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Studies of aquatic ecosystems often segregate streams from the influential ponds, lakes, 

and wetland zones that act as important transitions between terrestrial and fluvial systems. 

Across the aquatic landscape, these zones interact to form linked ecosystems that function as 

discrete nutrient processing domains, shifting biogeochemical signals due to spatial and temporal 

variability in hydrologic and biologic controls. Using a mass-balance approach, we profiled 

nutrient dynamics along a 23-km wetland-stream sequence over three seasons. Hydrologic, 

morphologic, and biologic conditions, as well as landscape attributes, were quantified to 

determine potential controls on biogeochemical cycling in a tributary of the Upper Clark Fork 

River (UCFR), MT that is known for contributing disproportionate nutrient loads. Results 

identified a geomorphic and hydrologic sequence of wetland-stream interactions that generated 

discrete zones of nutrient production, transformation, and uptake. Zones of production resulted in 

five- to seven-fold increases in nitrate loads. Across all four stream reaches, nutrient dynamics 

were driven primarily by net groundwater exchange, which explained up to 30% (P = 0.0064) of 

the change in nitrate load. Nitrogen transformation of ammonium-rich groundwater inputs 

resulted in mean nitrification rates of 248.49 mg N m
-2

 d
-1

; on par with engineered surface-flow 

constructed treatment wetlands. Abnormally high C loss rates (up to -54.9 g C m
-2

 d
-1

) calculated 

from changes in the dissolved organic carbon (DOC) load between ground- and surface water 

compartments suggest DOC removal pathways other than heterotrophic respiration – i.e., 

adsorption to the extensive carbonate precipitates which coat benthic and hyporheic substrates. 

During the study period, water flowing through this sequence of aquatic systems exhibited an 

average increase in nitrate load of 461% and a doubling of ammonium, soluble reactive 

phosphate, and DOC loads with a mere 32% increase in discharge. 
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1.0 INTRODUCTION 
As open ecosystems, rivers and streams play important and unique roles in landscape 

nutrient budgets because they incorporate both allochthonous and autochthonous sources 

(Fellows et al. 2006) and have the ability to both transport (Coats and Goldman 2001) and 

transform (Peterson et al. 2001) nutrients across large spatial scales through linked ecosystems 

(Vitousek et al. 1979, Kling et al. 2000). Biogeochemical processes are often both a cause and 

effect of variation in ecosystem structure (Bilby and Likens 1980, Gorham 1991, Fisher et al. 

2004), and it is difficult to determine the primary mechanisms that drive biogeochemical 

variability. Moreover, aquatic ecosystem function is influenced by both ‘local’ and ‘routing’ 

controls (Valett et al. 2014). Local controls often manifest as heterogeneous habitats with distinct 

community composition and resulting processes (Kuglerova et al. 2015), whereas routing 

controls operate through hydrologic linkages that transport energy and materials through various 

flow paths (Jones et al. 1996). Additionally, many studies have confirmed the existence of 

spatially-distinct functional domains within streams. For instance, hotspots of denitrification 

occur in anoxic hyporheic zones and are often only meters in length (Vidon et al. 2010), while 

emergent spring brooks can be significant contributors of nitrogen (N)-rich groundwater to 

above-ground channels (Caldwell et al. 2015), likely through mineralization and subsequent 

nitrification of buried or dissolved organic N (Stelzer 2015).  

Nutrient processing in aquatic ecosystems is also driven, in part, by channel morphology 

(Gücker and Boëchat 2004), hydrologic residence time (Zarnetske et al. 2012), and linkages to 

the hyporheic zone (Marzadri et al. 2012). Within river networks, these attributes are continually 

changing due to the shifting habitat mosaic (Stanford et al. 2005), which emphasizes the co-



 

2 

 

occurrence of various floodplain habitat types and the feedbacks among them. However, lotic, 

lentic and wetland systems are often considered independently in scientific investigations 

because of the very differences in hydrology, geomorphology, and biology that distinguish them. 

The River Continuum Concept (Vannote et al. 1980) is a well-known model that segregates 

streams from the influential ponds, lakes, and wetland zones that act as important transitions 

between terrestrial and aquatic systems (Junk et al. 1989). Conversely, studies of lakes and 

reservoirs often relegate interconnecting streams to mere conveyors with little internal material 

processing or integration with the receiving water body (Elser and Kimmel 1985).  

At the same time, others have tried to classify spatially discrete zones among linked 

aquatic ecosystems to better characterize and model various dynamic processes. Ward and 

Stanford (1983) introduced the serial discontinuity concept as a theoretical perspective to address 

regulated streams where flow and nutrient dynamics are interrupted by dams, forming a 

discontinuum of lotic and lentic reaches. Brinson (1993) identified the character of floodplain 

wetland systems as “donors, conveyors or receptors” based on the role each played in hydrologic 

budgets and nutrient and sediment exchange. He noted that the source of water and materials to 

floodplain wetlands, and subsequent processing within, vary with stream order because of 

influences such as discharge, floodplain width, and floodplain connectivity. Similarly, the 

Process Domains Concept was put forth as a framework for classifying ecosystem structure and 

function as products of geomorphic variability and disturbance regimes (Montgomery 1999). 

This concept generated a discontinuous distribution of systems, the order of which was dictated 

by large-scale geomorphic settings. More recently, Caldwell et al. (2015) suggested aquatic 

systems exhibit spatially discrete nutrient processing domains (NPDs), identified by predominant 

biogeochemical processes that differ in character, magnitude, and efficiency. Such NPDs are 
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likely distributed through flowing water systems based on routing and local controls (Valett et al. 

1996), driven in part by hydrogeomorphic (Doyle et al. 2003), biologic (Martí et al. 1997), and 

biogeochemical (Ocampo et al. 2006) conditions. A river network characterized by both lotic 

channels and lentic wetlands in a longitudinal sequence likely exhibits spatially-discrete nutrient 

processing dynamics. It remains unclear, however, how spatiotemporal, hydrogeomorphic, and 

biologic heterogeneity result in discrete biogeochemical behavior among a series of linked 

aquatic ecosystems and their cumulative impact at the watershed scale. 

Poole (2002) argued that “fluvial landscape ecology requires the development of tools 

and techniques that facilitate a discontinuum view of lotic ecosystems”. Unfortunately, the 

techniques commonly used to assess biogeochemical cycling in streams (i.e., nutrient spiraling, 

Newbold et al. 1981; tracer injections, Stream Solute Workshop 1990) are often measured at 

finer scales than those relevant to linked aquatic sequences and are difficult to apply to larger, 

more heterogeneous landscapes (Peipoch et al. 2016) that include lentic characteristics. While 

previous studies have addressed the key drivers of nutrient processing in discrete stream reaches 

(100-1,000 m) (Ensign and Doyle 2006, Hall et al. 2013), here we employ an approach that 

recognizes key controls over nutrient cycling that are discernible at the landscape scale to better 

understand biogeochemical dynamics related to linked lotic, lentic, and wetland systems. 

Moreover, we propose that such an approach lends to tractable assessment of systems and 

conditions relevant to management concerns and applied priorities.  

We asked how biogeochemical processing changes along a wetland-stream sequence and 

how spatiotemporal patterns characterize nutrient dynamics in linked ecosystems. We posited 

that along the sequence 1) systems function as discrete nutrient processors due to spatial and 

temporal variation in hydrologic linkages to surface and subsurface nutrients that control in-



 

4 

 

stream biogeochemical cycling, 2) the biogeochemical character of individual reaches will 

change with time because of the combined influences of seasonal variation in hydrology and 

biological activity as they relate to nutrient supply, transport, and processing, and 3) 

biogeochemical function can be differentiated by morphologic and biologic structure because 

these landscape features shape delivery and processing mechanisms that result in distinct nutrient 

uptake rates. 

We employed a mass-balance approach to address biogeochemical character and assess 

spatial and temporal variation as it relates to hydrologic, geomorphic, and ecologic conditions in 

the Lost Creek-Dutchman Complex (LCDC), a wetland-stream tributary of the Upper Clark Fork 

River (UCFR), MT. The LCDC was an ideal setting to investigate nutrient dynamics, processing 

controls, and loading rates along a low-order river because of alternating lotic and lentic 

influences and a 30-year history of disproportionate nutrient contributions to a river undergoing 

extensive restoration (Ingman and Kerr 1989, Valett and Peipoch 2018). The LCDC provides an 

opportunity to identify and characterize linkages between discrete NPDs and address how the 

sequence of reaches influence nutrient dynamics in a heavily-regulated watershed. 

2.0 METHODS 

2.1 Study Site 

Since 1989, the LCDC (46°11'6.24"N 112°49'5.88"W) has been identified as a 

substantial source of dissolved inorganic N (DIN) to the UCFR, potentially contributing to the 

occurrence of late-summer nuisance algal blooms in reaches up to 200 km downstream (Ingman 

and Kerr 1989, Valett and Peipoch 2018). The LCDC is a sequence of linked aquatic ecosystems 

with over 23 km of stream channel and nearly 1,500 hectares of wetlands (USEPA and CDM 

Smith 2012) (Figure 1). The aquatic landscape ranges from impounded lentic zones to fast-
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moving, incised channels, or highly braided forms with dense riparian cover, while a large peat 

fen dominates the upper extent of the LCDC. Two perennial streams flow through the complex, 

Lost Creek and Dutchman Creek, both of which are influenced by groundwater exchange. Lost 

Creek represents the central lotic axis in the system and originates as a montane stream that 

enters the complex as a second-order system with baseflow discharge of ~57 L s
-1

, draining a 

157 km
2
 catchment (USGS 2018). Dutchman Creek is a smaller springbrook system that 

originates within the LCDC and converges with Lost Creek along a constructed dyke that 

generates a substantial open-water component of the larger wetland system. Secondary 

wastewater treatment ponds located above Dutchman Creek near the top of the LCDC flow into 

infiltration basins or act as holding ponds for land-application to agricultural fields (Figure 1, 

MT DEQ 2017). 

We performed mass-balance assessments for the LCDC on nine occasions from May to 

September of 2018. Four study reaches (I-IV) were delineated by five main-channel sites (MC1 

– MC5, Figure 1) while five additional sites were used to track irrigation ditches or tributaries, 

i.e. channelized hydrologic losses or gains to the stream (Appendix A). Reach delineation and 

water sampling was based on predominant landscape attributes and accessibility for river gaging, 

a strategy that addressed landscape morphology while considering common limitations 

associated with tractable watershed management.  

