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“The brain is wider than the sky,
For, put them side by side,
The one the other will include
With ease, and you beside.

The brain is deeper than the sea,
For, hold them, blue to blue,
The one the other will absorb,
As sponges, buckets do.

The brain is just the weight of God,
For, lift them, pound for pound,
And they will differ, if they do,
As syllable from sound”.

Emily Dickinson, 1862
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Abstract

Bayat Mokhtari, Elham, Doctorate of Philosophy, December 2018 Mathematics

Effect of Neuromodulation of Short-Term Plasticity on Information Processing in Hippocam-
pal Interneuron Synapses
Committee Chair: Emily F. Stone, Ph.D.

Neurons convey information about the complex dynamic environment in the form of signals.
Computational neuroscience provides a theoretical foundation toward enhancing our under-
standing of nervous system. The aim of this dissertation is to present techniques to study the
brain and how it processes information in particular neurons in hippocampus.

We begin with a brief review of the history of neuroscience and biological background of
basic neurons. To appreciate the importance of information theory, familiarity with the infor-
mation theoretic basics is required, these basics are presented in Chapter 2. In Chapter 3, we
use information theory to estimate the amount of information postsynaptic responses carry
about the preceding temporal activity of hippocampal interneuron synapses and estimate the
amount of synaptic memory. In Chapter 4, we infer parsimonious approximation of the data
through analytical expression for calcium concentration and postsynaptic response distribu-
tion when calcium decay time is significantly smaller that the interspike intervals.

In Chapter 5, we focus on the study and use of Causal State Splitting Reconstruction
(CSSR) algorithm to capture the structure of the postsynaptic responses. The CSSR algorithm
captures patterns in the data by building a machine in the form of visible Markov Models.
One of the main advantages of CSSR with respect to Markov Models is that it builds states
containing more than one histories, so the obtained machines are smaller than the equivalent
Markov Model.
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Chapter 1

Introduction

1.1 A Brief History of Neuroscience

The term neuroscience which was introduced in the mid-1960s describes a multidisciplinary

science with the goal of analyzing the nervous system and understanding the structure and

function of the brain. Neuroscience has attracted researchers from various backgrounds. One

probable cause is that the brain can be approached on many different levels, from the purely

descriptive to the study of its functional organization. Neuroanatomists study the brain’s

cellular structure and its circuitry; neurochemists study the chemicals in the brain and its

proteins; neurophysiologists are concerned with the study of the brain’s properties through

recording bioelectrical activity; and theoretical neuroscientists provide a quantitative basis

for describing functionality of nervous systems via mathematical models. Neuroscience today

incorporates a wide range of research and is one of the most rapidly growing areas of science.

Indeed, the brain is sometimes referred to as the final frontier of science[52]. In 1971, 1100

scientists participated at the first Annual Meeting of the Society for Neuroscience (SfN). In

2017, over 30,300 neuroscientists from around the world gathered for the Annual Meeting of

1



1.2. BIOLOGICAL BACKGROUND OF BASIC NEURONS 2

the Society for Neuroscience, the largest annual meeting of scientists in the world at which

thousands of abstracts are submitted.

1.2 Biological Background of Basic Neurons

In this section we will review basic functionality of neurons and outline some of their bio-

chemical processes.

1.2.1 Neurons

One of the principle cell type of central nervous system (CNS) in the brain are neurons

or nerve cells. The average human brain has 1010 to 1011 neurons and each neuron can be

connected to up to 104 other neurons, passing signals to each other through 1015 connections.

The capabilities of neurons in processing information distinguish them from other cells. A

neuron receives information from other neurons in form of electrical signals, processes them,

and sends the information to other neurons. A schematic diagram of an ideal neuron is shown

in Figure 1.1. There are many different types of neurons, with different sizes and shape.

However, there are many common features of neurons which can be understood by describing

a generic neuron.
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Figure 1.1: A schematic of a biological neuron [12].

1.2.2 Axons

Each neuron has an extension called axon, which is a Greek word for axis. It conducts signals

away from the cell body to other cells. Some axons can extend as little as one millimeter while

others can extend lengths of one meter or more, so they can reach from one region in the brain

to almost any other. Axons have a complex biochemical structure to transmit signals over

distance based on a phenomenon called an action potential or spike. Action potentials are

fundamental to information processing in neurons.

1.2.3 Biology of Synapses

A synapse, also called neuronal junction, is a contact between neurons, and has a diameter

of about 0.5− 2µm. There are two main types of synapses: electrical and chemical synapses.
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Electrical Synapses

Electrical synapses are also known as gap junctions consist of special conducting proteins

that allow a direct electromagnetic signal transfer between two neurons. These type of

synapses can transmit fast impulses between the connected neurons, although with lower

efficiency compare to chemical synapses.

Chemical Synapses

The most common type of connection between neurons in the CNS is the chemical synapse.

A presynaptic neuron transmits signals via release of special chemicals called neurotransmit-

ters, stored in synaptic vesicles, which bind to receptors at the postsynaptic neuron. Many

different neurotransmitters have been identified in the nervous system. Common neurotrans-

mitters in the CNS include Dopamine (DA), Glutamate (Glu) or gamma-aminobutyric acid

(GABA). The type of neurotransmitters can determine the action on the postsynaptic neuron.

This transmitter can be excitatory (common: glutamate) which increases the probability of

spiking in the postsynaptic neuron or it can be inhibitory (common: GABA) which decreases

the probability of action potential occurring in the postsynaptic cell.

Synaptic Transmission Mechanisms

Upon the arrival of an action potential at presynaptic terminal, depolarization of the axon

terminal lead to an influx of calcium through calcium channels. As a result, some of the

synaptic vesicles fuse to terminal bouton membrane at special release sites and their neuro-

transmitters diffuse across the synaptic cleft. Finally these transmitters bind to postsynaptic

receptors that generate a postsynaptic response. A schematic diagram of a synapse and the

process of action potential arrival at the presynaptic terminal is shown in Figure 1.2.
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Figure 1.2: Major elements in chemical synaptic transmission[13].

Synaptic Plasticity

One of the most fascinating mechanisms of brain is a biological phenomena called synaptic

plasticity. It is the ability of synapses to change their strength and postsynaptic influence in

short and long time frames. Synaptic plasticity can modulate the effect of action potentials,

either by vesicle release modification of the presynaptic neuron or by changing the sensitivity

of postsynaptic neuron. Synaptic plasticity can be divided into two main categories:

• Long-term plasticity (LTP): Long-term changes in synapses that last for hours or longer.

• Short-term plasticity (STP): It allows synapses to change their efficacy on short time

scales, milliseconds to minutes. These changes result from vesicle depletion, accumu-

lation of calcium in presynaptic terminal or postsynaptic neurotransmitter receptors
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desensitization. There are two principal types of STP, facilitation and depression. Fa-

cilitation promotes an increase in the probability of neurotransmitter release(Pr) which

then leads to initial growth in postsynaptic current amplitude, whereas depression pro-

motes a decrease in Pr and consequent decline in transmission probability.

Functional roles of STP:

1. Frequency-Filtering: STP conveys frequency filtering properties by making stronger

synaptic connections at some firing rates over others. Facilitating synapses are high-

pass filters, meaning that they optimally transfer information at high frequencies,

depressing synapses are low-pass filters, meaning that they optimally send infor-

mation at low frequencies, and mixed synapses are band-pass filters.

2. Adaptation and Sensitization : This property allows a neuron to modify its ability

to transfer prolonged sensory signals. Adaptation can be caused by synaptic de-

pression which removes the effect of fluctuations in presynaptic excitability while

sensitization can be caused by facilitation as it increases the response of a neuron

to a given stimulus.

Abbott and Regehr 2004 [1] showed the functional roles of short-term plasticity in GABAergic

circuits. GABAergic synapses use GABA the main inhibitory neurotransmitter in the brain.

It has an autoreceptor (GABAB) which is located on presynaptic membrane and a postsynap-

tic receptor (GABAA) which is located at postsynaptic membrane. STP not only depends on

the presynaptic activity mentioned earlier on the page, but also depends on feedback activa-

tion of presynaptic receptors or postsynaptic processes such as receptor desensitization. For

example depression can be partly due to retrograde or feedback inhibitory action of GABA on

presynaptic GABAB receptors by reducing calcium influx to subsequent spikes. This results

in a reduction in the future release of this neurotransmitter. Low initial release probability

favors facilitation and so the filtering characteristic of the synapse is changed to less depressing

and more facilitating. Therefore inhibitory synapses can reduce desensitization. For example,

baclofen, which binds to GABAB receptors, greatly inhibits the initial response to an evoked
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stimulus, but later responses are larger and transmission is more reliable in baclofen-treated

synapses than non-treated ones during high frequency activation. Therefore, one of advantage

of short term depression at inhibitory synapse might be that it helps neurons to perform mul-

tiple operations on their inputs. For instance, facilitating inhibitory synapse leads to greater

enhancement of release during high frequency bursts.

