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Abstract. This article discusses four mathematically rich settings with origins in the 
elementary, middle, and secondary school curricula. Depending on the questions 
asked and the connections made within each setting, the problem spaces allow the 
instructor to import tools leading to sophisticated extensions appropriate for college-
level study. These topics include the Heaviside function, randomness, symmetry, 
modular arithmetic, the generalized Pythagorean Theorem, and the theory of groups. 
Given the potentially extensive ground covered by these settings, they serve to 
reward those students who are inherently curious while highlighting the coherence in 
the curriculum as one progresses through the grades. The mathematical experiences 
invite disciplinary and interdisciplinary connections and encourage discourse and 
productive struggle. 
 
Keywords: Mathematics Instruction, Mathematics Curriculum, College 
Mathematics, Secondary School Mathematics 

  
INTRODUCTION 
 

The Oliver Heaviside function. Fermat’s Last Theorem. Modular arithmetic. Dihedral 

groups. These areas are commonly studied in college, perhaps in an undergraduate course in 

engineering or a graduate-level seminar in mathematics or computer science. Is there a place for 

these advanced topics in the high school curriculum? Can teachers of 9-12 connect content to 

these areas? Most importantly, can students benefit by engaging in problem settings where these 

ideas are introduced? In this article, we argue that the answer to each of these questions is yes. 

Teachers of mathematics undoubtedly see important connections in their subject area but 

these connections may not be evident to students. By blurring the boundary between the high 

                                                            
1 keith.nabb@uwrf.edu 
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school and college curriculum, we offer a number of benefits to the high school experience. First, 

exploring challenging content can whet students’ appetites to the investigative nature of 

mathematics. Even if these investigations prove difficult, students confront the limits of their 

mathematical knowledge and are encouraged to learn more; this is a valuable lesson. Second, 

there are beneficial ties to areas such as engineering, physics, biology, or art. In very simple 

cases, innocent questions can carve a pathway to research-oriented mathematics. Third, students 

may come to realize that pure mathematics can be interesting and engaging—lest we say this is 

often shocking to students! Finally, these experiences may provide some much needed 

enrichment to those who need it. Interesting problems that use novel tools can leave a lasting 

impression on students. 

 This article is principally about introducing young students to mathematical ideas and 

practices not typically explored at the high school level. We discuss four problems with 

appropriate origins in high school settings. The problems then flourish, extend, and enlighten by 

using sophisticated tools typically reserved for college mathematics. In The Parking Garage, 

we introduce a modeling problem suitable for a standard algebra course (Grade 8-10) but we use 

the Heaviside function as the centerpiece. Students learn about piecewise and discontinuous 

functions—important objectives in the high school curriculum—but via a tool typically used by 

engineers. In Clock Arithmetic, students operate in the familiar modulo 12 as this builds upon 

previously learned elapsed time problems that surface in CCSSM in Grade 4 (CCSSI, 2010). 

Then through student-created informal definitions and generalizations, discussions in modular 

arithmetic lead to non-trivial extensions in number theory and randomness. In Pythagoras meets 

Fermat and Newton, students begin with a ubiquitous mathematical theorem (Grade 8) and 

engage in the interplay of informal reasoning (conjecturing, experimenting) and formal reasoning 
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(generalizing, extrapolating). This experience mirrors that of professional mathematicians and 

finishes with the ultimate prize: a generalized mathematical proof. In Star Polygons, we present 

the definition of a star polygon, a construction that naturally lends itself to line and rotational 

symmetry explorations, recurrent topics in the K-12 curriculum (Grades 4, 9-10). However, 

further investigation uncovers rich connections to group theory, usually reserved for 

undergraduate mathematics students but accessible to high school students given this context.  

In each of these cases, we import tools and practices more prevalent to college 

mathematics into the high school experience. Doing so supports mathematics as a unified body 

of knowledge with clear connections from grade to grade (CCSSI, 2010). As NCTM (2000) 

reminds us, “Mathematics is an integrated field of study….The notion that mathematical ideas 

are connected should permeate the school mathematics experience at all levels” (p. 64). 

 
THE PROBLEMS 
 

The Parking Garage.  One of the most important concepts in all of mathematics is that of 

function. The unequivocal mastery of function is the goal—constructing functions from data, 

evaluating functions, using functions as rules, graphing functions, translating functions, and 

studying their various properties (Oehrtman, Carlson, & Thompson, 2008). One such context that 

opens the door to each of these competencies is what we call The Parking Garage Problem. 

