
University of Montana
ScholarWorks at University of Montana
Numerical Terradynamic Simulation Group
Publications Numerical Terradynamic Simulation Group

3-2018

Terrestrial primary production for the
conterminous United States derived from Landsat
30 m and MODIS 250 m
Nathaniel P. Robinson

Brady W. Allred
University of Montana - Missoula

William P. Smith

Matthew O. Jones

Alvaro Moreno

See next page for additional authors

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/ntsg_pubs

This Article is brought to you for free and open access by the Numerical Terradynamic Simulation Group at ScholarWorks at University of Montana. It
has been accepted for inclusion in Numerical Terradynamic Simulation Group Publications by an authorized administrator of ScholarWorks at
University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Recommended Citation
Robinson, Nathaniel P.; Allred, Brady W.; Smith, William P.; Jones, Matthew O.; Moreno, Alvaro; Erickson, Tyler A.; Naugle, David E.;
and Running, Steven W., "Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS
250 m" (2018). Numerical Terradynamic Simulation Group Publications. 406.
https://scholarworks.umt.edu/ntsg_pubs/406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267594291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umt.edu/ntsg_pubs?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umt.edu/ntsg_pubs?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umt.edu/ntsg?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/ntsg_pubs?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umt.edu/ntsg_pubs/406?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Authors
Nathaniel P. Robinson, Brady W. Allred, William P. Smith, Matthew O. Jones, Alvaro Moreno, Tyler A.
Erickson, David E. Naugle, and Steven W. Running

This article is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/ntsg_pubs/406

https://scholarworks.umt.edu/ntsg_pubs/406?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages


ORIGINAL RESEARCH

Terrestrial primary production for the conterminous United
States derived from Landsat 30 m and MODIS 250 m
Nathaniel P. Robinson1,2 , Brady W. Allred1,2, William K. Smith3, Matthew O. Jones1,2,
Alvaro Moreno2, Tyler A. Erickson4, David E. Naugle1 & Steven W. Running1,2

1W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana 59812, USA
2Numerical Terradynamic Simulation Group, University of Montana, Missoula, Montana 59812, USA
3School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona 85721, USA
4Google, Inc., Mountain View, California 94043, USA

Keywords

Google earth engine, gross primary

production, landsat, MOD17, MODIS, net

primary production

Correspondence

Nathaniel P. Robinson, Numerical

Terradynamic Simulation Group, University of

Montana, Missoula, MT 59812.

Tel: +1 406 243 5521; Fax: +1 406 243 4510;

E-mail: nathaniel.robinson@umontana.edu

Funding Information

No funding information provided

Editor: Nathalie Pettorelli

Associate Editor: Jose Paruelo

Received: 7 September 2017; Revised: 12

January 2018; Accepted: 25 January 2018

doi: 10.1002/rse2.74

Remote Sensing in Ecology and

Conservation 2018;4 (3):264–280

Abstract

Terrestrial primary production is a fundamental ecological process and a crucial

component in understanding the flow of energy through trophic levels. The

global MODIS gross primary production (GPP) and net primary production

(NPP) products (MOD17) are widely used for monitoring GPP and NPP at

coarse resolutions across broad spatial extents. The coarse input datasets and

global biome-level parameters, however, are well-known limitations to the

applicability of the MOD17 product at finer scales. We addressed these limita-

tions and created two improved products for the conterminous United States

(CONUS) that capture the spatiotemporal variability in terrestrial production.

The MOD17 algorithm was utilized with medium resolution land cover classifi-

cations and improved meteorological data specific to CONUS in order to pro-

duce: (a) Landsat derived 16-day GPP and annual NPP at 30 m resolution

from 1986 to 2016 (GPPL30 and NPPL30, respectively); and (b) MODIS derived

8-day GPP and annual NPP at 250 m resolution from 2001 to 2016 (GPPM250

and NPPM250 respectively). Biome-specific input parameters were optimized

based on eddy covariance flux tower-derived GPP data from the FLUXNET2015

database. We evaluated GPPL30 and GPPM250 products against the standard

MODIS GPP product utilizing a select subset of representative flux tower sites,

and found improvement across all land cover classes except croplands. We also

found consistent interannual variability and trends across NPPL30, NPPM250,

and the standard MODIS NPP product. We highlight the application potential

of the production products, demonstrating their improved capacity for moni-

toring terrestrial production at higher levels of spatial detail across broad

spatiotemporal scales.

Introduction

A primary process in all terrestrial ecosystems is the flux

of carbon through trophic levels. Considered a supporting

ecosystem service, primary production provides the foun-

dation for numerous other services, including food, fuel,

and fiber (Running et al. 2000; Haberl et al. 2007; Smith

et al. 2012a). Terrestrial gross primary production (GPP)

is the total amount of carbon captured by plants while

net primary production (NPP) is the carbon allocated to

plant tissue after accounting for the costs of autotrophic

respiration (Ruimy et al. 1994). GPP and NPP thus repre-

sent the carbon removed from the atmosphere and the

carbon available to other trophic levels respectively (Field

et al. 1995). The spatiotemporal variability in GPP and

NPP across the terrestrial surface is substantial, and is

primarily affected by climate, land cover, disturbance, and

land use practices (Piao et al. 2009). Given the impor-

tance of GPP and NPP to ecosystem function and the

capacity for humans to alter production via land use/land
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cover change and climate change, developing appropriate

products for monitoring these processes has emerged as a

key component of ecological research, conservation, and

management.