1.2.4 Neural Coding Theory

How neuronal output is represented relates to the process used by the nervous system to

transmit information between cells. Characterizing and analyzing the stochastic components

of the neuronal response is a large area of current research. Much of this research focuses on

spontaneous action potentials of neurons receiving some stimulus in the form of spike trains.

The theory of neural coding models the encoding of sensory messages as action potentials [53].

There are different types of coding depending on how neurons transmit information.

• Rate Coding:

Rate coding or frequency coding was originally formulated by ED Adrian and Y Zotter-

man in 1926 [4]. It is one way to encode information about the stimulus. Many neuronal

models assume that most of the information contained in the neural response can be

characterized by its mean firing rate.

• Temporal Coding: Unlike rate coding that ignores information from the temporal

structure of the spike train, temporal coding assigns importance to temporal precision

in the response by focusing on individual spike times and the sequence of interspike

intervals [18]. In this case, obtaining the maximal information from response of a neuron

depends on how precisely we measure the spike times.

• Correlation Coding: This coding scheme assumes that the correlation between spikes

may carry additional information, because individual spikes may not encode informa-
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tion independently of each other. Therefore in this scheme, we expect that a significant

amount of information is carried temporally near spikes. Correlation between spikes

makes analysis more complicated. Hence, it is usually assumed that spikes are indepen-

dent. This assumption can be justified partially by studies showing that the amount

of additional information carried temporally near spikes is negligible compared to the

information carried by the focal, or principal spike [18].

• Population Coding: This coding scheme assumes that information about a stimulus is

distributed across the population of responding cells. Therefore, any information about

the stimuli or their features are encoded by simultaneous activities of a population of

neurons. In studying this type of coding scheme, one must consider not only the firing or

temporal patterns of single neurons, but also the relationships of these patterns across

responding neurons.

1.3 Tools for Neuroscience: Information Theory and Compu-

tational Mechanics

1.3.1 Information Theory

One major goal of this thesis is to understand how the brain stores and conveys information.

Indeed, the brain is an input-output system (we react to what we sense) and hence is subject to

same laws as other input-output systems. Information theory allows us to answer the following

question: “ To what extent do neural responses can tell us about the stimuli?”. In order to

quantify the information transmitted by neurons, we consider the brain as a communication

channel since its neurons communicate with each other and transfer information. We use an

information theoretic functional developed by Claude Shannon during the 1940s. The theory
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provides a mathematical definition of information and describes how much information can be

communicated between different parts of a system. His paper published in 1948 [60] and the

1949 book by Shannon and Weaver [61] underpins our understanding of information transfer.

Specific details about the elements of information theory and how they apply to measuring

information at the synapse level are presented in the next Chapters.

1.3.2 Computational Mechanics

Computational mechanics, (CM) introduced by James Crutchfield in 1989 [17], is an ap-

proach to address the issue of pattern, structure and organization observed in data. It il-

lustrates how to formulate a model of the hidden process that generates observed behavior

and then extrapolate beyond the original observational data to make predictions of future

behavior [57]. In a nutshell, the goal of CM is to identify patterns which are most informative

about a hidden process without assuming ‘a priori’ patterns for the observed data, proceeding

from pattern analysis to pattern discovery. The CM procedure is to discretize the empirical

data into finite alphabet and aim for “causal states”. Two series of past data, two histories,

with the same distribution of future data leave one in the same causal state. In other words,

if there is no statistically significant difference between these two histories in the future, they

are in the same causal state. This procedure identifies the causal states, the structure of the

connections and succession in causal states. The automata created is called an ε-machine and

the procedure ε-machine reconstruction. The name might be somewhat strange, but I have

not heard better one. We describe CM procedure in detailed in the chapter 5 and explore the

potential of the approach in the analysis of the neuronal data.



Chapter 2

Information Theory

2.1 Information theory in neuroscience

After the publications of Shannon’s paper “A mathematical theory of communication”, sev-

eral researchers begin applying information theory in neuroscience. MacKay and McCulloch

in 1952 [44] investigated the capacity of a neural cell for transmitting signals using the concept

of information. This work suggested the later work on understanding how much information

flows through nervous system. These concepts are referred to as “Neural Information Flow”

and it has been both highly versial and influential in the neuroscience community. Stein in

1967 [63] examined the information capacity of nerve cells using a frequency code and clarified

the discrepancies between timing versus frequency coding, still one of the major debates among

neuroscientists. In [8], information transmission is studied through a master equation based

on stochastic model of presynaptic release of vesicles combined with a low dimensional model

of membrane charging at the post-synaptic side. In 2002, Fuhrmann and his collaborators

[23] characterize synaptic transmission in the neocortex and quantify the amount of informa-

tion conveyed by a single response to a specific sequence of spike stimulation, as it is effected

10
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by short term synaptic plasticity. They reported that for a given dynamic synapse there is

an optimal frequency of input stimulation for which the information transfer is maximal. A

mathematical model of the calyx of Held was used in [76] to study synaptic depression due to

repeated stimulation in vitro. They compute the information contained in the postsynaptic

current amplitude about preceding interspike intervals using information theoretic measures.

Part of this thesis is advances by the work of Fuhrmann et al. [23] and Yang et al. [76].

2.2 Information-Theoretic Functionals

Recall from Chapter 1 that a milestone of science is the theory of information introduced by

Claude Shannon [60]. Shannon developed a mathematical theory that quantifies uncertainty

over noisy communication channels. Probability theory is a mathematical framework that

provides a means of quantifying uncertainty and axioms for deriving uncertainty statements.

In this section we describe information theoretic functionals, as well as the definitions and

notations of probabilities, in particular for those readers with limited exposure to probability

theory.

2.2.1 Probability Distributions and Densities

Random Variables

A random variable is a function that maps the outcomes of a probabilistic experiment to the

real numbers. We typically denote the random variable with upper case letter and the values

it can take (realizations) with lower case letters. For example x1 and x2 are two realizations of

the random variable X. Random variables can be discrete or continuous. A discrete random

variable can take on countably infinite number of values, while a continuous random variable

may take an uncountably many values.
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Probability Distributions

A probability distribution describes how likely a random variable or a vector of random

variables (otherwise known as a multivariate r.v.) is to take on each of its possible realizations.

We describe probability distributions for both discrete and continuous structure of random

variables.

Discrete Variables and Probability Mass Functions

A probability distribution over discrete random variables is described using a probability

mass function (PMF). It is typically denoted by P . A probability mass function may be

defined for multivariate random variables. Such a probability distribution is known as joint

probability distribution and it is denoted for example, by P (X = x, Y = y) or P (x, y). Prob-

ability mass functions have the following properties:

• The domain of P is the set of all possible values of X.

• ∀x ∈ X, 0 ≤ P (X = x) ≤ 1.

•
∑

x∈X P (X = x) = 1.

Continuous Variables and Probability Density Functions

A probability distribution over continuous random variable is described using a probability

density function (PDF) and it is denoted by fX(x). To be a probability density function, a

function must satisfy the following properties:

• The domain of f is the set of all possible values of X.
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• ∀x ∈ X, fX(x) ≥ 0. Note that the probability density function can take on values

greater than one.

•
∫
fX(x)dx = 1.

If X is a multivariate random variable, then
∫ ∫
· · ·
∫
fX(x1, · · · , xp)dx1 · · · dxp = 1

• P (X ∈ [x, x+dx]) = fX(x)dx, which is the probability of landing inside an infinitesimal

region with volume dx.

Marginal Probability

The probability of the occurrence of the single event is known as the marginal probability

distribution.

For discrete case marginal probability is calculated using sum over the joint probability:

∀x ∈ D(X), P (X = x) =
∑
y

P (X = x, Y = y).

For continuous variables, we use integration instead of summation

fX(x) =

∫
D(X)

f(x, y)dy.

Conditional Probability

When we are interested in probability of an event, given that another event has happened, we

use the conditional probability distribution. For discrete case it is denoted by P (X = x|Y = y)

and can be computed with the following formula

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.
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For continuous case it is denoted by f(x|y) and can be computed with the following formula

f(x|y) =
f(x, y)

f(y)
.

2.2.2 Entropy

A fundamental quantity in information theory is called Entropy. It is the amount of uncer-

tainty associated with a random variable. The entropy of a discrete random variable X with

PMF P(x) is

H(X) = −
∑
x

P (x) log2 P (x), (2.2.1)

where, by convention, base 2 logarithms are used, however the choice of base is somewhat

arbitrary, as it is relatively easy to convert from one form to other. To indicate that the base

2 logarithm is being used, information is reported in units of “bits”. H(X) can be defined as

the expected uncertainty in a random variable X

H(X) = −
∑
x

P (x) log2 P (x) = −E[log2 P (X)]. (2.2.2)

2.2.3 Joint Entropy

Consider two random variables X and Y jointly distributed according to the PMF P (x, y).

