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Abstract

Studying air pollution and public health has been a historically important question in science. It

has long been hypothesized that severe air pollution conditions lead to negative implications in basic

human health. Primarily, areas thats are prone to severe degrees of human pollution are the focus

of such studies. Such research relating to less populated areas are scarce, and this scarcity raises

the question of how such pollution dynamics (human-made and natural) influence human health in

more rural areas.

The aim of this study is to explore this hole in research; in particular we explore possible links

between air pollution and Influenza-like-illness in Montana. We begin with a discussion of our

starting hypotheses, the data we have accumulated to test these hypotheses, and some exploratory

analysis of these data. The body of this research is based on modeling of the natural factors that

influence influenza dynamics in general and how these factors apply in the state of Montana. Here,

we will explore different modeling approaches and how to apply them to the given data. To conclude

this research, a summary is provided and the implications this has for the state of Montana.
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Introduction

Particulate Matter

Studies that relate air pollution to influenza are not at all rare; there have been countless studies

that have aimed to form links between measures of air pollution and influenza incidence. Such studies

fall in the realm of Epidemiology, the study of incidence, cause, and control of disease. Often, these

studies are trying to relate a specific kind of pollution (such as ’smog’) to a specific aspect of human

health (mortality, susceptibility, etc. ). In this study, we are primarily interested in air pollution

as measured by Particulate Matter 2.5. Particulate Matter 2.5 (denoted PM2.5) is defined as ’fine

inhalable particles, with diameters that are generally 2.5 micrometers and smaller’ [1]. In figure 1,

the scale of PM 2.5 is illustrated.

Figure 1: An illustration of the scale of PM2.5 [1]

A large body of studies was reviewed in 2016 in the journal Environmental Health Perspectives

in which they conclude “Consistent evidence from a large number of studies indicates that wildfire

smoke exposure is associated with respiratory morbidity with growing evidence supporting an asso-

ciation with all-cause mortality. More research is needed to clarify which causes of mortality may be

associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke,

and if certain populations are more susceptible”[2].

PM2.5 is of particular interest in Epidemiological studies because it is among those pollutants

which are projected to increase in terms of density in the future. This increase leads to natural

curiosities about how regional health will be influenced or even altered.

In Montana, PM2.5 pollution from wildfires is causing massive problems. For example, in the
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summer of 2017 a devastating string of 21 wildfires ravaged Montana landscapes burning roughly

438,000 acres of land [4]. During the summer of 2017 in Montana, PM2.5 readings got as high as 109

µg/m3 in some regions. For reference, The Environmental Protection Agencies threshold for ‘unsafe’

levels of PM2.5 exposure in a 24-hour window is 35µg/m3[5]. This level of exposure occurred at

least 7 times in a 3 month period in the summer of 2017 according to our data. Studies have shown

that there have been immediate health impacts to this level of exposure (> 35µg/m3), and that

there exists an association between respiratory admissions and such intense conditions [6].

(a) (b)

Figure 2: (a.) Cumulative PM2.5 Exposure for Summer 2017 (b.) Weekly Average PM2.5 vs. Time

for all Montana Counties

Influenza-Like-Illness

In this study, our primary response of interest is counts of Influenza-Like-Illness (ILI). The World

Health Organization (WHO) defines an ILI as having one of the following symptoms: a measured

fever of 38C◦ (100.4F ◦), a cough, with onset within the last 10 days [7]. Generally, reports of ILI

tend to be highest in what we call the ’flu-season’. This period of time often starts in October,

peaks in February and March, and fades in late April (This trend can be seen in Figure 3b).
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(a) (b)

Figure 3: (a.)Total Influenza Counts Per Capita for 2017-2018 Flu-Season (b.) ILI-Counts vs. Time

for all Montana Counties

Problem Statement and Hypotheses

The focus of this research is to explore possible associations between PM2.5 and ILI. We approach

this exploration in a variety of ways including spatial statistical methods, temporal statistical meth-

ods, and general statistical modeling. Our encompassing hypothesis is that there exists a positive

association between PM2.5 and ILI, as the levels of PM2.5 density rise to unsafe levels we expect to

see a higher number of reported ILIs. We are primarily interested in exploring the effect that PM2.5

produced during summer seasons (that are prone to wildfires in the region) have on corresponding

incidence of ILI in the following influenza season. However, we also consider the possibility that

there is a more immediate impact of PM2.5 on ILI counts during the flu season. Some studies have

suggested that short term effects (some on the scale of days, others on weeks) of PM2.5 density exist

on multiple health related issues [8].
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Influenza, PM2.5 Data and Associated Covariates

Data Format

In this section, the collected data and the formatting of these data are discussed. Beginning with

our response, we have collected total weekly influenza-like-illness reports from county hospitals in

nearly all of Montana [9]. We say ’nearly all’ because we are missing ILI data from two counties

(Toole and Richland County) and we also group 6 counties (Musselshell, Petroleum, Judith Basin,

Wheatland, Golden Valley, and Fergus County) into the ’Central Montana Health District’ (CMHD).

ILI counts are only consistently collected from the beginning of September to the end of May the

following year. In the summer months, ILI counts are not recorded, as they are so minimal in

this time period. Initially, we had collected ILI data from as far back as the 2009 flu-season, but

ultimately had to dispose of these data due to suspicions of misreporting. We believe that this

misreporting arose from not recording on a weekly basis, but instead accumulating reports over

multiple weeks and reporting all such ILI cases on one particular week. It is unlikely that this

happened past the 2009 flu-season. Thus, the credible date range for our collected ILI data is from

2010-01-01 to 2018-06-01.

