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O’Brien, Haley, M.A., Spring 2019      Anthropology 

 

HUMAN VS. NON-HUMAN BONE: A NON-DESTRUCTIVE HISTOLOGICAL METHOD 

 

Chairperson:  Meradeth Snow 

 

  Species identification is one of the first steps in the analysis of bone fragments in both forensic 

and archaeological contexts. Current methods for human vs. non-human taxa identification include 

morphoscopic, histological, and DNA analyses in order to determine forensic significance and 

assess what is present in an assemblage. This study will use an MA1000 AmScope camera 

microscope to examine the longitudinally fractured surface of cortical bone fragments to gauge if 

non-destructive taxa identification is possible from fragmentary remains without morphologically 

identifying features. This method is testing for a notable difference in human vs. bovid vs. cervid 

endosteal cortical bone without the use of destructive, histological cross-sections. The results of 

this study show there is a statistically significant association with positive bone identification 

between taxa, an accuracy measure of 65.6% for all taxonomic groups, 96.2% accuracy of 

identifying human bone correctly, and 7.9% misidentification of non-human bone as human. 

Expanding further on these results have implications for both forensic and archaeological contexts 

as an affordable, non-destructive analysis of fragments of various sizes when morphological 

identification isn’t possible. 
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1.0 Introduction 

 
 As a collective discipline used in the justice system to build a preponderance of evidence 

and meet legal standards on the burden of proof, forensic science exclusively uses the scientific 

method to always corroborate and compare an unknown sample with a known or reference 

sample (Schanfield, 2007). This ensures the integrity of the evidence brought to court and 

removes bias of individual interpretation from the analysis and generation of reproducible 

results. Of particular focus for this paper is the application of the science of physical 

anthropology to the medicolegal system, called forensic anthropology. This subdiscipline 

specializes in the evaluation of the human skeletal system in order to develop a biological profile 

that includes the possible age, sex, stature, ancestry, and unique skeletal features of an individual 

in order to help police authorities identify them where decomposition or destructive conditions 

have removed all other identifying features (Bass, 2005; White and Folkens, 2005; Klepinger, 

2006; DiGangi and Moore, 2013; Christensen et al., 2014). While it is not in their purview to 

decide cause and manner of death, this biological profile can additionally include the assessment 

of ante-, peri-, and post-mortem damage or alterations to the skeleton and assist forensic 

pathologists, medical examiners, and coroners with the medicolegal, forensic significance of 

remains (Christensen et al., 2014).  

Before the forensic anthropologist can even begin a profile though, the first determination 

that needs to be made is whether or not the bones are human (Bass, 2005; Urbanová and 

Novotný, 2005; White and Folkens, 2005; Dominguez and Crowder, 2012; Nor et al., 2015; 

Croker et al., 2016; Johnson et al., 2017). This literature review will provide an overview of 

relevant bone anatomy, assess current human vs. non-human identification methods, and provide 

the relevant background for the non-destructive method developed in this paper.  
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1.1 Overview of Bone Anatomy 

 Within biological, anatomical systems, bone is a connective tissue that acts as the main 

supporting internal structure of the body and is one of the strongest biological materials in 

existence (White and Folkens, 2005). It is composed of an organic matrix of collagen fibers 

combined with an inorganic base of hydroxyapatite and other minerals which form a dense layer 

of cortical bone surrounding the medullary cavity, cancellous bone, and marrow. The cortical 

bone is arranged into matrices of osteons that form larger tube-like Haversian systems which run 

parallel to the shaft of the bone and are interwoven with vascular canals for blood vessels (Figure 

1). Within the Haversian systems, the osteocytes (mature bone cells) sit within lacunae that are 

arranged in concentric rings, bounded by the lamellae, around the central Haversian canal that 

runs longitudinally to the length of the bone and contain the blood vessels and nerves of the 

periosteum. Finally, the cement line bounds the outer edge of each individual osteon which 

remain connected by the interstitial lamellae and blood vessels (Klevezal, 1996; White and 

Folkens, 2005; Katsimbri, 2017).  

 Across all vertebrate species, the skeleton is the primary weight-bearing mechanism 

allowing for movement, stability, protection of soft tissues, and mineral storage within the 

musculoskeletal system (Klevezal, 1996; White and Folkens, 2005). During juvenile growth, 

primary osteons are rapidly deposited in combination with high amounts of vascularization 

which creates dense bone matrices that will initially form woven bone tissue where the collagen 

fibers are randomly organized. This is soon replaced by lamellar bone tissue where the collagen 

fibers will rearrange into parallel-fibered orientation (White and Folkens, 2005; Straehl et al., 

2013). Some species that grow rapidly, such as cows and sheep, have plexiform bone similar to 

woven bone that forms more rapidly than lamellar bone, but has more structural integrity due to 
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the combination of lamellar and non-lamellar bone which create a brick-like shape that grows 

first perpendicular and then parallel to the bone shaft. This tissue formation creates very stiff, 

inflexible bones and is rarely seen in humans (Dominguez and Crowder, 2012; Straehl et al., 

2013; Kolb et al., 2015). Depending on the type of bone formed, osteons can have different 

shapes and cement line banding resulting from the collagen orientation and mechanical support 

for movement (Dominguez and Crowder, 2012; Dominguez and Agnew, 2016). 

