sky orogeny 
(Ma) 

Tendoy orogeny  
(Ma) 

Igneous 
age (Ma) Dating Method Reference 

CRMS metapelitic schist monazite 1779 ± 10   EMPA U-Th-Pb Jones (2008) 

CRMS metapelitic schist monazite 1814 ± 15   EMPA U-Th-Pb Jones (2008) 

CRMS orthoamphibolite monazite 1747 ± 6   LASS ICP-MS Cramer (2015) 

CRMS metapelitic gneiss monazite 1764 ± 6   LASS ICP-MS Cramer (2015) 

DG migmatitic gneiss zircon 1781 ± 7 2471 ± 20 2772 ± 7 SHRIMP 207Pb/206Pb Jones (2008) 

DG migmatitic gneiss zircon   2772 ± 11 SHRIMP 207Pb/206Pb Jones (2008) 

DG migmatitic gneiss monazite 1784 ± 54 2468 ± 11  SHRIMP 207Pb/206Pb Jones (2008) 

DG migmatitic gneiss monazite  2404 ± 21  EMPA U-Th-Pb Jones (2008) 

DG migmatitic gneiss monazite  2444 ± 21  EMPA U-Th-Pb Jones (2008) 

EGS quartzofeldspathic 
gneiss zircon  2523 ± 14 2762 ± 37 SHRIMP 207Pb/206Pb Jones (2008) 

EGS quartzofeldspathic 
gneiss zircon  2437 ± 47  SHRIMP 207Pb/206Pb Jones (2008) 

EGS migmatitic gneiss monazite 1769 ± 11   LASS ICP-MS Cramer (2015) 

EGS orthoamphibolite monazite 1758 ± 4   LASS ICP-MS Cramer (2015) 

EGS metapelitic gneiss monazite 1748 ± 3 2471 ± 13  LASS ICP-MS Cramer (2015) 

EGS metapelitic gneiss monazite 1753 ± 6 2489 ± 8  LASS ICP-MS Cramer (2015) 

EGS metapelitic gneiss monazite 1752 ± 6 2480 ± 7   LASS ICP-MS Cramer (2015) 



 12 

Table 2.  

Summary of previous P-T work completed by Hamelin (2015) and Cramer (2015). 

Sample Rock Type Peak Mineral Assemblage (+qtz) Peak P-T Conditions Reference 

14-CH-1 grt-bt-sill schist grt + bt + sill + plag + ksp + melt ~780 °C, ~9 kbar Hamelin (2015) 

14-CH-4 grt-bt-sill schist grt + bt + sill + plag + ilm + melt ~700 °C, ~6.8 kbar Hamelin (2015) 

14-CH-5a grt-bt-sill schist grt + bt + sill + plg + H2O  + melt ~700 °C, ~6.4 kbar Hamelin (2015) 

14-CH-9b grt-bt-sill schist grt + bt + sill + plag + ksp + ilm + melt ~775 °C, ~8.6 kbar Hamelin (2015) 

14-CH-11a grt-bt-sill schist grt + bt + sil + plag + ksp + ilm + melt ~780 °C, ~9.1 kbar Hamelin (2015) 

SC13-6 grt-sill gneiss grt + bt + sill + plag + ksp + ilm + melt 740-770 °C, 5.7-8.5 kbar Cramer (2015) 

EG13-4 migmatitic gneiss grt + bt + sil + plag + ksp + ilm + ru + melt 770-800 °C, 8.1-9.6 kbar Cramer (2015) 

EG13-5 grt-ged-crd gneiss grt + bt + ged + ilm + rt 710-770 °C, 8-11 kbar Cramer (2015) 

SW13-4 grt-sil-crd gneiss grt + bt + sil + plag + ilm + ru + melt 725-830 °C, 7.7-9.6 kbar Cramer (2015) 
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~800 °C and ~9 kbar followed by subsequent decompression and cooling (Hamelin, 2015) (Table 2). 

The most recent P-T work was carried out by Cramer (2015) (Table 2) who examined three specific 

localities: the Stone Creek locality to the northwest of the quadrangle, the Elk Gulch locality to the 

south, and the Sweetwater Creek locality to the southeast (Cramer, 2015). At the Stone Creek locality, 

peak P-T conditions during the Big Sky orogeny were estimated to be ~6.5 kbar and 760 °C followed by 

slight decompression and cooling to ~6 kbar and 680 °C. Both the Sweetwater Creek and Elk Gulch 

localities were interpreted to have reached peak metamorphic conditions of ~9 kbar and 780 °C.  

 

3. Field relationships 

This study focuses on the three primary units found within the Mine Gulch quadrangle: the 

CRMS, the DG, and the EGS. 

 The CRMS is the structurally highest of the three primary units within the Ruby Range. The 

CRMS lies along the western flank of the range, and is present in the northwestern corner of the Mine 

Gulch quadrangle (Figure 3). The suite is dominated by quartzite, dolomitic and calcitic marble, 

amphibolite, and undifferentiated metapelitic rocks. Minor lithologies include calc-silicate gneiss, garnet 

leucogneiss, mylonitic garnet leucogneiss, gedrite-anthophyllite schist, metamorphosed iron formation, 

meta-ultramafic rocks, and pegmatite (Figure 4). Thicknesses of individual beds vary from only a few 

centimeters up to several hundreds of meters thick, with an estimated total thickness of ~2,000 meters 

(James, 1990b). In the study area, the fabric of the CRMS is predominantly NE-striking with moderate 

to steep NW-dipping foliation expressed as both lithologic layering in addition to isoclinal fold axes.  

 The DG comprises the core of the Ruby Range and is the most prevalent unit within the region 

by volume. It lies below the CRMS, however it is structurally concordant with all adjoining rock units in 
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Figure 4. Field photographs of selected lithologies from 
the Christensen Ranch Metasedimentary Suite. A) 
Photograph of marble outcrop. B) Photograph of pelitic 
gneiss. C) Photograph of amphibolite gneiss. D) 
Photograph of quartzite.   

A. B. 

C. 

D. 
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the region (James, 1990b). The dominant lithology within the DG is massive to well-foliated, medium to 

coarse-grained, white to gray quartzofeldspathic gneiss, however many variations of this characteristic 

rock type have been observed (Figure 5). In places, the DG appears to be more granitic in composition 

with greater abundance of K-feldspar which gives the rock a characteristically reddish-brown color. 

Additionally, the DG often grades into a more strongly banded gneiss with a greater abundance of 

darker minerals including biotite, garnet, and occasionally hornblende. Within these primary lithologies, 

separate bodies of amphibolite and narrow ribbons of infolded marble are abundantly present, in 

addition to pods of meta-ultramafic material and pelitic gneisses. The fabric of the DG within the Mine 

Gulch Quadrangle is indistinguishable from that of the CRMS: NE-striking with moderate to steep NW-

dipping foliation. The unit also contains northeast trending, shallowly dipping regional lineations.  

 In the Ruby Range, the EGS is the most volumetrically minor unit as well as the structurally 

lowest of the three main suites. The suite primarily crops out within the south-central portion of the 

range, but also occurs less abundantly on the eastern flank of the range, east of the map area (James, 

1990b). While the EGS is generally similar in lithology throughout the Ruby Range, minor variations 

can be observed at different localities in the region (Figure 6), which are as follows: the Elk Gulch 

locality in the southern portion of the Ruby Range, the Sweetwater and Cottonwood Creek localities to 

the south and east of the Mine Gulch quadrangle, respectively, and the region of the EGS in the 

southwestern portion of the Mine gulch quadrangle. In the Elk Gulch area, the locality after which the 

suite has been renamed, the unit is comprised of garnet-sillimanite bearing migmatitic gneiss, garnet 

bearing granitic gneiss, minor garnet amphibolite, garnet-gedrite gneiss, and meta-ultramafic rock 

(Cramer, 2015). Fabric in this region is dominated by a NE-striking and moderately NW-dipping 

foliation expressed as lithologic layering and through the orientation of fold axes (Cramer, 2015). 

Additionally, lineations in the Elk Gulch locality are N trending with a moderate plunge. In the 
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Figure 5. Field photographs of different varieties of 
quartzofeldspathic gneiss from the Dillon Gneiss. The 
variation in pink coloration correlates to the proportion 
of K-feldspar present in the outcrop.  
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Figure 6. Field photographs of various outcrops 
from the EGS located in the southwestern corner 
of the map area. In this region, the EGS is 
comprised primarily of garnet-sillimanite 
migmatitic gneiss, garnet bearing granitic gneiss, 
amphibolite and garnet amphibolite, and meta-
ultramafic rock.  
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Sweetwater and Cottonwood Creek areas, the unit is also comprised of garnet amphibolite and meta-

ultramafic rock, but differences arise based on the presence of garnet-bearing migmatitic gneiss, granitic 

gneiss, garnetiferous quartzofeldspathic gneiss, garnet-sillimanite ± cordierite gneiss, and garnet 

leucogneiss (Cramer, 2015). The fabric of these areas are generally dominated by a NE-striking and 

moderate to steeply dipping SE foliation, also expressed as lithologic layering and through the 

orientation of fold axes (Cramer, 2015). Lineations are primarily NE trending with a shallow plunge. 

The EGS in the southwestern corner is more similar to the Elk Gulch locality than the Sweetwater and 

Cottonwood Creek localities, but does not contain garnet-gedrite gneiss and has greater quantities of 

amphibolite. In this area the foliation is primarily NE-striking and dips steeply to the NW, with 

lineations that trend towards the NE with moderate plunges (James, 1990a). 

 

4. Methods 

4.1. Field work and mapping 

Mapping of the 1:24,000 Mine Gulch USGS 7.5’ quadrangle was completed during the summer 

of 2017. The mapping of the quadrangle is part of a collaborative effort between the Montana Bureau of 

Mines and Geology and the United States Geological Survey’s EDMAP program. In accordance with 

this program, the finished map will be published by the Montana Bureau of Mines and Geology as an 

open file report.  

 In the field, the locations of each outcrop encountered were recorded as GPS waypoints using the 

Gaia GPS iPhone application (https://www.gaiagps.com/). Each waypoint was labeled and assigned a 

unique color of symbol according to its specific lithology, which allowed for real time visualization of 

the spatial distribution of the various lithologic suites observed within the map area. The waypoints were 

then ultimately used to help make inferences regarding the placement of stratigraphic packages, contacts 
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between lithologies, and fault traces in order to construct a complete geologic map of the Mine Gulch 

USGS 7.5’ quadrangle. Previously published maps by James (1990) and Garihan (1979) and their 

corresponding line and plate data were used to help supplement areas of the map that were not visited 

during the summer of 2017. ArcGIS was used to digitize the map for final submission, which will ensure 

the accuracy of the location of contacts between different lithologies as well as the placement of 

structural symbols.  

 In addition to the mapping of the Mine Gulch quadrangle, a total of 55 samples were collected 

from various structural levels within the map area during the summer of 2017. An emphasis was placed 

on the collection of metapelitic samples from each of the three major stratigraphic packages in the Ruby 

Range to be used for bulk rock geochemical analyses and P-T phase equilibria modeling.  

 

4.2. Petrography 

A total of 59 thin sections were prepared by Spectrum Petrographics from 46 samples collected 

during the summer of 2017 in addition to 13 samples that were previously collected during the summer 

of 2014. Twenty-eight of these thin sections were fashioned from different varieties of 

quartzofeldspathic gneiss, ultramafic rock, dolomitic and calcitic marbles, calc-silicate rock, mylonitic 

garnet leucogneiss, mylonitic garnet leucogneiss, mylonitized quartzite, and metaconglomerate in order 

to have additional representative thin sections of major units found within the Mine Gulch quadrangle. 

The remaining 31 thin sections were from metapelitic samples which were used to determine the best 

candidates for P-T phase equilibria modeling based on their peak assemblages and degree of alteration.  

 Samples were examined with a petrographic microscope. Thin section analysis was additionally 

supported by backscattered electron (BSE) images and energy dispersive X-ray spectroscopy (EDS) 

compositional maps obtained using the Tescan Vega-3 LM Scanning Electron Microscope (SEM) 
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equipped with an Oxford Instruments 80mm2 X-Max SDD energy-dispersive analytical system housed 

in the Department of Geosciences at the University of Montana.  

 

4.3. Bulk rock chemistry 

Thirteen samples were selected for bulk rock geochemical analyses based on their peak mineral  

assemblages and stratigraphic position within the map area. Representative samples were trimmed from 

hand samples to remove weathered surfaces and to provide a homogeneous piece of rock for analysis. 