Their joint entropy [15] is

H(X,Y ) = −
∑
x

∑
y

P (x, y) log2 P (x, y). (2.2.3)

The joint entropy measures the amount of uncertainty in the two random variables X and Y

taken together. We can generalize joint entropy to an arbitrary number of random variables
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and obtain the following

H(X1, X2, · · · , Xn) = −
∑
x1

∑
x2

· · ·
∑
xn

P (x1, x2, · · · , xn) log2 P (x1, x2, · · · , xn). (2.2.4)

2.2.4 Conditional Entropy

Given two random variables X and Y , their conditional entropy [15] is defined as

H(X|Y ) = −
∑
x

∑
y

P (x, y) log2 P (x|y). (2.2.5)

The conditional entropy is a measure of how much uncertainty remains about the random

variable X, when we know the value of Y .

From this equation we can drive the following identity

H(X|Y ) = −
∑
x

∑
y

P (x, y) log2

P (x, y)

P (y)
(2.2.6)

= −
∑
x

∑
y

P (x, y) (log2 P (x, y)− log2 P (y))

= −
∑
x

∑
y

P (x, y) log2 P (x, y)−
(
−
∑
x

∑
y

P (x, y) log2 P (y)

)

= −
∑
x

∑
y

P (x, y) log2 P (x, y)−
(
−
∑
y

P (y) log2 P (y)

)

= H(X,Y )−H(Y ) (2.2.7)

Some of the properties of the entropic quantities defined above are as follow:

• Non negativity: H(X) ≥ 0. This quantity is zero if and only if X is deterministic.

• Monotonicity: Conditioning always reduces entropy:

H(X|Y ) ≤ H(X)
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• Entropy is unrelated to the temporal structure of the data. In other words, entropy

does not change by randomly shuffle around the time points. For example, two signals

such as random noise and sine wave might be very different and it can be due to their

temporal structure and not their distributions of data values and hence these two signals

can have similar entropy based on the “ timeless” distribution and not on the temporal

structure.

2.2.5 Mutual Information

Mutual information between two discrete random variables X and Y is given by

I(X;Y ) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)
(2.2.8)

= H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y ). (2.2.9)

Note that for any random variables, X and Y , I(X;Y ) ≥ 0, with equality if and only if X

and Y are independent [15].

It can be seen from eqn. (2.2.9) that the mutual information is the difference between uncer-

tainties about X before and after observing Y so it can be defines as the amount of reduction

in uncertainty in one variable after having knowledge of another variable.

Some of the properties of mutual information are as follows:

• Mutual information is symmetric, i.e. I(X;Y ) = I(Y ;X).

• For a given H(X), I(X;Y ) is maximum when H(X|Y ) = 0, i.e. X is completely

defined by Y . In this case I(X;Y ) = H(X). Therefore, we can interpret entropy as the

maximum amount of information that can be gained about a random variable and it is

sometimes called self-information of X.
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• I(X : Y ) = 0 If and only if X and Y are two independent random variables.

• While the Pearson correlation coefficient does not permit the detection of non-linear

relationships, mutual information can be used to measure non-linear associations.

In this thesis, mutual information is employed to estimate the amount of information a neu-

ronal postsynaptic response carries about the preceding presynaptic interspike intervals in a

model of activity-dependent GABAergic synapses.

2.2.6 Differential Entropy

The concept of entropy can be generalized to continuous random variables. However, it

should be noted that the discrete Shannon entropy as defined in eqn. (2.2.1) is not an approx-

imation of the analogous continuous entropy [15]. In other words, the continuous Shannon

entropy cannot be derived by discretizing the continuous random variable and letting the num-

ber of intervals tend to infinity and passing to the limit. To perceive how this issue emerges,

assume X is a continuous random variable with probability density function fX(x). Suppose

that one could discretize this variable with precision ∆x across the whole domain of X. It is

clear that the probability of observing values of X in an interval of width ∆x centered around

xi is Pi = fX(xi)∆x, where
∑

i Pi = 1. The entropy of discretized version of X, which we

denote by X∆, is given by

H(X∆) = −
∑
i

f(xi)∆x log2 (f(xi)∆x)

= −
∑
i

f(xi)∆x log2 f(xi)− log2 ∆x
∑
i

f(xi)∆x

= −
∑
i

f(xi)∆x log2 f(xi)− log2 ∆x
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As long as f(x) log2 f(x) is Riemann integrable, we know that as ∆x approaches zero the first

term on the right hand side becomes the integral, that is,

−
∑
i

f(xi)∆x log2 f(xi)
∆x→0−−−−→ −

∫
f(x) log2 f(x)dx

Thus we see that

H(X∆) = −
∫
f(x) log2 f(x)dx− log2 ∆x (2.2.10)

As ∆x→ 0 the entropy diverges

H(X) = −
∫
f(x) log2 f(x)dx+∞,

which shows that knowing a continuous quantity requires an infinite amount of information.

Therefore, it is not feasible to obtain the entropy of continuous random variable based on

Shannon entropy. However, it is practical to compute the difference between entropies of

continuous random variables by taking the limit ∆x → 0, assuming same precision ∆x for

both variables, because the term log2 ∆x will cancel out. Therefore, the difference between

entropies of two random variables X and Y is given by

H(X∆)−H(Y ∆) = −
∑
i

f(xi)∆x log2 f(xi) +
∑
i

f(yi)∆x log2 f(yi)

A measure of entropy called differential entropy of continuous random variable X with PDF

fX(x) ignores the divergent term; it is defined as

h(X) = −
∫
fX(x) log2 fX(x)dx. (2.2.11)

For more details regarding the limiting process, see [15].

Recall from Chapter 3.2.1 that because probability mass function 0 ≤ P (X = x) ≤ 1
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∀x ∈ D(X), then H(X) is always nonnegative. However, for a continuous random there

is no constraint on the probability density function fX(x) and it can take on values greater

than 1. This means it is possible that h(X) be negative which is counterintuitive.

Mutual information between two continuous random variables with same precision ∆ is the

difference between differential entropies and it is defined as [15]

I(X;Y ) =

∫
x

∫
y
f(x, y) log2

f(x, y)

f(x)f(y)
dxdy (2.2.12)

= h(Y )− h(Y |X)

=
(
H
(
Y ∆
)

+ log2 ∆
)
−
(
H
(
Y ∆|X∆

)
+ log2 ∆

)
= H

(
Y ∆
)
−H

(
Y ∆|X∆

)
= I(X∆;Y ∆)

Since I(X∆;Y ∆) = I(X;Y ), properties of discrete mutual information such as being nonneg-

ative and symmetric extend to continuous mutual information.

2.3 Estimation of Mutual Information

Quantifying the amount of information neuronal activity carries helps us to better under-

stand the statistical features of spike trains such as timing of spikes and interspike interval

patterns. However, estimation of information from empirical data can be problematic and in

many instances, there are not a known families of distributions that can describe the experi-

mental data. In such situations, a parametric approach to estimation of mutual information

is not possible and hence non-parametric approaches are recommended. Here, we consider

two non-parametric classes of information estimators.
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2.3.1 Partition Based Estimators

One of the traditional methods to estimating probability densities is the histogram. The

idea is to count the number of data points that fall into each interval of a certain partition

of the domain of the random variable. Roughly speaking this procedure corresponds to the

maximum likelihood estimator of probability densities. The corresponding entropy estimate

is written

ĤMLE = −
∑
x

P̂ (x) log2 P̂ (x),

where the unknown probability distribution P (x) is replaced by empirical probabilities P̂ (x).

This estimator is often called naive or maximum likelihood estimator (MLE) after the fact

that P̂ is the maximum likelihood estimator of P in the case of a discrete random variable X.

Estimation of information theoretic functionals from histogram-based probability density mod-

els depends on the choice of the number of intervals. While an optimal choice requires knowl-

edge about the underlying probability density function f , this knowledge is usually rare.

Instead, one suggestion is to choose the widths of the histogram intervals sufficiently large to

capture the major features in the data and ignore fine details due to random sampling vari-

ations [35]. Intervals that are too large fail to describe a sharply peaked probability density

function and will underestimate the information functionals. Conversely, intervals that are

too small lead to biases associated with imprecision and will overestimate the functionals.

Several guidelines exist for selecting the number of intervals. Sturge’s rule [67] is merely based

on the number of sampled points n and it is given by

nbins = 1 + log2 n. (2.3.1)

For moderate number of data points (less than 200) Sturge’s rule produces reasonable his-

tograms when data are normally distributed and symmetrical, so it maps the data into dis-

crete, symmetric, binomial classes. For an extremely large number of data points or a severely

skewed data, this method is not recommended. This is partly because the method only con-
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siders the number of data points and not the range of the distribution, and this can lead to

oversmoothed histograms and hence underestimates the appropriate number of bins [56].

Scott [55] formulated a data-based choice for the number of bins which asymptotically min-

imizes the integrated mean square error of a histogram estimate, f̂(x), of the true density

value, f(x),

IMSE =

∫
E
(
f̂(x)− f(x)

)2
dx,

and it is given as

nbins =
R× n1/3

3.49× s , (2.3.2)

where R is the range of sampled data and s is an estimated standard deviation. Scott considers

Tukey’s [69] suggestion to use the Gaussian density as a reference standard cautiously, but

frequently and assumed that data are normally distributed. Freedman and Diaconis [22]

reported a simple robust rule for choosing cell width. The Freedman and Diaconis Rule (FD

Rule) is to choose the bin width as twice the interquartile range of the data divided by the

cube root of the sample size

nbins =
R× n1/3

2× IQR,

where IQR = Q3−Q1 is the interquartile range which is the difference between 25th and 75th

percentiles of sample points. Unlike Scott’s Rule, the Freedman and Diaconis Rule does not

make any assumption about the underlying density function and hence it can be applied to

any data distributions. In the case of normal distribution both rules provide similar results.