 

All long bone shafts are ossified at birth, but the combination of primary and secondary 

ossification centers around the epiphysial ends allow for healthy endochondral ossification stages 

to occur as the juvenile ages. This is performed by osteoclasts which will deposit bone 

longitudinally to increase length and radially to increase bone diameter and strength (Figure 2). 

During this process, long bones do not grow at the same rate at both ends and will preferentially 

Figure 1: Cross-section of cortical bone and its internal structures (Urbanová and Novotný, 

2005). 
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ossify at the end contributing to the growth in length. This can help with aging techniques in 

human biological profiles, but ultimately, the growth period terminates when the endocrine 

system transitions from the juvenile phase and the epiphyses fuse to the diaphysis (Bass, 2005; 

White and Folkens, 2005; DiGangi and Moore, 2013; Christensen et al., 2014; Katsimbri, 2017). 

It is important to note that human and non-human bones will ossify at different rates as humans 

have a longer juvenile development period and develop their cartilage models to primary bone 

over an extended stage of juvenile dependency (White and Folkens, 2005). 

 
 

After terminal growth is reached, an individual begins to age which is marked in the 

skeleton by the deterioration of processes instead of growth rates. This means that the epiphyseal 

lines will gradually disappear, secondary deposition and resorption of osteons will remodel the 

bone, and create Haversian bone composed of secondary osteons (Urbanová and Novotný, 2005; 

Hennig et al., 2015). Depending on the life history of the individual, the osteoclasts and 

osteoblasts will reshape the cortical bone differently (White and Folkens, 2005; García-Martínez 

et al., 2011; Kolb et al., 2015; Katsimbri, 2017). These processes are fairly consistent between 

humans and other mammals (Dominguez and Crowder, 2012), but will show differential 

Figure 2: Different stages of 

growth and epiphysis fusion of 

human tibiae from newborn to 18 

years old (White and Folkens, 

2005) 
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remodeling or deposition of secondary osteons in specific areas of the long bones depending on 

strain placed by differential locomotor strategies and weight-bearing needs (Kolb et al., 2015; 

Zedda et al., 2015, 2017).  

1.2 Common Methods of Taxa Identification 

Using this baseline of skeletal anatomy and physiology in forensic contexts, the first 

determination that needs to be made with skeletonized remains is whether or not the bones are 

human (Urbanová and Novotný, 2005; White and Folkens, 2005; Dominguez and Crowder, 

2012; Nor et al., 2015; Croker et al., 2016; Johnson et al., 2017). This determines whether there 

is forensic significance to the remains and if further investigation or recovery is necessary for a 

case. Improper identification can cause a waste of both time and resources by the agencies 

involved (e.g. the police and researchers), so method reliability and proper training is necessary 

to mitigate needless losses (Bass, 2005; Langley et al., 2018). If a forensic anthropologist or 

other professionally trained individual is not readily available, photographs can be sent for an 

initial decision for the need of further recovery and analyzed in the lab at a later time (Dupras et 

al., 2012). Current methods of taxonomic identification include morphological, DNA, and 

histological analyses depending on the size and state of fragmentation of the remains.  

1.2.1 Morphological 

In response to differential weight-bearing and loading of different taxa, the functionality 

of bone remodeling and deposition varies between species depending on their locomotor 

strategies (Klevezal, 1996; Cubo et al., 2008; Dominguez and Crowder, 2012; DiGangi and 

Moore, 2013). This leads to morphological differences in bone shape/structure that acts as a 

baseline for basic taxonomic identification in cases where whole bones and/or identifiable 

features are available for analysis (Gilbert, 1990; France, 2009; Straehl et al., 2013; Broughton 
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and Miller, 2016). The first considerations of gross examinations are age, size, and 

morphological differences. Maturity of the bone, through epiphyseal fusion if the features are 

available, can help rule out smaller taxonomic groups (e.g. racoons) where terminal size is only 

comparable to a juvenile human individual that would have long bones with unfused ends. Next, 

if small taxa have been ruled out, larger mammals (e.g. horse or cow) can be considered where 

even juvenile individuals tend to be larger and more robust even when considering the size 

variability of adult humans. Adult specimens in larger mammals will be even more robust and 

exhibit denser cortical bone when compared with adult humans (White and Folkens, 2005; 

Dupras et al., 2012; Christensen et al., 2014).  