GPP and NPP cannot be directly observed at broad

scales and requires models based on biophysical factors

and atmospheric dynamics (Cramer et al. 1999; Scurlock

et al. 1999). Models that integrate remotely sensed-

derived estimates of vegetation provide mechanisms for

estimating, monitoring, and evaluating the spatiotemporal

variability in terrestrial ecosystem production (Field et al.

1995; Running et al. 2000; Turner et al. 2004). One of

the primary remote sensing-based models of terrestrial

GPP and NPP is the Moderate Resolution Imaging Spec-

troradiometer (MODIS) MOD17 algorithm (Running

et al. 2004; Sims et al. 2008; Smith et al. 2016). The

MOD17 algorithm was originally designed for global

monitoring and is widely applied across ecology (Haberl

et al. 2007; Running 2012; Smith et al. 2012a,b; DeLucia

et al. 2014). MOD17 products are currently the only reg-

ularly produced production products publicly available,

with 8-day GPP and annual NPP estimates for the global

vegetated surface at 1 km (version 5.5) and 500 m (ver-

sion 6) spatial resolutions.

While the MOD17 product is widely utilized, trade-offs

between temporal resolution, spatial resolution, and spatial

extent restrict its use and applicability in ecology and natu-

ral resource conservation and management (Turner et al.

2003; Heinsch et al. 2006; Sims et al. 2008). Process based

models like MOD17 are often computationally demanding

and limited by computational processing and data storage

capacity. To maintain global coverage, MOD17 inputs are

spatially coarse, utilizing 0.5° (�50 km) meteorological

data, 500 m land cover classifications, and 500 m FPAR

(fraction of photosynthetically active radiation), and LAI

(leaf area index) estimates. The algorithm also relies on

biome-specific parameters applied through a biome param-

eter look-up table (BPLUT). The BPLUT parameters are

both parameterized and applied to biomes at the global

scale, and thus do not capture variation within biomes

(e.g., grasslands in North America use the same parameters

as those in East Africa). While this simplification permits

global estimations of terrestrial production, the coarse

inputs and BPLUT approach attenuate ecologically impor-

tant variation at finer scales (Running et al. 2000; Zhao

et al. 2005; Neumann et al. 2016).

The patterns and spatiotemporal variability in GPP and

NPP across landscapes are the result of numerous pro-

cesses occurring at multiple spatiotemporal scales. Many of

these processes occur simultaneously at fine resolutions

but across broad spatial extents. Furthermore, human

alteration and impact occurs at multiple scales. Discrete

individual disturbances, small and potentially undetectable

in isolation, can have substantial impacts when viewed

cumulatively (Allred et al. 2015). Land management activi-

ties (e.g., crop agriculture, grazing, or forestry) can occur

at fine or broad spatial scales, as well as across long time

periods. Due to its coarse resolution, the MOD17 product

is generally ill-suited for evaluating production responses

to finer-scale processes and impacts. To more effectively

assess and monitor production, higher resolution products

that balance the scales of observed patterns and underlying

processes are needed.

Addressing some of the limitations of the MOD17 pro-

duct, we developed two separate medium resolution (30 m

and 250 m) GPP and NPP products for the CONUS

region. As the MOD17 algorithm is not bound to the

coarse input datasets, we replaced input datasets with finer

resolution and locally validated datasets, and optimized

model parameters to reflect conditions specifically found

within CONUS. We capitalized on advancements in cloud

computing and parallel processing technologies to process

historical Landsat and MODIS images alongside finer reso-

lution meteorological data and land cover classifications to

produce 30 m Landsat-derived GPP and NPP products

from 1986 to 2016 (GPPL30 and NPPL30) and 250 m

MODIS-derived GPP and NPP products from 2001 to 2016

(GPPM250 and NPPM250). We describe, evaluate, and

emphasize the applicability of these two products, high-

lighting the capability to monitor terrestrial production at

increased levels of spatial detail.

Materials and Methods

MOD17 overview

To create both the MODIS and Landsat derived produc-

tion products we utilized the established framework of

the MOD17 algorithm (Fig. 1). The theoretical basis for

the MOD17 algorithm stems from original work by Mon-

teith (1972), directly relating GPP and NPP to the

amount of solar radiation absorbed by the plant canopy.

Remotely sensed vegetation information was combined

with light use efficiency logic and incident shortwave

radiation to calculate daily GPP and after accounting for

losses due to respiration, annual NPP.

The global input datasets of the MOD17 product were

replaced with finer resolution datasets (Table 1). For the

GPP/NPPM250 and GPP/NPPL30 products, we obtained

meteorological inputs from the University of Idaho’s 4-

km gridded surface meteorological dataset, METDATA

(Abatzoglou 2013). The meteorological inputs used to cal-

culate light use efficiency and scale rates of respiration

were short wave radiation, daily minimum and maximum

temperature, and vapor pressure deficit. Land cover classi-

fications from 1992, 2001, 2006, and 2011 were used to
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Acronyms: LUEmax: maximum light use effecienct; LUE: light use effeciency; Tmin: minimum daily temperature; VPD: daily vapor pressure 
deficit; Tminmin: minimum daily minimum temperature; Tminmax: maximum daily minimum temperature; VPDmin: minimum daily vapor pressure 
deficit; VPDmax: maximum daily vapor pressure deficit; SWrad: short wave radiation; FPAR: fraction abosrbed photosynthetically active radiation; 
IPAR: incident photosynthetically active radiation; APAR: absrobed photosynthetically active radiation; LAI: leaf area index; SLA: specific leaf 
area; MR: maintenance respiration; FRoot: fine root; LWood: live wood; Tavg: average daytime temperature