2.2 Biologic and Hydrogeomorphic Structure 

Chlorophyll-a 

Benthic standing stocks were measured as chlorophyll-a (chl-a) and ash-free dry mass 

(AFDM) during a single baseflow sampling (6 September). We randomly collected five benthic 

biomass samples from the thalweg at three locations within each reach for chl-a and benthic 
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organic matter (BOM) analysis. For locations with epilithic biofilm communities, cobbles were 

scrubbed into a homogeneous slurry and subsampled for chl-a while recording total slurry 

volume and total scrubbed area. Where macroalgae or macrophytes were dominant, we collected 

and homogenized biomass from a known area of substrate and recorded wet weight before 

subsampling. All chl-a samples were extracted in 90% acetone for 24 h in the dark (4°C) and 

subsequently centrifuged. Absorbance was measured at 430, 664, 665, and 750 nm before and 

after acidification (0.1N HCl) with a spectrophotometer (Azzota Scientific, Claymont, DE). 

Absorbance values were converted to chl-a (mg m
-2

) with corrections for sub-sample volume and 

sampling area following Steinman et al. (2017).  

Benthic Organic Matter 

Remaining subsamples from the epilithic or macroalgae/macrophyte biomass collection 

was used to determine BOM standing stock as AFDM. Subsamples were filtered onto pre-

weighed, pre-ashed, glass fiber filters (Whatman PLC, Boston, MA), and dried to a constant 

weight at 60°C. Samples and filters were then ashed (4 hours, 550°C), wetted, and dried again to 

a constant weight. BOM stocks (g AFDM m
-2

) were calculated as the difference between pre- 

and post-combustion following corrections for total sample volume (or mass) and sampling area. 

Lastly, we compared chl-a:AFDM (mg chl-a : g AFDM) to generate an autotrophic index for 

each individual biomass sample. 

Hydrology 

Hydrologic residence times, in the form of median travel time, were estimated using 

conservative tracer techniques following Gordon et al. (1992). This approach was applied to each 

reach on at least three occasions over the course of the study, and linear relationships with stream 

discharge generated to address residence time across the study period. Due to the lentic extent of 

Reach I, we derived residence times by coupling conservative tracer measurements of the 
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flowing stream channel and estimated residence time for the lentic water body. At peak and base 

flow, we estimated lentic water body volume using aerial imagery and 12 transects of equally-

spaced depth measurements. Thus, volume (L) was divided by hydrologic discharge (Q; L sec
-1

) 

at the outflows to estimate residence times. Total residence times for Reach I were the sum of 

estimated times for the lotic and lentic portions. Between mid-July and late August, a diversion 

dam removed the majority of channel water near the top of Reach III. During that time period, 

we measured residence time for the residual channel water below the diversion dam as it flowed 

towards Reach IV. 

Geomorphology 

Geomorphic measurements used to assess channel, floodplain, and wetland morphology 

were taken over a two-week period during the receding limb of the hydrograph (early July 2018). 

Metrics were those commonly used for floodplain and stream assessments. A minimum of 12 

randomly located transects were used to measure bankfull width, channel width:depth ratio, 

cross-sectional area, incision ratio, maximum bankfull depth, mean bankfull depth, pool 

width:depth ratio, riffle:run ratio, sinuosity,  and substrate size as defined in Rosgen (1994). We 

estimated primary land cover types (upland, wetland, open water) for each reach using 

publically-available habitat mapping products (MT NHP 2018) and open-source geographic 

information systems (QGIS Development Team 2019). Whole reach bed area (km
2
) estimations 

included wetted area of the stream channels, lentic zones, and perennial flow-through wetlands. 

Floodplain wetlands that were not clearly inundated and connected to the stream channel were 

not included in whole reach bed area estimates.  

2.3 Fixed and Synoptic Sampling  

Physicochemical conditions, hydrologic discharge, and dissolved nutrient concentrations 

were measured biweekly from May to September 2018 at all 10 sites. Physicochemical measures 
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including temperature (°C), specific electrical conductivity (µS cm
-1

), dissolved oxygen (DO; mg 

L
-1

 and % saturation), and pH were measured using handheld probes (YSI Model 2030, Yellow 

Springs, OH). Discharge was measured by two USGS gage stations (#12323850 and #12323840, 

Reston, VA), a handheld acoustic Doppler velocimeter employing the area-velocity approach 

(SonTek, San Diego, CA), and by using conservative tracer dilution gaging (Gordon et al. 1992) 

to quantify flow in the main channel, contributing inputs, and irrigation withdrawals. 

Measurements of dissolved nutrient concentrations included nitrate-N (NO3-N; mg L
-1

), 

ammonium-N (NH4-N, mg L
-1

), soluble reactive phosphorus (SRP; mg L
-1

), and dissolved 

organic carbon (DOC; mg L
-1

).  

High-resolution (~0.5 km) synoptic surface water sampling of the 23-km sequence 

occurred during peak (6 June) and base (22 August) flow conditions. Collection of samples 

(June, n=41; August, n=43) occurred during mid-day over a 3-hour span. During late summer, 19 

screened groundwater wells (Atlantic Supply, Orlando, FL) were installed along the LCDC 

sequence. All wells consisted of 2.5-cm diameter PVC casings with 30-cm slotted screens (slot 

size, 508 μm) inserted 30-50 cm beneath the water table. On 5 September, all wells were emptied 

and allowed to recharge for ~24 hours before being sampled in triplicate by means of a 1.27-cm 

diameter vinyl bailer.  

All water samples for dissolved nutrients were collected in triplicate, except for DOC in 

groundwater wells (n = 1). All water samples were collected and filtered through 0.7-μm glass 

fiber filters (Whatman PLC, Boston, MA), transported to the laboratory on ice, and frozen (-

20ºC) until analysis. We measured dissolved NO3-N (as nitrate + nitrite), NH4-N, and SRP on a 

segmented-flow analyzer (Astoria-Pacific AP2, Clackamas, OR). Nitrate was assessed using the 

cadmium reduction method and absorbance measured at 540 nm (U.S. EPA 1993d). Ammonium 
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was analyzed following the phenol-hypochlorite method and absorbance measured at 660 nm 

(U.S. EPA 1993b). SRP was determined according to the ascorbic acid method and absorbance 

measured at 700 nm (U.S. EPA 1993c). DOC was analyzed using heated persulfate digestion 

(U.S. EPA 2005) on a total carbon analyzer (OI Aurora 1030W, College Station, TX).  

2.4 Material Loads and Nutrient Processing Rates  

We performed hydrologic and material mass-balances for the four delineated reaches on 

nine sampling dates between May and September.  Net groundwater exchange was calculated as 

the difference in discharge between upstream and downstream locations after correcting for 

channelized losses and gains (Eq 1), recognizing that evapotranspiration is unaccounted for using 

this approach: 

𝑄𝑔𝑤 = (𝑄𝑑𝑜𝑤𝑛 +  𝑄𝑜𝑢𝑡) − (𝑄𝑢𝑝 + 𝑄𝑖𝑛) 

where Qgw is net groundwater exchange (L sec
-1

); Qdown is discharge at the downstream extent of 

the reach; Qout is withdrawal via irrigation ditches; Qup is discharge at the upstream extent of the 

reach; Qin is inputs from channelized tributaries. With this approach, positive Qgw values 

represent net groundwater discharge to the channel. The product of Q and concentration of any 

nutrient, x (Cx; mg L
-1

), yields material load (L), reported as kg d
-1

. Mass-balance of nutrient 

loads over a given reach was calculated as the difference between outputs and inputs (Burns 

1998):  

∆𝐿 = (𝐿𝑑𝑜𝑤𝑛 + 𝐿𝑜𝑢𝑡) − (𝐿𝑢𝑝 + 𝐿𝑖𝑛) 

where ∆L represents the net change in load (kg d
-1

), positive values indicate load accumulation, 

and negative values indicate load decline.  

(1) 

(2) 
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Different characteristic concentrations were employed to determine nutrient loads 

contributing to or received from groundwater depending upon the direction of exchange. If Qgw 

was negative (denoting groundwater recharge), we applied reach-specific daily mean surface 

water concentration to calculate change in load due to groundwater exchange (Lgw); if Qgw was 

positive (denoting groundwater discharge), we used the grand mean of groundwater 

concentration derived from the 19 wells. We then differentiated the putative roles of hydrology 

and biology on changes in nutrient loads using: 

∆𝐿𝑏𝑖𝑜 = ∆𝐿 − ∆𝐿𝑔𝑤 

where the change in load due to biological processing (Lbio) is equal to the difference between 

total change in load (L) and the estimated change due to groundwater exchange (Lgw). Hence, 

residual changes in load were attributed to biological processes. Negative Lbio represents 

nutrient removal from the surface water (i.e., uptake), while positive Lbio suggests addition to 

surface water via nutrient release (i.e., production). Lbio for all nutrients was used to calculate 

areal processing rates (James et al. 2008), where 

𝑈 =
𝐿𝑏𝑖𝑜

𝐴
 

U is areal processing (mg m
-2

 d
-1

) and A is estimated whole-reach channel bed area (m
2
). 

Positive U values represent nutrient release (i.e. production) and negative U values represent 

nutrient retention (i.e. uptake). We report both positive and negative U values to reflect losses (-) 

and gains (+) to surface water, respectively, and address potential mechanisms of solute 

processing among groundwater, benthic, and surface water compartments. Related spiraling 

metrics (sensu Newbold et al. 1981) are presented in the supplementary materials (Appendix G, 

H).   

(4) 

(3) 
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 UNO3 values > 0 were assumed to represent net nitrification rates because positive 

LbioNO3 is a net increase in NO3
-
 load beyond hydrologic supply (i.e., via biologic production). 

Conversely, negative UNO3 values are representative of net NO3
-
 use without distinguishing 

between assimilatory or dissimilatory processes. Additionally, UDOC values < 0 represent carbon 

(C) removal (i.e., net losses of DOC from the system).  

2.5 Data Analysis 

 We used one-way ANOVA and Tukey’s Honest Significant Difference (HSD) tests to 

distinguish physicochemical, hydrologic, morphologic, biologic, and biogeochemical 

characteristics among reaches. Normality and homogeneity of variance were assessed using the 

Shapiro-Wilk and Bartlett tests, respectively. Diagnostic plots were generated to visualize and 

assess normality and variance of residuals, and any potential outliers were identified with respect 

to Cook’s distance. Non-normal data were log-transformed and parametric approaches employed 

when normality was achieved. Where appropriate, we used linear regression models to explore 

the effects of primary drivers on ecosystem function among reaches and seasons to identify 

potential controls on processing rates. For non-parametric assessments, we used the Kruskal-

Wallis H and Mann-Whitney U tests to determine if reaches behaved differently. We used one-

sample T-tests and the Wilcoxon signed rank test to determine if mean rates were significantly 

different from zero. All statistical assessments were performed in R (R Core Team 2013).  