Finally, overall morphology can be taken into consideration as humans tend to have 

relatively gracile muscle attachments and cortical bone thickness due to their bipedal locomotor 

strategy when compared with other species (Christensen et al., 2014; Croker et al., 2016). Some 

species may have comparable bone shapes (e.g. a bear paw vs. a human hand), but a professional 

forensic anthropologist or human osteologist is trained to recognize the morphological 

differences in epiphyseal shape, cortical bone robusticity relative to shaft size, and the presence, 

absence or fusion of some skeletal elements when compared with a human skeleton. While 

humans and other mammals do tend to share a similar overall body plan of skull, spinal column, 

axial skeleton, and four appendicular limbs attached to pelvic and shoulder girdles, some bones 

within this basic plan will evolutionarily fuse or change shape depending on the locomotor 

strategies applied by the taxonomic group (Bass, 2005; White and Folkens, 2005; Dupras et al., 

2012; Croker et al., 2016). For instance, prey animals (e.g. deer, sheep, and horses) tend to have 

a fused radius and ulna with an accentuated diaphysis curvature to aid in weight displacement of 

the forelimb during their extended times spent running. In humans, the radius and ulna are 
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unfused, with long, narrow diaphyses, and a wider range of movement since they play no role in 

weight-bearing (Gilbert, 1990; Dupras et al., 2012).  

In the field, the application of morphological identification is not always available, as 

taphonomic processes can damage the bone creating small fragmentary remains with no 

identifiable features. The completeness of the features can also have an impact on interanalyst 

variation and protocol drift due to training, experience, and availability of comparative sources 

(Lau and Kansa, 2018).  The most significant benefit of applying this method first to the 

identification of skeletal remains lies in its non-destructive nature and ability to directly compare 

whole bones and fragments alike to larger comparative collections or photographic resources 

using a baseline of osteological training (Gilbert, 1990; White and Folkens, 2005; France, 2009; 

Dupras et al., 2012). 

1.2.2 Histological Cross-Sections 

Bone histomorphology can be defined as the structure of bone tissue at the microscopic 

level and has multiple uses in anthropological contexts for taxonomic identification, age 

estimation, pathology identification, taphonomic impacts on bone, nutrition, etc. (Bass, 2005; 

White and Folkens, 2005; Dupras et al., 2012; DiGangi and Moore, 2013; Christensen et al., 

2014). As a next means of analysis, a number of studies have verified the ability to take a 

histological cross-section of a complete bone at specific points along the long bone shaft to 

establish human vs. non-human taxonomic identification. These thin cross-sections, or in one 

study cores (Stein and Sander, 2009), are then filled with resin, placed on slides, and examined 

under microscopes of varying resolution for cortical bone thickness ratios, osteon 

shape/consistency, directionality/type of vascularization, and a number of other measures to 

effectively determine human vs. non-human (Urbanová and Novotný, 2005; Cuijpers, 2009; 
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Dominguez and Crowder, 2012; Straehl et al., 2013; Kolb et al., 2015; Nor et al., 2015; Croker et 

al., 2016). Light microscopy specifically is ideal for histological analyses as the bone cross-

sections should be thin enough to allow light to shine through the slide and easily highlights the 

microscopic cell structures for examination (DiGangi and Moore, 2013).  

Using these methods, features such as plexiform bone, osteon banding, and circular 

osteon shape are relatively easily-identifiable measures that indicate non-human bone origin and 

don’t require an extensive familiarity with bone histology (Dominguez and Crowder, 2012; 

Straehl et al., 2013; Kolb et al., 2015). In particular, osteon circularity is seen as one of the faster 

identifiers of non-human bone as human osteons tend to have a more elliptical shape. While 

human osteons do tend to decrease in size and become more circular with age, they remain 

distinct from non-human specimens in both 2D histological slides (Crescimanno and Stout, 

2012; Dominguez and Crowder, 2012) and 3D renderings that assess the full shape of the 

Haversian canals (Hennig et al., 2015).   

In forensic and archaeological contexts, this method has traditionally used as a means of 

estimating age at death, pathology, and measuring degree of bone preservation for DNA analysis. 

For human vs. non-human taxa identification, histomorphology assessments have been strongly 

corroborated and validated by multiple sources but is destructive in nature, requires equipment 

not always available to researchers, and cannot be utilized in the field. 

1.2.3 DNA 

DNA analysis is another destructive technique that can applied to bone through a crime 

lab or molecular anthropology lab. Preservation is key in this process where the DNA has not 

been degraded via poor environmental or taphonomic conditions. The protocols are standardized 

and consistent between labs which is an optimal benefit of using this technique in forensic cases 
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when it is possible (White and Folkens, 2005; DiGangi and Moore, 2013). First, the sample is 

prepared by washing exposed surfaces multiple times to remove contamination of external DNA, 

then reduced to as small of pieces as possible via smashing, chemicals, or a grinding tool of 

some kind. Next, the sample goes through chemical reactions in order to break open the cell (i.e. 

cell lysis) so that the DNA can be separated from the rest of the cell body via extraction 

standardized extraction protocols. In order to account for conditions where the preservation is 

poor or only trace amounts of the sample were recovered, the next step involves the 

amplification or replication of what genetic material is present in order to have a viable quantity 

of genetic material for further testing and to account for the loss of the original sample material. 

This is done through polymerase chain reaction (PCR) protocols that go through very specific 

heating and cooling cycles to copy the DNA over and over. Finally, the DNA is ready for 

sequencing where a genetic profile can be created and specific regions can be targeted for 

analysis and interpretation (White and Folkens, 2005; Schanfield, 2007; DiGangi and Moore, 

2013). This is a gross oversimplification of molecular methods but lays a foundation for 

understanding the nature of DNA testing and its current use in forensic and archaeological 

contexts. 