Simply ask students to find data on a parking garage of their choice. Airport parking garages are 

a good place to look. Such data are plentiful on the web and are almost always provided in table 

form.  For example, parking rates at one of the many area garages surrounding Chicago O’Hare 

(current as of July 2015) are provided in the table shown in Figure 1: 
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Figure 1. Parking Rates at Chicago O’Hare airport (CDA, 2015) 
 
Using time as input and parking fee as output, nontrivial ideas such as piecewise, discontinuous, 

and step-function resonate in perfect harmony here. Beginning around grade eight (CCSSI, 

2010), many of the following competencies can be introduced, reinforced, and supported:   

 
(1) Functions as organizational tools so data are clearly represented,  
(2) Students connecting the vagaries of mathematical symbols (<  and ≤ ), verbal 

expression (e.g., less than), and graphical conventions (•  and  )  
(3) The vertical line test and the violation of one-to-oneness.   

 
 
The above competencies—even if abstract in the pages of a mathematics book—have concrete 

meaning in the context of a parked car. Once this foundation has been set, this is the ideal place 

to introduce a function not typically seen in high school curricular documents—the Heaviside 

step function. The Heaviside function ( )H x  is named after the engineer/physicist Oliver 

Heaviside and is defined as 
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( )
0,   0
1,   0

x
H x

x
<

=  >
 

 
This function has value zero for a negative argument and value 1 for a positive argument.  Its 

value at 0x =  can be defined based on context. Teachers can share with students the use of 

( )H x  in the modeling of physical phenomena; common settings in engineering and physics 

include the edge of a material or an on/off switch in signal processing. Students learn that 

piecewise functions, in effect, are switches. In the above situation, ( ) 0H x =  may indicate the 

OFF position while ( ) 1H x =  may indicate the ON position. As an introduction, the teacher 

could first ask students to explore something simple, such as ( )2H x − . After some time, 

students should see this is identical to ( )H x  with the switch located at 2x = . Where the 

discussion turns interesting is in constructing the graph for ( ) ( )2H x H x+ − . This is specifically 

where the ON/OFF mechanism proves useful for those new to Heaviside functions. Since the 

switches are located at 0x =  and 2x = , constructing a number line model (Figure 2) is helpful: 

 

 
Figure 2. Heaviside with two switches 
 
 
A discussion may highlight how both ( )H x  and ( )2H x −  are OFF when 0x < , ( )H x  

switches ON and ( )2H x −  remains OFF when 0 2x< < , and both are ON when 2x > .  The 

graph of ( ) ( )2y H x H x= + −  is seen in Figure 3. 
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Figure 3. Sketch of ( ) ( )2H x H x+ −  
 
 

The above analysis presents an opportunity to discuss two important features of the 

Heaviside function.  First, the function has “memory” in that once the function is ON, it remains 

ON. This is why, for 2x > , ( ) ( )2 1 1 2H x H x+ − = + = , where the individual 1’s reflect the ON 

position for each function. Second, we may take full advantage of the sum operation by applying 

coefficient “weights” to the individual functions, thus increasing graphing flexibility. A 

challenging activity is to ask students to construct an algebraic function that yields the parking 

garage graph for the first four hours or so. After some thinking and perhaps a few adjustments, 

we come to the formula ( ) ( ) ( )1
62 2 1 6 3y H x H x H x= − + − + − . This graph is shown in Figure 4. 
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Figure 4. The graph of ( ) ( ) ( )1

62 2 1 6 3y H x H x H x= − + − + −  
 
 
Of course, we may now appropriately define this function at the specific hours (e.g., when 2x =

hours) and make further adjustments as needed. Most important, the mathematical seeds for 

future experiences have been sowed: 

 
(a) Students get meaningful practice operating on functions, including translations and 

sums. Instead of simply graphing variations of a parent function, the translations and 
weights have specific meaning in the context of time and parking fee. 

(b) The number line analysis in Figure 2 foreshadows models used in calculus for 
examining monotonicity and concavity. Moreover, both memory and accumulation 
prove to be important ideas in the study of calculus. 

(c) Heaviside presents a simpler, more compact representation of our model (e.g., 
compare this with a piecewise function having eleven pieces). Finding simpler but 
equivalent representations is a major pillar of mathematical enculturation.   

 
In sum, introducing the Heaviside function to students not only allows reinforcement of 

previously learned material but promises ties to future mathematical topics in a way that is 

challenging, accessible, and interesting.   