The methods of selecting optimal number of bins outlined above are considered for one variable

so they can be applied to marginal entropy estimations. However, in estimating mutual

information or multivariate entropies based on histograms, care should be taken as the optimal

number of bins can be different for each variable. To address this issue, it is recommended

[10] to find the optimal number of bins using the selected method of interest for each variable,
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compute the ceiling of the average of the optimal number of bins, and apply this to all variables.

Bias

Information estimates based on binning are sometimes contaminated by bias. This bias

is caused by both an inadequate representation of the probability density function using a

histogram, and insufficient sample size. In fact, from Jensen’s Inequality it can be proved

that the entropy estimates obtained from the maximum likelihood estimator (MLE) of the

probability density function is negatively biased unless P is trivial.

Ep
(
ĤMLE

)
≤ H(P ).

In other words, we have equality in the above expression only when H(P ) = 0; in words,

the bias of the MLE for entropy is negative unless the underlying distribution P is supported

on a single point.

Theorem. The Maximum likelihood estimator for the entropy (ĤMLE) is negatively biased

Everywhere [51].

Proof. In the context of the probability theory, if X is an integrable real-valued random

variable and φ is a concave function, then

E (φ(X)) ≤ φ (E(X)) .

Since Entropy is a concave function [15], then we have

E
(
H(P̂ )

)
≤ H

(
E(P̂ )

)
, (2.3.3)

where P̂ = nx
n is a maximum likelihood estimator of P , nx is the number of success in Bernoulli
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trials. Since

E(P̂ ) = E(
nx
n

) =
1

n
E(nx) =

1

n
(nP ) = P,

therefore P̂ is an unbiased estimator of P and we can rewrite (2.3.3) as

E
(
H(P̂ )

)
≤ H(P )

E(H(P̂ ))−H(P ) ≤ 0

Bias(Ĥ) ≤ 0.

Therefore, ML estimator (also called “plug-in” - by Antos & Kontoyiannis, 2001 [5])will always

be negatively biased unless the underlying distribution P is supported on a single point in

which H(P ) = 0.

It was shown in [30, 48, 25] that the bias of entropy and mutual information associated with

sample sizes can be estimated and the expectation of ĤMLE is given by

E
(
ĤMLE

)
= H − M − 1

2n ln 2
,

where M is the number of bins. The mutual information is a sum of entropies, so we extend

expression 2.3.4 to estimate the bias of mutual information [30] given by

E
(
Î(X;Y )

)
= I(X;Y ) + ∆I(X;Y ),

with ∆I(X;Y ) =
Mxy−Mx−My+1

2n ln 2 . Here Mx, My, Mxy denote the number of bins for marginal

and joint variables X and Y . However, as it was mentioned earlier, it is recommended to

use same number of bins for different variables as choice of bin width influence the entropy

estimation. In this case, if M = Mx = My and Mxy = M ×M , then we have

E
(
Î(X;Y )

)
= I(X;Y ) +

(M − 1)2

2n ln 2
, (2.3.4)
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Note that while the above bias corrections can be helpful, no bias correction is effective

when the amount of data is very limited. In fact, partition-based estimators suffer from the

“curse of dimensionality”, a problem related to the sparsity of the available data when the

number of random variables is large [74]. This problem exists due to limited amounts of data

in the analysis of physiological systems. In other words, the number of bins (M) in a regular

partition grows exponentially (Mdim) with the number of dimensions of the data and can

exceed the number of observations n. The result in sparse data with many empty bins leading

to large biases for information functionals. It is possible to consider adaptive partitions where

cells vary to accommodate the distribution of observations. Optimized estimators use adaptive

bin sizes having equal numbers of observations n(i, j) for all pairs. However, these estimators

may still have systematic errors resulting from approximating I(X,Y ) by Ibinned(X,Y ), and

the approximation of probabilities by relative frequencies.

2.3.2 Metric Based Estimators

It is ideal to find an asymptotically unbiased estimator of entropies of continuous proba-

bility distribution from a sample of observations on a Euclidean vector space that can avoid

the difficulties associated with binning. Kozachenko and Leonenko [36] developed an entropy

estimator, referred as to the “KL estimator” based on a nearest neighbor search. They show

that for a finite sample drawn from a continuous probability distribution in a Euclidean space,

k-nearest neighbor (k-NN) distances (i.e. the distance from a point to its kth nearest neighbor

amongst the sample points, in some metric on the space) provide an asymptotically unbiased

and consistent estimator of entropy. This class of estimators is based on the notion that the

larger the distance between one point to its nearest neighbor, the smaller the local density is

around that point.

The KL estimator implies that to estimate information theoretic functionals it is not neces-

sary to explicitly estimate the full probability density function from the sample observations.

A simple example is when estimating the mean of n sample points without estimating its
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probability distribution. Instead we easily apply the formula 1
n

∑
xi which provides direct

estimation of the mean from samples without estimating the underlying distribution. In what

follows, we refer to Kozachenko and Leonenko [36] estimator as “KL entropy”.

Kozachenko-Leonenko (KL) entropy estimates of one dimensional distributions

Let X be a continuous random variable with values defined in a metric space, i.e., there is

a distance function ‖x − x′‖ between any two realizations of X. Let f(x) be a probability

density function on a real line X. The goal is to estimate differential entropy defined by

h(X) = −
∫
x∈D(X)

f(x) log2 (f(x)) dx (2.3.5)

from a sample of realizations x1, · · · , xn drawn from f(x).

We seek an estimate for differential entropy that depends continuously on observations. We

exploit the continuous nature of f(x), but we keep the estimation procedure local so that the

sensitivity to the shape of f(x) is preserved.

The first step is to notice that a differential entropy term (2.3.5) can be rewritten as

h(X) = −E (log2 f(X)) .

Hence, we can approximate differential entropy h by the sample mean of log2 f(x) evaluated

at the points x = xi, i = 1, · · · , n without explicitly estimating its PDF. The approximation

is given by

h(X) ≈ −1

n

n∑
i=1

log2 f(xi).

Therefore, if we can find an unbiased estimator for log2 f(x), say ̂log2 f(x), then we have an
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unbiased estimator for differential entropy h(X). Since we have

ĥ(X) = − 1

n

n∑
i=1

̂log2 f(xi)

E
(
ĥ(X)

)
= − 1

n

n∑
i=1

E( ̂log2 f(Xi))

= − 1

n

n∑
i=1

log2 f(xi)

= h(X).

In order to obtain the unbiased estimator ̂log2 f(Xi), we assume Qk (ε) to be the probability

distribution for the distance between xi and its kth nearest neighbor. The distance to the kth

nearest neighbor (kNN) can be seen to be related to a local density estimate since the larger

the distance is to kNN, the smaller the local density. Therefore, Qk (ε) dε can be treated as if

it were the probability that there is one point within the infinitesimal distance r ∈ [ε, ε+ dε]

from xi, that is k − 1 other points at smaller distances, and that n− k − 1 points have larger

distances from xk.

Let qi be the mass of the ε ball centered at xi so we have

qi (ε) =

∫
‖η−xi‖<ε

f(η)dη.

Using trinomial formula we obtain

Qk (ε) dε =
(n− 1)!

1!(k − 1)!(n− k − 1)!
× dqi(ε)

dε
× dε× qk−1

i × (1− qi)n−k−1,

or

Qk (ε) = k ×
(
n− 1

k

)
× dqi(ε)

dε
× qk−1

i × (1− qi)n−k−1.

Note thatQk (ε) is a probability density function and it can be easily checked that
∫∞

0 Qk (ε) dε =
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1. We can also compute

E (log2 qi (ε)) =

∫ ∞
0

(log2 qi (ε))Qk (ε) dε

=
k
(
n−1
k

)
Γ(k)Γ(n− k)

(
ψ0(k)− ψ0(n)

)
Γ(n)

= ψ(k)− ψ(n),

where ψ(x) is digamma function which is defined as the logarithmic derivative of the gamma

function, ψ(x) = Γ′(x)
Γ(x) . Assuming a uniform local density in a small environment around each

sample point, we can approximate f(xi) as follows:

f(xi) ≈
q (εi)

V
,

where V is the volume surrounding each sample point xi and is formulated as

V = cd × εdk(xi),

where cd = πd/2

Γ( d2+1)
is the volume of unit sphere in d dimension and εk(xi) is the distance

between the estimation point xi and its kth closest neighbor. Therefore, we have

q (εi) ≈ cd × εdk × f(xi)

and

log2 f(xi) ≈ log2 q(εi)− log2 cd − d log2 εk.
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So

−E
(

̂log2 f(xi)
)

= −E (log2 q(εi)) + log2 cd + dE (log2 εk(i))

h(X) ≈ −ψ(k) + ψ(n) + log2 cd +
d

n

n∑
i=1

log2 εk(i)

Therefore,

ĥ(X) = −ψ(k) + ψ(n) + log2 cd +
d

n

n∑
i=1

log2 ε(i). (2.3.6)

Eqn. (2.3.6) is unbiased if density f(xi) is uniform. It is shown in [36, 39] that the bias of the

underlying estimates is caused by non uniformity of the underlying density.