In terms of taxonomic identification, DNA is not commonly used in forensic contexts due 

to cost, time constraints, and the destructive nature of the method. Other methods like those 

discussed above are preferentially used to determine forensic significance of the remains. While 

it is possible to do a more specific species identification, the cost and destructive constraints 

outweigh the benefits for identification and must include a reference library of possible taxa to 

compare the genetic profile to. Beyond the initial human vs. non-human identification process 

though, forensic DNA testing is increasingly being used to assess non-human evidence such as 
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hair or saliva for evidential value (Schanfield, 2007). As these methods are developed further for 

expediency, accuracy, and cost-effectiveness, there are future implications for the use of DNA 

taxonomic identifications of forensic significance. For now, though, the use of DNA analysis 

will focus on developing genetic profiles of known human samples for identifying perpetrators, 

victims, and developing databases such as the National Missing Persons DNA Database 

(NMPDD) and the Combined DNA Index System (CODIS) (Christensen et al., 2014). 

For similar cost and destructive restraints in archaeological contexts, DNA analysis is 

more commonly used to address the potential sex, pathology, ancestry, individuation, and diet of 

a known human specimen. This is usually done in tandem with other osteological analysis 

techniques for the sake of the biological profile provided by bioarchaeologists and forensic 

anthropologists (White and Folkens, 2005). In some instances where species identification was 

used to trace subsistence strategies, the analysis was applied to stone tools (Kimura et al., 2001; 

Shanks et al., 2001, 2004) as faunal records are not always representative of the full suite of 

species being consumed (Kimura et al., 2001). For its accuracy, this method is still collectively 

expensive and time consuming and is not widely used for the identification of unspecified bone 

samples.  

1.3 Common Species Represented 

 Approximately 20-30% of cases examined by forensic anthropologists are determined to 

be of non-human origin (Bass, 2005; Klepinger, 2006; Dupras et al., 2012; Christensen et al., 

2014). Common species confused with adult human remains include large mammals such as 

bear, deer, large dogs, and pigs, but in contexts where people (e.g. farmers and hikers) with no 

osteological training submit bones to the crime lab for possible forensic significance, cows and 

horses may also be submitted to forensic anthropologists for analysis (Dupras et al., 2012). It is 
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important for forensic anthropologists and other professionally trained specialists to know the 

distribution of non-human species in the geographic region in order to narrow down the 

possibilities and use proper comparative resources for positive identification (Gilbert, 1990; 

Bass, 2005; Dupras et al., 2012).  

1.4 Research Goals and Significance 

 This research attempts to create a non-destructive method of identification using a 

notable, non-random difference between human and non-human internal cortical bone structures 

of fragments.  The null hypothesis stands that no difference can be observed between human and 

non-human samples and that the additional destructive step of histological cross-sections is 

necessary for species identification. If there is a failure to reject the null hypothesis, the analyst 

will be able to non-randomly differentiate between human and non-human bone fragments using 

the methods created in this research. 

The results of this study could provide an accessible, affordable, and fast identification 

method which, in turn, could save time and resources if non-human determinations are made 

early in a forensic investigation. By applying this at a crime lab, someone without extensive 

histological knowledge in osteology could look for quantitative and basic morphological features 

to establish forensic significance of remains. In an archaeological context, this method could be 

useful for similar cost, non-destructive, and efficiency reasons with the additional caveat that 

most faunal fragments found are regularly too small for taxonomic or element identification 

beyond possible long bone shaft fragments. This would additionally help give archaeologists and 

biological anthropologists a method for human vs. non-human taxonomic identification in known 

archaeological sites that is respectful to tribal beliefs on how to handle the deceased. 
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2.0 Materials & Methods 
 

Collectively, this paper examined fragmented remains of human, cow, and deer long 

bone fragments where the internal surface of the cortical bone has been exposed. The non-human 

species were chosen due to their appearance in potential forensic cases that have come through 

the University of Montana Forensic Anthropology Lab (UMFAL). The samples for this project 

(Table 1) come from the University of Montana Forensic Collection (UMFC), University of 

Montana Archaeology Lab (Historic Fort Missoula Site: 24 MO 1100), and the Montana State 

Crime Lab- Missoula (FSD). 