Samples were sent to Bureau Veritas, Vancouver, Canada to be processed and analyzed. Samples were 

then crushed, split, pulverized to 85% passing 150 µm mesh (PRP90-1KG) and analyzed by ICP-ES 

lithium borate fusion for major oxides which include: SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, 

P2O5, MnO, and Cr2O3 (LF300) (http://acmelab.com/pdfs/BVM_2017%20Fee%20Schedule.pdf for 

procedure and preparation references and details). The bulk chemistry for sample SW13-2, however, 

was measured off of its thin section using the EDS at the University of Montana. Bulk rock 

compositions can be found in tables 3 and 4. 

 

4.4. Mineral chemistry 

Mineral compositions were determined by calibrating the EDS to a range of natural mineral 

standards and were conducted in situ on polished thin sections. For garnet porphryoblasts, elemental X-

ray compositional maps revealed chemical zonation which was used to guide the placement of spot 

analyses (Figure 7). All quantitative point analyses were performed at an accelerating voltage of 20 kV, 

a working distance of 15 mm, and a beam current of 2nA measured using a Faraday cup located on the 

sample holder with a live count time of 120 seconds. Results of mineral chemistry analyses can be found 

in tables 5 through 9.  
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Table 3.  

Unnormalized, raw bulk rock compositions reported in weight% oxide. Sample SW13-2 is reported as 
normalized because its bulk chemistry was measured using SEM-EDS analysis off the thin section. 
 

 
 
                   Table 4.  
 
                   Normalized bulk rock compositions for THERMOCALC calculations reported 
                   in mol% oxide. 
 

Sample SiO2 Al2O3 FeO MgO CaO Na2O K2O TiO2 O Value 
17-SS-8 64.37 15.09 8.87 6.90 0.50 1.18 2.47 0.63 0.15 
17-SS-17 65.65 9.83 7.91 4.11 1.96 3.35 1.97 0.78 0.14 
14-CH-9a 79.96 5.16 4.01 4.45 0.87 1.20 1.02 0.44 0.15 
14-RG-01b 54.74 22.75 6.72 5.52 3.66 2.62 0.45 3.53 0.15 
SC13-7 57.02 13.14 5.85 4.20 2.70 1.69 1.12 1.17 0.15 
SW13-2 73.97 5.88 9.83 6.55 0.57 0.00 2.22 0.99 0.15 

 
 
 
 
 
 
 
  

Sample SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 
17-SS-8 55.11 21.92 10.09 9.08 3.96 0.40 1.04 3.31 0.72 0.08 0.10 0.030 
17-SS-17 61.72 15.69 9.88 8.89 2.59 1.72 3.25 2.90 0.97 0.15 0.21 0.015 
14-CH-9a 78.23 8.57 5.22 4.70 2.92 0.79 1.21 1.56 0.57 0.11 0.09 0.010 
14-RG-01b 46.14 32.54 7.53 6.78 3.12 2.88 2.28 0.60 3.95 0.06 0.04 0.050 
SC13-7 57.58 22.51 - 7.07 2.85 2.55 1.76 1.77 1.57 0.11 0.09 - 
SW13-2* 69.75 9.41 - 11.08 4.14 0.50 0.01 3.28 1.24 0.60 0.01 - 

             
*normalized             
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Figure 7. Examples of how elemental X-ray compositional maps of garnet revealed chemical zonation which 
was used to guide the placement of spot analyses for collecting mineral chemistry. A) Elemental map of Ca 
from a garnet from sample 17-SS-17. B) BSE image of the same garnet from 17-SS-17 depicting where spot 
analyses were placed (red stars) based on zonation patterns. A transect was made across the garnet in order to 
capture the transition of chemistry from the rim, to the core, and back to the rim. C) Elemental map of Mg from 
a garnet from sample SC13-7. D) BSE image of the same garnet from SC13-7 depicting placement of spot 
analyses. A similar rim-core-rim transect was made across the garnet.

A. B. 

C. 

B. 
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4.5. Thermodynamic modeling 

Pressure-temperature conditions for sillimanite-bearing metapelites were calculated for sample 

14-CH-9a, SC13-7, 17-SS-17, SW13-2, RG-01b, and 17-SS-8 using the average P-T method of Powell 

& Holland (1994). Calculations were made using THERMOCALC v. 3.37 (Powell et al., 1998), and the  

internally consistent thermodynamic dataset 6.2 of Holland & Powell (2011). Calculations were 

undertaken in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2 (NCKFMASHTO) chemical 

system. Mn was excluded because models for Mn-bearing endmembers for metapelitic minerals were 

originally calibrated from ideal-mixing models which are inconsistent with the non-ideal models used 

here (White et al., 2007). The activity composition (a-X) relationships used for phases involved in the 

pelite modeling include: garnet, biotite, staurolite, cordierite, chlorite, muscovite, paragonite, 

orthopyroxene, and silicate melt (White et al., 2014); plagioclase and K-feldspar (Holland and Powell, 

2003); and ilmenite (White et al., 2000, 2014). The phases and phase abbreviations included in the 

modeling are (biotite (bi), chlorite (chl), cordierite (cd), garnet (g), ilmenite (ilm), K-feldspar (ksp), 

muscovite (mu), orthopyroxene (opx), paragonite (pa), plagioclase (pl), quartz (q), rutile (ru), silicate 

melt (liq), sillimanite/kyanite/andalusite (sill/ky/and), and staurolite (st).  

 Pseudosections were constructed from major element compositions based on ICP-ES whole rock 

geochemical analysis, except for sample SW13-2 whose bulk chemistry was measured from its thin 

section, as noted above. T-XH2O diagrams were used to estimate XH2O values which produces H2O 

saturation at the solidus for each sample. In most cases, however, sub-solidus calculations were carried 

out using an XH2O value of 50 to ensure complete saturation. T-XO2 diagrams were additionally 

constructed in order to estimate the amount of ferric iron in the bulk composition of each sample. In 

terms of input into the script file, THERMOCALC deals with Fe2O3 as FeO and O (Diener and Powell, 

2010). FeO is easily attainable seeing that it is either directly reported in the bulk chemistry results or 



 24 

alternatively requires a simple calculation to convert from Fe2O3 (Fe2O3 value * 0.8998). This leaves 

estimating the amount of O, or ferric iron, which is strongly influenced by the oxide phases present in 

the sample (Diener and Powell, 2010). In all of the samples from this study which were modeled for P-T 

estimates, the most common oxide phases present are rutile and ilmenite, which indicates more reduced 

conditions (Diener and Powell, 2010). Therefore, for example, O values for 5 out of the 6 modeled 

samples were 0.15, and the remaining sample used an O value of 0.14.  

 

5. Mapping results 

Mapping of the Mine Gulch quadrangle associated with this study has produced two key 

observations which differ significantly from previously published maps of the region. The first primary 

distinction is how amphibolite bodies are mapped in the southern portion of the map area as part of the 

DG. In the map produced by James (1990), amphibolite in this portion of the quadrangle was mapped as 

very large, thick bodies. However, it has been determined that amphibolite in this area can be mapped at 

a much higher resolution by separating out the layers into thin, continuous beds that span the width of 

the quadrangle.  

 The second major finding is the separation of the garnet leucogneiss (GL) into its own distinct 

lithologic unit. The GL is a white, fine- to medium-grained garnet leucogneiss which is locally mylonitic 

(Figure 8). Outcrops of the mylonitic variety are distinguished by the presence of quartz ribbons and 

alkali feldspar augen (Figure 8). Previously, this unit has been mapped as part of the DG, however its 

leucocratic nature distinguishes it significantly from that of the nature of the other lithologies identified 

within the DG. This is significant because the unit implies that a widespread melting and metamorphic 

event occurred in the region. Not only has the GL been identified as intruding into the DG, but the unit 

also intrudes into the CRMS and the EGS throughout the entirety of the Ruby Range.  
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A. B. 

2 cm

C. 
Figure 8. Field photographs and slabbed face 
images of the garnet leucogneiss (GL). A & B) 
Field photographs of GL outcrops. All outcrops 
encountered are generally very white in color 
due to the presence of plagioclase and quartz 
and are speckled with garnet porphryoblasts. 
The outcrop in image B is slightly more 
mylonitic than the outcrop in image A. C) 
Slabbed face image of mylonitic GL with 
prominent quartz ribbons. 
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New, additional foliation measurements have shown that all three of the primary units within the 

Mine Gulch quadrangle are very closely structurally related. An equal area stereogram from the CRMS 

show that poles to foliation define an average pole with a plunge 38° and a trend of 128°, and a 

stereogram from the DG show that poles to foliation define an average pole also with a plunge of 38° 

and a trend of 159° (Figure 9). This implies that all units exhibit evidence of an intertwined 

metamorphic history.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Equal area stereogram (lower-hemisphere projection) showing the poles to foliation measured 
from A) all units within the CRMS and adjacent quartzofeldspathic gneiss of the DG in the northwestern 
portion of the map area. Poles to foliation define an average pole that plunges 38° with a trend of 128°. 
B) Stereogram showing the poles to foliation measured from the DG in the southwestern portion of the 
map area west of the basalt flow. Poles to foliation define an average pole that plunges 38° with a trend 
of 159°.  
 
 
6. Petrography 

Three pelites from the CRMS, one pelite from the DG, and two pelites from the EGS were 

selected for petrographic modeling. Samples were selected based on the presence of ideal metamorphic 

mineral assemblages and textures suitable for P-T modeling in addition to a broad geographic 

distribution across the study area (Table 5). Additionally, samples were also carefully chosen to 
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Table 5.  

Sample location, sample mineralogy, and inferred peak assemblages.  

Sample Unit Rock Type GPS Coordinates Mineralogy Peak assemblage 
      UTM Zone 12 

Grt Sil Crd Bt Ms St Ksp Pl Qtz Rt Ilm Ap Mag Mnz Zrn 
  

17-SS-8 CRMS garnet-biotite-
sillimanite 
schist 

393063E 5009670N x x 
 

x T T 
 

x x x x x 
 

x x 
Grt + Sil + Bt + Pl 

+ Qtz + melt 

14-CH-9a CRMS garnet-biotite-
sillimanite 
schist 

392187E 5008448N x x 
 

x 
   

x x x 
 

x 
 

x x 
Grt + Sil + Bt + Pl 

+ Ilm + melt 

17-SS-17 CRMS garnet-biotite-
sillimanite 
migmatitic 
gneiss 

391958E 5004480N x x 
 

x 
  

x x x x x x x x x 
Grt + Sil + Bt + 
Ksp + Pl + Ilm + 

melt 

14-RG-01b DG garnet-biotite-
sillimanite 
migmatitic 
gneiss 

396655E 5010941N x x R x 
   

x x x x x x x x 
Grt + Sil + Bt + Pl 

+ Ru + melt 

SC13-7 EGS garnet-biotite-
sillimanite 
gneiss 

393849E 5007201N x x R x 
  

x x x x x x 
 

x x Grt + Sil + Bt + 
Ksp + Pl + Ilm + 

Ru + melt 
SW13-2 EGS garnet-biotite-

sillimanite 
schist 

392149E 4997788N x x   x         x x x x x x x 
Grt + Sil + Bt + Ilm 

+ Ru + H2O 

 

a CRMS  = Christensen Ranch metasedimentary suite, DG = Dillon Gneiss, EGS = older Elk Gulch Suite. 
 
b R = retrograde, S = sericitization, T = trace amount. Mineral abbreviations after Kretz (1983) and Evans (2010)
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complement previously collected geochronology data. All samples are metapelitic, garnet-biotite-

sillimanite bearing schists and gneisses ± cordierite. 

Partial melting produces large quantities of granitic melt in the Earth’s crust which crystallizes in 

the rock to form leucosome. Leucosome is primarily composed of quartz, plagioclase feldspar, K-

feldspar, and other minor components. The remainder, or the leftover from which the melts were 

extracted, is termed restite, and is generally comprised of more mafic minerals. In metapelites this is 

expressed as compositional layering of felsic phases (quartz, plagioclase and/or K-feldspar, sometimes 

sillimanite) vs. mafic phases (biotite, garnet, sillimanite). This layering can be observed at both the 

outcrop scale, in hand sample, and in thin section. The samples in this study exhibit varying degrees of 

migmitization, ranging from almost no evidence of migmitization in some schists to fully segregated 

melt bands in gneisses.  

 

6.1. Sample 17-SS-8 

Sample 17-SS-8 is a coarse garnet-biotite-sillimanite schist collected from the middle CRMS  

located in the northwestern corner of the Mine Gulch quadrangle on the western flank of the range 

(Figure 10). The exposure is approximately ~5-10 m thick and occurs as an isolated outcrop located on 

the northern flank of a shallow gully.  