Figure 1. Flowchart of the MOD17 GPP and NPP algorithms. The main components are (A) GPP; (B) maintenance respiration; and (C) annual

NPP. Adapted from the MOD17 user’s guide (Running and Zhao 2015). NPP, net primary production; GPP, gross primary production.
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apply biome-specific constraints throughout the algo-

rithm, and were obtained from the 30 m National Land

Cover Database (NLCD) (Homer et al. 2007, 2015; Fry

et al. 2011). For GPP/NPPM250, FPAR and LAI were cal-

culated from the MODIS surface reflectance product,

MOD09Q1 (Vermote 2015); for GPP/NPPL30, FPAR and

LAI were calculated from the Landsat surface reflectance

products (Masek et al. 2006; Feng et al. 2012; Vermote

et al. 2016). We used established relationships of FPAR

and LAI with the normalized difference vegetation index

(NDVI) (Choudhury 1987; Sellers et al. 1994; Peng et al.

2012; Wang et al. 2014).

As remotely sensed satellite data are inherently noisy

due to atmospheric effects, cloud cover, data retrieval,

and processing errors, a significant challenge is creating

spatio-temporally continuous NDVI composites from

which to calculate FPAR and LAI. The MOD09Q1 pro-

duct is an 8-day global composite product that accounts

for some of these underlying complexities. To account

for temporal noise in the data, we smoothed data gaps

and unusually low NDVI values based on the iterative

Interpolation for Data Reconstruction (IDR) method

(Julien and Sobrino 2010). Landsat data are more com-

plex, due to an infrequent overpass interval, collection

date differences between adjacent scenes, radiometric

differences between missions, and various sensor mal-

functions (e.g., Landsat 7 ETM+ scan line corrector

error). Thus, we utilized a smoothing and climatology

driven gap filling approach to create spatially continu-

ous and temporal regular Landsat NDVI composites

across CONUS (Robinson et al. 2017). Detailed descrip-

tions of these methods are provided in the supporting

information.

GPP

We used daily FPAR estimates, meteorological data, and

the optimized parameter set to calculate daily GPP (eq. 1).

GPP ¼ LUEmax � fTmin � fvpd � 0:45� SWrad � FPAR

(1)

LUEmax (g�C�MJ�1) is a biome specific maximum

potential light use efficiency and was attenuated by mini-

mum temperature (fTmin) and vapor pressure deficit (fvpd)

scalars (Fig. S1) to account for temperature and water

stress respectively. These scalars utilize other biome-speci-

fic properties (Tminmin, Tminmax, VPDmin, and VPDmax)

to linearly scale the daily minimum temperature and daily

vapor pressure deficit between 0 and 1. SWrad (w�m�2) is

incoming shortwave radiation, of which 45% is in wave-

lengths available for photosynthesis.

The original MOD17 BPLUT parameters represent glo-

bal biomes and do not vary spatiotemporally. As the GPP

products we developed are limited to CONUS, we opti-

mized these parameters (Tminmin, Tminmax, VPDmin, and

VPDmax) with reference GPP estimates from eddy covari-

ance flux towers within CONUS. We used tier one level

data from the FLUXNET2015 dataset, containing data

from 43 tower sites across CONUS. To avoid the inclu-

sion of poor quality data, we only used flux towers with

at least 2 years of data and selected daily GPP observa-

tions flagged as high quality (quality flag ≥ 0.75)

(Richardson et al., 2010; Verma et al., 2015). At some

flux tower locations, there was a discrepancy in land

cover as designated by the flux tower dataset and the

dominant land cover as classified by the NLCD. To avoid

flux towers in areas with heterogeneous land cover,

Table 1. Underlying data sources for the MOD17 (500 m), MODIS derived GPP/NPPM250 (CONUS only; 250 m), and Landsat derived GPP/NPPL30
(CONUS only; 30 m) products. GPP, gross primary production; NPP, net primary production.

Input variable Units

MOD17 MODIS250 LS30

Source Resolution Source Resolution Source Resolution

VPD1 Pa GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km

SWrad2 w�m�2 GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km

Tavg3 °C GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km

Tmin4 °C GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km

Land Cover na MOD12Q1 500 m NLCD 30 m NLCD 30 m

FPAR5 na MOD15A2 500 m MOD09Q1 250 m Landsat SR 30 m

LAI6 m2 leaf m�2ground MOD15A2 500 m MOD09Q1 250 m Landsat SR 30 m

1Vapor pressure deficit.
2Incident shortwave radiation.
3Average daytime temperature.
4Daily minimum temperature.
5Fraction of photosynthetically active radiation.
6Leaf area index.
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towers were only included if more than 50% of the pixels

within a 1-km buffer were classified as the dominant land

cover based on the NLCD and matched the given land

cover classification of the flux tower. This resulted in 30

flux towers representing the range of land cover classes

(Fig. S2; Table S1). Our optimization approach found the

parameter set (Table 2) that minimized the residual sum

of squares between model outputs and the corresponding

flux tower GPP estimates for each land cover class

(Turner et al. 2006, 2009). We utilized a limited memory,

quasi-Newton algorithm (L-BFGS-B) for optimization

(Byrd et al. 1995; Santaren et al. 2007), using original

MOD17 BPLUT parameters as initialization values.