Table 1: Specimen Overview of Photos (as of 3/1/19) 

Species Specimens Elements 
Human • FSD 0-5174 

• UMFC 158 

• John Byrd 

• UMFC 28 

• UMFC 68 

• R. Tibia, P+D 

• L. Femur Shaft, P 

• L. Tibia, Mid 

• L. Humerus, P 

• L. Tibia, D 

R. Tibia, D 

Cow (Bovid) • UMFC 85.3 

• UMFC 85.4 

• UMFC 86.2 

• FSD 18-246 (1) 

• FSD 18-246 (2) 

• FSD 18-246 (4) 

• 24MO1100 (1) 

• R. Femur, D 

• R. Femur, D 

• R. Femur, D/M 

• L. Femur, D 

• IN Radius, D 

• L. Tibia (Broken w/ hammer) 

• R. Humerus, P 

Deer (Cervid) • UMFC 85.1 

• UMFC 85.2 

• FSD ## 

• UMFC 86.1 

• UMFC 86.3 

 

• UMFC 85.5 

• FSD 18-246 (3) 

• R. Humerus, M 

• R. Humerus, M 

• L Humerus, M 

• L. Humerus, M 

• R. Radius (Broken w/ 

hammer) 

• L. Metacarpal, M 

• R. Humerus (Broken w/ 

hammer) 

 

The cortical edge of the bone was cleaned with a toothbrush to take off the worst of the 

dirt, but as an important note: no water was used. This ensures the integrity of the evidence if 

applied to a forensic case. AmScope LED-144 light settings were kept between 2 and 5 for 
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consistency and the AmScope contrast setting was left at +1 so no later adjustments were needed 

to clarify the structures for analysis. Using the matte black velvet as both a solid background and 

a prop for proper orientation, the bone was positioned under the microscope and the boom arm 

manipulated so the camera could get close enough to the specimen for clear resolution. The 

fracture edge had to be as flat as possible for the microscope to focus properly, areas with 

attached cancellous bone or transitionary foramen were targeted if possible, and internal vs. 

external cortical edges were noted for photo orientation. An MA1000 AmScope camera 

microscope was used to photograph longitudinal images of the internal surface of fragmented 

long bone samples of the taxa listed above under 2-250x resolution. Once the bone was properly 

in-focus, images were saved as TIFF files which maintain a professional photography quality of 

higher resolution and no file compression. These factors properly maintain the integrity of the 

photo for forensic contexts.  

2.1 The Research Sample 

Long bones were chosen for their robusticity, histologic consistency between elements, 

relatively simple growth pattern and morphology, and because they tend to survive in both 

archaeological and forensic contexts (Urbanová and Novotný, 2005; Stein and Sander, 2009; 

Straehl et al., 2013; Nor et al., 2015). All specimens are from adult individuals in order to 

maintain consistency of bone type, but specific ages were not available to account for the 

possibility of secondary bone remodeling/deposition. Specimens did not exhibit any obvious 

pathologies that may have altered the cortical bone structures. All specimens are from historic or 

contemporary contexts, so pre-historic, archaeological age did not contribute to differences in 

features within this study. Some non-human specimens did exhibit butchery marks, but such 

marks did not obscure features and were noted in the photo log (Addendum A). 
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Due to lack of bovid and cervid remains with proper fracture edges and no taphonomic 

properties that would obscure the cortical bone, specimens FSD 18-246 (3) and FSD 18-246 (4) 

were initially whole bones broken with a hammer for the purposes of this project to expose the 

longitudinal cortical surface. Each bone was placed individually in a plastic bag to collect all 

fragments and struck with a metal-head hammer at mid-shaft until the long bone broke. 

Collectively, 83 photos were taken of known human, bovid, and cervid specimens 

verified by morphological features. Microscopic photos of linear fractures that were viable for 

use in this analysis included 21 human, 22 cervid, and 23 bovid. The additional 17 photos were 

excluded due to photo orientation of transverse fractures or included post-mortem damage that 

obscured qualitative features such as glue or Dremel sample cuts. Analysis of transverse 

fractures were excluded in this analysis due to lack of human remains that could be clearly 

photographed in this way and can be addressed in future research.  

2.2 Qualitative Features 

Once the collective microscope photo samples were taken, they were compared and 

assessed for consistent features within taxonomic groups using the background information 

provided in the literature review. The histological features targeted and analyzed include: shape, 

size, and number of foramina from vascularization and descriptive appearance/consistency of the 

cortical bone surface. Other features (e.g. linear ridges in human specimens that run parallel to 

the shaft) were additionally noted in the comparison stage, but it was found that the type of 

fracture and conditions of the bone would obscure or confuse these features for identification by 

individuals with no osteological experience to be able to differentiate fracture patterns vs. 

structural differences. Figure 3 shows the features flagged for this pilot study and their taxa-

identifying distinctions. Some of these features did exhibit in other taxonomic groups, but a 
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preponderance of presence, absence, and number of all the features helped decide the most likely 

taxa classification. All photos here are oriented with the external cortical edge on the left and the 

internal cortical edge on the right.  

 

 

 

 

  

Figure 3: Flow chart of feature distinctions and taxonomic 

identification choices created for blind test participants 
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2.2.1 Human 

 Collectively, human samples tended to exhibit long, ovular foramina from vascularization 

that were encased in bone independent of the transition from cortical to cancellous bone. 

Additionally, the cortical surface looked slightly reflective under the microscope’s LED light and 

in some specimens, there were long, parallel ridges of bone if the fracture type did not obscure 

the structures. Figure 4 highlights the shape of the foramina (red outlines) and additionally shows 

the light spots described as being slightly reflective.  