 
Clock Arithmetic. Number theory topics are weaved throughout the K-12 curriculum and 

provide a foundation for multiplicative thinking in higher level mathematics. For instance, a 
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student’s ability to decompose and compose numbers through factorization, develop divisibility 

rules, and identify prime numbers in grade four (CCSSI, 2010) are directly connected to more 

abstract applications in high school algebra and their related proofs in undergraduate 

mathematics. The study of clock arithmetic offers a unique opportunity for high school students’ 

engagement while eliciting many connections to number theory and randomness. 

Clock arithmetic, a special case of modular arithmetic, can be defined as the arithmetic of 

congruences. “In modular arithmetic, numbers ‘wrap around’ upon reaching a given fixed 

quantity, which is known as the modulus (which would be 12 in the case of hours on a clock)” 

(Modular Arithmetic, 2016). For example, if the current time is 10 am, and 3 hours elapse, the 

time is not 10 + 3 = 13 o’clock; instead, the time becomes 1 o’clock. This can be represented 

mathematically as 10 ⊕ 3 = 1 (mod 12).  

Elementary students are first exposed to telling time on an analog clock in first grade. In 

subsequent grade levels, students continue to build fluency in foundational time-telling skills, 

and in fourth grade, students solve elapsed time problems (CCSSI, 2010). Thus, clock arithmetic 

provides a familiar yet rich context for a problem situation. We have found that by introducing 

the conventional notation and vocabulary, students can create their own informal definitions, 

generalize, and extend to other modulo. We list some possible tasks and discussion questions 

here: 

 
Task 1. Use clock arithmetic to add, subtract, and multiply in mod 12 using natural 
numbers. Examples include 10 ⊕ 3 = 1 (mod 12), 10 ⊕ 4 = 2 (mod 12), 9 ⊕ 3 = 0 (mod 
12), 2 ⊖ 3 = 11 (mod 12), 5 ⊖ 7 = 10 (mod 12), 4 ⊗ 6 = 24 or 0 (mod 12), 5 ⊗ 5 = 25 
or 1 (mod 12). 
 
Task 2. Introduce equivalence notation ≡ and use a clock to visualize, for example, how 
1:00 + 12 hours elapsed is equivalent to 1:00. Discuss congruences, such as 1≡13 (mod 
12), 0≡12 (mod 12), and 4≡2 (mod 12). 
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Task 3. Help students develop an informal definition for equivalence. For instance, 25≡1 
(mod 12) since 25 – 24 = 1, and this is true because “you can add or subtract any multiple 
of 12 and you’re back where you started” (in the words of a typical middle school 
student). 

 
 

When students engage in these equivalence tasks and discuss why certain numbers are 

equivalent to each other, such as 1≡13 (mod 12) or 25≡1 (mod 12), students are actually 

working with the formal number theoretic definition of divides: If |m a b−  (which means a – b = 

mc for some c ∈ ℤ), then a ≡ b (mod m). In fact, when students realize that the sum of a number 

and any multiple of 12 are equivalent, the students are saying that in mod m, a and a + mc are 

indistinguishable (Niven, Zuckerman, & Montgomery, 1991). 

Furthermore, if ( )modx y m≡ , y is called the residue of mod m. Thus, the complete 

residue system mod 12 of the number 1 is the infinite set {13, 25, 37,…} because all of these 

numbers are congruent to 1 in mod 12 (Niven, Zuckerman, & Montgomery, 1991). Although the 

instructor may not define these notions formally in middle school or high school, students are 

certainly able to understand and discuss these concepts. 

Once students gain comfort and fluency in modulo 12, we ask the students to change their 

“clocks” from a 12-hour clock to clocks using mods other than 12. Students can then practice 

modular addition, subtraction, and multiplication in mods such as 5 or 7. The website 

http://www.shodor.org/interactivate/activities/ClockArithmetic/ assists students in visualizing 

modular arithmetic in the form of a clock. This site has an interactive clock that can be set 

between modulo 2 and 26. 

A surprising interdisciplinary connection can be made between mathematics and art. To 

create mathematical artwork based on modular arithmetic, have students complete tables of 

results for addition and multiplication in mod 5 and 12 (and other modulo if the students want a 

http://www.shodor.org/interactivate/activities/ClockArithmetic/
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challenge). We suggest omitting the zero row and column for aesthetic reasons on the 

multiplication charts. Color code the charts so that each value represents a color (then omit the 

numbers) to create designs. Figure 5 is an example of a middle school student’s mod 12 

multiplication chart.  