3.0 RESULTS 

3.1 Aquatic Landscape Heterogeneity 

Landscape morphologic attributes varied among reaches and generally transitioned from 

extensive flow-through wetlands to a single, entrenched stream channel with distance 

downstream (Figure 2, Appendix B). Whole-reach bed area decreased from 0.11 ± 0.01 km
2
 in 
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Reach I to 0.013 ± 0.00093 km
2
 in Reach IV (Figure 2, P < 0.001). Reach I included over 0.18 

km
2
 of open water, which was three times more than Reach II (0.046 km

2
), and dwarfed Reaches 

III and IV (0.004 and 0.0028 km
2
) as wetlands gave way to lotic channels (Figure 2). Similarly, 

floodplain wetland extent decreased from 2.34 km
2
 in Reach I to 0.15 km

2
 in Reach IV (Figure 

2) and channel incision ratio increased from 0.49 in Reach I to 0.75 in Reach IV (Figure 2, P < 

0.001).  

Across the LCDC, reaches were distinguishable by physicochemical, hydrologic, 

biologic, and biogeochemical conditions (Table 1). In general, stream water was well oxygenated 

across all reaches (8.7 ± 0.8 to 10.9 ± 1.2 mg L
-1

 as mean ± standard error) representing 99.4 ± 

9.0 to 122.4 ± 15.6 % saturation (Table 1). Both mean temperature (12.2 ± 1.0 to 15.2 ± 0.7 °C) 

and specific electrical conductivity (349.5 ± 17.1 to 557.7 ± 22.4 µS cm
-1

) increased with 

distance downstream and differed among reaches (P = 0.047 and P < 0.001,  respectively, Table 

1). Water was alkaline with pH above 8.5 in all reaches (Table 1).  

Hydrology also differed among reaches as wetlands gave way to stream channels. 

Median travel time was an order of magnitude greater in Reach I (63.9 ± 16.1 hr, P < 0.001) 

compared to Reaches II, III and IV (7.0 ± 1.1, 4.8 ± 0.4, 4.8 ± 0.9 hr, respectively, Table 1). 

Average inflow to the reaches (Qup) ranged from 664.6 ± 170.8 to 1,153.5 ± 283.5 L s
-1

 (Table 

1). Channelized hydrologic gains and losses to the LCDC via tributary inputs or irrigation 

ditches were subject to atypical temporal variability due to their highly regulated nature. Flow 

was augmented by tributary inputs only in Reach I with an average inflow of 327.0 ± 27.8 L s
-1

 

(Table 1). In contrast, only Reach IV was without irrigation withdrawal: channelized ditches 

removed from 208.7 ± 31.6 to 681.5 ± 121.0 L s
-1

 (Table 1). All reaches were subject to net 

groundwater discharge (Table 1), though of different magnitude among reaches (P < 0.001). 
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Mean Qgw varied by more than 30-fold among reaches, but was only significantly different from 

zero in Reaches II and III. On average, Reach II gained 697.6 ± 138.2 L s
-1

 of groundwater, over 

twice that of Reach I and III (177.7 ± 107.6 and 239.0 ±  87.1 L s
-1

) and an order of magnitude 

greater than in Reach IV (19.1 ± 80.5 L s
-1

, Table 1, Figure 3a). Net groundwater exchange in 

Reach II was distinct from the remaining reaches, as evidenced by the continuously positive Qgw 

often two-fold greater than total surface water inputs (Figure 3b). 

Throughout the study period, mean nutrient concentrations were relatively similar across 

the four reaches due to high temporal variability. Nitrate ranged from 0.12 ± 0.04 to 0.21 ± 0.03 

mg N L
-1 

and was highest in Reaches II and III (P = 0.084). Ammonium was relatively low and 

stable, ranging from 0.01 ± 0.002 to 0.02 ± 0.003 mg N L
-1

 (P = 0.51). SRP concentrations were 

also relatively low and stable, and ranged from 0.02 ± 0.003 to 0.02 ± 0.006 mg L
-1

 (P = 0.99). 

Concentrations of DOC tended to increase downstream (2.36 ± 0.33 to 3.71 ± 0.76 mg L
-1

, Table 

1), but differences were not significant (P = 0.49, Table 1).  

Mean benthic chl-a was greatest in Reach I (637.4 ± 342.3 mg m
-2

; P < 0.05) and tended 

to decline with distance downstream to Reach IV (219.6 ± 77.6 mg m
-2

, Table 1). In contrast, 

BOM stocks were greater in Reach III (305.4 ± 72.0 g m
-2

) and Reach I (259.2 ± 122.8 g m
-2

) 

and lower in Reaches II and IV (183.2 ± 50.6 and 190.4 ± 61.6 g m
-2

, respectively, P < 0.001, 

Table 1). Mean percent organic matter of benthic samples ranged from 23.5 ± 2.6% in Reach I to 

48.5 ± 13.7% in Reach II and values differed significantly among reaches (P < 0.05, Table 1). 

Mean autotrophic index ranged from 1.1 ± 0.2 to 2.3 ± 0.8 mg chl-a:g AFDM (Table 1).  

3.3 Spatiotemporal Patterns in Biogeochemistry 

Distinct biogeochemical signals were observed among reaches and over time. Synoptic 

sampling under contrasting flow regimes showed NO3
-
 concentrations increased throughout 
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Reaches I and II, followed by a steady decline throughout Reaches III and IV (Figure 4a). During 

peak discharge in June, NO3
-
 concentration increased from 0.032 ± 0.001 to 0.249 ± 0.006 mg N 

L
-1

 from Reach I to Reach II (Figure 4a), a 778% increase. Similarly, in August, NO3
-
 

concentration increased 688% along the same longitudinal extent, from 0.080 ± 0.011 to 0.551 ± 

0.003 mg N L
-1

. Higher concentrations in Reaches I and II were followed by steady declines in 

Reaches III and IV, especially in August (Figure 4a), a pattern also observed throughout the nine 

fixed sampling events (Appendix C). In contrast to striking changes in NO3
-
, NH4

+
 

concentrations did not exhibit substantial spatial or temporal variation (Figure 4b) and remained 

low throughout the study period (0.017 ± 0.003 mg N L
-1

, grand mean ± standard error).  

Concentrations of SRP and DOC in surface waters of the LCDC exhibited patterns that 

were unlike those observed for NO3
-
. Mean SRP concentrations were low and stable across all 

reaches and seasons (0.020 ± 0.003 mg L
-1

) and did not exhibit substantial spatial or temporal 

variation (Figure 4c, Appendix C). In contrast to NO3
-
, DOC concentrations were greater during 

peak discharge (Figure 4d) and decreased during recession of the hydrograph (Appendix C). 

During peak runoff, DOC approached 9 mg L
-1

 in Reach III and IV before declining throughout 

the growing season to ca. 2 mg L
-1

 (Appendix C). While DOC concentration remained more or 

less unchanged across Reaches I and II during both synoptic samplings, it increased steadily 

through Reaches III and IV, from 3.97 ± 0.001 mg L
-1

 to 5.47 ± 0.001 mg L
-1

 in June (P < 0.001) 

and from 1.61 ± 0.007 to 3.63 ± 0.006 mg L
-1

 in August (P < 0.001, Figure 4d).  

 Tributary inputs to Reach I from Dutchman Creek (the only channelized inputs to any 

reach) had the highest mean (0.31 ± 0.018 mg N L
-1

), maximum (0.52 ± 0.0091 mg N L
-1

), and 

minimum (0.18 ± 0.0057 mg N L
-1

) DIN concentrations of all 10 fixed sampling sites over the 

study period. Dutchman Creek SRP (0.019 ± 0.0014 mg L
-1

) and DOC (2.42 ± 0.049 mg L
-1

) 
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concentrations were similar in magnitude to those of the four main stem reaches (Appendix D). 

Nutrient concentrations of irrigation withdrawals were dependent on position within the LCDC, 

reflecting surface water concentrations of the nearest main channel sampling site (Appendix D, 

E).  

 Groundwater nutrient concentrations did not exhibit clear spatial patterns across the 

wetland-stream sequence, but nutrient composition was distinct from corresponding surface 

water compartments for all constituents (P < 0.001, Figure 5). Mean groundwater NO3
-
 

concentration was strikingly low (0.012 ± 0.002 mg N L
-1

) compared to the NO3
-
 abundance in 

surface water (Figure 5). Ammonium and DOC averaged 0.18 ± 0.029 mg N L
-1

 and 18.83 ± 

4.45 mg L
-1

, respectively, both substantially elevated in concentration compared to surface water 

(Figure 5). SRP concentration in groundwater averaged 0.033 ± 0.006 mg L
-1

, compared to 0.016 

± 0.001 mg L
-1

 in surfacewater (Figure 5). Across all reaches and seasons, there was a fourteen-

fold increase in NO3
-
, a twelve-fold decrease in NH4

+
, and a six-fold decrease in DOC 

concentration between groundwater and surface water compartments.  

3.4 Nutrient Loads at Main Channel Sites 

As the montane source water flowed through 23 km of the LCDC wetland-stream 

sequence, biogeochemical and hydrologic conditions changed substantially from MC1 to MC5. 

We found that stream discharge increased along the sequence by an average of 32%, whereas 

LNO3 increased by 461%. Ammonium, SRP, and DOC loads exhibited similar changes over this 

longitudinal extent, increasing by 125, 132, and 133%, respectively (data not shown).  

Nutrient loads at main channel sites varied by an order of magnitude across both space 

and time (Figure 6). Both NO3
-
 and NH4

+
 loads followed U-shaped profiles from spring through 

the summer and into fall (Figure 6). Nitrate delivery was greatest in late spring and again during 
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fall at all main channel sites, approaching 30 kg N d
-1

. A marked decline in LNO3 occurred as the 

summer progressed, especially at sites downstream of irrigation withdrawals. During the summer 

period of reduced N delivery, surface water loads at MC1 and MC2 were 0.90 and 3.97 kg N d
-1

, 

respectively, while MC3 exhibited the largest nitrate load (9.86 kg N d
-1

). In contrast, LNO3 at 

MC4 and MC5 were only 0.21 and 0.02 kg N d
-1

, respectively. Autumnal increases in LNO3 

occurred at all sites and approached spring background conditions.  