 
 

  

Figure 4: Photo 39 from John 

Byrd (S11, E3), a left tibia at the 

midshaft 
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2.2.2 Bovid 

 Bovid samples exhibited small, round foramina (red outlines) that tended to be clustered 

together (marked densely saturated in Figure 3’s flow chart). This gave the overall cortical bone 

surface a porous, granular appearance comparable to course sand paper. Figure 5 does exhibit 

some dirt that could not be removed without water, but the shallow porous nature of the cortical 

bone surfaces is still visible.   

 
 

 

  

Figure 5: Photo 68 from UMFC 

86.2, a right femur at distal 

midshaft 
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2.2.3 Cervid 

 Cervid samples tend to exhibit similar round foramina (reds outlines) to bovids, but they 

are slightly larger and spread farther apart. The cortical bone surface is additionally more 

reflective and has a smooth, plastic appearance under the microscope. Some cervid samples (e.g. 

Photo 84) did tend to have some ovular foramina in the transition between cortical and 

cancellous bone, but these features were not encased in the cortical structure as the 

vascularization of human bone shows.  

 
 

  

Figure 6: Photo 63 from 

UMFC 86.1, a left humerus at 

midshaft 
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2.3 Blind Test 

 The blind test aimed to assess initial communicability, usability, and preliminary 

accuracy of this method. Nine graduate students from the University of Montana Anthropology 

Department were given ten unspecified photos, the flow chart of qualitative features provided in 

Figure 3, and a small amount of background to understand the orientation of the photos. Due to 

the varied backgrounds of the students, the foramina were circled to differentiate proper vascular 

structures from residual dirt or fracture patterns on the bones (Addendum C). 

 Students downloaded the word document with Figure 3 and used it to assess the flagged 

features in the ten provided photos, made their guesses for taxonomic identification, and saved 

their answers as a new word document in the provided file folder with their names. A double-

blind study was not conducted in order to account for the level of osteological experience 

amongst the subjects which ranged from forensic anthropologists with osteological knowledge, 

to archaeologists with exposure to bone identification, but not faunal analysis, to no osteological 

background whatsoever.  

Answers were compiled into an Excel (Office 365) sheet and assessed using Chi-Square 

and Fisher Exact Test statistics for significance values as well as basic percentages of right and 

wrong identifications per photo. Significance statistics were run for both the random chance that 

one out of three answers would be correct due to the low number of taxonomic groups to choose 

from as well as the upward bound if the expected values were 100% accuracy.  

3.0 Results 

 The original hypotheses of this study assert that there is a notable, non-random difference 

between human and non-human internal cortical bone structures of fragments. The null 

hypothesis stands that no difference can be observed between human and non-human samples 
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and that the additional destructive step of histological cross-sections is necessary for species 

identification. If there is a failure to reject the null hypothesis, the analyst will not be able to non-

randomly differentiate between human and non-human bone fragments using the methods 

created in this research. Overall, blind study participants were able to differentiate between 

human and non-human cortical bone with minimal background information (Addendum C). 

Differential identification between cervid and bovid photos was not as accurate (Table 2). The 

results of this study were deemed statistically significant independent of random chance that 

participants chose the right answer. In all significance tests the null hypothesis was rejected, 

showing there is a non-random association between positive human vs. non-human taxa 

identification.  

Table 2: Answers provided by blind study participants, green boxes are the correct answers. 

“Original P#” corresponds to the original research sample photo log (Addendum A) and “Photo” 

corresponds to the order of the blind test images (Addendum C) 
Original P# Photo Human Bovid Cervid 

39.1 1 8 1 0 

70 2 0 1 8 

84 3 1 6 2 

96 4 0 2 7 

25 5 9 0 0 

68 6 0 8 1 

81 7 4 1 4 

21.1 8 9 0 0 

63 9 0 7 2 

43 10 0 7 2 

 

3.1 Accuracy of Identification 

Osteological background did not seem to have a significant impact on number of correct 

answers as most individuals (5/9) in the blind study identified 7/10 correctly with only two 

receiving the lowest score of 5/10, one individual received 6/10, and the highest score was 8/10. 

Only one individual misidentified a human bone as a bovid specimen (Table 2, Photo 1). The 
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other two human photos (Table 2, Photos 5 & 8) were identified with 100% accuracy. The 

average percentage of correct answers across all photos was 65.6%, but proper identification of 

human photos specifically was 96.2%. Among the non-human photos, 7.9% of responses were 

cervid specimens misidentified as human and no bovids were improperly identified in this way. 

Values of correctness did drop for cervid vs. bovid identification where bovids were correctly 

identified 63.0% of the time and cervids were correctly identified 44.4% of the time. 

3.2 Significance Values 

 Chi-Square tests were run to test the significance of taxa identification where failure to 

reject the null hypothesis would show that there is no association between positive/negative 

identification and type of bone. In the initial Chi-Square test with taxa identification for all 

groups (Table 3), the results showed a significant association positive and negative identification 

and the type of bone and did reject the null hypothesis. 