 
Fig. 5 Mod 12 multiplication chart. 

 
 
 
 
 
 

 
 

A modular addition table will have clear reflection symmetry along the diagonal. But a 

modular multiplication table such as the one in Fig. 5 does not seem to have a clear pattern. But 

if students examine a sufficiently large table, symmetry becomes discernible. See Fig. 6 for an 

example, or see the applet on http://britton.disted.camosun.bc.ca/modart/jbmodart.htm. 

Interestingly, the quest to establish connections between the computational and the visual bears a 

striking similarity to modern investigations of deterministic models with chaos and complexity—

bringing to mind A New Kind of Science (Wolfram, 2002). Any classroom experience that 

mirrors the nature of science or mathematics is valuable for students. Students should be allowed 

to experience the uncertainty and ambiguity in mathematical situations; sometimes we discern 

patterns easily and sometimes we do not, but most often we do not know without further study.  

 

 
 1 2 3 4 5 6 7 8 9 10 11 

1            

2            

3            

4            

5            

6            

7            

8            

9            

10            

11            

http://britton.disted.camosun.bc.ca/modart/jbmodart.htm
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Fig. 6 Patterns in a mod 24 multiplication chart, 
before color coding. 

 
 
 
 
 
 

 
 

Creating artwork from modular arithmetic also affords the students opportunities to 

explore or revisit transformations. For instance, although a single table may stand on its own as 

artwork (Fig. 5), students may choose to use transformations to create a 4-table modular quilt. 

One way is to reflect a color-coded modular table over the x- and y-axes (Fig. 7). Another idea is 

to start with one table, and rotate it 90° clockwise, then again, and again to produce a different 

version of a 4-table modular quilt. Transformations such as these mirror (pun intended!) the 

types of activities in high school geometry when translating, reflecting, and rotating figures on 

the coordinate plane. 

 
Fig. 7  Mod 7 addition chart, 
reflected over the x- and y-axes. 
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In summary, we see that clock arithmetic has surprising connections to number theory, art, and 

randomness. These connections begin as early as first grade and follow the student all the way 

through college. 

 
Pythagorean meets Fermat and Newton.  Students learn many important theorems in their 

schooling but perhaps none more memorable than the Pythagorean Theorem. Given any right 

triangle with sides of length a, b, and c—where c represents the length of the hypotenuse—the 

areas of the squares constructed on each side of the triangle are related by the equation 

2 2 2a b c+ = .   See the figure for the case when a, b, and c are 3, 4, and 5, respectively.   

 
Figure 8. The Pythagorean Theorem 
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In time, it is no secret that students may eventually discard the geometric significance of the 

theorem in lieu of the algebraic statement. If we attempt to generalize in either direction, we get 

two very different conjectures.   

 
(1) (Algebraically) Since the theorem is valid for squares, might it work for cubes? How 

about powers of 4? Or 5?    
(2) (Geometrically) Since the theorem is valid for squares, might it work for other shapes 

such as triangles or pentagons? How about semicircles?   
 
 
Of course, should we consider option (1) with a, b, and c as positive integers, we get a taste of 

mathematical history and a very challenging problem indeed (Fermat’s Last Theorem). This path 

may be unreasonable mathematically but it is interesting nonetheless. On the other hand, option 

(2) presents students with a worthwhile investigation. As different geometric shapes are used to 

test this conjecture, more sophisticated mathematics may need to be incorporated. Dynamic 

software is an excellent way to test the reasonableness of conjectures (see Figure 9 for regular 

pentagons) and an eventual proof of the conjecture would fuse the algebraic, relational, and 

geometric qualities of the theorem. Bending this theory until it breaks is a valuable experience to 

share with our students. 
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Fig. 9  GeoGebra exploration of regular polygons (Edgar, 2016). 

 
 
 
 
 
 

 
 
At some point, the following question is inevitable. Can we adjoin three similar figures to sides 

a, b, and c (call the figures A, B, and C, respectively) and conclude  

( ) ( ) ( )Area Area AreaA B C+ = ? See Figure 10. 

 

 
Figure 10.  Does ( ) ( ) ( )Area Area AreaA B C+ = ? 
 
 

This question lives in the realm of calculus yet much of the accompanying mathematics is 

instructive. To begin, students should harness the power of functions in their symbolic form.  