Material loads of NH4
+
, SRP, and DOC also exhibited clear spatial and temporal patterns. 

LNH4 patterns behaved similarly to LNO3 during spring runoff, but were an order of magnitude 

lower, surpassing 3 kg N d
-1

 only at peak discharge (Figure 6). During the summer, mean LNH4 

was reduced to < 1 kg N d
-1 

at all main-channel sites (Figure 6). While LNH4 rebounded slightly 

during late summer, delivery rates were not as high as observed during spring runoff. LSRP and 

LDOC spiked briefly at MC4 and MC5 in association with peak runoff, delivering over 10 and 

2,000 kg d
-1

, respectively, before declining steadily as the summer progressed (Figure 6). 

Compared to spring runoff, summertime loads were over an order of magnitude lower at all 

main-channel sites, delivering an average of 0.33 ± 0.059 kg d
-1

 and 88.52 ± 22.35 kg DOC d
-1

 

and continued to decline throughout the study period (Figure 6). 

3.5 Partitioning L by Hydrology and Biology 

Dissolved Inorganic N 

Accumulation of nitrate was observed in all reaches on multiple sampling dates and 

differed significantly among reaches (P < 0.05). Mean LNO3 was positive and different from 

zero (P < 0.05) in Reaches I and II (6.08 ± 2.57 and 11.90 ± 3.72 kg N d
-1

, respectively, Figure 7, 

Appendix F). In contrast, total change in nitrate load was not different from zero (P > 0.05) in 

Reaches III (0.75 ± 3.93 kg N d
-1

) and IV (-0.56 ± 1.31 kg N d
-1

, Figure 7, Appendix F). On 
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average, LgwNO3 across all reaches was relatively small (-0.39 ± 0.51 to 0.73 ± 0.15 kg N d
-1

), 

was different from zero only in Reach III (P < 0.05, Figure 7b), and represented a relatively 

small proportion (6-34%) of total change in load (Figure 7).  

Average LNH4 was an order of magnitude lower than LNO3, was significantly different 

from zero (P < 0.05) in all reaches except Reach IV, and did not differ significantly among 

reaches (Figure 7; P = 0.24). Mean LNH4 for Reaches I-IV was 0.22 ± 0.14, 0.64 ± 0.27, 0.81 ± 

0.24, and 0.25 ± 0.10 kg N d
-1

, respectively. Potential NH4
+
 inputs from groundwater (i.e., 

LgwNH4) were four to sixteen times greater than LNH4 (Figure 7). For instance, Reaches I and 

III received an average of 3.80 ± 1.19 and 3.90 ± 0.81 kg NH4-N d
-1

 from groundwater, inputs an 

order of magnitude greater than LNH4 that evidently failed to manifest in altered surface water 

load (Figure 7, Appendix F). Moreover, Reach II received over 11.067 ± 0.64 kg NH4-N d
-1

 from 

groundwater exchange, alongside negligible changes in total LNH4. Reach IV received 

groundwater NH4
+
 inputs (1.44 ± 0.64 kg N d

-1
) that were, on average, nearly six times LNH4 

(0.25 ± 0.10 kg N d
-1

, Figure 7, Appendix F).  

Over time, Reach I and II were consistent and significant (P < 0.05) nitrate producers 

(LbioNO3; 6.46 ± 2.49 and 11.17 ± 3.71 kg N d
-1

, respectively, Figure 7). In contrast, variability 

within Reaches III (0.64 ± 3.85 kg N d
-1

) and IV (-0.37 ± 1.36 kg N d
-1

) resulted in mean 

LbioNO3 not different from zero (P > 0.05, Figure 7). Mean LbioNH4 was negative for all reaches 

and different from zero in Reaches I, II, and III (P < 0.05), illustrating consistent NH4
+
 removal 

(Figure 7). Reaches I, III and IV demonstrated similar removal rates (-3.58 ± 1.12, -3.09 ± 1.22, 

and -1.18 ± 0.61 kg NH4-N d
-1

, respectively), whereas NH4
+
 removal was three-fold greater in 
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Reach II, averaging -10.43 ± 2.25 kg N d
-1

 (Figure 7). Together, LbioNO3 and LbioNH4 illustrated 

significant changes in DIN in Reaches I and II. 

SRP and DOC 

Mean LSRP was low across the LCDC (Figure 8, Appendix G), ranging from -0.97 ± 

1.41 to 2.17 ± 1.82 kg d
-1

 and only significantly different from zero in Reach I (P < 0.01). 

Similarly, mean LgwSRP was low across the four reaches, ranging from -0.02 ± 0.28 to 1.96 ± 

0.39 kg d
-1

, differing from zero in Reaches II and III (P < 0.05). Mean LbioSRP ranged from -

1.15 ± 0.61 kg d
-1

 in Reach II to 0.35 ± 0.23 kg d
-1

 in Reach I, but was not significantly different 

from zero in any reach (P > 0.05, Figure 8, Appendix G).  

Overall, mean LDOC was positive in all reaches (Figure 8, Appendix G), but not 

significantly different from zero (P > 0.05) due to substantially different behaviors during peak 

and base flow conditions (Figure 4). On average, Reach I and IV exhibited slight increases in 

DOC load (11.23 ± 22.42 and 30.75 ± 32.90 kg d
-1

), whereas mean LDOC was over 200 kg d
-1

 in 

Reach II and III (Figure 8, Appendix G). Positive LDOC observed for all reaches paled in 

magnitude compared to the very large and significant estimates for LgwDOC. For instance, 

potential change in load due to groundwater inflow in Reach II (LgwDOC; 1,134.90 ± 224.83 kg 

d
-1

) was nearly five times greater than the observed total change in load (i.e., LDOC; 227.48 ± 

198.97 kg d
-1

, Figure 8, Appendix G). Mean LgwDOC in Reach I and III were over 300 kg d
-1

. 

Values for LgwDOC were significantly greater than zero (P < 0.05) in all reaches except Reach 

IV (P = 0.27), where LgwDOC was 105.05 ± 87.85 kg d
-1

 (Figure 8, Appendix G).  

Given total changes in DOC load that were not different from zero and very strong 

positive changes associated with groundwater inputs, mean LbioDOC was negative in all reaches, 
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suggesting losses of DOC between ground- and surface water compartments. Despite seasonal 

variations, Reaches I and II exhibited average DOC removal rates of -364.66 ± 118.95 and -

907.42 ± 294.28 kg d
-1

, respectively, with both values significantly different from zero (P = 

0.016 and 0.015). DOC removal rates in Reaches III (-198.44 ± 260.39 kg d
-1

) and IV (-74.31 ± 

60.54 kg d
-1

) were also negative, but not significantly different from zero (P > 0.05, Figure 8, 

Appendix G). These data highlight the large differences between DOC concentration in ground- 

and surface water compartments and suggest retention or rapid consumption of DOC in the near-

stream hyporheic zone, such that only a small proportion of the potential load enters the stream 

channel.  

Biogeochemical Processing of Groundwater Nutrient Loads 

The mass-balance for individual solute loads suggests active biogeochemical cycling at 

the stream-groundwater interface. In particular, all reaches exhibited negative LbioNH4 rates of 

the same order of magnitude as positive LbioNO3, suggesting relatively efficient biotic 

transformation of NH4
+
 to NO3

-
. Indeed, we found a significant relationship between LNO3 and 

Lgw when treating groundwater as a single DIN pool (r
2
 = 0.17, P = 0.011, Figure 9). Exclusion 

of a single outlier from Reach II enhanced explanatory power and resulted in a linear relationship  

with a slope near 1 (regression coefficient (β) = 1.1, r
2
 = 0.30, P < 0.001, Figure 9) that predicts 

total change in NO3
-
 load based on the magnitude of groundwater DIN exchange.  

In contrast, we did not find strong evidence for groundwater as a driver of surface water 

DOC dynamics (Figure 9). Over all dates and reaches, LgwDOC was weakly related to LDOC (r
2
 

= 0.10, P = 0.064), the overall slope suggesting that only 30% of potential groundwater DOC 

inputs manifested as increases in surface water loads. Similarly, little evidence was found for 

linkages between Lgw and L for NH4
+
 (r

2
 = 0.062; P = 0.14) or SRP (r

2
 = 0.026; P = 0.35), and 



 

20 

 

low coefficients of determination suggest differing efficiencies of processing in the face of 

spatiotemporal variation (data not shown).  

These data indicate the nutrient concentrations and loads were altered differently among 

the four designated reaches (Fig 7, 8, 10). Overall, materials entered the LCDC through MC1, 

exited the system at the downstream extent of Reach IV (MC 5), and exhibited spatial patterns 

that were relatively consistent over the study period regardless of irrigation withdrawals. Nitrate 

loads increased through Reaches I and II before declining slightly through Reaches III and IV 

(Figure 6). Ammonium and SRP loads typically increased with distance downstream, but did not 

show substantial accumulation (Figure 6). In contrast, DOC load increased with distance 

downstream particularly during the spring runoff period, but exhibited relatively low and stable 

loads across the LCDC through the summer months (Figure 6).   

3.6 Rapid Nutrient Processing 

Areal fluxes (U) for solute consumption (-Lbio) or production (+Lbio) provide 

ecosystem transformation rates that can be compared among reaches of the LCDC and with other 

aquatic ecosystems. Mean UNO3 was positive and significantly different from zero (P < 0.05) for 

Reaches I and II (52.07 ± 19.84, 257.63 ± 101.44 mg N m
-2

 d
-1

) and not different from zero for 

Reach III (10.25 ± 139.96 mg N m
-2

 d
-1

) and IV (-8.78 ± 101.71 mg N m
-2

 d
-1

, Figure 10). 

Reaches I and II were also characterized by significant (P < 0.05) rates of C processing but, in 

contrast to acting as zones of NO3
-
 production, they acted as net sinks for DOC loads. UDOC was 

-2.93 ± 0.96 and -19.58 ± 5.82 g C m
-2

 d
-1

, respectively, in the upstream reaches, and -8.29 ± 

8.07 and -4.70 ± 4.00 g C m
-2

 d
-1

 in Reaches III and IV where mean areal fluxes were not 

significantly different from zero (P > 0.05, Figure 10).  
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Ammonium and SRP exhibited contrasting processing dynamics. Mean UNH4 was 

negative and significantly different from zero (P < 0.05) for Reach I, II, and III (-28.80 ± 8.98, -

226.25 ± 42.88, -123.54 ± 43.34 mg N m
-2

 d
-1

, respectively) but not Reach IV (-73.75 ± 39.39 

mg N m
-2

 d
-1

, Appendix H). USRP ranged from -97.13 ± 127.09 mg m
-2

 d
-1

 in Reach II to 45.05 ± 

55.92 mg m
-2

 d
-1

 in Reach I, but was not significantly different from zero (P > 0.05) for any of 

the four reaches (Appendix H). 