Similarly, let Z = (X,Y ) be a random variable and let ‖.‖ be maximum norm defined as

‖z− z′‖ = max{‖x− x′‖, ‖y− y′‖} while any norm can be used for X and Y, d and cd in eqn.

(2.3.6) are replaced by dx + dy, and cdxcdy , respectively. Therefore,

ĥ (X,Y ) = −ψ(k) + ψ(n) + log2 cdxcdy +
dx + dy
n

n∑
i=1

log2 εk(i). (2.3.7)

From eqn. (2.3.6) and (2.3.7) we can estimate mutual information in terms of entropies for

the fixed k.

The above estimator is asymptotically unbiased and consistent. The consistency of this esti-

mator has been proven for k = 1 by the original authors [37] and for general k by [62]. The

bias is minimal compare to partition-based and plug-in estimators [47]. Victor [71] showed

that by using the KNN approach, data efficiency can be as much as 1000 times greater than

that of histogram strategies for electrophysiological data sets. Also, the KL estimator applies

an adaptive resolution since the distance scale depends on the underlying density function.

In addition, the search for the closest neighbor is a classical problem that has received a lot

of attention and for which several algorithms exist that make the procedure computationally

more efficient [29, 77]. However, the KL estimator will suffer from the curse of dimensionality
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if the small sample size in high dimensional space. Also, it is important to note that the

probability densities involved in computing mutual information from individual terms are of

different dimensionality. Therefore, for fixed k, different distance scales are used for spaces of

different dimensions. For instance, the distance to the kth neighbor in the joint space tends to

be larger than the distance to the neighbors in the marginal spaces. As a result, the size of the

ε-ball within which we assume that the density of the sample distribution is constant depends

directly on the dimensionality of the samples. Therefore, the biases of the estimated entropies

which depends on the validity of this assumption would be non-zero as they would be different

in ĥ(X), ĥ(Y ), and ĥ(X,Y ). This might lead to biased estimation. To avoid this problem,

Kraskov and his collaborators [39, 38] provided a methodology to adapt the KL estimator to

estimate mutual information. Their estimator is referred to as the KSG estimator. The KSG

estimator estimates mutual information via KL estimator for entropies with a choice of near-

est neighbor parameter k. In particular, in this algorithm k is varied for each sample point

so that the radii of the corresponding ε-ball is approximately the same for the joint and the

marginal spaces. Therefore, we use a fixed k only in the higher dimensional space and project

the distance scale set by this k into the lower dimensional spaces. Then an estimate for mutual

information is obtained by counting the number of sample points (nx(i) or ny(i)) that fall

within a set distance for each point in the marginal space. Hence the KSG entropy estimator is

ĥ(X) = − 1

n

n∑
i=1

ψ[nx(i) + 1] + ψ(n) + log2 cdx +
dx
N

n∑
i=1

log2 ε(i).

Note that the systematic biases in ĥ(X), ĥ(Y ), and ĥ(X,Y ) will not cancel exactly, however

the probability that they will approximately cancel are greater with the KSG procedure than

had we used different length scales in the three estimates. The real proof comes of course

from detailed numerical tests [39].

The estimate of mutual information between two random variables obtained from the KSG
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algorithm is then [39]

Î(X;Y ) = ψ(k)− < ψ(nx + 1) + ψ(ny + 1) > +ψ(n),

where < · · · >= 1
n

∑n
i=1 Ê (· · · (i)) is the averages of nx and ny over all samples.

The KSG estimator is directly extendible to multi-dimensional information [39] and can be

written as

Î(X1, X2, · · · , Xm) = ψ(k) + (m− 1)ψ(n)− < ψ(nx1) + ψ(nx2) + · · ·+ ψ(nxm) >,

Note that both of the KL and KSG algorithms for information estimator are implemented in

the Java Information Dynamics Toolkit (JIDT) [42]. The code was written in Java but it can

be called directly from MATLAB, R, and Python.

In brief, KSG estimator is more data efficient and accurate compare to other methods such as

histograms and so it allows us to analyze limited and possibly noisy experimental data sets.

Also, the KSG algorithm is more resistant to the biases associated with high dimensional

variables better than histogram techniques. Therefore, with limited data originating from

an unknown distribution is common in neuroscience, the KSG improves the applicability of

information theoretic functionals.

In the next Chapter, we focus on the use of partition-based and KSG estimators using a

electrophysiological data set.



Chapter 3

Information Processing in

Hippocampal Interneuron Synapses

Changes in the strength of synaptic connections are attributed either to the depletion of

readily releasable vesicles, leading to synaptic depression, or from an increased probability of

releasing neurotransmitter, leading to synaptic facilitation. These changes in the temporal

structure of neuronal activity consequently effect the magnitude of postsynaptic response.

Therefore, we expect that postsynaptic response carries some information about the temporal

pattern of presynaptic activity.

The critical role of the hippocampus in support of memory and learning processes cannot be

ignored. Recent studies showed that temporal coding is a strong aspect of hippocampal firing

patterns [32]. The goal of this chapter is to quantify the amount of information contained

in the postsynaptic response induced by a Poisson spike train about the preceding temporal

activity such as interspike intervals in pairs of synaptically connected neurons.

31



3.1. MOTIVATION 32

3.1 Motivation

Several studies have investigated the amount of information transfer at synaptic level. For

instance, in [76] the mathematical model of calyx of Held was used to compute information

transmission at the glutamatergic synapse. They determined that the amplitude of the re-

sponse decreases as the mean firing rate (the number of spike per unit of time) increases.

Markram and his collaborators in [23] consider synaptic transmission in the neocortex, and

estimate the amount of information carried by a single response to a sequence of interspike

intervals. They showed that for any given dynamic synapse, there is an optimal frequency

of input stimulation for which the information content is maximal. We begin this chapter

by introducing a model of facilitation and depression (FD) [66] that was fit using experi-

mental data recorded from a hippocampal inhibitory GABAergic interneuron pyramidal cell

connections. For fixed frequency input spikes at frequencies in the range of theta (∼ 4-12

Hz) and gamma (∼ 20-100 Hz) oscillations. These results apply to the micro-circuits in the

hippocampus that are responsible for the interaction of theta and gamma frequencies associ-

ated with learning and memory. A control state was compared to one where a pharmaceutical

muscarinic neuromodulator was applied. Next, we apply information theoretic functionals

to the facilitating and depression model to investigate the information processing properties

of this synapse under control and neuromodulation conditions. We examine frequencies that

range from near zero to 100 Hz because gamma and theta brain rhythms and these rhythms

carry distinct functions and allow the brain to take in and to learn new information [11]. We

then apply techniques that measure the dependence of the response on the exact history of

presynaptic activity. This effort reveals some unexpected distinctions between control and

muscarine-added cases. Finally, we end this chapter with a conclusion and brief discussion of

techniques. It should be noted that both [23, 76] have directly inspired the work presented in

this chapter.
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3.2 FD model

Whole-cell recordings from synaptically connected pairs of neurons in mouse hippocampal

slices from PV-GFP mice were performed [40]. The presynaptic neuron was a PV basket

cell (BC) and the postsynaptic neuron was a CA1 pyramidal cell. In this experiment they

used 1-2 ms duration supra-threshold current steps in order to evoke action potentials in the

PV-BC from a resting potential of −60 mV. Also, trains of 25 action potentials are evoked at

5, 50, and 100 Hz from the presynaptic basket cell. The outcome in the postsynaptic neuron

was the activation of GABAA-mediated inhibitory postsynaptic currents (IPSCs). Upon re-

peated stimulation, the amplitude of IPSC decreases to a steady-state level. It should be noted

that muscarine binds and activates presynaptic acetylcholine muscarinic receptors (mACHRs)

which lead to inhibition of presynaptic calcium channels. This decreases the amount of cal-

cium that floods the terminal upon arrival of the action potential and causes a reduction in

the response overall and the amount of depression in the train. More details of this experiment

can be found in [40].

Stone and colleagues in [66] parametrize a model of presynaptic plasticity with the exper-

imental data obtained from [40]. In this model the release probability Prel is the fraction

of a pool of synapses that release a vesicle upon arrival of a spike at the synaptic terminal.

Following the release of vesicles upon stimulation, a portion of synaptic sites cannot release

vesicles for a certain period of time. Repeated simulation causes a depletion of the vesicle

pool which leads to depression.

The peak of measured IPSC is considered to be proportional to Ntot the total number of

synapses that receive stimulation that are release ready (Rrel), e.g. Ntot×Rrel, multiplied by

the release probability Prel. Therefore, we can assume that the peak IPSC ∼ Ntot×Rrel×Prel,
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where Rrel is the fraction of vesicles that are ready to release. Both Rrel and Prel range between

0 and 1 and without loss of generality, we consider peak IPSC proportional to Prel ×Rrel.