Daily PM2.5 emissions from wildfires were provided by the Missoula Fire Lab Wildfire Emission

Inventory [10]. These data were paired with data from the upper atmosphere characterization

of transport wind direction to wildland fire smoke transports from the North American Regional

Reanalysis [11]. These variables were used to model PM2.5 concentrations measured at air quality

monitoring stations throughout the state on a weekly basis and develop a PM 2.5 geographic layer

over time. We are primarily interested in exploring two possible functions of PM2.5 in relation to

ILI: a long-term effect experienced from summer exposure, and a short-term effect due to winter

inversion experienced during influenza season. We considered multiple functions of the PM 2.5 data

to express these different kinds of exposure in Table 1. Examples of these variables for Gallatin

County are shown in Figure 4.
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Variable Name Description

PM 2.5

Variables

Tested

Short-term

Effects
n-week lag

Lag PM 2.5 density up to n-weeks before current

week of ILI.

n-week moving window sum
Sum total PM 2.5 exposure up to n-weeks before

current week of ILI

Cumulative PM2.5 exposure
Sum total PM 2.5 exposure over entirety of

flu-season.

Long-term

Effects
Total PM2.5 exposure

Sum total PM2.5 exposure from summer months

preceding Influenza Season

Table 1: A table displaying the different PM 2.5 variables being tested in modeling for association with ILI

(a) (b)

(c) (d)

Figure 4: (a.) A time-series of the 2 week PM2.5 Moving Sum (b.) the 1 week PM 2.5 Lag (c.) the

total influenza-season PM 2.5 exposure, (d.) the cumulative summer PM 2.5 exposure for Gallatin

County.
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In addition to these environmental variables we also include a seasonal variable to control for

seasonal fluctuations in Influenza. This seasonal component is called a ’Fourier Component’ [18]; in

the most general sense this is a sum of sine and cosine terms of varying periodicity that is meant

to capture seasonal fluctuations in ILI counts. The basic idea is that every year, typically one flu-

season ’peak’ is experienced with some varying smaller influenza spikes. This component is intended

to account for this natural cyclic seasonality in ILI prior to estimating the effects of other variables

of interest. In our study, we find that three sine functions and three cosine functions at periodicity

52 weeks (one spike a year) 26 weeks (two spikes a year) and 13 weeks (4 spikes a year) captured the

majority of the seasonal fluctuations in ILI-counts in our models. These six seasonal fluctuations

are visualized in Figure 5.

Figure 5: A visualization of different periodicities in the Fourier Components
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Exploratory Analysis

Here we establish some basic properties of the observed Influenza and PM2.5 data for counties in

Montana. Of particular interest is exploratory analysis in three statistical senses: The traditional

sense where we observe ILI counts and PM2.5 via visualizations and look for possible issues that

may arise in modeling, the spatial sense where we seek to explore spatial relationships or patterns

present in the ILI data or the PM2.5 data, and the temporal sense where we will observe if there

are persisting relationships through time that could be used in modeling.

Basic Exploratory Analysis

One of the primary issues with modeling ILI incidence is the sporadic and spontaneous nature

of when the flu season starts to accelerate. We have sufficient evidence to say that flu seasons

happen in ’peaks’, usually as one or two per flu-season. This is evident in figure 3b, where we see

one prominent peak per year and some secondary peaks of less magnitude. The Center for Disease

Control conducted an interesting study where they observed in which month this ’peak’ occurred for

flu-seasons as far back as 1982 [12]. Their study produced the histogram in Figure 6a. In Figure 6b,

the same plot is shown for our collected data separately for all Montana counties.This shows that

the time in which flu-season peaks is highly variable; anytime between October and May is possible.

With this kind of uncertainty comes some modeling issues due to the sparsity of ILI.

(a) (b)

Figure 6: (a.)Month in which the Flu-Season Peaked Since 1982 [12] (b.) Month in which Flu-Season

Peaked in Montana Counties 2010-2018.

There are many weekly recordings in our observational time frame (October-May every year since
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2010) in which no cases of ILI are recorded at all. There are multiple reasons for this abundance of

null counts. One such reason is that Montana is the 43th most-populated state in the United States

with only 1,062,000 residents and the 47th most-populated per land area (mi2)[13]. To summarize,

Montana has very few people and they tend to be concentrated in a small number of cities. In a

recent paper by Dr. Benjamin D. Dalziel et. al. (2018) it was discovered that population density

has an influential role in the characteristics of flu-season. To summarize their paper, they concluded

that ’epidemics in smaller cities were focused on a shorter period of the influenza season, while the

incidence was more diffuse in larger cities.’ [14]. This discovery applies well to Montana cities;

consider for example a comparison between a highly populated county and a less populated county.

In Figure 7, ILI counts for Yellowstone county (home to Billings,MT, the most populated city in

the state) and its’ neighboring county Carbon county (21st most populated county in Montana) are

shown. It is clear to see that the flu-season persists for a longer number of weeks in Yellowstone

County than in Carbon. This is evident because the peaks for Yellowstone County are much wider

in general than the corresponding peaks in Carbon County.