 The observed mineral assemblage in this sample is characterized by medium- to coarse-grained 

garnet, sillimanite, biotite, plagioclase, and quartz; minor traces of muscovite, staurolite, rutile, 

magnetite, and apatite; additional secondary chlorite and accessory tourmaline (Figure 11c). Subhedral 

garnet occurs as 3-8 mm, highly fractured and weathered porphryoblasts with inclusions of quartz, 

biotite, sillimanite, plagioclase, apatite, staurolite, monazite, zircon, and rutile (Figure 11a). All 

inclusions exhibit a random orientation, which suggests that garnet growth initiated prior to deformation. 



 29 

 

Figure 10. Simplified geologic map of the Ruby Range showing locations of each sample chosen for 
petrographic modeling.   
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Figure 11. Photomicrograph, backscattered electron (BSE), and energy dispersive x-ray spectrometry (EDS) 
images from sample 17-SS-8. A) BSE image of representative garnet from the sample which exhibits the highly 
fractured and weathered nature of the grains. B) XPL image of melt region within thin section. Defined by 
“pods” of quartz and plagioclase, which is often sericitized. Such regions of melt occur commonly throughout 
the sample. C) Full section EDS scan of sample 17-SS-8. Garnet is orange, quartz is blue, plagioclase is purple, 
sillimanite is red, and green/red regions are biotite with secondary chlorite alteration. Areas of melt are 
represented by “pods” of plagioclase and quartz in purple and blue, respectively.

A. B. 

C. 
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Biotite and sillimanite define the foliation of the sample and often wrap garnet, commonly forming tails 

around strain shadows. Approximately 75% of biotite in the sample has been altered to chlorite, which 

occurred as a result of retrograde metamorphism. Sillimanite occurs within the matrix as well as 

inclusions in garnet as prismatic aggregates, comprising ~20% of the total rock by volume. 

Occasionally, sillimanite occurs as elongated, bladed needles. Melt is inferred from the presence of ~5-8 

mm x ~2-5 mm pods of plagioclase, which is often sericitized, and quartz visible at both the outcrop and 

thin section scale (Figure 11b). Oxide phases are relatively uncommon within the sample; only a few 

rutile and magnetite grains were identified within the matrix. However, a handful of magnetite grains 

were identified as inclusions within garnet. Monazite and zircon primarily occur within the matrix of the 

sample, although one or two grains of each mineral were identified as inclusions within garnet. Apatite 

occurs as inclusions within garnet but more commonly within the matrix of the rock, reaching lengths of 

0.7 mm. Muscovite is also present in the sample in trace amounts; grains were recognized near the edge 

of one of the garnet porphryoblasts and in the matrix. A single 1 mm tourmaline grain was identified at 

the edge of a garnet grain by its olive-green pleochroism in plane-polarized light and uniaxial negative 

optical sign. Staurolite occurs as 0.1-0.5 mm inclusions within garnet and is not found within the matrix 

of the sample. Based on these observations, the peak metamorphic assemblage is interpreted as garnet + 

sillimanite + biotite + plagioclase + melt.  

 

6.2. Sample 14-CH-9a 

Sample 14-CH-9a is a medium- to coarse-grained garnet-biotite-sillimanite schist collected from  

the middle CRMS located on the south-facing slope of a ridge just north of Stone Creek Road (Figure 

10). The outcrop was approximately 50 cm thick, and is bound above and below by biotite banded 

gneiss.  
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 The observed mineral assemblage in 14-CH-9a is characterized by medium-grained garnet, 

biotite, plagioclase, and quartz with minor amounts of sillimanite, apatite, rutile, monazite, and zircon 

(Figure 12c). Subhedral to anhedral garnet occurs as 0.8-2.5 mm porphryoblasts and porphryoblast 

clusters with inclusions of quartz, biotite, apatite, monazite, zircon, and rutile (Figure 12a). All 

inclusions exhibit a random orientation, suggesting that garnet growth initiated prior to deformation. 

Quartz is the dominant phase in the sample, comprising almost 70% of the thin section by volume, 

followed by plagioclase (15%) and biotite (10%). The foliation in this sample is relatively weak 

compared to other samples in the study but is defined primarily by biotite and sillimanite. Sillimanite 

occurs exclusively within the matrix of the sample as primarily prismatic needles but also as rectangular 

crystals, comprising only 1-2% of the total rock by volume. Melt is inferred by bands/regions of 

plagioclase and quartz (Figure 12b). Rutile is the only phase identified within the sample, occurring both 

in the matrix and as inclusions in garnet ranging from 28 µm to ~1.8 mm in diameter. Both monazite 

and zircon occur in the matrix as well as inclusions within garnet, where zircon tends to be substantially 

smaller than monazite but more abundant. Apatite also occurs in both the matrix and as inclusions in 

garnet, and ranges from 0.15-0.4 mm in diameter.  

 

6.3. Sample 17-SS-17 

Sample 17-SS-17 is a garnet-biotite-sillimanite migmatitic gneiss collected from the base of the  

CRMS located along the westernmost edge of the Mine Gulch quadrangle (Figure 10). The exposure 

exhibits significant signs of weathering and occurs adjacent to a remote ~10 m thick lens of calcitic 

marble.  

 The observed mineral assemblage in this sample is characterized by fine- to medium-grained 

garnet, biotite, sillimanite, plagioclase, K-feldspar, and quartz; minor amounts of rutile, ilmenite, 
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Figure 12. BSE and EDS images from sample 14-CH-9a. A) BSE image of example garnet porphryoblast 
cluster exhibiting anhedral – subhedral shape and random inclusion pattern. B) BSE image of characteristic 
texture within the sample. Quartz is the dominant phase in the matrix, and the foliation is defined by the 
alignment of biotite. C) Full section EDS scan of sample 14-CH-9a. Garnet is orange, quartz is blue, plagioclase 
is purple, biotite is green, and sillimanite is red. The bottom half of the thin section image is representative of a 
melt band based on the higher percentage of plagioclase present in conjunction with quartz.

A. B.
. 

C. 
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magnetite, apatite, monazite, and zircon; trace amounts of tourmaline and baryte (Figure 13c). Euhedral 

to anhedral garnet occurs as ~1.5-3.5 mm inclusion rich porphryoblasts (Figure 13a). Inclusions in 

garnet include quartz, biotite, plagioclase, monazite, zircon, apatite, sillimanite, rutile, and magnetite. 

Inclusion trails within the cores of garnet located in the neosome reveal synkinematic rotation during 

deformation. Inclusions within garnet in the paleosome display a random orientation suggesting that 

garnet growth initiated prior to deformation. The foliation is defined by the alignment of biotite and 

sillimanite, which slightly wrap only a fraction of garnet porphryoblasts in the sample (Figure 13b). 

Sillimanite tends to occur as prismatic crystals which form in narrow yet distinct, discontinuous bands 

across the sample. Biotite is prevalent throughout the entirety of the sample but exhibits a coarser 

texture within the neosome as opposed to the paleosome, comprising ~20% of the sample by volume. 

Both plagioclase (~20% of sample by volume) and K-feldspar (~8% of sample by volume) occur 

throughout the sample as discrete grains, however K-feldspar is more prevalent and coarser grained 

within the neosome. Rutile is the most abundant oxide phase identified within the sample and is found as 

inclusions within garnet but more commonly within the matrix reaching lengths of ~0.5 mm. Ilmenite is 

only slightly less common within the sample, and occurs primarily in the matrix but also as inclusions 

within garnet, reaching maximum lengths of ~0.9 mm. Scarce magnetite grains have also been identified 

within the sample, occurring in both the matrix and as inclusions within garnet. The remainder of 

accessory phases, monazite, zircon, apatite, and trace amounts of tourmaline additionally occur as 

inclusions within garnet and within the matrix of the sample.  

 

6.4. Sample SC13-7 

Sample SC13-7 is a garnet-biotite-sillimanite-cordierite gneiss collected from the EGS located  

just off the eastern edge of the Mine Gulch quadrangle along Cottonwood Creek Road (Figure 10). 
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Figure 13. BSE, photomicrograph, and EDS images from sample 17-SS-17. A) BSE image of a single garnet 
grain which exhibits inclusion trails. The majority of garnet in the sample display evidence of synkinematic 
rotation, however a few garnets exhibit inclusions of random orientation inferring multiple episodes of garnet 
growth. B) PPL photomicrograph showing prismatic, bladed sillimanite texture which aids in defining the 
foliation of the sample. Image also displays regions of melt represented by pods of plagioclase and quartz. C) 
Full section EDS scan of sample 17-SS-17. Garnet is orange, quartz is blue, biotite is yellow-green, K-feldspar 
is green, plagioclase is purple, and sillimanite is red. Multiple generations of garnet growth are evident based on 
differences in inclusion patterns as well as zoning in garnet in the upper left-hand corner. Melt layer is inferred 
by the region in the bottom half of the thin section which is dominated by quartz, plagioclase, and K-feldspar.

A. B. 

C. 
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The observed mineral assemblage in SC13-7 is characterized by medium- to coarse-grained 

garnet, biotite, sillimanite, plagioclase, quartz, and cordierite; minor amounts of rutile, ilmenite, apatite, 

monazite, and zircon (Figure 14c). Subhedral to anhedral garnet occurs as ~1.2-8 mm inclusion rich 

porphryoblasts (Figure 14a). Inclusions in garnet include sillimanite, biotite, plagioclase, quartz, rutile, 

ilmenite, monazite, zircon, and cordierite. All inclusions exhibit a random orientation, suggesting that 

garnet growth initiated prior to deformation. Garnet growth occurs primarily within the paleosome but 

does occur less commonly within the neosome. By volume, the sample is comprised of approximately 

30% plagioclase, 30% quartz, 8% biotite, and 8% sillimanite. Sillimanite tends to occur as both blocky 

and prismatic crystals within the matrix, more commonly in the paleosome than the neosome, but also as 

inclusions within garnet. Biotite is profoundly more common within restitic portions of the sample but 

does occur in small quantities within the leucosome. Melt is inferred by the presence of plagioclase, 

which is often sericitized, and quartz rich bands that span across the sample. However, both minerals are 

additionally present within the restitic portion of the rock. Both ilmenite and rutile occur abundantly 

throughout the paleosome while only a handful of either minerals were identified within melt layers. 

Similarly, monazite and zircon occur throughout the sample and as inclusions within garnet but are 

found in greater concentrations within the paleosome. Apatite is present as inclusions in garnet but more 

commonly found within the matrix of the sample, reaching maximum lengths of approximately ~0.4 

mm. Cordierite occurs primarily as halos around approximately half of the garnet grains in the sample, 

but also as an inclusion within one of the garnet grains (Figure 14b). Additionally, cordierite is often 

pseudomorphed by pinite when found in the matrix.  

 

6.5. Sample SW13-2 

Sample SW13-2 was collected from the EGS located along Sweetwater Creek road near the  
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Figure 14. BSE and EDS images from sample SC13-7. A) BSE image of anhedral garnet porphryoblast 
exhibiting random inclusion orientation. Image also displays how biotite and sillimanite tend to wrap the garnet 
grains and aid in defining the foliation. B) BSE image of retrograde cordierite halo around garnet rim. 
Cordierite halos occur around most garnet in the sample, but also occur less commonly as inclusions within 
garnet. C) Full section EDS scan of sample SC13-7. Garnet is orange, quartz is blue, biotite is green, 
plagioclase is purple, and sillimanite is red. The image shows distribution of melt bands, evidenced by the upper 
half of the slide which is characterized by a dominance of plagioclase and quartz in addition to a lack of garnet 
and sillimanite.

A. B. 

C. 
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southwestern corner of the Mine Gulch quadrangle (Figure 10).  

The observed mineral assemblage in SW13-2 is characterized by medium- to coarse-grained 

garnet, biotite, quartz, and sillimanite; minor amounts of rutile, ilmenite, magnetite, monazite, zircon 

and apatite (Figure 15c). Subhedral to anhedral garnet occurs as ~1-6 mm inclusion rich porphryoblasts 

(Figure 15a). Inclusions in garnet include quartz, biotite, ilmenite, rutile, apatite, monazite, and zircon. 

Inclusions in garnet exhibit a random orientation, which suggests garnet growth initiated prior to 

deformation. This sample does not contain feldspar, indicating that this sample did not experience 

pressures and temperatures great enough to generate melt. By volume, the sample is comprised of 

approximately 44% quartz, 40% biotite, and 13% garnet, and only ~1% sillimanite. Sillimanite occurs 

exclusively in the matrix, and exists primarily as prismatic, blocky crystals, but also as elongated 

prismatic needles. Occasionally, sillimanite can be found near the grain boundaries of garnet, but never 

fully wraps the porphryoblasts. Biotite is prevalent throughout the sample, primarily blocky in shape, 

and also occurs as inclusions within garnet (Figure 15b). The distribution of ilmenite, rutile, magnetite, 

monazite, and zircon throughout the sample is sparse, however all occur as inclusions in garnet as well 

as in the matrix of the sample and are less than ~0.15 mm in length. Apatite is commonly found 

throughout the sample as both inclusions in garnet and in the matrix, reaching lengths of ~1 mm. 