The presynaptic calcium concentration Ca is assumed to follow first order decay kinetics

relative to a base concentration, Cabase. We assume that Cabase = 0 because in the absence

of action potential the concentration of calcium is fairly low. The evolution equation for Ca

is

τca
dCa

dt
= −Ca, (3.2.1)

where τca is the calcium decay time constant in msec. Upon an action potential, calcium

channels open and an influx of calcium ions into the synaptic terminal increase the concen-

tration of calcium by an amount δ (measured in µm): Ca→ Ca+ δ at the time of the pulse.

The calcium concentration is scaled by the value of δc under control conditions, e.g, C = Ca
δc

.

Following an action potential at a time t = 0, the calcium concentration C increases additively

by an amount of ∆ = δ
δc

, and therefore solution to the eqn. (3.2.1) is given by

C = C0e
−t/τca + ∆. (3.2.2)

Note that since ∆ = 1 in the control condition, eqn. (3.2.2) becomes

C = C0e
−t/τca + 1.

Following the work of Lee and colleagues [41], it is assumed that Prel increases monotonically

as function of calcium concentration in a sigmoidal fashion toward an asymptote value of

Pmax. The mechanism of vesicle binding and release depends upon a major calcium receptor

(synaptotagmin-1) in the presynaptic terminal that binds the incoming calcium. This follows
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a Hill equation with coefficient 4, and hence Prel does so according to:

Prel = Pmax
C4

C4 +K4
,

where K is the half-height calcium concentration. Both K and Pmax are parameters deter-

mined from the experimental data. It should be mentioned that Pmax is calculated to be 0.87

in control condition and 0.27 in the muscarine condition through the mean-variance analysis

[9, 40].

It is shown in [19, 65, 72] that the rate of recoveryKrecov from refractory state depends on the

calcium concentration in the presynaptic terminal and it follows a Hill equation with coefficient

1, starting at some kmin, increasing to kmax asymptotically as the calcium concentration

increases, with a half height of Kr. Mathematically, the recovering rate is

krecov = kmin + ∆k
C

C +Kr
,

where ∆k = kmax − kmin.

The fraction of release-ready vesicles Rrel obeys the ordinary differential equation

dRrel
dt

= krecov (1−Rrel) . (3.2.3)

The differential equation (3.2.3) can be solved for Rrel and the solution is given by

Rrel = 1− (1−R0)

(
C0e

−t/τca +Kr

C0 +Kr

)∆k

e−kmint. (3.2.4)

Recall IPSC ∼ Prel × Rrel, and upon vesicle release, Rrel is reduced by the fraction of

synapses that fired results in Rrel → Rrel − PrelRrel. This value, Rrel, can be assumed to be

the initial condition for solution to the ODE eqn. (3.2.4). Given an interspike interval T , a
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two dimensional map in C and Rrel that captures the peak value of the IPSC is given by

Cn+1 = Cne
−T/τca + ∆

Prn+1 = Pmax
C4
n+1

C4
n+1 +K4

Rn+1 = 1− (1− (1− Pn)Rn)

(
Cne

−T/τca +Kr

Cn +Kr

)∆k

e−kminT . (3.2.5)

Note that for the purpose of simplicity we set Pr = Prel, R = Rrel, and normalized IPSC as

Pr.

3.2.1 Parameter estimation

The parameter values are estimated by numerically minimizing the objective function (sum

of the squared differences between predicted and observed values function) using the functions

LSQNONLIN and Monte Carlo Markov Chain (MCMC) [27, 26]. These functions are available

in the Matlab. The parameter description and fitted values are shown in the Tables 3.2.1 and

3.2.2.

Table 3.2.1: Parameters in the map given by eqn. (3.2.5)

Parameter Description

∆ Increase in the amount of calcium relative to that seen under control conditions
Pmax Maximum probability of release

K Half calcium concentration value for probability of release function
kmin Minimum rate of recovery of synapses
kmax Maximum rate of recovery of synapses
Kr Half calcium concentration value for rate of recovery function
τca Decay constant for calcium

It should be noted that ∆ = 1 under control condition, and ∆ = 0.17 in the muscarine

condition.
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Table 3.2.2: Fitted parameter values

Parameter Fitted value

K 0.2
kmin 0.0017 1/msec
kmax 0.0517 1/msec
Kr 0.1
τca 1.5 msec

3.2.2 Discussion of the model

A synapse can be classified to be depressing, facilitating or a mixture of the two, depending

on its response to a train of action potentials. A number of models have been developed based

on the condition that a synapse is either facilitating, depressing, or mixed, individually. This

model, however, is built so that it combines both facilitating and depressing mechanisms. In

other words, depending on the parameter values, facilitation, depression, and mixture of the

two can be represented by this model.

3.3 Numerical Study of the Response (Pr) Distributions

Recall that postsynaptic responses are generated from the given map in (3.2.5). Assume

that the interspike intervals (ISI’s), identified by T in the map are generated from an ex-

ponential distribution with firing rates λ > 0. We are interested in exploring the effect of

different firing rates on the postsynaptic response in muscarine and control conditions. Before

presenting more details, it is important to understand the distribution of the data using a

graphical method. In fact, John Tukey [69] recommended the practice of exploratory data

analysis (EDA) as an essential part of the scientific process. We begin our analysis using

histograms with equal bin width using the Freedman and Diaconis Rule introduced in section

2.3.2 of chapter 2. We generate 105 samples from Pr according to the map and discard initial

transient. The relative frequency histograms of Pr for the firing rate in theta, gamma, and
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higher (non-physiological, for comparison) under control conditions are shown in Figure 3.1.

There is a clear difference in relative frequency distributions under stimulation at 0.5, 3, 8,

10, 20, and 100 Hz. At the low firing rates between 0.1 and 1 Hz, the relative frequency

distributions are skewed to the left. Notice that for this range of firing rates the distribution

is peaked near Pmax. This is expected since the exponentially distributed ISI’s with low firing

rates between 0.1 − 1 Hz contribute to refilling unavailable docking sites and hence the size

of the readily releasable pool. This size is likely to play an important role in the probability

of release at a synapse and so on increase in its Pr values. For very high firing rates (non-

physical, 200 Hz and larger), the distributions are skewed to the right and peaked near very

small values of Pr, almost 0, reflecting the fact that due to very small the ISIs, synapses do

not have enough time to recover and return to a release-ready state. Therefore, variation in

ISIs in the stimulus, as well as by the transmitter release contribute to the Pr distributions.

As the firing rate increases from 0.5 to 10 Hz, the distribution of Pr becomes less severely

skewed and more spread out over the entire interval. This is due to the range of firing rates

presented in the exponential distribution of ISIs that results in more variation in responses.

The coefficient of variation values (CV) for Pr’s in Table 5.6.2 support these conclusions. In

addition, the left-skewed Pr distribution obtained under very low firing rates shifts toward

being flat or uniform at around 1.8 Hz before achieving the maximum variation at 3 Hz. Fol-

lowing this event, the peak of the distribution starts shifting to the left and variation slightly

decreases. Note that 8 and 10 Hz cover the range of rates considered to be the theta rate.

Here the synapse is the most sensitive, allowing for widely varying responses.

For firing rates between 20 and 100 Hz (the gamma range), the variation of response values

is lower compared to the ones in the theta range and the peak sharpens on the left as the

rate in increased. However this transition is slow and the peak near 0.1 persists for rates

below 200 Hz and after which it is subsumed into the peak near 0. Therefore, it appears that

the responses have distinct frequency “tunings” at physiological rates. From Table 5.6.2 and
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Figure 3.1, it is easy to see that the histograms differ depending on the firing rate and that

the mean and variance are reduced at higher firing rates.

Recall that when fitting the model to the muscarine data, a smaller value of ∆ was needed

(∆ = 0.17). This situation is consistent with the assumption that muscarine shuts down the

influx of calcium ions to the presynaptic terminal and hence reduces the size of response. This

mechanism, however, reduces the relative amount of depression at firing rates around gamma

which can have important implications for the effect of neuromodulation at these firing rates.

It is important to investigate how this mechanism is revealed through the distribution of

Pr. Figure 3.2 shows the relative frequency distribution of Pr under muscarine condition for

varying firing rates. Similar pattens can be observed in the Pr distribution histograms under

muscarine condition as were seen in control condition. However, as can be expected, since

Pmax = 0.27 in muscarine condition, Pr can take a range of values from 0 to 0.27 compared

to control condition with Pmax = 0.87. From Figure 3.2 and Table 5.6.3, it can be seen that

for low firing rates between 0.1 and 0.5 Hz, the distribution is left skewed and peaked near

Pmax. At 3 Hz, the distribution is roughly symmetric and centered around 0.19. Although

the peak of distribution moves gradually towards the left as firing rates increases, the sym-

metric shape of the distribution is preserved. Also, similar to control condition, as firing

rate increases, the mean and variance of Pr decreases. Note that the mean and variance is

smaller in muscarine conditions compared to that of the control conditions throughout the

firing rates. Therefore, we conclude that muscarinic synapse focuses the response in a nar-

row interval centered around a small Pr values. It should be noted that in both conditions

the dynamic of the map creates a low pass filter, which is an indication of a depressing synapse.
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Figure 3.1: Estimated normalized response (Pr) distributions with the control parameter set
under stimulation at firing rates A) 0.5, B) 3, C) 8, D) 10, E) 20, and F) 100 Hz. Horizontal
axis shows the Pr values and the vertical axis is the relative frequency.