This property of ILI causes some issues in this study. We maintain a consistent time frame from

October to May of the following year for each flu season, but a majority of those weekly values

are very low or zero. Observing histograms from these counties in terms of ILI counts reflects this

problem. In figures 8a, 8b, and 8c the ILI for all weeks in the study can be observed for the three

most populated counties in Montana: Yellowstone, Missoula, and Gallatin County. It is clearly seen

that a majority of weeks are in the very low count range (0-10 ILI), with only sparse occurrences

of spikes. To illustrate this sparsity of ILI counts, consider the three most populated counties in

Montana listed earlier. The percentage of weeks with 0 ILI reports within our study time frame for

these three counties is: 33.9% for Yellowstone County, 40.4% for Missoula County, and 29.8% for

Gallatin County. Contrastingly, in figures 8d, 8e, and 8f the corresponding ILI histograms for three

smaller population counties (Broadwater, Sweet Grass, Wibaux) are shown. In all cases a distinct

right skew is apparent; in larger populations (figures 8a, 8b, and 8c) we see longer tails due to the

increased population. This emphasizes the point that a large number of ILI counts in our study

range are near zero for all counties and especially small ones. This issue will be accounted for in the

statistical models for ILI considered later in this paper.
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Figure 7: Comparison of Yellowstone and Carbon County ILI counts.

(a) (b) (c)

(d) (e) (f)

Figure 8: (a.)Histogram of ILI for Yellowstone (b.) Histogram of ILI for Missoula (c.) Histogram

of ILI for Gallatin (d.) Histogram of ILI for Broadwater (e.) Histogram of ILI for Sweet Grass (f.)

Histogram of ILI for Wibaux

We are further interested in understanding the basic distributions of our covariate data, including

PM2.5 (and functions thereof) and temperature. In figure 9, we see scatterplot matrices for these

three primary quantities of interest for a small handful of counties to illustrate their stochastic

behavior. This is intended to explore for possible issues in collinearity that may arise in modeling or
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any irregularities in the covariates of interest. For example, it is possible that PM 2.5 density and

temperature are collinear; when the temperature is high, PM 2.5 density tends to also be high.

(a) (b)

(c)

Figure 9: Scatterplot matrices for (a.) Missoula (b.) Gallatin (c.) Yellowstone

In general scatterplot matrices such as those in figure 9 tend to be similar among counties. There

do not appear to be any significant collinearity issues among the covariates that will be used in

the modeling of ILI counts for each individual county. This is supported by the low correlations

among the two covariates, PM 2.5 (and functions thereof) and temperature, PM 2.5 density curves

are somewhat right skewed and centered at about 10− 15µg/m3 and temperature tends to be fairly

symmetric centered at about 0− 5 ◦C.
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Spatial and Temporal Analysis

We wish to explore the existence of spatial and temporal relationships in ILI count data and

PM2.5 data in Montana. This can be accomplished through the use of spatial and temporal corre-

lation statistics but also basic intuition. In this section we discuss the mathematical forms of these

descriptive statistics and interpret the meaning of these statistics in context with our analysis. The

general hypothesis we started with is that ILI counts by county are spatially correlated, i.e. if county

A has a high level of ILI counts at some time, it is plausible that neighboring county B would as

well. If this is the case, this spatial information could be modeled and incorporated into spatial

models which use neighborhood information to produce predictions in space (see [25] for details).

Spatial Analysis: Moran’s I Spatial Statistic

In Figure 3 at the beginning of this study, we displayed a visualization of the spatial distribution

of ILI counts at a particular date; from this visualization it is somewhat unclear if there is a spatial

relationship we can utilize. In order to assess the presence of spatial autocorrelation between ILI

counts and PM2.5 density at the county level in Montana we make use of Moran’s I statistic. This

value gives a correlation metric on the spatial autocorrelation of a single quantitative variable. More

details about the Moran’s I statistic can be found in ’Statistics for Spatial Data’ [25] by Cressie

(1993). In the most basic sense, Moran’s I measures how one response in space is similar to other

responses in space surrounding it. The statistic has the following mathematical definition:

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − ȳ)(yi − ȳ)∑n

i=1(yi − ¯yi)2

where

yi = ILI counts of county i divided by population of county i

ȳ =

n∑
i=1

yi the arithmetic mean of flu rates of all counties

wi,j =

1 of county i borders county j, i 6= j

0 otherwise

Note that I is contained in the interval [−1, 1] just as the traditional Pearson’s correlation coef-

ficient. The closer to 1 the statistic I is, the stronger positive spatial correlation there tends to be

(i.e. regions closer to each other tend to be positively associated), the closer to −1 the statistic I is

the the more negatively associated neighboring regions are. It is important to note that there are
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many weighting metrics that can be used to express the relationships between neighboring counties,

but here a binary weighting system was chosen over differing neighborhood weighting systems such

as distance to centroid of county or proportion of shared county border. It is my belief that these

more complicated weighting schemes could be more valuable at finer resolutions, such as zip-code

level, but for county level analysis do not have enough influence.

We also scale the ILI’s at time t by the population of the county in order to have a similar scale

for the response of interest statewide. Later, when modeling is discussed for a single county we

generally do not perform this transformation because we are interested more in developing count

models rather than rate models. At the individual county level, this scaling by population is not

necessary as the types of models we are using a resistant to constant scale changes. The reasons for

this distinction are discussed more in the modeling sections of this paper. We estimate Moran’s I

statistics at every week for which we have ILI data available for, Figure 10 shows the estimates for

each week over the 8 years of data.