 

Table 3: Chi-Square test of positive vs. negative taxa ID for all groups  

 Positive ID Negative ID Total 

Human 26 1 27 

Bovid 17 10 27 

Cervid 16 20 36 

Total 59 31 90 

 

 In another Chi-Square run, the positive ID responses were compared to an expected value 

of 100% accuracy, meaning 27 Human, 27 Bovid, and 36 Cervid positive identifications, to see 

if the observed values remained significant even with deviation from the expected (albeit 

unrealistic) accuracy measure (Table 4). The test showed that the results were significant at p< 

.01 and there is a notable deviation from the expected 100% accuracy distribution. 

 

df = 2 

Chi-Square value = 18.49 

The result is significant at p< .001 
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Table 4: Chi-Square test of observed positive ID vs. expected values of 100% accuracy for all 

groups 

 Human Bovid Cervid 

Observed 26 17 16 

Expected 27 27 36 

 

 Finally, a Chi-Square test of observed positive ID was run against the random chance that 

correct answers were selected since there was a 1-in-3 possibility of this occurring for every 

picture (Table 5). The test shoed the results were significant at p< .01 and there is a notable 

deviation from the expected random distribution. Between Table 5 and Table 4, the observed 

results maintain statistical significance between the two extremes of 100% accuracy and random 

chance of selecting a correct answer, so the null hypothesis is rejected in both instances.  

 

Table 5: Chi-Square test of observed positive ID vs. random chance of correct answers for all 

groups 

 Human Bovid Cervid 

Observed 26 17 16 

Expected 30 30 30 

 

 

Lastly, a Fisher Exact Test was run to assess the significance of human vs. non-human 

positive and negative identification to corroborate the Chi-square findings due to the small 

sample size (Table 6). The test showed that the result was significant at p< .01 and rejects the 

null hypothesis.  

 

Table 6: Fisher Exact Test run for p< .01 

 Positive ID Negative ID Total 

Human 26 1 27 

Non-Human 33 30 63 

Total 59 31 90 

 

  

Fisher Exact Test Statistic = 0 

The result is significant at p< .01 

df = 2 

Chi-Square value = 14.85 

The result is significant at p< .01 

df = 2 

Chi-Square value = 12.7 

The result is significant at p< .01 
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4.0 Discussion 

 Collectively, the results of this study showed that it is possible to identify human vs. non-

human fragments regardless of osteological background knowledge based on basic qualitative 

features. These are outlined in Figure 3, but initial comparisons of the collective photo samples 

(Addendum A) showed the most difference between foramina shape/number and qualitative 

observations of the cortical bone surface when bone fragments showed differential fracture 

patterns on the edge being photographed. Based on the results of the blind test, the null 

hypothesis was rejected through multiple tests of significance, so there is a discernible difference 

between bone type in the photographs taken with a high-resolution camera AmScope 

microscope. It should be taken into consideration that the small sample size combined with the 

human identification results alone may have skewed the significance values, but considering this 

study was attempting to prioritize the identification of human vs. non-human bone, that goal was 

achieved. Random chance of correct guesses was accounted for and the results remained 

significant, so while this study does not yet have the validation and corroborative tests to use in 

the field, it is a promising pilot study for future research.  

With the results as they stand, specific identifications within non-human taxonomic 

groups will need further analysis and refining in order to improve the poor accuracy found in this 

study. One consideration to understand the difficulty of differentiating cervids and bovids could 

lie in their shared evolutionary trajectory as prey animals with a number of anatomical 

similarities and skeletal morphologies (Gilbert, 1990; France, 2009). They are from distinct 

family groups but share locomotor strategies and histological structures where the main 

significant (skeletal) difference lies in the bovids’ size and robusticity. By including additional 

taxonomic groups in future studies and possibly expanding non-human categories to broader 
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distinctions (e.g. two-toed ungulates vs. predators) for initial identification purposes, the lack of 

accuracy could possibly be mitigated in future studies.  

While the verified accuracy of this method remains to be seen, when compared with other 

analyses outlined in the literature review, this study has implications for next-step analysis in 

order to gauge forensic significance of morphologically unidentifiable skeletal remains. This 

could provide a methodological bridge before destructive analyses such as histological cross-

sections or DNA are used on forensic evidence or an archaeological assemblage. In forensic 

contexts, if the remains are deemed human and further destructive analysis is necessary, that will 

remain independent of compromising the integrity of the original specimen for purely 

identification purposes. Similarly, in archaeological contexts, the taxonomic identification of the 

sample could have implications for further destruction of the sample through migration studies or 

dating techniques, but those analyses will remain independent of the original identification goal 

of the specimen. 

 Overall, this method was quick, straightforward and communicable to individuals without 

extensive osteological background using equipment readily available in a university setting. 

These qualitative human vs. non-human features could be flagged using a standard microscope 

as well, but the application of a camera microscope additionally adds a form of evidence that 

could be presented in court for corroboration of evidentiary findings. If the method can be 

developed further to include more species, samples, and use a more portable camera microscope, 

such as a DinoLite, there are additional implications for practical use in the field to quickly 

identify determine forensic significance and whether further recovery needs to be performed. 