That is, if we designate C’s outer function as ( )y f x= , a discussion of how to construct the 
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other functions can begin. This is a question of transformational algebra. Then in order to 

explore the areas themselves, we may use integral calculus. We discuss this presently. 

 To start, we can think of the function ( )y f x=  as defined on the interval [ ]0,c . In a 

similar way, we can define functions g and h to trace the outer boundary of figures A and B, 

respectively. Then we have the conventions as seen in the figure. 

 

 
 
Figure 11.  Functions f , g , and h  and their associated intervals 
 
 
In order for the figures to be similar, students must utilize some basic principles from algebra—

functional transformations. Since functions g  and h  are variations of the parent function 

( )y f x= , it can be shown that ( ) a cg x f x
c a

 =  
 

 and ( ) b ch x f x
c b

 =  
 

. In brief, while we 

modify the input of f  to resonate with the smaller intervals of g  and h  (using 1c
a
>  and 1c

b
>  

as horizontal shrinking parameters), we must modify (reciprocally) the outputs of f  to adhere to 

the analogously smaller outputs of g  and h . Then we may ask, does 

( ) ( ) ( )Area Area AreaA B C+ =  or, does ( ) ( ) ( )
0 0 0

a b c

g x dx h x dx f x dx+ =∫ ∫ ∫ ? Beginning with the 

left-hand side, we get 
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( ) ( )
0 0 0 0

0 0

2 2

2 2
0 0

a b a b

a b

a b

a c b cg x dx h x dx f x dx f x dx
c a c b

a c b cf x dx f x dx
c a c b

a c c b c cf x dx f x dx
c a a c b b

   + = +   
   

   = +   
   

   = +   
   

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

 

 

Continuing, we let cu x
a

=  and cv x
b

=  so cdu dx
a

=  and cdv dx
b

= .  Finally, 

 

( ) ( )

( )

2 2 2 2

2 2 2 2
0 0 0 0

2 2

2 2
0

,

a b c c

c

a c c b c c a bf x dx f x dx f u du f v dv
c a a c b b c c

a b f r dr
c c

   + = +   
   

 
= + 
 

∫ ∫ ∫ ∫

∫
 

 
 
using r  as a general variable of integration.  At this point, the “ordinary” Pythagorean Theorem 

tells us 2 2 2a b c+ =  so the result follows.  That is, we have the remarkable statement 

( ) ( ) ( )
0 0 0

a b c

g x dx h x dx f x dx+ =∫ ∫ ∫  for similar curves f , g , and h  adjoined to the sides of any 

right triangle. 

What is the lesson here? Students are introduced to the standard Pythagorean relationship 

early in their schooling so the problem context requires little background knowledge to start. It 

then connects effortlessly to geometric similarity, makes full use of algebraic representation 

through functional similarity, and harnesses the power of technology to conjecture and explore.  

While generalizing this well-known theorem may not be common in high school, it is a 

reasonable challenge with several advantages. First, conjecturing with the use of software goes 

hand-in-hand with mathematical proof. A noteworthy reminder is the proof of the Four Color 

Map Theorem due to Kenneth Appel and Wolfgang Haken (as well as subsequent computer-

assisted proofs). Second, horizontal mathematizing (conjecturing, seeking structure) and vertical 
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mathematizing (formalizing, proving) are common dualities in mathematical activity 

(Rasmussen, Zandieh, King, & Teppo, 2005). For students, this makes explicit the link between 

uncertainty (Is this true?) and certainty (I have a completed proof!). This is, generally speaking, 

how the mathematical agenda is pushed forward. Finally, given a seemingly basic mathematical 

idea (the Pythagorean Theorem), research mathematics may be lurking on the other side of the 

door (Fermat’s Last Theorem). All of these realizations are accessible to high school students 

and paint an authentic picture of mathematical work. 

 
Star Polygons. The study of star polygons, though not routinely a part of the middle level or 

high school curriculum, naturally lends itself to higher level mathematical discussions. The 

rudiments of group theory are hiding in many levels of mathematics and star polygons represent 

one way to elicit group theory concepts. (Connections to number theory are also relevant.) 

Overall, the exploration of star polygons provides students the opportunity to create several 

mathematical generalizations from their constructions, and even use the mathematics as a basis 

to create original artwork. 

First, a star polygon is defined as a non-convex polygon which looks like a star. A star 

polygon {p, q} with positive integers p and q, is a figure formed by connecting with straight lines 

every qth point out of p regularly spaced points lying on a circumference (Star Polygon, 2016). 