 

6.6. Sample 14-RG-01b 

Sample 14-RG-01b is the leucocratic portion of a pelitic migmatite collected from the DG at a 

location referred to as “Top of the Range” (Figure 10). The outcrop is bound above and below by two 

distinct amphibolite layers, each with thicknesses of approximately 5 m. In outcrop, leucocratic material 

generally occurs as gneissic bands ranging from 1-5 cm in thickness, but also occurs as discontinuous 

lenses interspersed with melanocratic material. 
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Figure 15. BSE and EDS images from sample SW13-2. A) BSE image of anhedral garnet porphryoblast which 
exhibits random inclusion orientations. Garnet in this sample is often wrapped by biotite, and in rare cases, 
minor amounts of sillimanite. B) BSE image displaying typical texture observed throughout the sample which is 
comprised of biotite and quartz. Minor amounts of blocky sillimanite grains are present within the image. C) 
Full section EDS scan of sample SW13-2. Garnet is orange, quartz is blue, biotite is green, sillimanite is red, 
and apatite is light blue. The image aids in illustrating the lack of plagioclase identified within the sample, 
which also correlates to the very minor amount of melt produced in the sample.

A. B. 

C. 
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The observed mineral assemblage in this sample is characterized by fine-grained garnet, biotite, 

plagioclase, and sillimanite; minor amounts of quartz, ilmenite, rutile, magnetite, apatite, cordierite, 

monazite, and zircon (Figure 16c). Mineral percentages in the sample by volume are as follows: ~60% 

plagioclase, ~12% garnet, ~10% sillimanite, ~10% biotite, ~1% quartz, and the remaining ~7% minor 

and accessory phases. Subhedral to anhedral garnet occurs as 0.3-3.5 mm inclusion rich porphryoblasts 

(Figure 16a). Inclusions in garnet include biotite, sillimanite, quartz, plagioclase, rutile, ilmenite, 

monazite, and zircon. All inclusions in garnet have a random orientation, suggesting garnet growth 

initiated prior to deformation. Sillimanite is generally prismatic and is on average ~0.4 mm in diameter 

with seemingly random orientations throughout the thin section. Biotite is well distributed throughout 

the sample and occurs as blocky, prismatic grains, also lacking a well-defined orientation. 14-RG-01b 

has the highest concentration of oxide phases out of all samples examined in this study. Rutile is the 

most common oxide phase that occurs within the sample and is very widespread as both inclusions in 

garnet and throughout the matrix. Ilmenite is significantly less common in comparison to rutile and 

tends to occur more commonly in the matrix as opposed to as inclusions in garnet. Cordierite occurs as 

halos around a handful of garnet grains in the sample, and also as scarce inclusions within garnet (Figure 

16b). Only a handful of apatite grains exist within the sample, and occur exclusively within the matrix of 

the sample reaching a maximum diameter of 0.15 mm. Monazite and zircon are both prevalent 

throughout the sample, however zircon tends to be found as inclusions within garnet more commonly 

than monazite. 

 

7. Mineral Chemistry 

Representative mineral chemistry analyses for samples 17-SS-8, 14-CH-9a, 17-SS-17, SC13-7,  

SW13-2, and 14-RG-01b are presented in Tables 6 through 9. 
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Figure 16. BSE and EDS images from sample 14-RG-01b. A) BSE image of anhedral garnet porphryoblast 
with random inclusion orientation. B) Example texture of a retrograde cordierite halo around a garnet grain. 
Approximately half of garnet grains in the sample have a cordierite halo, and when present is generally very 
thin and altered to pinite. C) Full section EDS scan of sample of sample 14-RG-01b. Garnet is orange, biotite is 
green, sillimanite is red, and quartz is blue. Matrix of sample is almost entirely composed of plagioclase with 
only ~1% quartz.  
 

A. B. 

C. 



 42 

7.1. Sample 17-SS-8 

Garnet in sample 17-SS-8 is Alm0.70-0.76Prp0.19-0.25Grs0.02-0.04Sps0.02. Garnet cores are unzoned, 

with XFe = 0.74-0.75 where XFe = Fe2+ / (Fe2+ + Mg). Narrow rims are slightly enriched in Fe and 

depleted in Mg, with XFe = 0.79-0.80. Fe-Mg zoning in the rims is consistent with diffusive re-

equilibration during resorption. Ca is unzoned, with XCa = 0.02-0.03 where XCa = Ca / (Ca + Mg + Fe2+). 

The composition of biotite grains in the matrix is XFe = 0.46, however the composition of biotite 

inclusions in garnet are slightly depleted in Fe and range from XFe = 0.28-0.38 for 5 inclusions from 3  

different garnet porphryoblasts. The composition of plagioclase in the matrix ranges from XAn = 0.13-

0.15, where XAn = Ca / (Na + Ca + K). Three out of seven plagioclase inclusions within garnet have 

compositions of XAn = 0.15, and the remaining four inclusions have compositions of XAn = 0.00. 

 

7.2. Sample 14-CH-9a 

Garnet in sample 14-CH-9a is Alm0.65-0.69Prp0.24-0.30Grs0.03-0.04Sps0.02-0.03. Garnet cores are 

unzoned with XFe = 0.69-0.70 and XCa = 0.03-0.04. Rims are slightly enriched in Fe2+ and depleted in 

Mg yielding a of composition XFe = 0.70-0.74. Fe-Mg in the narrow rims is consistent with diffusive 

reequilibration during resorption. The composition of biotite inclusions in garnet is XFe = 0.25, whereas 

matrix biotite grains reveal more Fe-rich compositions ranging from XFe = 0.35-0.38. Plagioclase was 

not identified as inclusions within garnet, however the composition of plagioclase in the matrix 

exhibited compositions of XAn = 0.23-0.25.  

 

7.3. Sample 17-SS-17 

Garnet in sample 17-SS-17 is Alm0.54-0.73Prp0.11-0.21Grs0.05-0.17Sps0.03-0.18. The majority of garnet 

porphryoblasts in the sample exhibit narrow rims slightly enriched in Fe (XFe = 0.81-0.82) and depleted 
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Table 6. 
Representative garnet SEM-EDS analyses

Sample 17-SS-8 17-SS-8 14-CH-9a 14-CH-9a 17-SS-17 17-SS-17 SC13-7 SC13-7 SW13-2 SW13-2 14-RG-01b 14-RG-01b 
Setting Core Rim Core Rim Core Rim Core Rim Core Rim Core Rim 
SiO2 37.99 37.71 38.93 38.79 37.80 37.88 38.67 37.95 38.36 38.06 38.73 38.38 
TiO2 0.02 0.03 0.02 0.03 0.01 0.01 0.03 0.01 0.01 0.00 0.00 0.04 
Al2O3 21.51 21.44 21.78 21.61 21.43 21.49 21.78 21.34 21.61 21.56 21.89 21.79 
FeO 32.82 34.21 29.83 30.74 31.71 32.64 31.36 33.70 33.91 34.95 28.52 31.24 
MgO 6.10 4.76 7.24 6.63 5.26 4.39 6.48 4.35 5.59 4.77 8.41 6.52 
MnO 0.74 1.10 1.10 1.29 1.41 2.05 0.55 0.92 0.39 0.40 0.23 0.31 
CaO 0.71 0.75 1.50 1.16 2.00 1.92 1.97 1.88 0.87 0.85 1.76 1.75 
∑ 99.89 100.00 100.40 100.25 99.62 100.38 100.84 100.15 100.74 100.59 99.54 100.03              

Si 3.000 3.001 3.020 3.027 3.000 3.002 3.006 3.014 3.011 3.008 3.005 3.002 
Ti 0.001 0.002 0.000 0.002 0.001 0.001 0.002 0.001 0.001 0.000 0.000 0.002 
Al 2.002 2.011 1.991 1.988 2.005 2.007 1.996 1.997 1.999 2.008 2.002 2.009 
Fe2+ 2.167 2.277 1.935 2.006 2.105 2.164 2.039 2.238 2.226 2.310 1.850 2.044 
Mg 0.718 0.565 0.837 0.771 0.622 0.519 0.751 0.515 0.654 0.562 0.973 0.760 
Mn 0.049 0.074 0.072 0.085 0.095 0.138 0.036 0.062 0.026 0.027 0.015 0.021 
Ca 0.060 0.064 0.125 0.097 0.170 0.163 0.164 0.160 0.073 0.072 0.146 0.147              

XFe 0.75 0.80 0.70 0.72 0.77 0.81 0.73 0.81 0.77 0.80 0.66 0.73              

XAlm 0.72 0.76 0.65 0.68 0.70 0.73 0.68 0.75 0.75 0.78 0.62 0.69 
XSps 0.02 0.02 0.02 0.03 0.03 0.05 0.01 0.02 0.01 0.01 0.01 0.01 
XPrp 0.24 0.19 0.28 0.26 0.21 0.17 0.25 0.17 0.22 0.19 0.33 0.26 
XGrs 0.02 0.02 0.04 0.03 0.06 0.05 0.05 0.05 0.02 0.02 0.05 0.05 
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         Table 7.  
         Representative biotite SEM-EDS analyses. 
 

Sample 17-SS-8 14-CH-9a 17-SS-17 SC13-7 SW13-2 14-RG-01b 
Setting Matrix Matrix Matrix Matrix Matrix Matrix 
SiO2 36.14 37.31 35.79 35.9 36.71 36.87 

TiO2 2.26 2.96 4.59 3.46 3.35 4.60 

Al2O3 19.2 18.04 18.49 18.54 19.11 16.89 
FeO 17.02 13.96 18.78 18.19 17.94 13.00 
MgO 11.38 13.35 8.28 9.76 10.52 13.65 
CaO 0.09 0.07 0.05 0.06 0.07 0.07 
Na2O 0.43 0.45 0.14 0.26 0.45 0.15 

K2O 9.02 9.13 9.77 9.36 9.51 9.79 
∑ 95.54 95.27 95.89 95.53 97.66 95.02 

 
      

Si 5.405 5.513 5.406 5.416 5.402 5.473 
Ti 0.254 0.329 0.522 0.393 0.371 0.514 
Al 3.385 3.142 3.292 3.296 3.314 2.955 

Fe2+ 2.129 1.725 2.372 2.295 2.208 1.614 
Mg 2.537 2.941 1.865 2.195 2.308 3.021 
Ca 0.014 0.011 0.008 0.01 0.011 0.011 
Na 0.125 0.129 0.041 0.076 0.128 0.043 
K 1.721 1.721 1.883 1.801 1.785 1.854 

 
      

XFe 0.46 0.37 0.56 0.51 0.49 0.35 
 

in Mg and cores slightly depleted in Fe (XFe = 0.77-0.78) and enriched in Mg. In these garnets, there is 

no evidence of XCa zoning, with values consistently falling between 0.05-0.06. This is again consistent 

with diffusive re-equilibration during resorption. However, one garnet within the sample is significantly 

different, yielding a slightly zoned core: rims yield a composition of XFe = 0.81-0.82, the outer 

core/inner rim yields XFe = 0.78-0.79, and the core yields XFe = 0.82-0.83. Additionally, this garnet 

exhibits strong Ca and Mn zoning: rims yield XCa = 0.06 and XSps = 0.06 and cores with XCa = 0.19-0.21  

and XSps = 0.18. The composition of biotite grains in the matrix of the sample is XFe = 0.56, however the 

composition of biotite inclusions in garnet are depleted in Fe and range from XFe = 0.37-0.50. The
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Table 8. 
Representative SEM-EDS plagioclase analyses. 
 