Figure 10: The estimated Moran’s I statistics for every week for which the calculation was acceptable

stratified by influenza-season.

The consensus is that there is very little if no spatial correlation present in these ILI counts

at the county level. I believe the reason for this to be multifold. First and foremost ILI, spatial

relationships at the county level are not a fine enough resolution; preferably zip-code level would be
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used. I believe this to be due to the ways in which Influenza is traditionally transmitted, as covariates

such as socio-demographic variables, distance to public schools, and public transport are the primary

drivers of Influenza transmission [26]. For modeling purposes, persistent spatial autocorrelation in

the response of interest require the use of spatial modeling methods, but this analysis suggests that

any spatial modeling would be less useful than other methods. However, this spatial relationship is

certainly worth exploring more at the zip-code level or even the census track level as indicated by

other studies [27].

Moran’s I statistic was also applied to the PM2.5 variable on a week-by-week basis for all counties

in Montana. Figure 2 suggests that it is highly plausible that there is spatial autocorrelation in

PM2.5 densities across Montana. In Figure 11, the estimates of Moran’s I for PM2.5 density over

time can be visualized.

Figure 11: Estimated Moran’s I statistics for PM2.5 density in all of Montana on a weekly basis.

Clearly, the spatial auto-correlation in PM2.5 densities is substantially higher than the correspond-

ing ILI values. In general, the estimate of Moran’s I tends to hover around a spatial correlation of

0.8. Note that the large spike at ’2015-03-15’ is due to missing data. This analysis suggests that as

counties experience higher levels of PM2.5 density, generally so do neighboring counties. In contrast,

our response is not strongly spatially related at the county level.

Temporal Analysis: Auto- and Cross- Correlations

In our study, it is of great interest to understand the temporal dynamics at play relating to both

ILI counts and PM2.5 density at the county level. To do this, we compute the autocorrelation
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function (ACF) to assess temporal autocorrelation in the observations. Letting y1, y2, ...yn represent

the time series of ILI counts for a Montana county, the auto correlation function at a lag of l is

defined as follows [28]:

rl =

∑n
i=1(yi − ȳ)(yi−l − ȳ)√∑n

i (yi − ȳ)2
√∑n

i (yi−l − ȳ)2

This is essentially Pearson’s correlation coefficient with lagged components being used in place of

some other variable of interest. Figure 12 shows the estimated auto-correlations for the ILI counts

and PM 2.5 densities for every county in Montana. Referencing figure 12, there tend to be high

amounts of auto-correlation for both ILI and PM2.5 counts for Montana counties. On average,

Montana counties showed estimated ILI auto-correlations of .597, .465, and .353 for lags of 1 week,

2 weeks, and 3 weeks respectively. A similarly strong result is obtained for PM2.5 auto-correlations

exhibited by estimates of .542, .391, and .292 for 1 week, 2 weeks, and 3 week lags. Clearly in some

counties these temporal relationships are stronger than others. For example, in Yellowstone County,

the estimated one-week auto correlation is .90, a very strong positive association. Typically, lags of

up to two weeks in ILI counts seem to have significant temporal association, using the significance

cut-off below described in [28]:

1.96√
T︸︷︷︸

Number of Obs.

− l︸︷︷︸
lag

=
1.96√

238− 1
= .127

Note in Figure 12 plots (a) and (b) (both with sample size 238 after removing non-flu season

data and accounting for lagged dependencies) that a majority of the estimated auto-correlations for

1 week lags exceed this significance threshold. We have reasonable evidence to say that there is a

temporal association in both ILI counts and PM 2.5 densities for a majority of Montana counties

(with the exception of some lightly populated areas such as Treasure County). This relationship

is vitally important to modeling counts in ILI on a weekly basis; this suggests to us that an auto-

regressive model of lag 1 (AR1) could be highly useful in controlling for natural auto-correlation in

the response. We take this into account and discuss in length during the modeling section of this

paper.

We are also highly interested in the relationship in both the short term and long term between

the ILI counts at a current week in Montana counties, and both the immediate and distant past

in PM2.5 density behavior. To assess this relationship is the core of our research; here we examine

some possible short term associations. To explore this relationship, we make use of cross-correlation.

This time-series statistic assess the strength of a relationship between two quantitative variables in

time by correlating the current value of one of the variables with the other variable lagged some

amount in time. Letting x1, x2, ..., xT represent the sequence of weekly PM2.5 density estimates for

one Montana county, that county’s estimated cross correlation function at a lag of l is given by:

rl =

∑T
i=l+1(xi − x̄)(yi−l − ȳ)√∑T
i (xi − x̄)2

√∑T
i (yi − ȳ)2
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Human health and behavioral studies have highlighted the dangers of using cross-correlation over

long periods of time to infer causal relationships [29,30]. From a practical standpoint, it is logical that

cross-correlations at shorter lagged periods are less susceptible to confounding than cross-correlations

at longer lagged periods. One reason for this intuition is that in general estimated cross-correlations

for long lags tend to be based on fewer data points than for shorter lags [30]. Staying true to this

philosophy, in Figure 12 we observe cross correlations between the current ILI weekly count and the