To validate the parameter optimization process, we

implemented a cross-validation approach, whereby for

each land cover, the data from each individual flux tower

was iteratively withheld from the parameter optimization

calculations. For each iteration, the resulting parameter

set was used to predict daily GPP at the withheld tower

location. The predictions were assessed using the mean

Pearson’s correlation coefficients (r-values), root mean

square error (RMSE), mean bias (MB), and mean abso-

lute bias (MAB) as compared to daily flux tower GPP

(GPPFlux) for each land cover. These statistics were also

calculated for GPP calculated with the original MOD17

parameters compared to GPPFlux. Once the optimized

parameter sets were obtained, differences between the

datasets (GPPM250, GPPL30, MOD17 GPP) versus GPPFlux
were compared using r-values, RMSE, MB, and MAB. As

the MOD17 product is an 8-day product, we matched

GPPM250, GPPL30, and GPPFlux to the temporal granular-

ity of MOD17. Eight day periods with less than four valid

flux tower observations were discarded.

NPP

Daily estimates of LAI, meteorological data, and the rele-

vant MOD17 algorithm BPLUT parameters were used to

Table 2. The biome parameter lookup table (BPLUT) for MOD17, the GPP/NPPM250, and the GPP/NPPL30. GPP, gross primary production; NPP, net

primary production.

Dataset Parameter ENF1 DBF2 MF3 SH4 GR5 CR6

MOD17 LUEmax 0.00096 0.00117 0.00105 0.00128 0.00086 0.00104

Tminmin �8.00 �6.00 �7.00 �8.00 �8.00 �8.00

Tminmax 8.31 9.94 9.50 8.61 12.02 12.02

VPDmin 650.0 650.0 650.0 650.0 650.0 650.0

VPDmax 4600.0 1650.0 2400.0 4700.0 5300.0 4300.0

GPP/NPPM250 LUEmax
7 0.00132 0.00156 0.00144 0.00104 0.00142 0.00227

Tminmin
7 �9.43 �8.44 �8.94 �7.54 �10.56 �9.48

Tminmax
7 7.63 8.59 8.11 10.26 9.45 10.53

VPDmin
7 721.51 745.26 733.39 627.08 778.52 723.69

VPDmax
7 5703.33 3922.55 4812.94 4206.98 7040.36 5982.23

GPP/NPPLS30 LUEmax
7 0.00133 0.00142 0.00138 0.00101 0.00091 0.00176

Tminmin
7 �9.44 �8.15 �8.78 �7.94 �11.57 �10.31

Tminmax
7 7.63 8.76 8.20 9.97 8.44 9.71

VPDmin
7 722.23 733.84 728.04 647.37 828.54 765.33

VPDmax
7 5714.47 3650.12 4682.30 4287.20 7697.52 6178.25

All LAImax
8 6.501 6.091 6.296 6.328 6.606 6.543

SLA 14.1 21.8 21.5 11.5 37.5 30

Fine Root to Leaf Ratio 1.2 1.1 1.1 1.3 2.6 2

Base Leaf MR 0.00604 0.00778 0.00778 0.00519 0.0098 0.0098

Base Fine Root MR 0.00519 0.00519 0.00519 0.00519 0.00819 0.00819

Q10MR 2 2 2 2 2 2

Live Wood to Leaf Ratio 0.182 0.203 0.203 0.04 0 0

Base Livewood MR 0.00397 0.00371 0.00371 0.00218 0 0

1Evergreen Needleaf Forest.
2Deciduous Broadleaf Forest.
3Mixed Forest.
4Shrubland.
5Grassland.
6Cropland.
7Indicates parameters that were modified from the original MOD17 algorithm.
8Indicates parameter added to the BPLUT for LAI calculations.
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calculate daily maintenance respiration (MR). The logic

and parameters were based on allometric relationships

between estimated leaf area, leaf mass, fine root mass, and

live wood mass. Annual NPP (eq. 2) was calculated as the

sum of the daily differences between GPP and MR minus

annual growth respiration (GR).

NPP ¼
X365

i¼ day 1

GPPi �MRið Þ � GR (2)

To assess the quality of NPPM250 and NPPL30 estimates,

we compared cumulative NPP, separated by land cover,

across CONUS to the MOD17 product. Detailed methods

for GPP and NPP are provided in the supporting

information.

Products

GPPM250 is an 8-day cumulative estimate (kg�C�m�2 8-

days�1) of GPP that matches the temporal resolution of

the MOD17A2 GPP product; GPPL30 is a 16-day cumula-

tive GPP estimate (kg�C�m�2 16-days�1). Both GPP prod-

ucts begin on day one of a given year and end on day

361 (MODIS derived 8-day) or 353 (Landsat derived 16-

day). Each GPP composite includes the composite date

and 7 or 15 ensuing days. The final period of each year is

restricted to 5 days (6 days in a leap year) for GPPM250

and to 13 days (14 days in a leap year) for GPPL30. The

NPPM250 and NPPL30 are estimates of annual NPP

(kg�C�m�2 year�1). Data were scaled by 10,000 and stored

as a 16-bit integer. Each of the products contain a QC

band providing information regarding the underlying

NDVI estimate for each pixel (Table 3). We utilized

Google Earth Engine (Gorelick et al. 2016) for data pro-

cessing, product creation, and product distribution.

Results

GPP assessment

Evaluation of GPP calculated with the optimized cross-

validated parameters compared to GPP with the original

MOD17 algorithm parameter set yielded positive results

for both GPPM250 and GPPL30 (Table 4). Across all flux

tower sites combined, r-values increased from 0.60 to

0.79 (GPPM250) and from 0.63 to 0.80 (GPPL30), while

RMSE values decreased from 4.33 to 2.83 (GPPM250) and

Table 3. QC band pixel value descriptions for GPP/NPPM250 and GPP/

NPPL30. GPP, gross primary production; NPP, net primary production.