Sample 17-SS-8 17-SS-8 14-CH-9a 17-SS-17 17-SS-17 SC13-7 14-RG-01b 
Mineral Pl Pl Pl Pl Ksp Pl Pl 

Setting 
Grt 
Inclusion Matrix Matrix Matrix Matrix Matrix Matrix 

SiO2 68.69 64.16 62.23 59.16 64.97 57.04 58.53 

Al2O3 19.59 22.65 23.5 25.54 18.73 27.00 25.51 
FeO 0.08 0.06 0.00 0.01  0.03 0.01 
CaO 0.07 3.3 5.11 7.34 0.17 8.99 7.46 
Na2O 12.57 10.58 9.18 7.82 0.95 6.73 7.64 

K2O 0.15 0.2 0.23 0.28 15.95 0.28 0.31 
∑ 101.15 100.95 100.25 100.15 100.77 100.07 99.46 

 
       

Si 2.979 2.815 2.758 2.642 2.981 2.561 2.634 
Al 1.001 1.171 1.227 1.345 1.013 1.429 1.357 

Fe2+ 0.003 0.002 0.000 0.000  0.001 2.044 
Ca 0.003 0.155 0.243 0.351 0.008 0.432 0.361 
Na 1.057 0.900 0.789 0.677 0.085 0.586 0.669 
K 0.008 0.011 0.013 0.016 0.934 0.016 0.018 

 
       

XAn  0.00 0.15 0.23 0.34 0.01 0.42 0.34 

XAb  0.99 0.84 0.76 0.65 0.08 0.57 0.64 

XOr  0.01 0.01 0.01 0.02 0.91 0.02 0.02 
 

composition of plagioclase in the matrix ranges from XAn = 0.31-0.34, however the composition of 

plagioclase inclusions is slightly lower yielding a spread between 0.13-0.32. K-feldspar grains in the 

matrix of the sample have compositions of XOr = 0.87-0.91, where XOr = K / (Ca + Na + K). 

 

7.4. Sample SC13-7 

Garnet in sample SC13-7 is Alm0.65-0.77Prp0.16-0.27Grs0.05-0.07Sps0.01-0.03. Garnet cores are unzoned 

in all porphryoblasts; however, the three analyzed grains yield slightly different core compositions 

possibly indicating various garnet populations. Each garnet yielded core values of XFe = 0.70-72, XFe = 
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0.77, and XFe = 0.73, with corresponding rim values of XFe = 0.81-0.82, XFe = 0.80-0.83, and XFe = 0.81-

0.87, respectfully. While not remarkably different, noticeable variation still exists, yet all rims are 

slightly enriched in Fe2+ and depleted in Mg suggesting diffusive re-equilibration during resorption. The 

composition of biotite inclusions in garnet is XFe = 0.36-0.42, which is slightly lower than that of the 

paleosome and neosome which are XFe = 0.51-0.53 and XFe = 0.44-0.48, respectively. Plagioclase was 

identified as inclusions within garnet in one grain, and yielded XAn = 0.42-0.43. Plagioclase in the 

matrix exhibited similar compositions also of XAn = 0.42-0.43. K-felspar in this sample exhibited strong 

exsolution, preventing discrete XOr analyses to be obtained. The composition of cordierite rims around 

garnet ranges from XFe = 0.33-0.34, however inclusions of cordierite in garnet are slightly depleted in 

iron yielding values of XFe = 0.29-0.31.  

 

7.5. Sample SW13-2 

Garnet in sample SW13-2 is Alm0.74-0.78Prp0.18-0.22Grs0.02-0.03Sps0.01. Garnet cores are unzoned 

with XFe = 0.77-0.78 and XCa = 0.02-0.03. Rims are slightly enriched in Fe2+ and depleted in Mg 

yielding a composition of XFe = 0.79-0.81. Fe-Mg in the narrow rims is consistent with diffusive re-

equilibration during resorption. The composition of biotite inclusions in garnet is XFe = 0.41-0.47, which 

is slightly lower than that of the matrix which yields XFe = 0.48-0.50. Plagioclase was not present in this 

sample. 

 

7.6. Sample 14-RG-01b 

Garnet in sample 14-RG-01b is Alm0.62-0.69Prp0.25-0.33Grs0.04-0.05Sps0.00-0.01. Garnet cores are 

unzoned with XFe = 0.66-0.68 and XCa = 0.04-0.05. Rims are slightly enriched in Fe2+ and depleted in 

Mg yielding a composition of XFe = 0.72-0.73. Fe-Mg in the narrow rims is consistent with diffusive re-
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equilibration during resorption. The composition of biotite inclusions in garnet yields XFe = 0.23-0.30, 

whereas matrix grains exhibit higher compositional values of XFe = 0.35-0.39. Plagioclase in garnet and 

plagioclase in the matrix yielded similar compositional values, with inclusions yielding XAn = 0.35-0.38 

and matrix grains yielding XAn = 0.34-0.36. The composition of cordierite rims around garnet ranges 

from XFe = 0.19-0.20, however inclusions of cordierite in garnet yield slightly more depleted values of 

XFe = 0.17-0.19. 

    Table 9.  
    Representative SEM-EDS cordierite analyses. 

 
Sample SC13-7 14-RG-01b 
Setting Matrix Matrix 
SiO2 48.37 48.60 

Al2O3 32.44 32.91 
FeO 7.41 4.67 
MgO 8.41 10.37 
MnO 0.07 0.03 
CaO 0.04 0.06 
Na2O 0.2 0.10 
∑ 96.94 96.74 

 
  

Si 5.029 4.999 
Al 3.975 3.989 

Fe2+ 0.644 0.402 
Mg 1.303 1.590 
Mn 0.006 0.002 
Ca 0.004 0.007 
Na 0.04 0.02 

 
  

XFe 0.33 0.2 
 

8. Phase equilibria modeling 

8.1. Sample 17-SS-8 

In this sample, the peak assemblage of garnet + sillimanite + biotite + plagioclase + melt occurs 
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over a broad range range from 5.7-9.2 kbar and 715-800 °C (Figure 17). Calculated garnet isopleths of 

XFe in this field are consistent with observed core values of XFe = 0.74-0.75, while garnet isopleths of 

XCa are more broadly consistent with observed core values of XCa = 0.02-0.04. Predicted XCa values for 

plagioclase (0.19-0.31), however, are significantly lower than the observed values of XCa = 0.13-0.15.   

Based on the observed assemblages and compositions of minerals that preserve their peak 

conditions, the area abound by XFe(g) = 0.74-0.76 and XCa(g) = 0.03-0.04 refines peak P-T conditions to 

6.3-8.8 kbar and 728-760 °C. 

The absence of cordierite in the sample aids in constraining the minimum pressure for retrograde 

conditions, which therefore cannot feasibly fall below ~5 kbar. Compositional values of XFe in garnet 

rims (XFe(g) = 0.79-0.80) aid in constraining the retrograde path conditions to approximately 5-6.7 kbar 

and 648-679 °C. However, measured compositions of XFe in biotite are much lower than predicted 

values along the retrograde path (0.46 vs 0.49-0.51) and therefore cannot help to refine retrograde P-T 

conditions.  

Mode isopleths indicate that melt is temperature sensitive throughout the entirety of the 

pseudosection, however garnet mode isopleths exhibit temperature sensitivity in the peak field but are 

pressure sensitive along the retrograde path. Regardless, from the peak assemblage along the retrograde 

path, garnet decreases from approximately 6 to 3 mol% and melt decreases from ~11 to 0 mol%. These 

results are consistent with petrographic observations of strongly resorbed garnet rims and the presence 

of melt pods composed of plagioclase and quartz.  These results are suggestive of a clockwise P-T path 

with peak conditions of 5.7-9 kbar and 730-760 °C followed by cooling and decompression to ~5-6.7 

kbar and 650-680 °C.
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Figure 17. Pseudosection for sample 17-SS-8. A) Labeled assemblage fields with peak assemblage outlined and 
g, cd, sill, ksp, and liq-in lines highlighted. B) Compositional isopleths of XFe(g), XCa(g), and XFe(bi) with peak 
compositions highlighted in orange. C) Modal isopleths of garnet and liquid with inferred P-T path. 

1. g cd ksp pl ilm liq 
2. g cd ksp ilm liq 
3. g cd ilm liq 
4. g sill bi pl ilm liq 
5. g sill bi ilm liq 
6. g sill bi ksp pl liq 
7. g ky bi pl ilm liq 
8. g ky bi ksp pl liq 
9. g ky bi pl ru liq 

10. g ky bi mu pl liq 
11. sill st cd bi pl ilm H2O 
12. sill st bi pl H2O 
13. st bi mu pl H2O 
14. st bi mu pa pl ilm ru H2O 
15. st bi mu pa pl ilm H2O 
16. g st chl bi mu pa ru H2O 
17. g st bi mu pl ru liq 

A) B) 

C) 
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8.2. Sample 14-CH-9a 

In this sample, the peak assemblage of garnet + sillimanite + biotite + plagioclase + ilmenite + 

melt occurs over a broad range of 6.8-8.8 kbar and 695-845 °C (Figure 18). In this sample, the cordierite 

out line is unusually high pressure, which is responsible for slightly higher peak temperature than has 

been observed in other samples. Calculated isopleths of XCa(g) are broadly consistent with analyzed  

compositions of garnet cores (XCa(g) = 0.03-0.04), however the observed Fe-Mg composition of garnet 

(XFe = 0.69-0.70) is more Fe-rich than what is predicted in this field (XFe = 0.54-0.70). Inconsistency 

between calculated isopleths and observed values furthermore carry over into XCa(pl), in which observed 

values (XCa = 0.23-0.25) are slightly lower than predicted isopleth values for the peak field (XCa = 0.26-

0.27). From the area bound by XCa(g) =0.03-0.04 field, peak metamorphic conditions can be slightly 

refined to 6.8-8.8 kbar and 697-842 °C. 

Measured compositional values of XFe in garnet rims range from 0.70-0.74 and measured XFe(bi) 

values range between 0.36-0.38. Both sets of values fall along a reasonable retrograde path, and 

constrain retrograde metamorphic conditions to approximately 5.3-8.2 kbar and 630-652 °C. 

Mode isopleths for this sample indicate that melt is temperature sensitive and garnet modes are 

generally temperature sensitive except at lower pressures. From the peak field along the retrograde path, 

garnet decreases from approximately 9 to 5 mol% and melt decreases from 6 to 0 mol%. These predicted 

calculations are consistent with slightly resorbed garnet rims and bands of melt composed of quartz and 

plagioclase found throughout the sample. In summary, these results suggest a clockwise P-T path with 

peak conditions of 6.8-8.8 kbar and 695-840 °C followed by cooling and minor decompression to 5.3-

8.2 kbar and 630-652 °C.
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Figure 18. Pseudosection for sample 14-CH-9a. A) Labeled assemblage fields with peak assemblage outlined 
and g, cd, sill, ksp, and liq-in lines highlighted. B) Compositional isopleths of XFe(g), XCa(g), and XFe(bi) with peak 
compositions highlighted in orange. C) Modal isopleths of garnet and liquid with inferred P-T path.

1. g st bi pl ru liq  
2. g st bi pl ilm ru liq 
3. g ky bi pl ilm ru liq 
4. g st bi pl ilm liq 
5. cd bi opx ksp pl ilm 

liq 
6. g sill bi ksp pl ru liq 
7. g sill bi ksp pl ilm ru 

liq 
8. g cd opx ksp pl ilm liq 

9. g sill cd bi pl ilm H2O 
10. g st cd bi pl ilm H2O 
11. g st chl bi pl ilm ru 

H2O 
12. g chl bi pa pl ilm ru 

H2O 
13. g chl bi pa pl ilm H2O 
14. st bi chl pl ilm H2O 
15. g cd chl bi pl ilm H2O 

A) B) 

C) 
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8.3. Sample 17-SS-17 

In this sample, the peak assemblage of garnet + sillimanite + biotite + K-feldspar + plagioclase + 

ilmenite + melt occurs from 5.1-9 kbar and 745-775 °C (Figure 19). Calculated garnet isopleths of XFe in 

this field (XFe = 0.76-0.80) are consistent with measured core values of XFe = 0.77-0.78. Conversely, the 

observed value of XCa in garnet (0.06) is higher than the predicted isopleth values for the peak field  

(XCa(g) = 0.02-0.05). The composition of XCa in plagioclase behaves similarly, where calculated isopleth 

values (0.21-0.22) are significantly lower than measured compositional values of XCa(pl) = 0.31-0.34. 

Based on the observed assemblages and compositions of minerals that preserve their peak compositions, 

the area bound by XFe(g) = 0.77-0.79 marginally refine peak metamorphic conditions to 5.1-9 kbar and 

752-772 °C.  

Observed compositional values of both XFe(g) and XFe(bi) are lower than what would be expected 

for a traditional retrograde path according to predicted compositional isopleths for the sample. In this 

case, the measured compositions do not fall back below the solidus, making it difficult to deduce 

reasonable, precise constrains on retrograde metamorphic conditions. However, due to the lack of 

cordierite in the sample, the retrograde conditions most likely do not fall below ~4.5-5 kbar. 

Additionally, according to the pseudosection, retrograde temperatures would not reach above ~680 °C 

based on the position of the solidus.  