Figure 12 is an example of a computer-generated {10, 3} star polygon created by a student using 

equally spaced points on a circle and the Paint software. 
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Fig. 12 {10, 3} Star polygon. 

 
 
 
 
 
 

 
 

After students have constructed and accurately named a few of their own star polygons, 

we begin asking them to consider specific cases to elicit some general conclusions. We list some 

possible discussion questions and results here: 

 
Investigation 1: Consider the case of {5, 1}, {7, 1} and {8, 1}.  
What do all of these have in common? Can we generalize?  
Answer: They are all regular polygons with p sides. 
 
Investigation 2: Consider the case of {5, 2} and {5, 3}, or {8, 5} and {8, 3}.  
What is happening here? Can we generalize?  
Answer: Star polygons in the form {p, q} and {p, p – q} produce congruent star 
polygons. 
 
Investigation 3: Consider the case of {10, 5} and {8, 4}.  
What do these have in common? Can we generalize?  
Answer: Star polygons in the form {p, 𝑝

2
} result in a single segment. 

 
More in-depth questions can also be posed which invoke topics from number theory. For 

example, when constructing the star polygon {p, q}, how do you know when you will end up at 

the same point at which you started and you’ve used up all the points? To help students organize 

their thinking, we have found it helpful to provide a table with three columns—star polygon 

name, all points used (yes/no), all points not used (yes/no)—to record their observations for this 



  TME, vol. 14, nos1,2&.3, p. 281 
 

 
experiment. By doing so, students can more readily make a conjecture based on their data. (It 

turns out that only when p and q are relatively prime does this occur! In fact, these types of star 

polygons are called regular star polygons.) 

Furthermore, star polygons provide an appealing context to investigate symmetry, and 

this leads to elementary group theory. Students can readily describe both the reflection (line) 

symmetry and rotational symmetry of their star polygons. For example, consider the star polygon 

example {10, 3} (Figure 12). This star polygon has 10 lines of symmetry. The rotational 

symmetry can be described as either 1
10

 and all multiples of  1
10

, or 36°n where {n ∈ ℤ| 1 ≤ n < 

10}. The set of rotational symmetries of any regular star polygon forms a finite cyclic group. 

Consider {10, 3}, which forms the cyclic group C10. This means there are 10 ways to map the 

star polygon to itself by a rotation about its center. This group is isomorphic to ℤ10. (Herstein, 

1990). 

A more accurate way to describe this set of symmetries of regular star polygons is that 

the set forms a finite dihedral group, which means that the figure has both reflection and 

rotational symmetry. For example, {10, 3} forms the dihedral group D10. This means there are 10 

reflection symmetries and 10 rotational symmetries. At this point, students can be asked to 

investigate the possible relationships between figures that can be categorized as having both 

symmetry type CN and DN. For instance, are all figures that are elements of the cyclic group CN 

also elements of the dihedral group DN? Is the converse true? In general, if a figure has rotational 

symmetry, does it also have reflection symmetry? Under what conditions would this be true? 

(Murawska, Wilders, & Van Oyen, 2013).  Similar questions can also be found in Farmer’s 

(1996) Groups and Symmetry: A Guide to Discovering Mathematics. 
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To sum up, what begins as an engaging geometric construction eventually provides a 

context in which students can conjecture, test their conjectures, and create mathematically valid 

conclusions. Even though the students are not formally proving these conclusions, these types of 

experiences foreshadow the thinking required for formal proofs they will encounter later in their 

educational journey.   

 
CONCLUSION 
 

The four problems discussed here share two prominent features. First, they reach beyond 

what is commonly taught in middle and high school classrooms. The problem contexts will be 

familiar to students even if the questions asked and the subsequent investigations are new. Thus, 

the problems serve to enrich and enlighten. With this enrichment comes an authentic experience 

based on the curiosities of the students with appropriate scaffolding by the teacher. Second, the 

tasks highlight the subject matter coherence in K-16 mathematics by offering complementary 

topics across many grade levels. It is important to reinforce previous learning while promoting 

new learning, and these problem settings make this coherence explicit. We elaborate on each of 

these features, enrichment and enlightenment, presently. 