 Throughout the study period, Reaches I and II exhibited net nitrification (i.e, UNO3 > 0) 

on all but one sampling date, versus 44 and 22% of dates in Reaches III and IV, respectively 

(Figure 10). Across the LCDC, individual measurements of net nitrification rates ranged from 

9.07 to 807.72 mg N m
-2

 d
-1

, and the grand mean of UNO3 values > 0 was 248.49 mg N m
-2

 d
-1

. 

Mean nitrification rates varied by reach, from 59.33 ± 20.94 mg N m
-2

 d
-1

 in Reach I (n = 8) to 

493.58 ± 136.40 mg N m
-2

 d
-1

 in Reach IV (n = 2). While Reach III exhibited the single highest 

rate, Reach II exhibited more consistent nitrification, averaging 323.05 ± 64.87 mg N m
-2

 d
-1

 

over eight sampling dates with UNO3 > 0 (data not shown). 

Across all reaches and throughout the study period, net C loss (UDOC < 0) varied by three 

orders of magnitude and occurred on 75% of sample events (Figure 10). C loss rates ranged from 

-0.059 to -54.91 g C m
-2

 d
-1

, and averaged -14.60 ± 2.73 g C m
-2

 d
-1

. Reach II had the highest 

mean loss rate (-23.24 ± 5.14 g C m
-2

 d
-1

), followed by Reach III (-16.74 ± 6.80), IV (-12.78 ± 

4.069), and I (-3.87 ± 0.95 g C m
-2

 d
-1

, data not shown). 

4.0 DISCUSSION 
Evidence shows that heterogeneous hydrologic (Zarnetske et al. 2011, Lottig et al. 2013), 

geomorphic (Gücker and Boëchat. 2004, Helton et al. 2011), and biologic conditions (Ribot et al. 
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2012) across aquatic landscapes may result in stream reaches with differing nutrient 

concentrations (Arango et al. 2007), processing capacities (Ensign and Doyle 2006), and material 

fates (Tobias et al. 2001). This has been attributed to the capacity for these factors to influence 

biotic uptake, storage, production, and removal. We used biogeochemical loads, a useful 

measurement of nutrient production, transformation, and conveyance (James 2009), to show how 

linked aquatic ecosystems interact to generate emergent signals at the landscape scale. We 

observed strong spatial and temporal variability in the form, concentration, and processing rates 

of DIN and DOC throughout the LCDC. Overall, the wetland-stream sequence exhibited robust 

signals of NO3
-
 production concomitant with NH4

+
 and DOC removal. Moreover, the distribution 

of distinct biogeochemical signals along the sequence indicates the existence of discrete NPDs 

and a spatial gradient in the tendency for a given NPD to shift in character. Observed shifts in 

NPD character reflect variability in hydrologic linkages between subsurface and surface resource 

pools. In particular, we found substantial loads of DIN entering the stream channel via wetland 

or groundwater flow paths, and their ultimate fate and form resulted from a combination of local 

and routing controls that drove NPD behavior. 

4.1 Hydro-geomorphic Controls in the LCDC 

Much of the variability in biogeochemical conditions along the LCDC sequence can be 

elucidated by the distinct structure of the four study reaches. Profiles of hydro-geomorphic 

structure illustrate the decrease in wetland extent, whole-reach bed area, residence time, and 

open water from Reach I to Reach IV. This reflects a transition from systems dominated by flow-

through wetlands to those progressively more lotic in character. Reaches I, II, and III often 

received substantial groundwater inputs and typically behaved as gaining reaches, whereas 

Reach IV demonstrated minimal groundwater discharge. Along this transitional sequence, 

variable hydrologic gains and losses influence nutrient dynamics and groundwater exchange acts 
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as a primary driver of N loads. Our data suggest these hydro-geomorphic interactions shape the 

system, prompting distinct biological responses that result in characteristic biogeochemical 

behaviors.  

Nitrogen Dynamics 

  Flow entering the LCDC is derived from a montane canyon that provides cold, low-N 

water. In Reaches I and II, this source water accumulates NO3
-
 along flow paths transcending a 

peat fen, a lentic water body, and extensive flow-through wetlands. In Reaches III and IV, NO3
-
 

concentration declines as the landscape transitions from hydrologically-connected wetlands to 

more incised, lotic channels. Strongly positive ΔLNO3 values in Reaches I and II reflect an 

accumulation (production) of NO3
-
 greater in magnitude than provided by groundwater NO3

-
 

inputs alone. The resulting ΔLbioNO3 and UNO3 rates (values > 0) suggest nitrification of incoming 

groundwater NH4
+
. Conversely, the negative UNO3 values (removal) measured on individual 

sampling events in Reaches III and IV, and the negative mean UNH4 values in Reaches I-III, 

reflect N removal dynamics that are more typical of low-order stream ecosystems (Peterson et al. 

2001, Mulholland et al. 2008). Our range of negative U values from the LCDC are similar to the 

median fluxes reported across numerous stream systems in both the LINX I (UNO3 = -42.0 and 

UNH4 = -62.1 mg N m
-2

 d
-1

, Webster et al. 2003) and LINX II (UNO3 = -53.55 and UNH4 = -38.07 

± 160.10 mg N m
-2

 d
-1

, Mulholland et al. 2008) studies of N dynamics in lotic systems (published 

rates converted to negative values to reflect N removal as reported in this study).  

Groundwater NH4
+
 inputs to Reaches I and II account for much of the observed increase 

in NO3
-
 load (assuming nitrification was the dominant process), and this NH4

+
 may be provided, 

in part, by ammonification of wetland organic matter that enters the stream. Buildup of organic 

N in wetlands and subsequent mineralization produces solutes that can elevate stream water 
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concentrations (Lottig et al. 2013). Across 119 watersheds, Pellerin et al. (2004) found that 

wetland extent alone predicted up to 60% of the variability in dissolved organic N (DON) 

concentration in drainage waters. In the LCDC, both Reaches I and II are rich in benthic 

autotrophic biomass and organic matter, and the adjacent wetlands reflect those typical of 

floodplain systems that accumulate both sediment and dead plant matter (U.S. EPA and CDM 

Smith 2012). Along surface and groundwater flow paths, DON is subject to ammonification and 

results in NH4
+
 production, which can ultimately oxidize to NO3

-
 via nitrification (Starry et al. 

2005). The decomposition of wetland organic matter and subsequent increase in stream DIN 

through Reaches I and II could be one mechanism that explains both elevated NH4
+ 

concentrations in groundwater and longitudinal increases in stream NO3
-
 load.  

Wetland organic matter mineralization and subsequent delivery of inorganic solutes to 

streams are strongly influenced by flow path dynamics and chemical conditions. Jones and 

Holmes (1996) found the hydrology of fluvial wetlands and hyporheic zones exhibit strong 

control over N transformations and export to streams depending on flow path length and 

substrate form (i.e., NH4
+
 vs. NO3

-
). This is because organic N is reduced and oxidized under 

contrasting conditions that often reflect the predominance of stream or wetland settings. Wolf et 

al. (2013) found that floodplain wetlands exhibit high ammonification rates and, depending on 

hydrologic conditions, can provide substantial N delivery to downstream systems. In a study 

comparing linked flow-through wetlands and stream reaches, Powers et al. (2012) found that 

wetlands were less efficient at NO3
-
 removal per unit area than their stream counterparts. 

Moreover, Sponseller et al. (2018) reported that headwater peat mires act as disproportionately 

high NH4
+
 sources to downstream surface waters. This was shown to be a result of groundwater 

transport of wetland-derived NH4
+
 through deep catotelm (biologically inactive peat layers) flow 
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paths which bypass the active, shallow soil layers. Such studies demonstrate how the reducing 

conditions typically associated with organic matter-rich wetlands have the potential to release 

NH4
+
, whereas stream conditions favor the oxidization/consumption of NH4

+
 and retention of 

NO3
-
. Although we did not measure N processing at sub-ecosystem scales (i.e, individual flow-

through wetlands), the greatest net NO3
-
 production occurred in wetland-dominated reaches. This 

is in contrast to the fluvial wetlands and surface transient storage zones that behaved as net 

removers of NO3
-
 as reported by Wollheim et al. (2014). However, our results agree with the 

suggestion by Wollheim et al. (2014) that flow-through wetlands can act as biogeochemical hot 

spots with elevated N reaction rates compared to streams alone. Our results further suggest that 

N form, as well as local and routing controls (i.e. redox conditions and direction of groundwater 

exchange) ultimately dictate the primary processes and biogeochemical signals at the landscape 

scale. Together, these findings show how groundwater and wetland flow paths may route 

reduced N to the stream channel in the LCDC, where it is converted to NO3
-
. These linked 

biogeochemical mechanisms, driven in part by geomorphic structure and hydrologic 

connectivity, suggest that the drastic increase in surface water NO3
-
 observed in Reaches I and II 

is a result of nitrification of reduced N. 

Net nitrification rates in the LCDC (derived from positive UNO3 values) span a broad 

range of rates reported in the literature for streams and indicate significant transformation of N 

loads in this wetland-stream. Rates of lower magnitude in the LCDC are similar to those found in 

studies of low-order streams by Hamilton et al. (2001), Dodds et al. (2000), and Strauss and 

Lamberti (2002) (Figure 11). Grimm et al. (1991) reported nitrification rates up to 64.5 mg N m
-2

 

d
-1

 in a Sonoran Desert stream, a rate comparable to the mean in Reach I of the LCDC (59.33 mg 

N m
-2

 d
-1

). The upper end of our reported range, however, reflects rates an order of magnitude 
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greater than observed for most stream and natural wetland ecosystems (Andersen and Hansen 

1982, Bowden 1986, Zak and Grigal 1991). Furthermore, these rates are elevated in comparison 

to those measured in lake sediments (Bruesewitz et al. 2012) or backwaters of the Mississippi, 

where James (2009) found that anoxic conditions inhibited nitrification in an NH4
+
-rich setting 

(Figure 11). Reach II demonstrated prolific nitrification, with average rates of similar magnitude 

to those measured in oxygenated surface-flow constructed treatment wetlands (SFCTW) 

receiving sewage effluent (Palmer et al. 2009, Figure 11).  