Isopleths indicate that both mode of garnet and melt are temperature sensitive. From the peak 

assemblage field along the predicted retrograde path, garnet decreases from 12 to 3 mol% and  

melt decreases from 11 to 0 mol%. These results are consistent with resorbed garnet rims and the 

presence of melt layers. In summary, these results suggest a clockwise P-T path with peak conditions of 

~5-9 kbar and 750-770 °C followed by cooling and decompression to conditions most likely around 5 

kbar and 650 °C.
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Figure 19. Pseudosection for sample 17-SS-17. A) Labeled assemblage fields with peak assemblage outlined 
and g, cd, sill, ksp, and liq-in lines highlighted. B) Compositional isopleths of XFe(g), XCa(g), and XFe(bi) with peak 
compositions highlighted in orange. C) Modal isopleths of garnet and liquid with inferred P-T path. 

A) B) 

C) 

1. cd bi pl ilm H2O 
2. g sill cd bi pl ilm H2O 
3. g sill cd bi pl ilm liq 
4. g cd bi ksp pl ilm liq 
5. g sill bi ksp pl ilm liq 
6. g bi opx ksp pl ilm liq 
7. g st bi mu pl ilm H2O 
8. g bi mu pa pl ilm 

H2O 
9. g bi mu pa pl ilm ru 

H2O 
10. g bi mu pl ilm ru H2O 

11. g bi mu pa pl ru H2O 
12. g bi mu pa pl ab ru 

H2O 
13. g st bi mu pl ilm liq 
14. g ky bi mu pl ilm liq 
15. g ky bi ksp pl ilm liq 
16. g ky bi ksp pl ilm ru 

liq 
17. g bi ksp pl ilm ru liq 
18. g bi ksp pl ru liq 
19. g bi mu ksp pl ru liq 



 54 

8.4. Sample SC13-7 

In this sample, the peak assemblage of garnet + sillimanite + biotite + plagioclase + rutile + melt 

occurs from 7.3-8.8 kbar and 702-832 °C (Figure 20). Calculated isopleths of XCa(g) (0.05-0.08) are 

consistent with measured compositional values yielding XCa(g) = 0.05-0.06. XFe(g) values for garnet cores 

range widely across various porphryoblasts, from approximately 0.70-0.77, which is reflective of 

multiple generations of garnet growth as proven by previously collected geochronology data. However, 

garnet with core values of XFe(g) = 0.70-0.74 are consistent with predicted isopleth values in the peak 

field (0.64-75). Plagioclase yields compositional values of XCa(pl) = 0.42-0.43 (with an average of 0.43) 

for both the matrix and garnet inclusions, which is also consistent with calculated isopleth values (XCa(pl) 

= 0.42-0.45). Based on observed assemblages and compositions of minerals that preserve their peak P-T 

compositions, the area bound by XFe(g) = 0.70-0.74 and XCa(g) = 0.06-0.07 refine the peak P-T conditions 

to 7.3-8.7 kbar and 702-780 °C. 

Measured compositional values of XFe in garnet rims range from 0.80-0.83 and measured values 

of XFe(bi) yield values between 0.51-0.53. These results constrain retrograde metamorphic conditions to 

~4.3-5.4 kbar and 628-710 °C. This path is consistent with observed petrographic textures, most notably 

cordierite rims around garnet.  

Mode isopleths indicate that melt is temperature sensitive. Mode of garnet also exhibits 

temperature sensitivity except for along the retrograde path which exhibits pressure sensitivity. From the 

peak assemblage field along the retrograde path, melt decreases from 7 to 0 mol% and garnet decreases 

from 8 to 1 mol%. These predicted calculations are consistent with petrographic observations of 

resorbed garnet rims and compositional bands of melt present within the sample. Additionally, mode 

isopleths of cordierite exhibit pressure sensitivity indicating growth during decompression and increase 

from 0 to ~5 mol% along the retrograde path. In summary, these results suggest a clockwise P-T path,
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Figure 20. Pseudosection for sample SC13-7. A) Labeled assemblage fields with peak assemblage outlined and 
g, cd, sill, ksp, and liq-in lines highlighted. B) Compositional isopleths of XFe(g), XCa(g), and XFe(bi) with peak 
compositions highlighted in orange. C) Modal isopleths of garnet and liquid with inferred P-T path. 

A) B) 

C) 

1. g sill bi ksp pl ilm liq 
2. g cd bi ksp pl ilm liq 
3. sill cd bi ksp pl ilm liq 
4. sill st cd bi pl ilm 

H2O 
5. g sill bi pl ilm ru H2O 
6. g ky bi pl ilm ru H2O 
7. g ky st bi pl ilm ru 

H2O 

8. g ky st bi pl ru H2O 
9. g ky bi pl ru H2O 
10. g st bi pa ru H2O 
11. g st chl bi mu pa ru 

H2O 
12. g st ep chl bi mu pa 

ru H2O 
13. g ky st bi mu pa ru 

H2O 
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with peak P-T conditions of ~7.3-8.7 kbar and 700-780 °C followed by decompression and cooling to 

~4.3-5.4 kbar and 630-710 °C. 

 

8.5. Sample SW13-2 

 In this sample, the peak assemblage of garnet + sillimanite + biotite + ilmenite + rutile + H2O + 

melt occurs from 6.1-9.2 kbar and 709-767 °C (Figure 21). For this sample, the H2O value was chosen 

in order to fully saturate the subsolidus portion of the diagram using the lowest possible value, however 

an unusual widening of the region between the solidus and liquidus occurred between ~6.1-9.5 kbar. 

Calculated garnet isopleths of XFe in this field (0.77-0.80) are broadly consistent with observed garnet 

core values yielding XFe(g) = 0.77-0.78. Alternatively, calculated garnet isopleths of XCa in the peak field 

(0.09-0.11) are significantly higher than observed XCa values of garnet cores (0.02-0.03). Based on these 

observations, the area bound by XFe(g) = 0.77-0.79 refines peak P-T conditions to 6.2-8.9 kbar and 730-

762 °C. 

Measured compositional values of XFe in garnet rims yield values between 0.79-0.81 which is 

consistent with predicted isopleth values along the retrograde path. Measured values of XFe in biotite, 

however, yield values between 0.48-0.50 which is slightly lower than values predicted along the 

retrograde path in the pseudosection (0.50). Due to these inconsistencies, limitations on retrograde  

conditions can only be confidently placed on temperature estimates yielding a range between 650-730 

°C. Only a minimum pressure for the retrograde path can be deduced from the diagram based on the lack 

of cordierite in the sample, which infers that conditions did not fall below ~4.5 kbar.  

Mode isopleths indicate that melt is temperature sensitive. Alternatively, garnet is primarily 

temperature sensitive above the solidus yet below the solidus garnet growth is pressure sensitive. From 

the peak assemblage field along the retrograde path, melt decreases from 2 to 0 mol% and garnet
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Figure 21. Pseudosection for sample SW13-2. A) Labeled assemblage fields with peak assemblage outlined and 
g, cd, sill, ksp, and liq-in lines highlighted. B) Compositional isopleths of XFe(g), XCa(g), and XFe(bi) with peak 
compositions highlighted in orange. C) Modal isopleths of garnet and liquid with inferred P-T path. 

A) B) 

C) 

1. g cd bi opx pl ilm 
H2O 

2. g cd bi pl ilm H2O liq 
3. g sill cd bi pl ilm H2O 
4. g sill bi pl ilm H2O liq 
5. g sill bi pl ilm ru H2O 
6. g st bi pl ilm ru H2O 
7. g sill bi pl ru H2O 
8. g ky bi pl ru H2O 

9. g st bi pl ru H2O 
10. g ky bi mu ru H2O liq 
11. g ky bi ru H2O liq 
12. g ky bi ru liq 
13. g sill bi ilm ru H2O liq 
14. g sill bi ilm ru liq 
15. g cd bi opx pl ilm liq 
16. g cd bi opx ilm liq 
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decreases from 12 to 10 mol%. These modes are consistent with observations in the sample, considering 

the presence of little to no melt within the rock and only mildly altered garnet rims. Regardless, these 

observations are suggestive of a clockwise P-T path with peak conditions of 6-9 kbar and 730-760 °C 

followed by decompression and cooling to ~4.5 kbar and 650-730 °C. 

 

8.6. Sample 14-RG-01b 

In this sample, the peak assemblage of garnet + sillimanite + biotite + plagioclase + rutile + melt 

occurs from 7.4-10 kbar and 712-808 °C (Figure 22). Calculated garnet isopleths of XCa in this field 

(XCa(g) = 0.04-0.07) are consistent with observed core values of XCa = 0.05, while predicted garnet 

isopleths of XFe (0.54-0.57) are notably lower than observed core values which yield XFe(g) = 0.66-0.68. 

Conversely, observed XCa values of plagioclase are considerably lower than calculated isopleths for the 

field (0.35-0.36 vs. 0.41-0.44). Based on the observed assemblages and compositions of minerals that 

preserve their peak conditions, the area bound by XCa(g) = 0.05-0.06 refines peak P-T conditions to 7.5-

9.4 kbar and 712-808 °C.  

Measured compositional values of XFe in garnet rims range from 0.72-0.73 and measured values 

of XFe(bi) yield values between 0.35-0.39. These results constrain retrograde conditions to approximately  

5.8-6.7 kbar and 662-710 °C. These constraints indicate the presence of cordierite along the retrograde 

path which reflects observed textures of cordierite rims around garnet.  

Mode isopleths indicate that melt is temperature sensitive. However, garnet is temperature 

sensitive above ~7.5 kbar and pressure sensitive below ~7.5 kbar. From the peak assemblage field along 

the retrograde path melt decreases from 8 to 0 mol% and garnet decreases from ~12 to 2 mol%. This is 

consistent with petrographic observations of highly resorbed garnet rims and large amount of 

plagioclase feldspar indicating substantial melting. Additionally, cordierite increases from 0 to
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Figure 22. Pseudosection for sample 14-RG-01b. A) Labeled assemblage fields with peak assemblage outlined 
and g, cd, sill, ksp, and liq-in lines highlighted. B) Compositional isopleths of XFe(g), XCa(g), and XFe(bi) with peak 
compositions highlighted in orange. C) Modal isopleths of garnet and liquid with inferred P-T path.
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1. g sill pl ilm ru liq 
2. g sill st bi pl ru liq 
3. g ky st bi pl ru liq 
4. g ky st bi pa ru H2O 
5. g st bi pa ru H2O 
6. g st chl mu pa ru 

H2O 
7. g st ep chl mu pa ru 

H2O 

8. g sill st bi pl ru H2O 
9. g sill cd bi pl ilm ru 

H2O 
10. g st bi pl ilm ru H2O 
11. g st chl bi pl ilm ru 

H2O 
12. st cd bi pl ilm ru H2O 
13. sill st cd bi pl ilm 

H2O 
14. and cd bi pl ilm H2O 
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approximately 10 mol%, which is consistent with the presence of cordierite rims around garnet. These 

results therefore suggest a clockwise P-T path with peak conditions of 7.5-9.4 kbar and 712-808 °C. 

 

9. Discussion 

9.1. P-T Paths 

Phase equilibria modeling suggest that all six samples were metamorphosed to upper amphibolite  

facies conditions. All samples reached suprasolidus conditions except for SW13-2 from the EGS in the 

southwestern potion of the Mine Gulch quadrangle.  

 Pelitic schists from the CRMS (17-SS-8, 14-CH-9a, 17-SS-17) all reached suprasolidus 

conditions with temperatures and pressures exceeding 700 °C and 7 kbar. Peak temperatures were well 

preserved in sample 17-SS-17, however modeling did not provide robust constraints for peak pressures 

due to the modification of Fe-Mg compositions during retrograde re-equilibration. Furthermore, peak 

conditions modeled in sample 14-CH-9a were too broad (6.8-8.8 kbar, 697-842 °C) to aid in placing 

effective constraints on peak metamorphic conditions for the sample. This is because peak conditions in 

14-CH-9a were constrained solely by XCa concentrations in garnet cores, which must be approached 

with caution. Although Ca concentrations in garnet cores for this sample plot within the inferred peak 

assemblage Ca disequilibrium during garnet growth has been documented (e.g. Spear and Daniel, 2001) 

and re-equilibration during retrograde metamorphism can yield atypical results (Carlson, 2006; Caddick 

et al., 2010). 

 Regardless, peak metamorphic phases were well preserved in samples 17-SS-8 and 17-SS-17 

from the CRMS. Sample 17-SS-8 was collected from near the structural top of the CRMS, whereas 

sample 17-SS-17 was collected from the base of the suite, however both produced similar predictions for 

peak metamorphic pressures (5.7-9 kbar and 5-9 kbar, respectively). On the other hand, temperature 
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predictions from the two samples show that sample 17-SS-8 produced slightly lower peak temperatures 

(730-760 °C) than sample 17-SS-17 (750-770 °C). A pelite from the middle CRMS modeled by Cramer 

(2015), structurally in-between 17-SS-8 and 17-SS-17, yielded similar peak metamorphic conditions of 

5.7-7.1 kbar and 760-770 °C. Furthermore, Berg (2015) conducted geothermometry on a series of 

amphibolites from the upper portion of the CRMS which, from structurally highest to structurally 

lowest, produced results which range between 700 ± 80 °C, 7.4 ± 1.4 and kbar 740 ± 80 °C and 7.5 ± 1.4 

kbar. These comparisons across a variety of studies show that while peak pressure conditions throughout 

the CRMS during the Big Sky orogeny remained reasonably constant, peak metamorphic temperatures 

increase towards lower structural levels within the suite.  