PM2.5 density from 1 week, 2 weeks, and 3 weeks previous to the current week. We save longer term

analysis for the modeling portion of the paper so possible confounding variables can be appropriately

controlled for.
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(a)

(b)

Figure 12: (a)Estimated ILI auto-correlations in Montana counties. Red dots represent the auto-

correlation at a 1 week lag, green at a 2 week lag, and blue at a 3 week lag. (b) Estimated PM2.5

auto-correlations in Montana counties. Red dots represent the auto-correlation at a 1 week-lag,

green at a 2 week lag, and blue at a 3 week lag.
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Figure 13: Cross-Correlations between current ILI weekly count and PM2.5 density from 1,2, and 3

weeks prior

In figure 13, it is immediately apparent that short-term cross correlations are highly erratic. In

general, a majority of counties tend to have a positive estimate of cross correlation between ILI at

time t and PM2.5 density at time t− l, but often these estimates fall right around the .10 mark, just

below the α = .05 significance threshold [28] for our study. This suggests that short-term associations

between ILI and PM 2.5 are inconsistent, and vary from county to county. In the modeling section

of this paper, we will explore these short term associations (as well as long term) in more detail.
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Model Selection

In this section several topics are discussed including model selection, basic theory about types

of models, and components of these models. These models are then interpreted and analyzed for

performance and basic inference can be done. Following the work of Feng et. al. [15], Hooten et al.

[16], and Imai et al [17] we propose a model of ILI that incorporates the over-dispersion of ILI counts

discussed in earlier sections. We utilize the temporal correlation in ILI counts on a weekly basis,

weekly average temperature, multiple functions of PM2.5 and seasonality components to estimate

and predict ILI counts. We begin by utilizing a generalized linear model in order to impose

different distributional assumptions on the response.

Generalized Linear Models: Definition and Basic Theory

A generalized linear model has the following form:

g(µ) = βX + ε

where µ is the average of the response of interest and g(.) is some link function imposed on the

average response to restrict the response to a suitable domain [18]. Common link functions are the

’logit’ function (which restricts responses to the range [0, 1]) and the ’log’ function (which restricts

responses to the positive range [0,∞)). X is a matrix of covariates of interest, β are the coefficients

of the covariates, and ε is a vector of errors for each observation. In typical linear modeling, we

impose a normality assumption that ε ∼ N(0, σ2I). This assumption is not necessarily made in

generalized linear modeling; instead we can impose distributional assumptions that more accurately

reflect the characteristics of our response. To clarify, a normal assumption on the errors, ε, would

imply a normal assumption on the responses (ILI counts) for a glm for ILI counts. We know by

previous exploratory analysis (see earlier sections) that this is clearly not the case. Instead we need

to use distributions that are more well suited to our responses.

An appropriate choice for link function g(.) would be the log function. This would ensure that

µ, the input to g(.), is strictly positive. This is a beneficial property for this research; clearly the

average ILI count cannot be negative. We further assume that the covariates X are fixed and known

quantities and the coefficients β are fixed but unknown quantities we need to estimate. Inferences in

this study rely on the coefficients β, as they will ultimately supply any evidence in relating PM2.5

density to ILI counts in Montana. Typically, the link function g(.) is a non-linear function of the

average response µ. This non-linearity forces us to estimate β differently than we would in the case
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of ordinary least squares where we would simply solve the normal equations X′Xβ = X′y. The

parameter estimates can be found using iteratively re-weighted least squares, a form of the classic

Newton’s Iterative Algorithm [19]. The basic expression of this algorithm is given below:

βt+ 1 = βt + J−1(βt)µ(βt)

Where J−1 is the observed information matrix (the negative of the Hessian Matrix) of the param-

eter estimates and µ(βt) is the score function of βt which indicates the gradient of the log-likelihood

with respect to βt and t is the index of iteration [19]. This is a numeric-approximation algorithm

that iterates until a convergence criterion is met and gives us a local-maxima of the likelihood func-

tion of β, thus giving us our parameter estimate β̂. This is the basic algorithm that the R-statistical

software function ’glm.fit’ [20] uses, which is the function we will be utilizing most in this research.

Generalized Linear Models: Distributional Assumptions

Now we establish the distributional assumptions that characterize our generalized linear model.

Recall that µ is the average of the response of interest (in our case ILI counts). We now aim to

impose a distribution on the response vector Y which has expected value µ so that E[yi] = µi.

In generalized linear models, a distribution from the exponential family of distributions is chosen.

Common distributions from the exponential family are the normal, poisson, gamma, and binomial

distributions. The exponential family of distributions is described as any distribution which can be

written in the form:

f(yi,θ) = exp[a(yi)d(θ) + b(θ) + c(yi)]

where yi is the ith observed response, θ is a vector of parameters of the distribution (for example µ

and σ in a normal distribution), and a(.), b(.), c(.) and d(.) are separate functions of the parameters

and ith observation. Distributions of this form have useful theoretical properties, in particular

their maximum likelihood estimators are typically fairly easy to derive [18]. What we seek is the

most appropriate choice of distribution to use in our generalized linear model. We will impose the

assumption that ILIi ∼ Exponential Family(θ) and choose the distribution which conforms best

with our responses. This will be discussed more when the research-specific model is formed.

Generalized Linear Models: Model for Predicting Influenza-
Like-Illness Counts

We now define the form of the model in which we model weekly ILI counts by county in Montana.