The reported variation in nitrification rates among these disparate systems might be 

explained by substrate (NH4
+
) availability. For instance, the LCDC has a substantial NH4

+
 source 

from groundwater inputs, whereas the streams mentioned above had markedly lower DIN 

concentrations. Peterson et al. (2001) reported nitrification rates over 80 mg N m
-2

 d
-1

 in low-

NH4
+
 (< 0.01 mg L

-1
) streams, where 70-80% of NH4

+
 was removed by the stream bottom. Our 

system demonstrated 92% NH4
+
 transformation when considering the grand means of ground- 

and surface water concentrations, resulting in minimal NH4
+
 in stream water. In settings where 

NH4
+
 is not limiting and oxygen is plentiful, nitrification rates can exceed those typically 

reported. Kemp and Dodds (2002) demonstrated > 300% increases in nitrification rates with 

maximum rates of 35 mg N m
-2

 d
-1

 in streams following NH4
+
 amendments of up to 0.025 mg L

-

1
. These conditions likely exist in the hyporheic zone of the LCDC, where oxygen-saturated 

surface water interfaces with anoxic interstitial groundwater, optimizing nitrification potential 

(Zarnetske et al. 2012). In gaining reaches of the LCDC, it is likely that oxygen-depleted, NH4
+
-

rich groundwater enters the stream through the hyporheic zone where it is exposed to aerobic 

conditions and extensive microbial communities. Indeed, the interface of surface and shallow 

groundwater has been shown to greatly influence N (Jones and Holmes 1996) and DOC (Findlay 
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et al. 1993) concentrations, in part due to large gradients in redox conditions that lead to coupled 

processes such as nitrification-denitrification and precipitation-adsorption (Marzadri et al. 2012; 

Sudoh et al. 2015). The lowest of our estimated net nitrification rates agree with those reported in 

studies characterized by streams with low NH4
+
 concentrations (i.e., those similar or lower than 

values observed in LCDC surface waters). Conversely, our maximum rates approached those of 

sewage-augmented treatment wetlands (Fig. 11), suggesting that certain reaches of the LCDC 

obtained much higher nitrification rates because of enhanced NH4
+
 supply. High nitrification 

rates in the LCDC support river network studies that suggest a substantial portion of N loads can 

be transformed within linked stream ecosystems (Koenig et al. 2017), and provide evidence of 

the ‘shunting’ of NO3
-
 to downstream reaches (Raymond et al. 2016). 

This study highlights the influence of groundwater exchange and flow-through wetlands 

on reach scale N dynamics, demonstrates the existence of discrete NPDs along a wetland-stream 

sequence, and illustrates the spatiotemporal variation in nutrient loads, processing capacities, and 

material fates as they relate to hydrologic, geomorphic, and biologic conditions. The flow-

through wetlands positioned along the LCDC sequence may influence NPD character as distinct 

hydro-geomorphic conditions promote surface-groundwater interaction, enhance mineralization 

of organic matter, and enable export of NH4
+
 to the stream, where conditions support high 

nitrification and N processing rates. When considering nutrient processes as domains in 

functional space, we see a shift in character with distance downstream: from N production in 

Reaches I and II, to mixed production-consumption in Reach III, to an increasing tendency 

towards net consumption in Reach IV. The lower two reaches of the LCDC behave more similar 

to low-order streams in the literature due to the diminishing role of flow-through wetlands and a 

‘shunted’ NO3
-
 source from which in-stream processes can draw. While Reach I and II act as 
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NO3
-
 producers due to groundwater and wetland influences, Reach III and IV exhibit process 

dynamics that suggest a progressive transition to NO3
-
 consumption with increasing distance 

downstream.  

Carbon Dynamics 

Wetland-dominated stream reaches are often characterized by elevated DOC 

concentrations (Lottig et al. 2013) due to mineralization of organic matter stored in wetland soils 

and transport of solutes to streams. However, longitudinal patterns of DOC concentration in the 

LCDC were not congruent with the extent of wetland area proximate to a given reach. The most 

wetland-dominated reaches (I and II) did not exhibit elevated DOC concentrations in comparison 

to the reaches characterized by lotic channels with substantially lower wetland extent but slightly 

higher DOC levels. Moreover, ΔLDOC values remained relatively unchanged across all reaches of 

the wetland-stream sequence, suggesting that adjacent flow-through wetlands had relatively little 

influence on DOC dynamics in the surface waters of the LCDC. Coupling groundwater discharge 

with DOC concentrations, on the other hand, resulted in ΔLbio values, and thus UDOC rates, that 

were strongly negative in Reach I and II. This reflects retention or removal of DOC in the 

hyporheic zone between groundwater and surface water compartments.  

Any attempt to generalize DOC processing in stream ecosystems is fraught with 

compounding factors related to DOC quality and composition (Strauss and Lamberti 2002, 

Stelzer et al. 2003). In streams, DOC represents a complex mixture of compounds that varies 

from highly reactive (i.e. glucose) to more recalcitrant forms that exhibit substantially different 

mineralization rates and present a critical challenge to understanding and modeling C processing 

(Mineau et al. 2016). Labile DOC additions have been shown to have a priming effect on C 

processing (Thouin et al. 2009) as well as inhibit nitrification as metabolically-stimulated 
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heterotrophic bacteria outcompete nitrifying bacteria for NH4
+
 (Strauss and Lamberti 2002). 

Furthermore, less labile ambient (stream water) DOC has been shown to sorb quite rapidly to 

hyporheic sediments (Findlay and Sobczak 1996). The variable biological and chemical 

reactivity of DOC compounds adds a level of uncertainty to C balances that attempt to 

differentiate between biological removal and physical or chemical retention. However, while we 

did not directly measure DOC quality or composition in the LCDC, mass-balance assessments 

illustrate the substantial capacity of wetland-streams to transform and retain C. 

As it did for N species, C mass balance in the LCDC showed contrasting character and 

magnitude of C processing among reaches. Assuming C loss (i.e., UDOC < 0) was due solely to 

respiratory consumption, our estimates were substantially greater than the highest ecosystem 

respiration values reported for net heterotrophic streams and rivers (Meyer and Edwards 1990, 

Lupon et al. 2016, Figure 11). For instance, Hall et al. (2016) estimated respiration to be -5.78 g 

C m
-2

 d
-1

 in a rocky mountain stream in Idaho, while others have reported values between -0.20 

(Hitchcock et al. 2010) and -2.07 g C m
-2

 d
-1

 (Fisher et al. 1982). The mean C flux in Reach I (-

3.87 g C m
-2

 d
-1

) fell within the typically reported range, while the other three reaches of the 

LCDC exhibited C fluxes an order of magnitude greater than most streams. The C flux in 

Reaches II to IV of the LCDC were greater than ecosystem respiration estimates from 72 streams 

comparing land use across eight regions (Bernot et al. 2010), and greater still than measurements 

in C-rich settings such as estuaries (Caffrey et al. 2014, Hitchcock et al. 2010, Maher et al. 2013, 

Nidzieko et al. 2014), peatlands (McConnell et al. 2013), and wetlands (Maynard et al. 2012, 

Figure 11).  

These uncharacteristically high C fluxes suggest pathways other than solely respiratory 

consumption as mechanisms for DOC removal. DOC adsorption may be of particular importance 
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in the LCDC given extant geochemical conditions. Field observations indicate the presence of 

substantial (> 1 cm) calcareous deposits along the LCDC waterways consistent with the alkaline 

pH reported for surface waters. Plentiful calcareous minerals in part reflect local geology (U.S. 

EPA & CDM Smith 2004, NRCS 2018), but may be related to reclamation activities in the 

LCDC uplands, where lime (CaCO3) was applied at rates up to 8 tons per acre in 2008-2009 (MT 

NRDP 2007). Calcium carbonate precipitation at the surface-ground water interface may 

contribute to C loss as groundwater DOC adsorbs to surfaces of CaCO3 particles. Indeed, Sudoh 

et al. (2015) demonstrated that DOC (humic acids) concentrations in river water consisting of 

33.4 mg L
-1

 declined to 4.5 mg L
-1

 when treated with CaCO3, an 87% removal rate. Findlay and 

Sobczak (1996) found DOC adsorption to hyporheic sediments explained consistently high 

retention rates, even under conditions unsuited for biotic DOC uptake. Elevated percent organic 

matter values in LCDC benthic biomass slurries support the adsorption of DOC to precipitated 

carbonates on stream cobbles at the hyporheic zone-stream interface. While adsorption of DOC 

to carbonate particles is dependent on concentration, composition, and surface charge, findings 

from Bob and Walker (2001) suggest retention rates peak in alkaline conditions like those found 

in the LCDC. Our coarse estimations of DOC loss are substantially greater than published 

ecosystem respiration estimates and may reflect a combination of biological and chemical 

removal of DOC. 

4.2 Effects of Management Practices on NPD Character 

Land use (Groffman et al. 2004, Walter and Merritts 2008) and stream flow regulation 

(Poff et al. 2007) have clear impacts on watershed biogeochemical and hydrologic conditions 

because of how they influence the exogenous inputs of nutrients (Pennino et al. 2016) and 

disrupt natural flow and sediment regimes (Renwick et al. 2005). In the LCDC, these influences 

are evidenced by 1) the potential for the N source supporting the elevated nitrification rates to be 
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related to municipal wastewater management practices and 2) the large abstraction of channel 

water for agricultural use. The Dutchman Creek tributary flowing into Reach I consistently 

exhibited the highest DIN concentrations across the entire LCDC, and is located ca. 4 km 

downstream of the municipal infiltration basins (Figure 1). The infiltration basins and adjacent 

agricultural fields often receive wastewater applications as part of the treatment process and 

could act as an N source to the LCDC. While actual contributions remain unknown, it is possible 

that much of the N we observed entering the stream via groundwater and wetland flow paths is 

ultimately derived from this facility. In that case, exogenous N from anthropogenic activities 

could have significant impacts on the character and magnitude of NPDs as it pertains to substrate 

availability. The proportion of N in the LCDC derived from wetland mineralization or 

anthropogenic inputs warrants further investigation, as efforts could be taken to minimize N 

loads from municipal sources.  