 Peak metamorphic conditions for a leucosome-rich layer from pelitic migmatite 14-RG-01b 

located in the Dillon Gneiss, immediately structurally below the CRMS, is inferred at 712-808 °C and 

7.4-9.4 kbar. These constraints, however, are broad and directly affected by Fe-Mg re-equilibration 

during retrograde metamorphism. Similar to sample 14-CH-9a from the CRMS, peak conditions are 

constrained solely by XCa concentrations in garnet cores which have the likelihood of producing erratic 

results. Decompression is constrained texturally by the presence of cordierite rims around garnet in 

addition to matrix biotite XFe compositions, yielding conditions which fall between ~5.8-6.7 kbar and 

662-710 °C. Presently, no other studies have estimated P-T conditions from any lithologies within the 

Dillon Gneiss. Nonetheless, this result broadly suggests that at least the TOR locality in the Dillon 

Gneiss experienced lower peak metamorphic pressures than the CRMS. Peak temperature conditions 

from this sample are too broad (712-808 °C) to draw confident comparisons to estimates from the 

CRMS, however it does fall within the same margin of error as samples from the suite.  

 Pelitic schist SW13-2 from the EGS located in the southwestern portion of the study area lacked 

evidence of melt in thin section based on the absence of feldspar (either plagioclase or K-feldspar). 
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However, this does not necessarily mean that the rock did not reach suprasolidus conditions: either 

leucosome wasn’t preserved, or, because the bulk rock geochemistry for this sample was taken from its 

thin section, it is possible the portion of rock the thin section was cut from wasn’t an entirely 

representative piece of the whole. Further issues that may have resulted from collecting the bulk 

chemistry from the sample’s thin section include an issue with the solidus in SW13-2. In this sample, the 

solidus appears to have been shifted up temperature considerably in comparison to SC13-7, also from 

the EGS. Furthermore, there is a considerably large gap between the solidus and liquidus between ~6-9 

kbar which could not be corrected for by lowering the H2O value without losing water saturation along 

the extent of the solidus. Another circumstance to consider with regards to modeling this sample was 

that the bulk geochemistry results showed a complete lack of Na2O which is unusual for pelitic rocks of 

this nature. In order to model the pseudosection, we assumed that there was at least 0.01% of Na2O in 

the sample, however that is still a very small amount. It is also possible that this wasn’t an issue 

associated with the sample’s bulk chemistry whatsoever: it could be that the sample has an unusual 

protolith that happens to be low in sodium. These caveats notwithstanding, measured XFe compositions 

of garnet cores and rims did fall in the peak predicted field, and modeling yielded peak metamorphic 

conditions of 6.2-8.9 kbar and 730-763 °C. Desmarais (1981) conducted geothermometry from a sample 

of meta-ultramafic rock near where SW13-2 was collected, and determined peak conditions of ~710 °C 

and 5-7 kbar.  

 For sample SC13-7 from the EGS located just off the eastern edge of the study area, peak 

metamorphism is inferred at 7.3-8.7 kbar and 700-780 °C. Intergrain Fe-Mg variation observed in this 

sample is likely the result of garnet nucleation and growth along the prograde path at different points in 

time; garnets forming earlier would have higher XFe values than those forming at a later time. Peak 

metamorphic conditions for this sample are relatively well constrained by XFe and XCa garnet core 
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values, which means that Fe-Mg compositions have not been as seriously affected by retrograde re-

equilibration in comparison to other samples from this study. Decompression is constrained by the 

presence of cordierite rims around garnet in addition to XFe values of biotite in the matrix yielding 

constrains between ~4.3-5.4 kbar and 628-710 °C. An amphibolite sample from Berg (2015) in the EGS 

collected ~0.2 miles away from SC13-7 yielded somewhat similar peak metamorphic conditions of 7.4 ± 

1.4 kbar and 780 ± 100 °C.  

 Additional P-T estimates from the EGS were calculated by Cramer (2015) from two 

supplementary localities within the Ruby Range. Two samples are from the Elk Gulch area, located in 

the southern portion of the Ruby Range, which yielded peak conditions of ~8.1-9 kbar, 770-800 °C and 

~8-11 kbar and 710-770 °C. The remaining two samples are from the Sweetwater Creek area, which is 

located along the southeastern edge of the Ruby Range, and yielded peak conditions of 7.7-9.7 kbar, 

710-830 °C and 7.8-9.1 kbar, 740-830 °C. While predictions of peak metamorphic temperatures from 

the EGS are broad and vary across different localities throughout the range, it can be determined that the 

EGS experienced higher peak temperatures and pressures than both the CRMS and DG. 

 In summary, it appears that there is some variety in peak metamorphic conditions between and 

within the three major structural units within the Ruby Range. In the CRMS, all predicted peak pressure 

conditions were generally similar, averaging ~7 kbar. However, there is a noticeable increase in 

temperature from the top towards the base of the CRMS: predicted peak temperatures increase from 

~700 °C to ~760 °C. The only sample which predicts peak conditions from the Dillon Gneiss comes 

from this study, which yielded conditions of ~760 °C and ~8.4 kbar. The predicted temperature value is 

similar to that of the lower CRMS, however the pressure estimate is considerably higher. The 

structurally lowest major unit within the range, the EGS, can be considered in terms of the four separate 

localities as described above. The area in the southwestern corner of the Mine Gulch quadrangle where 
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SW13-2 was collected produced average P-T conditions of ~6.8 kbar and ~735 °C, the region where 

SC13-7 was collected averaged peak conditions of ~7.7 kbar and ~760 °C, the Elk Gulch locality 

averaged ~9 kbar and ~762 °C, and the Sweetwater Creek locality averaged ~8.6 kbar and ~778 °C. 

While there is some variability in these results, it appears that samples from the EGS in the northern 

portion of the Ruby Range yield lower P-T results than those found in the southern portion of the range. 

Additionally, it is evident that the EGS exhibits the highest P-T estimates from the range in comparison 

to the CRMS and Dillon Gneiss. This infers that the rocks in this region are the structurally deepest out 

of all units within the Ruby Range.  

 

9.2. P-T-t Paths 

Sample 14-RG-01b from the QFG, SC13-7 from the EGS, and 14-CH-9a from the CRMS have 

corresponding U-Pb monazite ages which were collected as part of an internal grant from Amherst 

College awarded to Tekla Harms. This information was received via personal communication with 

Tekla Harms in May 2017 for U-Pb geochronological data obtained from the University of California – 

Santa Barbara (UCSB) laser ablation split stream Petrochronology Lab. These new ages aid in 

constraining the timing of peak metamorphism in conjunction with their respective pseudosections for 

each major unit in the region. The data discussed here is consistent with previously collected 

geochronology data in the region: monazite preserved U-Pb dates for both the ~2.45 Ga Tendoy orogeny 

in addition to the ~1.78 Ga Big Sky orogeny. However, only the Big Sky ages are applicable to 

constraining P-T-t paths for each pseudosection given that relict Tendoy conditions were not preserved. 

Because of this, the ~1.78-1.72 Ga ages will be the focus of this section.  

 Monazite in sample 14-RG-01b from the DG yielded two distinct age populations with weighted 

mean ages of 2438 ± 4 Ma (Tendoy) and 1775 ± 9 Ma (Big Sky). While predictions for peak 



 65 

metamorphic conditions from this sample are broad (712-808 °C and 7.4-9.4 kbar), the timing of peak 

metamorphism in this sample is nevertheless consistent with ~1.78-1.72 Ga ages from previous studies 

(Jones, 2008; Cramer, 2015). Monazite in sample SC13-7 from the EGS produced primarily ~1.78-1.72 

Ga ages yielding a weighted mean age of 1759 ± 4 Ma with a handful of older, relict ~2.45 Ga ages. 

While the weighted mean of this sample is slightly younger than that of 14-RG-01b by approximately 15 

million years, EGS samples from Cramer (2015) also yielded slightly younger ages which range 

between 1748-1769 Ma. Lastly, sample 14-CH-9a from the CRMS also produced primarily ~1.78-1.72 

Ga ages, but also yielded a few older discordant ~2.45 Ga grains. However, the primary population 

yielded a weighted mean age of 1780 ± 5 Ma, which additionally agrees with published ages from Jones 

(2008) and Cramer (2015). In summary, it appears that both the Dillon Gneiss and CRMS reached peak 

metamorphic conditions at approximately the same time ca. 1.78 Ga, however the EGS did not reach 

peak conditions until ~15 million years later at ca. 1755 Ma.  

 This new geochronology data also has significant implications in regards to inferences made 

about the relationships between the major map units in the Ruby Range. When considered in 

conjunction with age data collected by Jones (2008) and Cramer (2015) (Table 1), it evident that all 

three major units within the Ruby Range exhibit evidence of both the ~2.45 Ga and ~1.78-1.72 Ga 

events. This further supports the conclusions that these units are very closely structurally related and 

also share an entwined metamorphic history. However, the CRMS better preserves 1.78-1.72 Ga ages, 

and the EGS best preserves ca. 2.45 Ga ages (Jones, 2008; Cramer, 2015). Two additional samples 

which were dated at UCSB are now of particular interest to the story: sample 15-RR-55b which was 

collected from the garnet leucogneiss within the lower CRMS north of the Stone Creek fault, and sample 

14-CH-13 which is a pelite also collected from the lower CRMS. Sample 15-RR-55b exhibits 

exclusively ~2.45 Ga ages, yielding a weighted mean age of 2479 ± 5 Ma. This is significant because the 
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MGL has only exhibited evidence of ~2.45 Ga ages with no evidence of younger ~1.78-1.72 Ga ages, 

although the unit intrudes into the DG, the EGS, and CRMS, which all reveal ages from both 

populations. This is also supported a Lu-Hf garnet age from a sample of garnet leucogneiss that intrudes 

into the base of the CRMS which yielded an age of 2428.1 ± 6.8 Ma (Baker et al., 2017). Similarly, 

sample 14-CH-13 yields a weighted mean age of 2440 ± 8 Ma, and is the only sample from the CRMS 

that exhibits entirely ~2.45 Ga ages with no evidence of ca. 1.78-1.72 Ga overprinting.  

 

9.3. Implications for melt and lack of K-feldspar 

The range of melt predicted in peak metamorphic fields across all samples falls between 0 and 14  

mol%. This falls far below the critical melt fraction (CMF) of 30 vol%, inferring that all melt from the 

chosen sample locations were generated in-situ and did not experience melt loss to shallower crustal 

levels (Wickham, 1987). In all samples in which leucosome is observed, the melt composition is 

primarily tonalitic which is unusual for melt generated from average pelitic rocks. In the KASH (K2O, 

Al2O3, SiO2, H2O) system, the primary melt producing reaction for a clockwise P-T path is: 

Muscovite + quartz = Al2SiO5 + K-feldspar + liquid (Spear et al., 1999) 

While all samples from this study were modeled in the NCKFMASHTO system, the addition of 

remaining phases does not change the fact that K-feldspar is expected to be generated during most melt 

producing reactions (Spear et al., 1999). Nevertheless, the lack of muscovite observed in rocks from the 

Ruby Range is consistent with rocks undergoing muscovite dehydration melting. However, pelites from 

the CRMS, DG, and EGS are all very K-feldspar poor. 

 Regardless, all samples do exhibit evidence of compositional layering which is consistent with 

partial melting. Additionally, the mineral assemblage of observed leucosome is largely consistent with 

the expected composition of melt generated from a pelitic rock with the exception of alkali feldspar in 
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samples from the CRMS and DG. In order to reconcile the lack of K-feldspar with the predicted reaction 

from these two major units, there are two main scenarios to consider.  

 The first would be the primary injection of tonalitic melt from a nearby source into the 

metamorphic system. This is unlikely, however, because the textures of observed migmatites in the 

region are primarily schleiren in nature. If the migmatites formed through injection, one would expect to 

observe sharper edges around the injected leucosome (Pawley et al., 2013). Additionally, in particular 

regards to the CRMS pelites, cordierite and garnet are often present in the leucosome, albeit in small 

quantities, which most likely represent the solid products of the in situ melt reaction (Spear et al., 1999; 

Pawley et al., 2013). Therefore, it would be difficult to reconcile the formation of these minerals in an 

injected tonalitic melt. Also, as previously mentioned, the vol% of melt present in these rocks is also far 

below the CMF further supporting the idea that melt formed within the CRMS, DG, and EGS was 

generated in situ.  