 Enrichment. Educators typically discuss remediation over enrichment (for good reasons, 

we might add). In a curriculum short on time and space, rarely are students given the opportunity 

to generalize or extrapolate on the content they are learning. The four problems discussed here 

embrace layer upon layer of situational complexity while still addressing the core idea(s) 

students should learn. The problems offer opportunities to abstract, generalize, or dabble in 

topics not typically addressed in the high school curriculum. To add, the problems allow the 

learner to move in many different directions (often with careful teacher guidance). Tasks such as 
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these are exactly the kinds of activities where students could easily stumble upon mathematics 

not yet known to the community. 

 Coherence in K-16 mathematics. Some topics and themes are omnipresent in the study 

of K-16 mathematics. These include pattern recognition, function, conjecturing, symmetry, 

elegance, counting, proving, and generalizing. These are skills needed from our earliest 

encounters in mathematics to our most advanced of encounters. Some problems connect ideas 

within mathematics while some even connect different branches of mathematics. This has 

multiple benefits, including helping to illuminate the web of connections in the subject matter, 

serving as referents for ideas that can be later revisited, and adding an element of surprise, 

wonder, or curiosity to the subject. These are the healthy byproducts of mathematical 

engagement in rich problem contexts and we find these dispositions to be just as valuable as the 

mathematics learned.  

 In summary, some tasks in mathematics have the potential to connect ideas, serve as 

platforms to introduce new ideas, and reward students for their curiosities. A classroom 

environment that combines rich tasks and good questioning allows student curiosity to run wild, 

all while supporting the logical consistency and regularity seen in K-16 mathematics. The 

problems we pose and the questions we ask set no limits for our expectations for engagement and 

success. In the end, we can only hope our students will thank us for this. 

 
 
 

REFERENCES 
 
Britton, J. (2009). Modular Art. Retrieved from http://britton.disted.camosun.bc.ca/modart/ 

jbmodart.htm 
 
Chicago Department of Aviation. (2016). Main garage hourly parking rates. Retrieved from 

http://www.flychicago.com/OHare/EN/GettingToFrom/Parking/Main.aspx 



  Nabb & Murawska 

 
Clock Arithmetic (2016). Retrieved from http://www.shodor.org/interactivate/activities/ 

ClockArithmetic/ 
 
Common Core Sate Standards Initiative (CCSSI). (2010). Common Core State Standards for 

Mathematics. Washington, DC: National Governors Association Center for Best Practices 
and the Council of Chief State School Officers. http://www.corestandards.org/ 
assets/CCSSI_Math%20Standards.pdf 

 
Edgar, S. (2016). Pythagorean Polygons. GeoGebra file. Retrieved from https://tube. 

geogebra.org/material/show/id/184410 
 
Farmer, D. W. (1996). Groups and symmetry: A guide to discovering mathematics. Providence, 

RI: American Mathematics Society. 
 
Herstein, I. N. (1990). Abstract algebra. (2nd ed.). New York, NY: Macmillan Publishing.  
 
Modular Arithmetic. (2016). In Wolfram MathWorld. Retrieved from http://mathworld.wolfram. 

com/ModularArithmetic.html 
 
Murawska, J. M., Wilders, R. J., & Van Oyen, L. (2013). Lesson plan and activity: Turning 

students into symmetry detectives [Supplemental material]. National Council of Teachers of 
Mathematics Real World Math.  

 
National Council of Teachers of Mathematics. (2000). Principles and standards of school 

mathematics. Reston, VA: NCTM. 
 
Niven, I., Zuckerman, H. S., & Montgomery, H. L. (1991). An Introduction to the Theory of 

Numbers (5th ed). New York, NY: John Wiley & Sons. 
 
Oehrtman, M. C., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities 

that promote coherence in students' understandings of function. In M. P. Carlson & C. 
Rasmussen (Eds.), Making the connection: Research and practice in undergraduate 
mathematics (pp. 27-42). Washington, DC: Mathematical Association of America. 

 
Rasmussen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing mathematical activity: A 

view of advanced mathematical thinking. Mathematical Thinking and Learning, 7, 51-73. 
 
Star Polygon. (2016). In Wolfram MathWorld. Retrieved from http://mathworld.wolfram.com/ 

StarPolygon.html 
 
Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media. 