Dataset Pixel value Description

GPPM250 0 Original NDVI value used

1 Smoothed NDVI value used

NPP M250 0–100 Percent of NDVI values gap filled

GPPL30 10 Clear not smoothed

11 Clear smoothed

20 Snow or water not smoothed

21 Snow or water smoothed

30 Climatology not smoothed

31 Climatology smoothed

40 Gap filled not smoothed

41 Gap filled smoothed

NPPL30 0-100 Percentage of gap filled 16-day composites

255 Incomplete data (gap filling failed)

Differences in the QC values between the two products are due to

different input datasets and processing methods. The pixel values indi-

cate the quality of the NDVI values used in calculating FPAR and LAI.

Table 4. The Pearson’s r-value, RMSE, bias, and mean absolute bias

(MAB) among GPPM250 and GPPL30 and GPPFlux. GPP, gross primary

production; ENF, evergreen needleaf forest; DBF, deciduous broadleaf

forest; SH, shrubland; GR, grassland; CR, cropland.

Land

cover Tower vs. GPPM250 Pearson’s r RMSE Bias MAB

All Optimized parameters 0.79 2.83 0.02 1.72

MOD17 parameters 0.60 4.33 1.90 2.42

ENF Optimized parameters 0.83 1.67 0.26 1.27

MOD17 parameters 0.82 2.20 1.59 1.73

DBF Optimized parameters 0.89 2.67 0.26 1.27

MOD17 parameters 0.57 5.15 3.21 3.48

SH Optimized parameters 0.67 0.99 �0.07 0.70

MOD17 parameters 0.72 1.23 �0.69 0.98

GR Optimized parameters 0.75 1.85 �0.15 1.40

MOD17 parameters 0.71 2.52 1.38 1.70

CR Optimized parameters 0.71 4.94 �0.28 3.66

MOD17 parameters 0.58 6.71 3.79 4.49

Land

cover Tower vs. GPPL30 Pearson’s r RMSE Bias MAB

All Optimized parameters 0.80 2.83 0.08 1.71

MOD17 parameters 0.63 4.13 1.66 2.32

ENF Optimized parameters 0.84 1.65 0.01 1.25

MOD17 parameters 0.82 2.11 1.48 1.64

DBF Optimized parameters 0.87 2.38 0.08 1.67

MOD17 parameters 0.57 4.88 2.85 3.25

SH Optimized parameters 0.66 1.05 0.08 0.74

MOD17 parameters 0.69 1.33 �0.76 1.07

GR Optimized parameters 0.72 2.01 0.39 1.46

MOD17 parameters 0.69 2.29 1.00 1.58

CR Optimized parameters 0.66 5.00 0.14 3.74

MOD17 parameters 0.55 6.39 3.28 4.35

Results are mean values for each landcover of the iterative cross-vali-

dation approach, and include GPP calculated with both the original

MOD17 algorithm parameters and optimized parameters produced in

this paper. The optimized parameters for both datasets yielded better

statistics across all land cover classes except shrublands Pearson’s r

value.
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from 4.13 to 2.83 (GPPL30). Incorporating the optimized

parameters linearized the relationship between the mod-

eled estimates of GPP and GPPFlux (Fig. 2). Analysis of

flux towers aggregated by land cover also produced

improved results for most land cover classes (Fig. 3;

Table 4). Deciduous broadleaf (DBF) sites improved the

most with r-values increasing from 0.57 to 0.89

(GPPM250) and from 0.57 to 0.87 (GPPL30) and RMSE

decreasing from 5.15 to 2.67 (GPPM250) from 4.88 to 2.38

(GPPL30). Shrubland (SH) sites revealed little change with

optimized parameter sets, with decreases in RMSE values

from 1.23 to 0.99 (GPPM250) and from 1.33 to 1.05

(GPPL30) and decreases in r-values from 0.72 to 0.67

(GPPM250) and from 0.69 to 0.66 (GPPL30). Of the six

shrubland sites, five (44 of 46 site-years) were in semi-

arid regions of Arizona and Utah. The shrubland class

constituted a diverse functional group, and this diversity

was poorly represented in this clustering. Eddy covariance

flux measurements in semi-arid areas often include signif-

icant components of abiotic CO2 fluxes, which may result

in the overestimation of GPPFlux using traditional flux

partitioning procedures (Serrano-Ortiz et al. 2014).

When comparing to GPPFlux, both GPPM250 and

GPPL30 showed improvements over MOD17 GPP across

all land cover classes except cropland (Table 5). Excluding

croplands, the r-values improved from 0.91 (MOD17) to

0.94 (GPPM250) and 0.93 (GPPL30), while the RMSE

decreased from 1.49 (MOD17) to 1.29 (GPPM250) and

1.31 (GPPL30). Seasonally, the temporal profiles of mod-

eled GPP tracked the profiles of flux tower GPP (Fig. 4).

Across most flux towers, GPPM250 and GPPL30 corre-

sponded more closely to GPPFlux than the MOD17 pro-

duct GPP. The most notable discrepancies were in

cropland sites, where all models tend to underestimate

peak flux tower GPP (Fig. 4D). The poor performance of

MOD17 within croplands is well-documented and

improved methods are needed to capture the wide varia-

tion in parameters across crop types (Chen et al. 2011)

and nonlinearities between LUE and GPP within crop-

lands (Guanter et al. 2014; Wood et al. 2017).