The generalized linear model has the following form:
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(1)

log(µt,k) = β0 +

6∑
i=1

βiFi(t) + β7ILIt−1,k + β8Temperaturet,k︸ ︷︷ ︸
Control for Confounders

+β9Summer Total Exposure PM 2.5t,k︸ ︷︷ ︸
Long-term Effects

+β10Flu-Season Exposure PM 2.5t,k︸ ︷︷ ︸
Short-term Effects

t = week number of study from 2010-01-03 to 2018-05-27, t = 1, 2, ..., 245

k = index of Montana County, k = 1, 2, ..., 50

µt,k = Expected ILI count at time t in county k, assumingILIt,k ∼ Exponential Family(θ)

Fi = Sine(i=1,2,3) or cosine(i=4,5,6) function of t with period 52 weeks (i=1,4), 26 (i=2,5) weeks, and 13 (i=3,6) weeks.

Total Exposure PM 2.5t,k = Cumulative PM 2.5 density from previous summer at week t in county k.

Flu-Season Exposure PM 2.5t,k = a function of short-term PM 2.5 exposure at week t in county k.

Notice that the first eight terms in the model are all variables typically associated with influenza

dynamics. Studies have shown the benefits of including seasonal Fourier components to control for

natural seasonality in ILI counts [17]; likewise temperature is added as another common controlling

factor [21]. Earlier it was discussed that ILI counts have highly strong auto-correlations for lags

up to 2 weeks prior to the current week in question, thus an auto-regressive component (ILIt−1,k)

is another important controlling variable; this is intended to ’model-out’ (account for) the natural

auto-correlation present in ILI counts by county. This model is run for all Montana counties in

which we have reliable ILI data (49 total counting all counties in CMHD as one county).

It is important to understand the interpretation of these coefficients before any kind of inference

is performed. Observing the model form in equation (1) above, solving for µt,k would give us:

µt,k = exp(β0) ·exp(β1F1) · . . . ·exp(β9Total Exposure PM2.5) ·exp(β10Flu-Season Exposure PM 2.5)

(2)

Letting g−1
t,k denote the right hand side of equation (2.) evaluated at some time t and some county

k, consider a vector of the covariates at time t in county k:

xt,k = [1, F1(t, k), F2(t, k), ...,Total Exposure PM2.5t,k,Flu Season Exposure PM 2.5t,k].

Then the value of µt,k can be expressed as:

µt,k = exp(β0)

· exp(β1F1(t, k)) . . . exp(β9Total Exposure PM2.5t,k)exp(β10Flu-Season Exposure PM 2.5t,k)

= exp(βXt,k)

= g−1(t, k)

(3)
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Now consider increasing the covariate ‘Total Exposure PM 2.5′t,k(TEPM2.5t,k) by 1 unit to pro-

duce a new estimated ILI count µ′t,k. Then equation 3 would remain exactly the same with the only

change being µ′t,k = . . . exp(β9(Total Exposure PM2.5+1)) . . . = . . . exp(β9(Total Exposure PM2.5)exp(β9(1)) . . ..

Notice that this is equivalent to saying µ′t,k = g−1
t,k · exp(β9) = µt,k · exp(β9). This gives us a natural

interpretation of the coefficients. This means that the average ILI count at time t in county k is

expected to change by a magnitude of exp(β9) for every one unit increase in ‘Total Exposure PM

2.5’ [22]. Note that this interpretation applies for all covariates listed in equation (1).

With this model in place, we now examine how to choose the right exponential family to model the

ILI counts. Considering that our outcomes, ILI counts, are discrete-count variables we considered

three distributions: the Poisson distribution, the Quasi-Poisson distribution, and the Negative-

Binomial distribution. These distributions are traditionally used in counting occurrences of some

outcome in a period of time, with the only difference between the Poisson and the latter two being

that the latter two distributions account for over-dispersion of the response. “Over-dispersed” in

this sense simply means that the variance is functionally larger than the mean; in the pure-Poisson

model the mean and variance are equal. The only real difference between the quasi-Poisson model

and the Negative-Binomial model is that the variance of a quasi-Poisson model is a linear function

of the mean (V ar(Y ) = kµ) while the variance of a negative binomial model is a quadratic function

of the mean (V ar(Y ) = µ+ kµ2)[23]. Choosing among these distributions is not a trivial problem,

standard model selection criteria such as AIC or BIC are not advised to compare quasi-Poisson and

negative binomial models. Instead an evaluation of the mean-variance relationship of the responses

is needed. In Figure 14, a visualization of ILI county mean vs. county ILI variance is displayed.

It is clearly apparent that the negative binomial assumption appears to be the most accurate with

respect to the variance mean relationship of the ILI counts. Certainly, a pure-Poisson model here is

completely invalid, whereas a quasi-Poisson might be appropriate.

Figure 14: The Variance-Mean relationship of ILI counts for all counties.
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Inference

The model specified in equation (1) was applied to every county in Montana in which ILI counts

were available. In this section, basic statistical inference will be performed on the coefficients of these

models. We will interpret the coefficient estimates from equation (1) and discuss some resulting

evidence that comes from these estimates. Further, we will discuss what functions of PM 2.5 seem

to be related to ILI counts for Montana counties.