	Coherence and enrichment across the middle and secondary levels: Four mathematically authentic learning experiences
	Let us know how access to this document benefits you.
	Recommended Citation

	Coherence and enrichment across the middle and secondary levels: Four mathematically authentic learning experiences
	Erratum

	Clock arithmetic, a special case of modular arithmetic, can be defined as the arithmetic of congruences. “In modular arithmetic, numbers ‘wrap around’ upon reaching a given fixed quantity, which is known as the modulus (which would be 12 in the case o...
	Elementary students are first exposed to telling time on an analog clock in first grade. In subsequent grade levels, students continue to build fluency in foundational time-telling skills, and in fourth grade, students solve elapsed time problems (CCS...
	Task 1. Use clock arithmetic to add, subtract, and multiply in mod 12 using natural numbers. Examples include 10 ⊕ 3 = 1 (mod 12), 10 ⊕ 4 = 2 (mod 12), 9 ⊕ 3 = 0 (mod 12), 2 ⊖ 3 = 11 (mod 12), 5 ⊖ 7 = 10 (mod 12), 4 ⊗ 6 = 24 or 0 (mod 12), 5 ⊗ 5 = 25 ...
	Task 2. Introduce equivalence notation ≡ and use a clock to visualize, for example, how 1:00 + 12 hours elapsed is equivalent to 1:00. Discuss congruences, such as 1≡13 (mod 12), 0≡12 (mod 12), and 4≡2 (mod 12).
	Task 3. Help students develop an informal definition for equivalence. For instance, 25≡1 (mod 12) since 25 – 24 = 1, and this is true because “you can add or subtract any multiple of 12 and you’re back where you started” (in the words of a typical mid...
	When students engage in these equivalence tasks and discuss why certain numbers are equivalent to each other, such as 1≡13 (mod 12) or 25≡1 (mod 12), students are actually working with the formal number theoretic definition of divides: If  (which mean...
	Furthermore, if , y is called the residue of mod m. Thus, the complete residue system mod 12 of the number 1 is the infinite set {13, 25, 37,…} because all of these numbers are congruent to 1 in mod 12 (Niven, Zuckerman, & Montgomery, 1991). Although ...
	Once students gain comfort and fluency in modulo 12, we ask the students to change their “clocks” from a 12-hour clock to clocks using mods other than 12. Students can then practice modular addition, subtraction, and multiplication in mods such as 5 o...
	A surprising interdisciplinary connection can be made between mathematics and art. To create mathematical artwork based on modular arithmetic, have students complete tables of results for addition and multiplication in mod 5 and 12 (and other modulo i...
	A modular addition table will have clear reflection symmetry along the diagonal. But a modular multiplication table such as the one in Fig. 5 does not seem to have a clear pattern. But if students examine a sufficiently large table, symmetry becomes d...
	Creating artwork from modular arithmetic also affords the students opportunities to explore or revisit transformations. For instance, although a single table may stand on its own as artwork (Fig. 5), students may choose to use transformations to creat...
	First, a star polygon is defined as a non-convex polygon which looks like a star. A star polygon {p, q} with positive integers p and q, is a figure formed by connecting with straight lines every qth point out of p regularly spaced points lying on a ci...
	After students have constructed and accurately named a few of their own star polygons, we begin asking them to consider specific cases to elicit some general conclusions. We list some possible discussion questions and results here:
	Investigation 1: Consider the case of {5, 1}, {7, 1} and {8, 1}.
	What do all of these have in common? Can we generalize?
	Answer: They are all regular polygons with p sides.
	Investigation 2: Consider the case of {5, 2} and {5, 3}, or {8, 5} and {8, 3}.
	What is happening here? Can we generalize?
	Answer: Star polygons in the form {p, q} and {p, p – q} produce congruent star polygons.
	Investigation 3: Consider the case of {10, 5} and {8, 4}.
	What do these have in common? Can we generalize?
	Answer: Star polygons in the form {p, ,𝑝-2.} result in a single segment.
	More in-depth questions can also be posed which invoke topics from number theory. For example, when constructing the star polygon {p, q}, how do you know when you will end up at the same point at which you started and you’ve used up all the points? To...
	Furthermore, star polygons provide an appealing context to investigate symmetry, and this leads to elementary group theory. Students can readily describe both the reflection (line) symmetry and rotational symmetry of their star polygons. For example, ...
	A more accurate way to describe this set of symmetries of regular star polygons is that the set forms a finite dihedral group, which means that the figure has both reflection and rotational symmetry. For example, {10, 3} forms the dihedral group D10. ...
	To sum up, what begins as an engaging geometric construction eventually provides a context in which students can conjecture, test their conjectures, and create mathematically valid conclusions. Even though the students are not formally proving these c...