Figure 2. GPPM250 (A & B) and GPPL30 (C & D) relative to GPPFlux (FLUXNET2015, CONUS only). GPP250 GPPL30 in plots A and C are calculated

with the original MOD17 BPLUT parameters, while GPP in B and D use parameters optimized for CONUS. GPP, gross primary production.
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NPP assessment

Comparing total annual NPP across CONUS (Table 6),

we found high correlations between both NPPM250 and

NPPL30 relative to the MOD17 product (NPPM250 r-value:

0.82; NPPL30 r-value: 0.81). From 2001 to 2014, average

annual NPP from the MOD17 product was estimated at

3.09 petagrams (Pg; 1015 g) of carbon while for the

NPPM250 NPPL30 it is 4.49 Pg and 3.03 Pg respectively.

When compared to the MOD17 product, NPPM250 was

41–50% higher, while NPPL30 was 1.7–2.0% lower. The

relatively high NPPM250 estimates were largely caused by

differences in the parameterization of LUEmax for crop-

lands (Table 2). While comparing the total absolute

Figure 3. GPPM250 (left column) and GPPL30
(right column) relative to GPPFlux
(FLUXNET2015, CONUS only), aggregated by

land cover. GPP, gross primary production.
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values of NPP across a region is useful for general valida-

tion purposes, discrepancies between models are expected

due to the utilization of different input datasets and

parameterization. More informative is the degree to

which each product tracks interannual variability in total

NPP. We found consistent interannual variability and sea-

sonal magnitudes across all three NPP products for all

land cover classes (Fig. 5). The only notable exception

occurred in the shrubland class (SH), where NPPL30
shows higher deviations from the mean in 2004 and 2012.

NPPM250 and NPPL30 consistently underestimated NPP

across shrublands compared to the MOD17 product,

likely originating from an underestimation of GPP (see

GPP Assessment) or an overestimation of respiration (see

Strengths, Challenges, and the Future).

Discussion

We produced 30 m and 250 m GPP and NPP products for

CONUS that better capture the spatiotemporal variability

in terrestrial production than currently available coarser

resolution products (Fig. 6). Accounting for this variability

reveals changes in production dynamics, particularly

important for smaller scale monitoring, conservation, and

land management (Fig. 7; see also cased studies and figures

in Supporting Information). By optimizing the parameters

with GPP data from FLUXNET2015 towers located within

CONUS and using improved land cover and climate data

specific to CONUS, we further refine the algorithm to

more accurately reflect regionally unique conditions.

Value for conservation and management

Remotely sensed GPP and NPP extend satellite imagery

beyond commonly used vegetation indices or land cover

change. Production, measured in units of carbon, allows

for assessing ecosystem dynamics in ecological, economi-

cal, and socially relevant terms (Vitousek et al. 1986;

Haberl et al. 2004; Crabtree et al. 2009). Better under-

standing–specifically with improved spatial resolution–of
how land use activities affect carbon dynamics is critical

in an era where climate change poses a massive challenge.

Production also provides a foundation for process based

models used to estimate ecosystem services, such as crop-

land agriculture (McGuire et al. 2001; Monfreda et al.

2008), forest stand biomass biomass (Keeling and Phillips

2007; Hasenauer et al. 2012), or rangeland forage (Hunt

and Miyake 2006; Reeves et al. 2006). As many land use

activities that can alter these and other ecosystem services

occur at finer scales across landscapes, medium, and

high-resolution products are necessary for assessment and

monitoring. For example, while the rapid energy develop-

ment across the United States is a major driver of land

use change (McDonald et al. 2009; Trainor et al. 2016),

the cumulative impacts of these developments, specifically

on terrestrial production, has been difficult to assess due

to the broad geographic extent and the scale mismatch

between the disturbances and products (Allred et al.

2015). Coarser resolution NPP products fail to detect dis-

crete losses in NPP caused by disturbance at finer scales

(Fig. 7). The NPPL30 product improves the tracking and

accounting of these discrete losses while also extending

the historical record. Built into decision frameworks, pro-

duction information can help managers better understand

the dynamics, impacts, and trade-offs of their manage-

ment (see also Supporting Information, Applications sec-

tion and Fig. S4 and S5). Quantifying conservation

outcomes, e.g., management practices, restoration activi-

ties, etc., at fine resolutions, across broad spatial extents,

and in relevant ecological terms (biomass, carbon), is

essential in evaluation and adaptive management.

Strengths, challenges, and the future

The Landsat (30 m) and MODIS (250 m) derived prod-

ucts have specific applications they are best suited for.

The finer resolution of Landsat sensors allows for more

detailed examination of production dynamics and

responses to human activities that are largely absent in

coarser products. The historical Landsat archive adds

Table 5. Pearson’s r -value, RMSE, bias and mean absolute bias

(MAB) between flux tower GPP and the MOD17 product, GPPM250

and GPPL30. GPP, gross primary production; ENF, evergreen needleaf

forest; DBF, deciduous broadleaf forest; SH, shrubland; GR, grassland;

CR, cropland.