Irrigation withdrawals also substantially influenced the hydrology and biogeochemistry 

of the LCDC. During mid-summer, the vast majority of channel water is routinely diverted from 

Reach III to meet agricultural demands. During 2018, withdrawal of this type had profound 

impacts on the magnitude of nutrient loading rates as well as biological nutrient fluxes, such that 

areal processing rates for NO3
-
 suddenly shifted from positive (producer) to negative (consumer), 

and then returned back to positive once the diversion was removed (Figure 10). During base flow 

in Reach III, ∆LgwNO3 was low while ∆LgwNH4 was an order of magnitude greater.  Both remained 

relatively stable despite diversion, suggesting that groundwater N supply was not responsible for 

the shift in NPD dynamics. The great reduction in flow downstream of the diversion dam likely 

increased biologic processing and retention of N by stream channel biota (Martí et al. 1997, 

Zarnetske et al. 2011), resulting in the observed NPD shift from NO3
-
 producer to consumer. 
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This event shows the capacity for dramatic shifts in NPD character in response to human 

alteration of hydrologic and material loading rates. It also demonstrates the plasticity of stream 

ecosystems and biogeochemical fates in response to anthropogenic influences on local and 

routing controls. 

5.0 CONCLUSION 
 This study characterized a wetland-stream sequence to better understand landscape-scale 

hydro-geomorphic and biogeochemical processes across multiple linked aquatic ecosystems. The 

mass-balance approach yielded material loading rates and reflected ecosystem-level processes at 

large spatial and temporal scales. This study identified groundwater exchange as an important 

driver of DIN loads, processing rates, and fate in streams characterized by extensive flow-

through wetlands. Estimates of DOC removal highlight additional C processes that may 

complement biological consumption. Our findings suggest that the position of stream reaches in 

relation to wetland hydro-geomorphology can dictate NPD behavior and influence nutrient 

source-sink dynamics. The ability to comprehend, quantify, and locate biogeochemical functions 

at broad spatial extents is critical for the informed management of fluvial ecosystems, 

particularly those transporting constituents of ecological concern. The methods employed and 

information gleaned from this study are readily transferable to other watersheds with nutrient 

management issues, particularly those subject to groundwater and agricultural abstraction 

influences. Applying a sensible landscape approach to stream and wetland nutrient dynamics is a 

critical step to better understand and manage low-order streams with potential watershed-scale 

influences. 
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Table 1. Physicochemical, hydrologic, biogeochemical, and biological parameters by reach over 

the period of May to September. Data are mean ± standard error. Values within a row with unique 

superscripts are statistically different following significant ANOVA (P-value provided) and 

Tukey’s HSD. † denotes log-transformation to meet normality assumptions.  

 
          Reach I         Reach II         Reach III   Reach IV P-value 

Physicochemical 

Dissolved Oxygen  

(mg L-1)     10.9 ± 1.2         10.3 ± 1.0           9.1 ± 0.7     8.7 ± 0.8    0.36 

Dissolved Oxygen  

(% sat.)     122.4 ± 15.6         117.1 ± 13.2       103.5 ± 9.0    99.4 ± 9.0    0.49 

Temperature (ºC)   12.2b ± 1.0    13.48ab ± 0.8      14.5ab ± 0.7  15.2a ± 0.7    0.047 

Sp. Conduct. (μS cm-1)   349.5c ± 17.1        451.2a ± 25.4       556.9b ± 24.4  557.7b ± 22.4 < 0.001 

pH      8.6 ± 0.1           8.6 ± 0.1          8.6 ± 0.1      8.6 ± 0.1    0.98 

Hydrologic 

Median Travel Time† 

(hours)  63.9b ± 16.1   7.0a ± 1.1     4.8a ± 0.4     4.8a ± 0.9 < 0.001 

Qup † (L sec-1)   841.5 ± 213.8     664.6 ± 170.8   1,153.5 ± 283.5   1,092.0 ± 334.5    0.56 

Qin† (L sec-1) 327.0 ± 27.8 NA NA NA    NA 

Qout† (L sec-1)   681.5 ± 121.0   208.7 ± 31.6    338.1 ± 83.9 NA    NA 

Qdown † (L sec-1)  664.6 ± 170.8 1,153.5 ± 283.5   1,092.0 ± 334.5 1,111.09 ± 295.9    0.67 

Qgw (L sec-1) 177.7b ± 107.6   697.6a ± 138.2  239.03b ±  87.1     19.1b ± 80.5 < 0.001 

Biogeochemical 

NO3-N (mg L-1) 0.15 ± 0.02 0.21 ± 0.03 0.21 ± 0.03 0.12 ± 0.04    0.084 

NH4-N† (mg L-1)  0.01 ± 0.002   0.01 ± 0.002   0.01 ± 0.003   0.02 ± 0.003    0.51 

SRP† (mg L-1)  0.02 ± 0.003   0.02 ± 0.003   0.02 ± 0.006   0.02 ± 0.006    0.99 

DOC† (mg L-1)         2.36 ± 0.33 2.54 ± 0.39 3.02 ± 0.64 3.71 ± 0.76    0.49 

Biological 

Chl-a (mg m-2)† 637.4b ± 342.3   428.1a ± 148.3  358.8a ± 97.1 219.6a ± 77.6    0.016 

BOM (g AFDM m-2)† 259.2a ± 122.8 183.9a ± 50.6 305.4ab ± 72.0 190.4b ± 61.6 < 0.001 

% Organic Matter†         23.5a ± 2.6         48.5ab ± 13.7       32.5ab ± 6.6 29.5b ± 9.6 < 0.05 

Autotrophic Index†  
(mg Chl-a : g AFDM)  1.7 ± 0.2    2.3 ± 0.8      1.4 ± 0.5    1.1 ± 0.2    0.54 

Notes: NA = not applicable due to a lack of replication 
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 Figure 1. The Lost Creek Dutchman Complex (LCDC) and designated study reaches near 

Anaconda, MT, USA. Wetland habitat (grey) was identified using geospatial data from the MT 

Natural Heritage Program. Stream reaches (colored lines) and main-channel sampling sites 

(MC, colored symbols) are depicted across the four study reaches. Secondary municipal 

wastewater treatment ponds (WWTP, green polygon) are located near MC 1 at the top of the 

complex. Dutchman Creek (black) enters Lost Creek through the lentic area (navy blue) at the 

end of Reach I. In general, water flows from the southwest to the northeast, where Lost Creek 

converges with the UCFR (teal). 
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 Figure 2. Landscape attributes of the LCDC: (a) whole-reach bed area (km
2
), (b) open water 

(km
2
), (c) floodplain wetlands (km

2
), and (d) incision ratio of the stream channel by reach. 

Data demonstrates the transition from wetland-dominated upstream reaches to more incised, 

downstream lotic channels.  
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 Figure 3. Net groundwater exchange (a) and groundwater exchange as a proportion of total 

surfacewater inputs (b) for each of the four reaches from May to September. Net groundwater 

discharge is represented as Qgw values > 0, whereas Qgw < 0 represents net groundwater 

recharge.  
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Figure 4. NO3
- 
(a), NH4

+
 (b), SRP (c) and DOC (d) concentrations (mean ± standard error, n = 3) 

on a longitudinal gradient over the course of the entire LCDC during peak (June; white 

diamonds) and base flows (August; black circles). Dashed vertical lines distinguish study 

reaches.  
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Figure 5. Groundwater (grey) compared to surface water (white) NO3
-
, NH4

+
, SRP, and DOC 

concentration from the LCDC over the entire study period. Data represent grand means ± 

standard error of all water samples taken from the 10 surface water sampling sites and the 19 

groundwater wells. Bars corresponding to each constituent with unique superscripts are 

statistically different following significant ANOVA and Tukey’s HSD tests. 
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Figure 6. Nutrient loads at each of the five main-channel sites throughout the study period. Data 

are single values derived from measured stream flow and mean surfacewater concentration on 

each of nine sampling dates.  
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Figure 7. Total change in load (∆L) partitioned into change in load due to groundwater exchange 

(∆Lgw) and putative biological processing (∆Lbio) for NO3
- 
(a, b, c) and NH4

+
 (d, e, f) by reach. 

Within each panel, boxplots illustrate distribution and summary statistics: colored boxes 

represent the 25
th

 to 75
th

 percentiles; center horizontal lines are median values; white diamonds 

are mean values; whiskers are values in the lowest and highest quartiles that are not significant 

outliers; black dots are significant outliers, defined as being larger in absolute magnitude than the 

25
th

 or 75
th

 percentile minus 1.5-times the interquartile range. Distinct superscripts are reaches 

that behave differently according to Mann-Whitney U tests, and ¥ represents values that are 

different from zero according to two-tailed, one-sample Student t-tests.  
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Figure 8. Total change in load (∆L) partitioned into change in load due to groundwater 

exchange (∆Lgw) and putative biological processing (∆Lbio) for SRP
 
(a, b, c) and DOC (d, e, f) by 

reach. Within each panel, boxplots illustrate distribution and summary statistics: colored boxes 

represent the 25
th

 to 75
th

 percentiles; center horizontal lines are median values; white diamonds 

are mean values; whiskers are values in the lowest and highest quartiles that are not significant 

outliers; black dots are significant outliers, defined as being larger in absolute magnitude than 

the 25
th

 or 75
th

 percentile minus 1.5-times the interquartile range. Distinct superscripts are 

reaches that behave differently according to Mann-Whitney U tests, and ¥ represents values that 

are different from zero according to two-tailed, one-sample Student t-tests. 
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Figure 9. Total measured change in nutrient load (∆L; kg d
-1

) as a function of putative 

groundwater nutrient load (∆Lgw; kg d
-1

). The relationship for total nitrate load change as a 

function of groundwater DIN exchange (dotted red line) was significant (r
2
 = 0.17, P = 0.011). 