Coefficient Inference

Our generalized linear model is of the form from equation (1). We will first consider the coefficients

produced by our covariates of interest: ’Total Exposure PM 2.5’ (TEPM2.5t,k) and ’Flu-Season

Exposure PM 2.5’ (FSEPM2.5t,k). For the short-term exposure component (FSEPM2.5t,k), recall

from Table 1 that this could be one of many functions tested for best fit to the model data. We fit the

model in equation (1) using each of the proposed short-term PM2.5 functions separately, evaluate

the deviance explained in the model, and plot 95% confidence intervals for each of the short-term

parameters for this variable among the counties.

Figure 15 suggests a couple facts about the short-term PM2.5 effects. First, these models suggest

that after accounting for the other variables in equation (1) there is very little that the short-term

PM2.5 variables adds for these counties. Regardless of short-term function chosen for the model,

the corresponding coefficients tend to have the similar estimates in terms of sign. For example take

the first three counties in the confidence intervals in figure 15 (Wibaux, Fallon, Sheridan); regardless

of short-term variable, all three coefficient estimates are negative. Further, we see that there is

little evidence to suggest that these short-term variables are consistently influential across counties

in predicting ILI counts. A majority of the 95% confidence intervals overlap 0, suggesting that

these short-term effects tend to have very little effect if any on ILI counts. For all short-term PM

functions, about half of the coefficient estimates are positive and half are negative. All functions

are comparable in terms of residual deviance explained in the model from the short-term PM2.5

variable. Regardless of choice of short-term PM 2.5 function, they all tended to explain similar

amounts of deviance in response. For simplicity, we keep the two-week moving window sum PM2.5

variable in the model as a predictor variable. Though the two-week moving window sum of PM2.5

was inconsistently influential across all Montana counties, there are still some counties which exhibit

signs of a short-term effect (Carter County for example).
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(a.)

(b.)
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(c.)

(d.)
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(e.)

(f.)

Figure 15: (a) 2-Week PM 2.5 Moving Sum Coefficient Confidence Intervals (b) 3-Week PM 2.5

Moving Sum Coefficient Confidence Intervals (c) 4-Week PM 2.5 Moving Sum Coefficient Confidence

Intervals (d) 1-Week PM 2.5 Lag Coefficient Confidence Intervals (e) 2-Week PM 2.5 Lag Coefficient

Confidence Intervals (f) Cumulative PM2.5 Exposure Coefficient Confidence Intervals
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Far more interesting than the short-term PM2.5 effects in this study are the apparent long-term

PM2.5 effects. This is measured by the TEPM2.5t,k variable. After accounting for all other variables

in equation (1), figure 16 displays 95% confidence intervals for the coefficients of the long-term PM

2.5 effects on Montana counties. It is clearly apparent that these estimates are predominantly

positive for almost all Montana counties. All together, 47 of the 48 Montana counties modeled

produced a positive coefficient estimate for this long-term effect (only Roosevelt county gave a

negative estimate). Further, 35 of the counties had positive coefficients at the α = .10 significance

level. With a majority of coefficient estimates being positive, this provides our baseline evidence

that summer PM2.5 density levels primary driven by wildfire smoke have a positive relationship

with corresponding winter ILI incidence in Montana counties.

Figure 16: The estimated coefficients of the TEMP2.5 variable for every Montana county with 95%

confidence intervals

Some other coefficients of interest including those corresponding to the time series lagged ILI

counts and temperature are visualized in Figure 17. We can see that the relationships noted in the

temporal analysis section earlier and from past research in the field persist in models for Montana.

First, the majority of Montana counties show a negative relationship between temperature and ILI
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counts during influenza season as expected, although most parameter did not not differ from 0.

Further, nearly all of the counties (with the exception of Treasure county) exhibit a strong positive

autocorrelation with the previous week’s ILI counts. This makes contextual sense in the setting of

ILI modeling: knowing how many reports of ILI were made in the previous week gives us information

about what will happen in the current week.

(a)

(b)

Figure 17: (a.) The estimated coefficients of the weekly temperature variable for every Montana

county with 95% confidence intervals (b.) The estimated coefficients of the 1-week lagged ILI count

variable for every Montana county with 95% confidence intervals

With these models in place, we can observe partial effects plots in Figure 18 resulting from the
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model fits. These plots allow us to view how the predictions of the ILI counts change for changing

values of the covariates of interest holding all other covariates constant. We do this for a couple of

the larger population counties in Montana to illustrate the effects of these variables. The positive

nature of these associations is clearly observable; however the estimated standard errors sometimes

make this positive association negligible.
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(a) (b)

(c)

(d) (e)

(f)

Figure 18: (a,b,c) Partial effects plots of Cumulative Summer PM2.5 Exposure on ILI counts for

Gallatin, Ravalli, and Yellowstone County. (d,e,f) Accompanying partial effects plots for the 2-week

moving sum PM 2.5 variable.
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Model Performance

In this section we analyze several different model diagnostic checks to assess model performance.

Among these are basic residual analysis where we will see if the residuals coincide with our assump-

tions, and some basic model fit statistics.