Tower Dataset Pearson’s r RMSE Bias MAB

All MOD17 0.89 1.53 0.09 0.96

GPPM250 0.91 1.55 �0.48 1.02

GPPL30 0.90 1.50 �0.26 0.99

ENF MOD17 0.90 1.07 �0.33 0.72

GPPM250 0.93 1.09 �0.32 0.76

GPPL30 0.94 0.90 �0.19 0.62

DBF MOD17 0.91 1.98 �0.12 1.28

GPPM250 0.95 1.62 �0.55 1.12

GPPL30 0.94 1.70 �0.09 1.13

SH MOD17 0.69 1.04 0.03 0.68

GPPM250 0.76 0.94 0.04 0.62

GPPL30 0.74 0.97 0.04 0.64

GR MOD17 0.63 1.30 0.13 0.78

GPPM250 0.69 1.23 �0.27 0.84

GPPL30 0.66 1.28 �0.25 0.86

CR MOD17 0.68 1.82 0.24 1.25

GPPM250 0.66 2.86 �1.84 2.15

GPPL30 0.65 2.57 �1.53 1.96

These comparisons use 8-day mean GPP, matching the temporal gran-

ularity of the MOD17 product. Bold indicates the best statistic.
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another 15+ years to that available with MODIS, permit-

ting longer trend analysis. Landsat derived production

(GPPL30 and NPPL30) is best suited for detailed, smaller

scale assessments where responses or trends of localized

areas are desired. The 16-day return interval of satellites

and temporal offset between adjacent orbital paths, how-

ever, can create discontinuous data across broad scales.

Although the compositing and gap filling mitigates much

of the resulting effects and artifacts, they do not eliminate

them. The daily overpass of MODIS sensors make

MODIS derived estimates of production well-suited for

analysis across broad geographic regions or continental

analysis. MODIS derived production (GPPM250 and

NPPM250) minimizes atmospheric and cloud contamina-

tion; increases resolution from 500 to 250 m relative to

the MOD17 product, permitting examination of some of

the finer scale processes and responses (Fig. 6); and fol-

lows the same 8-day schedule of the MOD17 product.

Users should examine both products before application to

determine which is appropriate for their needs.

Despite the noted improvements and added utility of

the high-resolution products, some of the simplifying

assumptions and limitations of the MOD17 algorithm

itself are maintained in our methods. First, there is an

unmeasured propagation of errors, stemming from the

underlying accuracy and mismatched resolution of input

datasets. Second, the biome specific parameters do not

vary spatiotemporally and are applied through temporally

discrete land cover datasets, which may not reflect rapid

land cover change. Third, the optimization process is

based on a limited and clustered network of flux tower

data. While users should be aware of these limitations,

these are key areas for future research and product devel-

opment. For example, strategies to incorporate the spa-

tiotemporal variability in key parameters or to more

accurately represent land cover through time at sub-pixel

levels are promising approaches for improvement

(Madani et al. 2014; Yang et al. 2015). Additionally, res-

piration is a key source of uncertainty in the NPP algo-

rithm (Fig. 1B), as it is calculated independently from

GPP and utilizes biome level allometric relationships

(Turner et al. 2005; Zhang et al. 2009). Simplifying respi-

ration to a fixed proportion of GPP can avoid associated

uncertainties (DeLucia et al. 2007; Zhang et al. 2009; Van

Oijen et al. 2010). A fixed ratio reduces the interannual

variability in NPP across land cover classes and removes

the NPP anomalies in shrublands and deciduous forest

(Fig. S6, Table S3).

Table 6. Total annual NPP for CONUS in Pg (1015 g) carbon for MOD17, NPPM250, and NPPL30. NPP, net primary production; ENF, evergreen nee-

dleaf forest; DBF, deciduous broadleaf forest; MF, mixed forest; SH, shrubland; GR, grassland; CR, cropland.

Land

cover Product 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Mean

Total MOD17 2.996 2.946 3.275 3.389 3.217 2.880 3.196 3.162 3.137 3.297 2.880 2.786 3.070 3.120 3.097