3.3. NUMERICAL STUDY OF THE RESPONSE (PR) DISTRIBUTIONS 41

0.0

0.1

0.2

0.3

0.4

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.08

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

 Pr  Pr Pr

Pr Pr Pr

R
e

la
ti
v
e

 F
re

q
R

e
la

ti
v
e

 F
re

q
0.5 Hz 3 Hz 8 Hz

10 Hz 20 Hz 100 Hz

A) B) C)

D) E) E)

Figure 3.2: Normalized response (Pr) distribution with the muscarine parameter set under
stimulation at firing rates A) 0.5, B) 3, C) 8, D) 10, E) 20, and F) 100 Hz. Horizontal axis
shows the Pr values, vertical axis shows the relative frequency.

Table 3.3.1: Summary statistics of Pr’s under control conditions.

x̄ s CV min Q1 M Q3 max

rate= 0.5 hz 0.736 0.178 0.242 0.108 0.664 0.826 0.866 0.868

rate= 3 hz 0.437 0.189 0.432 0.039 0.280 0.415 0.581 0.867

rate= 8 hz 0.275 0.122 0.445 0.008 0.181 0.249 0.346 0.803

rate= 10 hz 0.249 0.108 0.435 0.012 0.169 0.225 0.309 0.776

rate= 20 hz 0.184 0.069 0.377 0.006 0.142 0.172 0.217 0.556

rate= 100 hz 0.107 0.040 0.374 0.003 0.080 0.121 0.136 0.243
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Table 3.3.2: Summary statistics of Prs under muscarine conditions.

x̄ s CV min Q1 M Q3 max

rate= 0.5 hz 0.250 0.019 0.078 0.145 0.243 0.260 0.264 0.264

rate= 3 hz 0.200 0.031 0.156 0.103 0.178 0.201 0.225 0.264

rate= 8 hz 0.153 0.027 0.177 0.078 0.133 0.151 0.172 0.252

rate= 10 hz 0.143 0.025 0.175 0.074 0.125 0.141 0.159 0.236

rate= 20 hz 0.114 0.018 0.162 0.041 0.102 0.113 0.125 0.205

rate= 100 hz 0.074 0.010 0.135 0.024 0.068 0.075 0.080 0.202

We can compare the mean and peak of the Pr distribution for different firing rates under

both muscarine and control conditions. It can be seen in Figures 3.3 and 3.4 that the mean

and peak of the response distribution under control conditions are larger than those under

muscarine conditions. However, within the theta range, the peak of the distributions under

both control and muscarine conditions are very close, which can be interpreted that under

depression caused by these pharmaceutical applications the synapse response remains stable

at theta frequencies. Also, the amount of depression relative to the initial response of the

postsynaptic neuron is larger under control conditions compared to muscarine: the mean

ranges from 0.8 to roughly 0.1 under control condition, a change of about 0.7 overall, while

under muscarine conditions, it ranges from 0.3 to 0.5; a significantly smaller range of .25. This

confirms the assertion discussed in [66].
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Figure 3.3: Mean of the normalized response
Pr distribution plotted against firing rate.
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Figure 3.4: Peak of the normalized response
Pr distribution plotted against firing rate.

3.4 Entropy of Pr vs. Mean Firing Rate

Recall from section 2.2, we introduced the notion of mutual information. In this section, we

only specify some details of the information computation performed for deterministic models

of depressing synapse in muscarine and control conditions. We estimate the information about

the preceding interspike intervals (ISIs) contained in the postsynaptic response (Pr). The

synapse is stimulated by the spike train S with particular mean firing rate, and we denote

the associated series of interspike intervals by IS = {t1 − T1, t2 − t1, t3 − t2, · · · , tN − tN−1},

where T1 is considered to be the beginning of the recorded trial.

We assume a popular model for spike trains, the homogeneous Poisson process, which is

commonly used by the neuroscience community, because of its success in describing spike

data recorded in vivo. Here we mention two properties which account for its adequacy.

• If we write IS = {ISI1, ISI2, · · · , ISIN−1}, the we can consider the ISI’s to be inde-

pendent and identically distributed random variables.

• fX=ISI(x;λ) = λe−λx has exponential distribution, where λ is referred to as the mean
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firing rate for spike train, 1
λ is the mean ISI of the process.

The estimated mutual information between Pr and the ISIs is obtained from Î (Pr; ISIs) =

Ĥ(Pr) − Ĥ(Pr|ISIs). However, because the synapse is deterministically modeled, the post-

synaptic response is uniquely determined by the sequence of preceding interspike intervals.

Recall from subsection 2.2.5, if Pr is completely defined by ISIs, then I(Pr; ISIs) = H(Pr).

Thus, the information contained in Pr about the preceding ISIs is solely given by the uncon-

ditional entropy of Pr distribution. The Pr variables are discretized using bin sizes obtained

by applying the FD Rule, which was presented in detail in chapter 2 subsection 2.3.1.

Figure 3.5 illustrates the entropy of the postsynaptic response as a function of the mean firing

rate obtained from exponentially distributed ISIs for both control and muscarine parameter

sets. Figure 3.5 (b) aims to show the behavior of information entropy in the limit for large

mean firing rates ranging from near 0 to 1000 Hz, while Figure 3.5 (a) zooms in on the phys-

iological range of mean firing rates between 0 and 100 Hz.

Within range of 0.1 to 100 Hz mean firing rates, there is a local maximum in entropy for both

control and muscarine conditions. This maximum entropy for both conditions occurs between

1 and 4 Hz. In this range (0.1− 100), the Pr distribution is spread out between a peaked Pr

at high values to the one at lower values, with large variability in the size of response. Under

control conditions, for larger firing rates (non- physiological) the entropy increases again to a

local maximum near 200 Hz, followed by decay as the Pr distribution declines to zero. Under

muscarine conditions, however, the second local maximum occurs around 400 Hz.

Under both conditions, the mean and variance of the Pr distributions are reduced at higher

firing rates, resulting in reduction in the entropy of postsynaptic response Pr distribution. This

is expected, since variance and information are interchangeable in the context of Shannon in-

formation theory and thus entropy increases when variation increases. [46, 7]. Therefore, it
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is likely that the deterministic model of synapse behavior reflects less information at higher

firing rates.

We should mention that the size of postsynaptic response is a measure of strength in the

synaptic connection and so having a skewed or narrowed distribution peaked at higher values

of Pr leads to a stable synaptic connection, even when presented with a stochastic signal of

the Poisson type. Alternatively, distributional transitions from higher peaked values to lower

ones as the mean firing rate increases within the theta range, the entropy is maximized and

hence greater range of coupling strengths is created. The value of this strength depends on

the presynaptic activity of neuron.
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Figure 3.5: Entropy of the normalized response Pr when stimulated with Poisson distributed
spike trains of varying mean firing rate for the control and muscarine parameter sets.



3.5. THE STOCHASTIC MODEL OF THE POSTSYNAPTIC RESPONSE 46

3.5 The Stochastic Model of the Postsynaptic Response

In this section, we expand the model in section 3.2 introduced by Stone and her colleagues

[66] to a stochastic version in which individual vesicles available in release sites are released

probabilistically. We then measure the correlation between postsynaptic response PSR and

preceding ISIs and estimate the amount of information being transferred using information

theoretic functionals following the approach of Fuhrmann [23].

3.5.1 Model description

Noise is a fundamental constraint to information transmission. In 1920s, Adrian who was

one of the first to record from neurons noticed that neuronal responses were highly variable

across identical stimulation trials and only the average of responses could be related to the

give stimulus. [2, 3, 49]. Biologists refer to it as “Variability”, while engineers commonly call

it “Noise”. Therefore, the brain processes information in the presence of variability and so it

is natural to consider a model that takes into account the neuronal trial-to-trial variability.

Researchers established that one of the sources of this variability is the stochastic release of

neurotransmitter into synaptic cleft. Here, we follow the work of Katz and his colleagues to

describe the physiological mechanism of neurotransmitter release [64].