Residual Analysis

We can visually inspect the goodness-of-fit of these models via analysis of the resulting residual

plots. In Figure 19, residual plots for three heavily populated Montana counties are displayed with

accompanying residual density. The residual plots exhibit a large string of consistent residuals that

occur in the bottom left of the plots. These patterns occurred in other studies [17] and indicate

poor handling of zero count ILI cases. The issue of zero counts is difficult to address, but there are

models (i.e. zero-inflated poisson models) that could possibly account for this issue. We see that

these models tend to show larger over-estimations than underestimations. On the natural log scale,

these over estimations can get as high as 30-40 cases too large. However, a majority of the residuals

are within close proximity of the zero line indicating better model fit. The accompanying residual

density plots reflect the nature of the abundant zero-counts by being centered slightly left of zero

(indicating that in general we over-predicted). It is also clear that the residual density plots are

somewhat right skewed.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Residual plots from model fits in (a)Missoula County (b)Gallatin County (c)Yellowstone

Coutny. Residual histograms from model fits in (d)Missoula County (e)Gallatin County

(f)Yellowstone County

Assessing the goodness of fit quantitatively is still somewhat of an open question. There is no

uniformly ’best’ way to assess the goodness of fit. For this study, we will make use of a psuedo-

R2 statistic based on residual and null deviance defined by A. Colin Cameron [31] given in the

equation below. This measure assesses the degree of improvement (in terms of decrease) in the

model deviance given by including the covariates as opposed to only modeling using an intercept.

Critics of this pseudo-R2 suggest that it is easily inflated by over-parameterization; however with

only 10 parameters and upwards of 450 observations per model, we may assume this issue does not

arise here. Figure 20 shows the pseudo-R2 for every county-level model fit.

R2
dev = 1− ResidualDeviance

Null Deviance
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Figure 20: A plot of Pseudo-R2 statistics. The vertical black line represents the average pseudo-R2

for all county models at .501.

In general, we can expect for this model to account for roughly half of the variation in ILI counts

for a given county in Montana. Granted, this is not a fantastic fit, but it is sufficient to show that the

model form and covariates have some significant associations with the response. It is particularly

interesting to observe that counties with very low pseudo-R2 statistics tend to be very sparsely

populated (Treasure county R2
dev = .045, Garfield county R2

dev = .075, Carter county R2
dev = .151)

and counties with very high populations tend to perform a bit better in terms of deviance explained

(Yellowstone R2
dev = .757, Missoula R2

dev = .773, Flathead R2
dev = .761). This reflects the difficulty

in modeling small population sizes, where there are few reported ILI cases on a weekly basis, rarely

exceeding 10 reports. This analysis suggests that this model has the ability to account for the

variation in ILI counts for certain counties, but lacks the flexibilities in Montana counties with

smaller populations and thus smaller reported ILI incidence.
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Conclusions

In this section we conclude the analysis of ILI counts in Montana at the county level and their

relationship to environmental covariates including PM2.5 density. We discuss the weaknesses of our

study and possible future work that can remedy these weaknesses. Further we discuss the impact

models of this type can have on the study of human health.

Weaknesses and Future Works

This study illustrated some of the difficulties of working with human health data in lightly popu-

lated and rural areas. Our model had difficulty accounting for the excess of weeks in which no ILI

cases were reported, which possibly distorted the relationship between the ILI response and the co-

variates of interest. Remedies to this problem come in the form of zero-inflated models that account

for zero-counts which come in the form of ’structural’ zeros and ’count’ zeros [32,33]. Other remedies

to this problem included more auto-regressive time series components, which were not included here

to guard against over-parameterization.

Another weakness is the segmented nature of the modeling. We constructed our models in such

a way that we assume that county level covariates do not ’talk’ to each other, i.e. they are inde-

pendently behaved. Our exploratory analysis suggested that neighboring counties tend to not be

spatially associated in our response of interest; however the are somewhat spatially related in some of

the covariates (PM2.5 density, Temperature, etc.). A model with the flexibility to allow parameters

from one county model fit to learn from other county model fits could be beneficial in improving

our predictions and our understanding of county level interactions with respect to our ILI count

response and covariates of interest. Recommended approaches to incorporating this information

include Bayesian ’Gaussian-Process’ modeling in which the intercept and slope of multi-level terms

can be related through a gaussian distribution [34]. While on the topic, Bayesian methods would

be fascinating to examine with respect to this problem so we could discuss the ’probability’ of a

positive PM2.5 coefficient effect rather than take the more conventional significance level method.

Such Bayesian models have been lightly tested in our setting and in other research [16,17] but were

not included in this study for the interest of length and time.

Summary
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Our study examines the relationship between Influenza-Like-Illness in Montana and it’s relation-

ship to county-level covariates of interest such as PM2.5 density, temperature, and seasonality. We

found that there is significant evidence of a positive effect between the amount of exposure to PM2.5

pollution during the wild-fire seasons and corresponding incidence in Influenza-Like-Illness counts

for 49 of 50 counties available for modeling in Montana. We found little to no evidence of consistent

short-term associations between PM2.5 and ILI counts during the typical influenza seasons. Fur-

ther, our study demonstrated that there appears to be little spatial association in ILI counts at the

county level in Montana, but we suggest rerunning spatial analysis on finer resolution scales (such

as zip-code or census-tract level). Our proposed generalized linear model performs well in predicting

ILI counts in higher population counties (with pseudo-R2’s as high as .79) but struggles with lower

population counties. It is our intent that this research adds value to the knowledge of human health,

as it pertains to Influenza-Like-Illness, in the following areas: The relationship of environmental

covariates (specifically PM2.5 and temperature) with ILI, the spatio-temporal relationship of ILI in

Montana, and model construction and evaluation techniques for similar studies.
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