NPPM250 4.606 4.192 4.762 5.017 4.712 4.504 4.699 4.631 4.692 4.617 3.864 3.892 4.069 4.566 4.487

NPPL30 3.114 2.834 3.221 3.431 3.194 3.054 3.139 3.208 3.267 3.137 2.519 2.491 2.712 3.148 3.034

ENF MOD17 0.606 0.543 0.609 0.629 0.644 0.573 0.565 0.585 0.595 0.605 0.519 0.508 0.570 0.607 0.583

NPPM250 0.657 0.588 0.635 0.681 0.661 0.639 0.635 0.615 0.645 0.612 0.535 0.561 0.575 0.636 0.620

NPPL30 0.616 0.556 0.598 0.638 0.625 0.602 0.593 0.594 0.613 0.588 0.503 0.525 0.534 0.604 0.585

DBF MOD17 0.602 0.634 0.752 0.710 0.630 0.565 0.578 0.654 0.661 0.651 0.613 0.614 0.683 0.631 0.641

NPPM250 0.923 0.837 0.987 1.000 0.889 0.907 0.886 0.929 0.926 0.861 0.752 0.779 0.799 0.886 0.883

NPPL30 0.701 0.630 0.758 0.772 0.672 0.675 0.637 0.715 0.720 0.649 0.509 0.501 0.573 0.675 0.656

MF MOD17 0.093 0.089 0.096 0.101 0.091 0.087 0.087 0.092 0.091 0.091 0.087 0.087 0.091 0.089 0.091

NPPM250 0.125 0.113 0.123 0.127 0.120 0.120 0.115 0.117 0.118 0.114 0.103 0.111 0.106 0.115 0.116

NPPL30 0.153 0.138 0.152 0.156 0.147 0.146 0.139 0.145 0.146 0.138 0.119 0.129 0.127 0.143 0.141

SH MOD17 0.378 0.366 0.404 0.441 0.456 0.396 0.459 0.407 0.394 0.457 0.380 0.384 0.393 0.414 0.409

NPPM250 0.257 0.235 0.270 0.317 0.317 0.261 0.295 0.263 0.281 0.297 0.234 0.222 0.242 0.279 0.269

NPPL30 0.179 0.162 0.187 0.237 0.224 0.179 0.211 0.186 0.204 0.204 0.149 0.127 0.158 0.191 0.186

GR -

Natural

MOD17 0.334 0.315 0.358 0.382 0.384 0.325 0.435 0.360 0.361 0.402 0.325 0.292 0.337 0.369 0.356

NPPM250 0.604 0.527 0.621 0.660 0.650 0.561 0.676 0.612 0.635 0.663 0.523 0.502 0.549 0.623 0.600

NPPL30 0.309 0.274 0.317 0.343 0.336 0.295 0.346 0.329 0.344 0.351 0.351 0.266 0.273 0.332 0.319

GR -

Pasture/

Hay

MOD17 0.379 0.387 0.410 0.414 0.377 0.345 0.393 0.394 0.377 0.401 0.351 0.363 0.373 0.368 0.381

NPPM250 0.552 0.508 0.576 0.591 0.544 0.535 0.542 0.556 0.545 0.535 0.457 0.484 0.482 0.535 0.532

NPPL30 0.232 0.211 0.244 0.251 0.229 0.227 0.227 0.241 0.235 0.224 0.184 0.191 0.196 0.292 0.227

CR MOD17 0.597 0.606 0.638 0.705 0.628 0.583 0.672 0.663 0.650 0.683 0.599 0.532 0.616 0.635 0.629

NPPM250 1.488 1.384 1.550 1.642 1.532 1.480 1.577 1.540 1.543 1.537 1.260 1.235 1.317 1.493 1.470

NPPL30 0.925 0.863 0.965 1.032 0.961 0.930 0.985 0.998 1.103 0.983 0.783 0.751 0.836 0.975 0.935

Results are shown aggregated across all land cover as well for each class individually.
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Emerging big data technologies and geospatial applica-

tions (e.g., Apache Spark, Google Earth Engine, etc.)

enable new and dynamic approaches to geospatial product

creation and distribution. A barrier to using Landsat or

other fine resolution data is the access, retrieval, storage,

and manipulation of images. As the spatiotemporal extents

increase, so do data volume and compute processing

needs, making it difficult or impractical to those without

access to high performance computing facilities and the

skills to work with such systems. We overcame these barri-

ers and limitations by implementing the MOD17 algo-

rithm in Google Earth Engine. The structure of Google

Earth Engine creates the ability to incorporate data from

multiple sensors and datasets to build even more robust

products. What we accomplish with multiple Landsat sen-

sors can be extended to include even higher resolution sen-

sors, such as Sentinel-2. However, the real power of these

new platforms and technologies is the ability to create cus-

tomizable and dynamic geospatial products (Robinson

et al. 2017). When algorithms are programmed into a web

application, model parameters and input datasets can be

customizable so that users not satisfied with the standard

parameters or other inputs can modify them based on a

priori knowledge. For example, a user working with a web

application that utilizes the MOD17 algorithm to estimate

productivity can correct misclassified pixels in land cover

datasets, or select between standard approaches or fixed

ratios to calculate respiration used in NPP. Models can be

tuned for specific regions or environmental conditions,

providing locally optimized products that are more appro-

priate for a given system or question.

The new Landsat (30 m; 1986 to 2016) and MODIS

(250 m; 2001 to 2016) derived primary production prod-

ucts provide new opportunities in the study of production

dynamics and variability. Of significance is the ability to

utilize these datasets for conservation and management, as

the scales of both the product and the conservation/man-

agement activities are now better aligned. These enhance-

ments will advance the study of terrestrial primary

production, enable future refinements, and generate new

applications of vegetation productivity measures.
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in the supporting information tab for this article.

Data S1. Methods.

Figure S1. Illustration of the linear ramp functions for

scaling minimum temperature and vapor pressure deficit.

Figure S2. Map of individual flux tower sites used for the

GPP parameter optimization. The numbers correspond

with individual flux towers described in Table S1.

Figure S3. (A) The NLCD within a 1 km buffer of the

Wi4 flux tower located in Northern Wisconsin, demon-

strating heterogeneous land cover cover at 30 m resolu-

tion.

Figure S4. Boxplots showing pre- and post-fire NPP

dynamics (anomalies) relative to burn severity for a grass-

land fire (top panels; Lund fire, North Dakota) and an

evergreen needleleaf forest fire (bottom panels; Horse

Creek fire, Wyoming) using the MOD17 (500 m),

NPPM250 (250 m), and NPPL30 (30 m) products.

Figure S5. The GPP/NPPL30 datasets permit the tracking

of primary production change across broad spatiotempo-

ral scales. Here, annual NPP for a 60 m buffer around

Maggie Creek, Nevada is plotted. Restoration activities

occurred in 1994 (vertical black line).

Figure S6. Time series of NPP anomalies including the

MODIS and Landsat derived NPP calculated with respira-

tion as a fixed ratio (50%) of GPP.

Table S1. Flux Tower Info.

Table S2. Total annual NPP for CONUS in Pg (1015 g)

carbon for MOD17, NPPM250 and NPPL30 calculated with

respiration as a fixed ratio of GPP and with the MOD17

procedure.

Table S3. Biome specific properties used in the MOD17

algorithm (Running & Zhao, 2015).

Table S4. Reclassification scheme for National Land

Cover Database (NLCD). Grassland and pasture/hay are

combined as grassland.
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