While the analyst should always err on the conservative side in order to ensure forensic integrity 

of identification, this method could save time and resources when developed further and applied 
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in geographically remote investigations where a forensic anthropologist or professionally trained 

osteologist may not be readily available for on-site analysis.   

 

5.0  Conclusion  

 
As has been outlined in the literature review, species identification is one of the first steps 

in the analysis of bone fragments in both forensic and archaeological contexts. Current methods 

for human vs. non-human taxa identification include morphoscopic, histological, and DNA 

analyses in order to determine forensic significance and assess what is present in an assemblage. 

This study used an MA1000 AmScope camera microscope to examine the longitudinally 

fractured surface of cortical bone fragments to gauge if non-destructive taxa identification is 

possible from fragmentary remains without morphologically identifying features. This method 

tested for a notable difference in human vs. bovid vs. cervid endosteal cortical bone without the 

use of destructive, histological cross-sections. Based on the results of a blind test where 

participants were given minimal background information, there is a statistically significant 

association with positive bone identification between taxa, an accuracy measure of 65.6% for all 

taxonomic groups, 96.2% accuracy of identifying human bone correctly, and 7.9% 

misidentification of non-human bone as human. Expanding further on these results have 

implications for both forensic and archaeological contexts as an affordable, non-destructive 

analysis of fragments of various sizes when morphological identification isn’t possible. 

5.1 Broader Impacts 

 
On the broader scale, this project has implications for both forensic and 

zooarchaeological contexts in the application of non-destructive taxa identification for small 

bone fragments with no identifying morphological features. This method could provide an 
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accessible, affordable, and fast identification method that could save time and resources if non-

human determinations are made early in a forensic investigation. By applying this at a crime lab, 

someone without extensive histological knowledge in Osteology could look for quantitative and 

basic morphological features to establish forensic significance of remains. This method would 

not substitute the need for an osteological expert in advanced analyses (especially if the remains 

turn out to be human), but it is a good starting point to determine where the best allocation of 

resources lies for a case.  

In an archaeological context, this method could be useful for similar cost, non-

destructive, and efficiency reasons with the additional caveat that most faunal fragments found 

are regularly too small for taxonomic or element identification beyond possible long bone shaft 

fragments. This would additionally help in possible NAGPRA protocols as a non-destructive 

analysis for unknown skeletal remains. It would give archaeologists and physical anthropologists 

a method for taxonomic identification in known archaeological sites that is respectful to tribal 

beliefs on how to handle the deceased. 

5.2 Limitations 

 As it stands, limitations to this research include a small sample size and insufficient 

precedence on the accuracy and applicability of such a method. This is especially relevant for use 

in forensic contexts where reliability has significant medicolegal implications (Langley et al., 

2018). Interanalyst error (Lau and Kansa, 2018) is an additional concern in the analysis of faunal 

remains and should be controlled for in the verification and corroboration of this pilot study.  

 In terms of the ability of the microscope to focus properly, limitations included 

difficulties getting the camera close enough to the bone with the extended edges of the light 

attachment. In tandem with this, there were difficulties focusing the bone properly if there was a 
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lot of peripheral bone in the background or the irregularity of the fracture edge made it difficult 

to level the cortical surface. Being able to calibrate the microscope for scale would additionally 

add the ability to compare cortical bone thickness towards the preponderance of evidence for one 

taxonomic denomination over another. 

 A final limitation of this study was the ability to properly clean some of the bones 

without use of water, causing some photos to have residual dirt obscuring the features. Along 

with this, while the bones are all from contemporary sources, they do show differential levels of 

preservation, taphonomic damage, and are from individuals of different ages. These additional 

factors could impact the accuracy of taxonomic identification and application of this method in a 

lab setting.  

5.3 Future Research 
 

Future research to expand this project should include more species and start by focusing 

specifically on Equid, Canid, and Ursid specimens as they tend to show up consistently in 

forensic cases and expand the sample size to collections outside of the University of Montana. It 

should additionally compare more fracture types (e.g. transverse) for fragments with differential 

breakage patterns where the longitudinal edge may not be observable under the microscope.  

Finally, another area for future research is to examine bones in different levels of 

preservation and age to assess the integrity/observability of the structures. The degradation of 

cortical bone through burning, exposure to water, variable soil compositions, and other 

taphonomic conditions will undoubtedly have significant impacts on the appearance of different 

structures under the microscope. Age additionally builds into these degenerative considerations 

as pre-historic fragments buried for an extended period of time may appear dissimilar to 

contemporary specimens.   
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Collectively, this study examined the possible accuracy and utility of an otherwise 

untested, non-destructive human vs. non-human identification technique using a high-resolution 

camera microscope to examine linear fracture edges of cortical bone from human, cervid, and 

bovid specimens. Based on the results of a blind study given to other anthropology and 

archaeology graduate students at the University of Montana, this method has significant potential 

for the identification of human vs. non-human bone in forensic contexts. Future research can 

help elucidate and improve the low accuracy of identification between non-human groups, but as 

an initial pilot study for possible methods development, this project has promise for next-step 

identification purposes in both forensic and archaeological contexts where the use of 

morphological features is not possible.  
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