 The second scenario is that potassium was removed from the system during anatexis. 

This would involve two distinct generations of melt production, which can be reconciled by the 

occurrence of the garnet leucogneiss. As previously discussed, the garnet leucogneiss is direct evidence 

of large-scale crustal melting which occurred at ca. 2.45 Ga based on recent monazite and garnet 

geochronology. This suggests that the unit formed as a result of melt segregation associated with 

collision and metamorphism during the Tendoy orogeny. The unit contains substantial amounts of K-

feldspar in comparison to pelites from the CRMS, DG, and EGS, which infers that the pelite from which 

the melt was sourced from was rich in muscovite. This means that by ca. 1.78 Ga, muscovite was only 

found in small quantities throughout the Ruby Range because it was consumed ca. 2.45 Ga as a result of 

muscovite dehydration melting. This explains the tonalitic nature of melt observed within the remaining 

units in the region. Additionally, although biotite is found abundantly within pelites throughout the 
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range, temperatures during the Big Sky orogeny were not high enough to promote the dehydration 

melting of biotite which begins around ~900 °C. In summary, the Ruby Range experienced two major 

melt producing events, however the majority of potassium present in the range was consumed and 

segregated out ca. 2.45 Ga, which led the second generation of melt produced ca. 1.78 Ga to be tonalitic 

in nature.   

 

10. Tectonic Interpretation 

10.1. Early Proterozoic collisional orogenesis: The Tendoy Orogeny 

~2.45 Ga metamorphic zircon and primarily monazite ages are relatively common within  

Tendoy Mountains, Beaverhead Mountains, Tobacco Root Mountains, and the Ruby Range (Dahl et al., 

2002; Roberts et al., 2002a; Kellogg et al., 2003; Jones, 2008; Cramer, 2015). Roberts et al. (2002) first 

proposed that sediments of the MMT were deposited between ~2.75-2.57 Ga and suggested that the 

region experienced an early, “cryptic” ~2.47 Ga metamorphic event. The timeframe of this early event 

coincides temporally with a global superplume event, and at the time it was believed that these ages 

were possibly related to the break-up of the supercontinent Kenorland (Roberts et al., 2002a; Dahl et al., 

2004). As more 2.45 Ga ages were identified in adjacent mountain ranges it became evident that early 

Paleoproterozoic metamorphism was widespread throughout the MMT and was more likely attributed to 

a local tectonothermal event. Kellogg et al. (2003) then suggested that ~2.45 Ga ages represent the age 

of granitic plutonism, metamorphism, and crustal consolidation. While an exact mechanism had not yet 

been proposed, these are are all within the same timeframe of 40Ar/39Ar cooling ages from hornblende, 

muscovite, and biotite in the Madison mylonite zone (MMZ) (Erslev and Sutter, 1990). 

 The MMZ is located in the Southern Madison Range (SMR), which lies ~40 miles southeast of 

the Ruby Range, and is a 3-km-thick zone of northeast-trending, northwest-dipping reverse faults 
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(Erslev and Sutter, 1990). The MMZ is characterized by the rotation of foliations and layering from 

southeast to northwest dipping orientations, retrograde metamorphism of mafic rocks, and strong 

downdip stretching fabrics (Erslev and Sutter, 1990). The region encompasses the contact between 

basement gneisses and metasedimentary rock in the SMR, similar to the lithologies observed in the 

Ruby Range (Erslev and Sutter, 1990). In the SMR, the two units in question are the Cherry Creek 

Metamorphic Suite (CCMS) and pre-Cherry Creek Metamorphic Complex (PCCMC), which is 

synonymous with the original names given to the Christensen Ranch Metasedimentary Suite and the Elk 

Gulch Suite, respectively. The CCMS, similar to the CRMS, is a sequence of dolomitic marble, biotite-

staurolite-garnet schist, quartzite, and amphibolite, and the PCCMS is comprised of basement granulites 

(Erslev and Sutter, 1990). 

 40Ar/39Ar thermochronology conducted from a series of samples within the MMZ revealed a 

cooling age of 2.5 Ga for hornblende and muscovite and a cooling age of 2.4 Ga for biotite (Erslev and 

Sutter, 1990). These ages suggest a metamorphic maximum of approximately 2.75 Ga, which reasonably 

coincides within the same timeframe of observed 2.45 Ga ages from the Ruby Range and surrounding 

region (Erslev and Sutter, 1990). Erslev and Sutter suggested that the MMZ and associated ages are 

representative of a major compressional orogenic event which reworked a significant amount of 

Archean basement in southwest Montana (Erslev and Sutter, 1990). It is therefore reasonable to assume 

that the collisional event which led to the formation of the MMZ is temporally equivalent to the event 

responsible for producing 2.45 Ga ages in the Tendoy Mountains, Beaverhead Mountains, Tobacco Root 

Mountains, and the Ruby Range. Collectively, all of these data and associated rocks, textures, and 

assemblages are more consistent with regional metamorphism with the MMZ recording the suturing of 

the MMT to the margin of the Wyoming Province at that time (Figure 23). This would also imply that 

the MMT experienced two discrete cycles of sedimentation and deposition on the cratonic margin: one 
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between ~2.75-2.45 Ga before the Tendoy orogeny, and a second between ~2.45-1.8 Ga pre-Big Sky 

orogeny (Figure 23). This idea is supported by the identification of preserved ~2.45 Ga monazite ages 

from the lower portion of the CRMS in the Ruby Range.  

 

10.2. Post 2.45 Ga extensional tectonism and dike/sill emplacement 

Within the Precambrian rocks of the Tobacco Root Mountains, there are a number of tholeiitic 

metamorphosed mafic dikes and sills (MMDS) which cross-cut the gneissic banding of Archean 

gneisses (Mueller et al., 2004). Ion microprobe analyses on zircon from one dike of the MMDS revealed 

an intrusive 207Pb/206Pb age of 2.06 Ga (Mueller et al., 2004). Dike and sill emplacement in the region 

which occurred post-Tendoy orogeny and pre-Big Sky orogeny is evidence for regional extension with 

mafic dike emplacement at that time (Figure 23). 

 

10.3. Post-extensional passive margin sedimentation and the 1.78-1.72 Ga Big Sky Orogeny 

Following the Tendoy orogeny, synchronous with post 2.45 Ga rifting and dike emplacement, a  

second episode of sedimentation would have occurred on the continental margin at that time (Figure 23). 

This is supported by an abundance of marble sequences and other interlayered metasedimentary rocks 

which occur throughout the MMT. In the Ruby Range specifically, this is observed within the upper 

portion of the CRMS, which exhibits primarily ~1.78 Ga metamorphic ages indicating deposition post 

2.45 Ga. However, it remains to be seen whether or not these sediments accumulated directly on the  

margin of the Wyoming craton or were part of an allochthonous terrane accreted onto the margin of the 

craton (Cramer, 2015). The accumulation of passive margin sediments is more likely, however, due to 

the prevalence of marbles with interlayered metapelitic lithologies.   
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Figure 23. Schematic cross sections depicting the tectonic evolution of the NW margin of the Wyoming 
Province between ca 2.55-1.72 Ga. Pre 2.55 Ga) Accumulation of passive margin sediments. 2.55-2.45 Ga) 
Tendoy orogeny – docking of MMT onto the crustal margin. 2.1-2.0 Ga) Dike and sill emplacement associated 
with extensional tectonism. 1.90-1.80 Ga) Onset of subduction of Wyoming Province beneath Medicine Hat 
Block and formation of Little Belt Arc. 1.79-1.76 Ga) Big Sky orogeny: terminal collision between Wyoming 
Province and Medicine Hat Block. 1.76-1.72 Ga) Formation of crustal architecture observed today. 



 72 

 As evidenced by previous geochronology from the Ruby Range and adjacent mountain ranges, 

the Wyoming Province collided with the Medicine Hat Block following ocean basin closure during the 

Paleoproterozoic Big Sky orogeny between 1.78-1.72 Ga (Figure 23). There are two basement exposures 

located within the GFTZ: the Little Rocky Mountains (LRM) and the Little Belt Mountains (LBM). 

Major element bulk geochemistry from a suite of calc-alkaline rocks in the LBM exhibit significant 

geochemical characteristics consistent with that of magma generated at a subduction zone (Mueller et 

al., 2002; Vogl et al., 2004). Similarly, geochemistry of orthogneisses from the LRM suggest the rocks 

either formed in a subduction zone environment, or represent remobilization of rocks that have an arc-

signature (Gifford, 2013). The presence of a subduction zone is supported by Deep Probe geophysical 

data which exhibit dipping reflectors in the mantle just to the north of the GFTZ (Gorman et al., 2002; 

Vogl et al., 2004). New geophysical data from Gu et al. (2018) additionally support this interpretation 

after having observed significant crustal thickening and increased Vp/Vs ratios (ratio of compressional 

wave velocity to shear wave velocity) near the GFTZ, which favors the interpretation that the region 

represents a collisional orogen. Because the LBM and LRM are situated on the margin of the Medicine 

Hat Block, this would suggest northward directed subduction of the Wyoming Province beneath the 

Medicine Hat Block.  

Cramer (2015) showed through monazite geochronology that crustal thickening and prograde 

metamorphism began ~1.79 Ga and culminated at ~1.76 Ga. This is likely when sediments from the 

second cycle of deposition were intercalated with Archean basement in addition to metasedimentary 

rock associated with the first cycle of deposition and the Tendoy orogeny. P-T modeling from this study 

show that the CRMS reached peak metamorphic conditions of ~7.7 kbar and ~760 °C and the EGS just 

off the western edge of the map area reached peak conditions of ~8 kbar and ~740 °C. This was 

followed by orogenic collapse between 1.76-1.71 Ga based on the replacement of garnet and sillimanite 
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by cordierite which was observed in both this study and Cramer (2015). Orogenic collapse during this 

time is also supported by increasing heavy rate earth element (HREE) abundance in monazite with 

decreasing age (Cramer, 2015).  

 

11. Conclusions 

P-T-t constraints suggest that each of the three major units within the Ruby Range have  

discrete metamorphic histories associated with the 1.78-1.72 Ga Big Sky orogeny. The CRMS 

consistently records peak pressures of ~ 7 kbar, however peak temperatures increase from ~700 °C at the 

top of the suite up to ~760 °C near the base. The Dillon Gneiss at the TOR locality records higher peak 

pressures, but similar peak temperatures as the base of the CRMS, yielding ~8.4 kbar and 760 °C. Peak 

P-T conditions from the EGS are less well constrained, and each locality discussed in this study yields 

discrete P-T results. The EGS locality situated in the southwestern corner of the Mine Gulch quadrangle 

reached peak conditions of ~6.8 kbar and ~735 °C, the locality immediately off the eastern edge of the 

quadrangle yielded conditions of ~7.7 kbar and 760 °C, the Elk Gulch locality yielded ~9 kbar and ~762 

°C, and the Sweetwater Creek locality yielded ~8.6 kbar and ~778 °C. While variable, these results 

demonstrate that the EGS in the southern half of the Ruby Range preserves the highest peak 

metamorphic conditions not only out of all the EGS localities, but out of all three of the major structural 

units within the range.  

 New mapping interpretations and geochronology demonstrate that all three units within the Ruby 

Range are closely structurally and metamorphically intertwined. While the CRMS, DG, and EGS exhibit 

both ca. 2.45 Ga and ca. 1.78-1.72 Ga ages, the garnet leucogneiss and one sample from the lower 

CRMS contain exclusively 2.45 Ga ages. These new ages also aid in determining a refined metamorphic 

history for the western margin of the Wyoming Province between ca. 2.55-1.72 Ga. Prior to ~2.55 Ga, 
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sediment was accumulating on the cratonic margin. This was followed by collisional orogenesis 

involving the docking of the MMT to the Wyoming Province ca. 2.45 Ga, and a second cycle of 

sedimentation between ~2.45-1.8 Ga. Ca. 2.06 Ga, the region experienced dike and sill emplacement 

associated with extensional tectonism based on the age of mafic dikes identified in the Tobacco Root 

Mountains (Mueller et al., 2004). Then, between ~1.78-1.72 Ga, the Wyoming Province collided with 

the Medicine Hat Block to the north resulting the Big Sky orogeny. Collectively, the data discussed in 

this study aid in resolving the crustal architecture and thermotectonic history of the northwest margin of 

the Archean Wyoming Province throughout the Paleoproterozoic.
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