Exclusion of a single outlier from Reach II (symbol identified by the dashed red circle) improved 

explanatory power (r
2 

= 0.3, P = 0.00064) and the regression coefficient approached 1 (black 

solid line). In contrast, ∆LDOC (b) did not exhibit a significant relationship with ∆LgwDOC, 

suggesting a decoupling of NO3
-
 and DOC dynamics at the stream-groundwater interface. 
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Figure 10. Area-specific biological processing rates (U) of NO3
-
 (a, b, c, d) and DOC (e, f, g, h) 

in the LCDC by reach (colored boxes) and date. Bar plots represent measured rates from nine 

sampling events. Box plots at the end of the x-axes illustrate distribution and summary statistics 

for each reach and constituent: colored boxes represent the 25
th

 to 75
th

 percentiles; center 

horizontal lines are median values; red diamonds are mean values; whiskers are values in the 

lowest and highest quartiles that are not significant outliers; black dots are significant outliers, 

defined as being larger in magnitude than the difference between the 25
th

 or 75
th

 percentile and 

1.5-times the interquartile range. Distinct superscripts are reaches that behave differently 

according to Mann-Whitney U tests, and ¥ represents values that are different from zero 

according to two-tailed, one-sample Student t-tests. 
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Figure 11. Comparisons between N and C processing rates in the LCDC with those measured in 

other ecosystems. Boxplots illustrate distribution and summary statistics for each study system 

setting: colored boxes represent the 25
th

 to 75
th

 percentiles; center horizontal lines are median 

values; red diamonds are mean values; whiskers are values in the lowest and highest quartiles 

that are not significant outliers; black dots are significant outliers, defined as being larger in 

magnitude than the difference between the 25
th

 or 75
th

 percentile and 1.5-times the interquartile 

range. Nitrification rates were taken from the following studies: Streams: Dodds et al. 2000; 

Starry et al. 2005; Grimm et al. 1991; Brookshire et al. 2005; Straus and Lamberti 2000; 

Hamilton et al. 2001; Webster et al. 2003. Wetlands: Andersen and Hansen 1982; Bowden 1986; 

Zak and Grigal 1991. Lake: Bruesewitz et al. 2012. Backwater: Straus et al. 2004. SFCTW: 

Palmer et al. 2009. C Loss rates were taken from the following studies: Streams: Fellows et al. 

2006; Shen et al. 2015; Meyer and Edwards 1990; Houser et al. 2005; Hamilton et al. 2001; 

Lupon et al. 2016; Hall et al. 2016. Wetlands: Maynard et al. 2012. Peatlands: McConnell et al. 

2013. Estuaries: Hitchcock et al. 2010; Maher et al. 2013; Nidzieko et al. 2014; Caffrey et al. 

2014. 
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Appendix A. Reach, number, name, description, and location of the ten sampling sites. 

Reach 
Site 

Number 
Site Name Description Latitude Longitude 

I MC1 LC-Gardiner 
Upstream extent of LCDC; receives mix of 

Gardiner Ditch and Lost Creek water 
46.162388° -112.889900° 

I OUT1.1 
Ueland Ranch 

Ditch 

Diversion ditch on Ueland Ranch removes 

Lost Creek water from channel 
46.170770° -112.874364° 

I IN1 
Dutchman 

Creek 

At south end of Dutchman Dyke where 

Dutchman Creek is diverted into reservoir 
46.176138° -112.848678° 

I OUT1.2 

Fifer-

Cummock 

Ditch 

Diversion ditch removes water from 

reservoir  
46.182764° -112.851649° 

I/II MC2 
Dutchman 

Dyke 

Flow control structure regulates outflow 

from reservoir into reach II of LCDC 
46.182322° -112.851795° 

II OUT2 
Jacobson 

Ditch 

Diversion ditch removes Lost Creek water  

from channel 
46.202907° -112.805709° 

II/III MC3 
Heggelund 

Crossing 

Lost Creek bridge crossing on Heggelund 

Ranch 
46.203490° -112.802260° 

III OUT3 
Beckstead 

Ditch 

Diversion ditch removes Lost Creek water  

from channel 
46.206248° -112.799093° 

III/IV MC4 
USGS 

downstream 

Gage station 12323850 Lost Cr near Galen 

on Frontage Rd. 
46.218687° -112.774075° 

IV MC5 Confluence 

Lost Creek bridge crossing on Lambert 

Ranch near confluence of Lost Creek and 

UCFR 

46.226652° -112.760091° 

Notes: Sites with multiple roman numeral identifiers were used as both upstream and downstream extents for 

linked reaches. 
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Appendix B. Geomorphic parameters and landscape attributes by reach. Data are means 

± standard errors. Values with unique superscripts are statistically different following 

Tukey’s HSD. † denotes log-transformation to meet normality assumptions. 

 
     Reach I  Reach II Reach III Reach IV p-value 

Bankfull Width (m)†    5.87 ± 0.99     5.20 ± 0.38   5.40 ± 0.35    4.83 ± 0.28         0.92 

Channel Length (m) 4805 9341 6163 2824 NA 

Bankfull Depth (m)   0.55b ± 0.01    0.64a ± 0.02 0.59ab ± 0.02   0.81c ± 0.02      < 0.001 

Mean Bankfull Depth (m)†   0.55a ± 0.03    0.64a ± 0.04  0.59a ± 0.04   0.81b ± 0.04      < 0.001 

Max Bankfull Depth (m)   0.68b ± 0.05    0.86a ± 0.05 0.80ab ± 0.05   0.93a ± 0.05     0.0073 

Incision Ratio   0.49b ± 0.05   0.59ab ± 0.04  0.73a ± 0.03   0.75a ± 0.06      < 0.001 

Width:Depth†  11.51 ± 2.22     9.65 ± 1.45   9.71 ± 1.05    6.23 ± 0.60 0.11 

Low Bank Height (m)   0.34c ± 0.04    0.52a ± 0.04 0.58ab ± 0.04   0.72b ± 0.08      < 0.001 

Cross-sectional Area (m2)    3.15 ± 0.51     3.21 ± 0.32   3.12 ± 0.19    3.88 ± 0.25   0.112 

Pool Width (m)    3.12 ± 0.84     1.57 ± 0.49   4.50 ± 0.61    4.27 ± 1.19   NA 

Pool Depth (m)    0.62 ± 0.17     0.47 ± 0.14   0.65 ± 0.11    1.15 ± 0.20   NA 

Pool Width:Depth†    7.71 ± 3.87     3.38 ± 0.38   7.99 ± 1.85    4.01 ± 1.28  0.23 

Riffle Length (m) 15.60b ± 3.04 22.30ab ± 4.19    16.01ab ± 3.02 28.71a ± 2.40   0.018 

Run Length (m)† 14.67b ± 2.26 19.29ab ± 2.46  35.52b ± 12.19    29.12ab ± 6.08   0.040 

Riffle:Run 1.06 0.22 0.38 1.38   NA 

Debris Dams (m3)   5.06b ± 1.55    0.18a ± 0.18 5.20ab ± 4.16      1.32ab ± 0.12   0.015 

Number of Channels†    1.25 ± 0.10     1.14 ± 0.10   1.17 ± 0.11        1.08 ± 0.08  0.61 

Open Water (km2) 0.18 0.046 0.004 0.0028   NA 

Floodplain wetland (km2) 2.34 1.79 0.25 0.15   NA 

Upland (km2) 4.17 3.62 1.04 0.32   NA 

Percent Wetland (%) 34.93 32.78 19.35 31.92   NA 

Percent Open Water (%) 2.70 0.84 0.32 0.61   NA 

Sinuosity 1.23 2.06 2.19 1.80  NA 

Whole-Reach Bed Area 
(km2) 

  0.11a ± 0.01    0.045b ± 0.0011    0.028c ± 0.0022    0.013d ± 0.00094 < 0.001 

Notes: NA values are due to a lack of replicate measurements. 
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Appendix C. Nutrient concentration (mean ± SE) of each of the dissolved constituents at the five 

main-channel sites throughout the study period. Across all sites, NO3
-
 (a) concentration typically 

increased as the summer progressed. (b) NH4
+
 concentration was diluted during high flow and 

peaked in mid-summer. (c) SRP remained low and relatively stable throughout the summer 

period, but increased slightly during peak flood. (d) DOC increased with spring runoff and 

continued to decline as the summer progressed. 
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Appendix D. Nutrient concentration (mean ± SE) of each of the dissolved constituents at the five 

irrigation ditches/tributary inputs throughout the study period. Colors represent reach 

designation (blue = Reach I; black = Dutchman Creek tributary; green = Reach II; orange = 

Reach III) and identification scheme represents direction of flow and position along the 

sequence (i.e., OUT1.1 = outflow, Reach I, site 1). 
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Appendix E. Loads of each of the dissolved constituents at the five irrigation ditches/tributary 

inputs throughout the study period. Data are single values derived from measured stream flow 

and mean surfacewater concentration on each of nine sampling dates. Colors represent reach 

designation (blue = Reach I; black = Dutchman Creek tributary; green = Reach II; orange = 

Reach III) and identification scheme represents direction of flow and position along the sequence 

(i.e., OUT1.1 = outflow, Reach I, ditch 1). 

 



 

66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F. Total changes in load (∆L), estimated groundwater loads (∆Lgw), and biologically-

driven changes in load (∆Lbio) for NO3
-
 (a, b, c) and NH4

+
 (d, e, f) by reach and date. 
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Appendix G. Total changes in load (∆L), estimated groundwater loads (Lgw), and biologically-

driven changes in load (Lbio) for SRP (a,b, c) and DOC (d, e, f) by reach and date. 
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Appendix H. Area-specific biological processing rates (U) of NH4
+
 (a, b, c, d) and SRP (e, f, g, 

h) in the LCDC by reach (colored boxes) and date. Bar plots represent measured rates from nine 

sampling events. Box plots at the end of the x-axes illustrate distribution and summary statistics 

for each reach and constituent: colored boxes represent the 25
th

 to 75
th

 percentiles; center 

horizontal lines are median values; red diamonds are mean values; whiskers are values in the 

lowest and highest quartiles that are not significant outliers; black dots are significant outliers, 

defined as being larger in magnitude than the difference between the 25
th

 or 75
th

 percentile and 

1.5-times the interquartile range. Distinct superscripts are reaches that behave differently 

according to Mann-Whitney U tests, and ¥ represents values that are different from zero 

according to two-tailed, one-sample Student t-tests. 
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Eq. 5: 𝑉𝑓 =  
𝑈

𝐶
                                Eq. 6: 𝑆𝑤 =  

𝑄

𝑤𝑉𝑓
                                

Eq. 5 states that uptake velocity (Vf; m d
-1

) is U divided by the average nutrient concentration (C, 

mg m
-3

) for each reach and sampling date. Uptake length (Sw; m) is Q divided by the product of 

stream width and Vf (Eq. 6). Processing efficiency (ε; %; Eq. 7), is calculated as Lbio divided by 

total surfacewater inputs (LƩinputs; upstream + tributary inflows) multiplied by 100 to derive 

percent removal or production. For literature comparisons, U is reported in µg m
-2

 min
-1

, Vf in 

mm min
-1

, and Sw in km. We report both positive and negative values of all spiralling metrics to 

reflect losses (-) and gains (+) to surfacewater and address potential mechanisms of solute 

processing among groundwater, benthic, and surfacewater compartments.  

 

 

Appendix I. Uptake length, uptake rate, and uptake velocity for each dissolved nutrient by reach. 
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