Upon the arrival of an action potential at a presynaptic terminal, the influx of calcium

through calcium channels leads to the fusion of some vesicles with the axon terminal mem-

brane at special release sites. This leads to the release of neurotransmitters into the synaptic

cleft. Each release site can release either one or zero vesicles. We denote the number of

release sites by Ntot. Each event, i.e., a release of neurotransmitter, occurs independently of

all others. This mechanism can be likened to flipping a coin at each release site and if the



3.5. THE STOCHASTIC MODEL OF THE POSTSYNAPTIC RESPONSE 47

coin lands head side up, the vesicle releases, otherwise no release occurs. Therefore, we can

assume that release of K vesicles from Ntot release sites follows a Binomial distribution with

two parameters (Ntot, Pr), and write K ∼ B(Ntot, Pr). The PDF is

P (k;Ntot, Pr) = P (K = k) =

(
Ntot

k

)
P kr (1− Pr)Ntot−k,

for k = 0, 1, · · · , Ntot, where
(
Ntot
k

)
= Ntot!

k!(Ntot−k)! is the binomial coefficient and Pr is the release

probability for each site following an action potential. Note that the variability is not only due

to the probabilistic nature of the number of vesicles being released, but also in the postsynap-

tic response to a single vesicle. This is due to many factors such as variation in the number

neurotransmitters contained in synaptic vesicles or variation in receptor binding [24]. Thus,

we assume that the size of the postsynaptic response (Qrep) at the time of the spike is not a

constant, but it follows Normal distribution with parameters mean µ and standard deviation

σ, with a two-sided truncation, and write Qresp ∼ N(µ, σ). Note that failure of a release re-

sults in a zero amplitude response from the postsynaptic neuron, thus it cannot be informative.

Therefore, the amplitude of postsynaptic response following each action potential is obtained

by combining the Binomial model of vesicle release with Normal model of a single response.

Hence the summation of responses evoked by each vesicle release is given by

Qresp =

 0 if K = 0,∑k
i=1Qrespi if K > 0,

where K is the number vesicle that are released from the total number of release sites. Note

that for K > 0, Qresp ∼ N(Kµ,
√
Kσ). Therefore the probability density function of the
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postsynaptic response to release of single vesicle is given

f(Qresp = q|µ, σ2) =


1√

2πσ2Ncts
e−

(q−µ)2

2σ2 if 0 < q < 2µ,

0 if O.W.
(3.5.1)

Where

Ncts =

∫ 2µ

0

1√
2πσ2

e−
(q−µ)2

2σ2 dq.

is a normalizing factor. We will use this formulation in what follows.

3.5.2 Mutual information calculations

We use Shannon information theory to estimate the mutual information content in the post-

synaptic response PSR, denoted by Qresp in subsection 3.5.1, about the preceding interspike

intervals ISIs in both muscarine and control conditions in the stochastic model of a synapse.

We stimulated the synapse with Poisson spike trains with varying mean firing rates. Therefore,

the estimated mutual information is given by

Î(PSR; IS) = H(PSR) +H(IS)−H(PSR, IS) (3.5.2)

For more details on calculation of mutual information, see chapter 2 subsection 2.3.1.

Figure 3.6 shows the results for the control and muscarine parameter sets. Under both condi-

tions, we observe a rapid decline in information transfer at stimulation firing rates above a few

Hertz, and maximal transfer which occurs between 0.1 to 2 Hz. This demonstrates the fre-

quency dependence of temporal information encoding. Larger interspike intervals (lower mean

firing rate) allow sufficient time for the release sites to recover, leading to a narrow and skewed

distribution of postsynaptic responses peaked around Pmax, and hence the communication of

information is very limited. In contrast, there is not enough time in very short interspike
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intervals (high firing rate) for the synapse to recover and all the responses are depressed and

accumulate near zero, leading to low information transmission. Between these two extremes,

interspike intervals have a significant effect on the amplitude of PSR. The major difference

between muscarine and control conditions is in the absolute value of the mutual information,

which is significantly lower under muscarine conditions. This is expected because the values

that PSR can take under muscarine conditions are smaller than those under control condi-

tions. This agrees with the results in [23], where mutual information in depressing synapses

is maximized at low firing rates.
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Figure 3.6: Estimated mutual information transmission between normalized postsynaptic
response PSR and exponentially distributed preceding ISIs with mean firing rates ranges
from 0.1 to 200 Hz.

3.6 Information “Stored” in the Postsynaptic Response

In previous section we showed that the dynamics of a synapse stores information originating

from the temporal structure of the preceding presynaptic activity such as spike timing or
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interspike intervals. This information is transmitted to the postsynaptic neuron through the

amplitude of the postsynaptic response. Therefore, we can assume that a synapse serves as

a “transit memory buffer” that stores and transmits information. It is clear that a synapse

can carry information about a finite number of preceding spike times. Our interest is in

estimating this quantity. Markram and Mass in 2002 [43] drew an interesting analogy by

comparing the information storage in a synapse about the preceding spike train to hashing in

computer science, where items from a large universe are assigned to addresses in s memory

structures with smaller number of slots than the number of items in universe V [14]. In our

case, the universe is all possible preceding spike trains and the slots in the memory structure

correspond to the dynamic states of the synapse.

Considering this, we estimate the amount of information contained in normalized postsynaptic

response (PSR) about the sequential number of the preceding presynaptic spikes. Here we

present two approaches. In the first approach, we compute the mutual information between

postsynaptic response and the summation of k preceding interspike intervals, for k = 1, · · · ,m.

This approach, i.e. using single summary measurement to reflect the temporal activity of

presynaptic neuron, however, might be biased because a presynaptic neuron with the same

measured value may have a distinct combination of ISIs that effects the PSR differently and

thus this single measurement ignores the subtleties of the exact sequence. For instance, a

relatively long ISI followed by a short ISI results in a PSR that is smaller than the reverse,

although the sum of two is the same. The second approach is to compute mutual information

between PSR and an m− tuple of preceding interspike intervals where m is an integer.

Information between postsynaptic response PSR and sum of preceding ISIs

We compute the mutual information between postsynaptic response and a sum of the pre-

ceding ISIs. A larger number of terms in the sum indicates that the spikes that occurred

further back in time. Let the beginning of the recorded trial be the time when the first spike

occurs (t1 = 0). Let T1 = ISI(1),T2 = ISI(2) +ISI(1),T3 = ISI(3) +ISI(2) +ISI(1), · · · ,Tk =
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ISI(k) · · ·+ ISI(2) + ISI(1) be a vector of the sum of the m preceding ISIs, in order. It can

be simplified as

Tk =

k∑
i=1

ISI(i), k = 1, · · · ,m,

where m > 0 is a natural number. Thus, the estimated mutual information between postsy-

naptic response and the m preceding interspike intervals is given by

Î (PSR;Tk) = Ĥ (PSR)− Ĥ (PSR|Tk) , for k = 1, · · · ,m. (3.6.1)

In Figure 3.7, the information content in PSR is plotted against the sequential number of

preceding presynaptic interspike intervals for muscarine and control conditions, at 5 and 50

Hz. It comes as no surprise, given the result from preceding sections, that the information

content is significantly lower in muscarine compared to control condition. For both firing

rates, 5 and 50 Hz, in the control condition the estimated mutual information decreases as

more ISI terms are included in the sum. Hence the further back in time the sum goes, the

less the past terms ISI are directly involved in determining PSR. It can be seen that in

control conditions for 5 and 50 Hz, the PSR carries information about a sum of almost 4

preceding ISIs. This shows that depressing synapse can encode information about the sum

of 4 preceding interspike intervals. Also, mutual information in muscatine condition is less

dependent on the cumulative history of spikes as their consecutive terms proportions,
ISIk−1

ISIk
,

is almost constant and indicates hardly any changes as m increases. The reason for this is

simple. In the muscarine case the range of postsynaptic response range is narrow, and thus

cannot carry as much information from preceding ISIs.
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Figure 3.7: Information between the postsynaptic response and the preceding sums of
interspike intervals in control and muscarine cases.

3.6.1 Mutual information between normalized postsynaptic response PSR

and m-tuple inter-spike intervals ISI1, ISI2, · · · , ISIm

The second approach preserves the exact structure of the sequence of the preceding ISIs

but is much more computationally intensive.

Theorem. : [Chain rule for entropy][15]

Let X1, X2, · · · , Xm be drawn according to P (x1, x2, · · · , xm). Then,

H (X1, X2, · · · , Xm) =

m∑
i=1

H (Xi|Xi−1, · · · , X1) . (3.6.2)
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We can rewrite eqn. (3.6.2)

H (X1, X2, · · · , Xm, Y ) =

m+1∑
i=1

H (Xi|Xi−1, · · · , X1)

= H (Y |Xm, · · · , X1) +
m∑
i=1

H (Xi|Xi−1, · · · , X1)

H (Y |X1, · · · , Xm) = H (X1, · · · , Xm, Y )−H (X1, · · · , Xm) , (3.6.3)

where denote Xm+1 = Y .

As well as for entropy, a chain rule for information can be formulated.

Theorem. : [Chain rule for information][15]

Let X1, X2, · · · , Xm be drawn according to P (x1, x2, · · · , xm). Then,

I (X1, X2, · · · , Xm;Y ) =

m∑
i=1

I (Xi;Y |Xi−1, · · · , X1)

= H (Y )−H (Y |X1, X2, · · · , Xm) . (3.6.4)

For notational simplicity we will denote ISI with X and PSR with Y . Consider a single-

input (SI) and single-output (SO) channel with input interspike interval X and output postsy-

naptic response Y . The amount of transmitted information between a postsynaptic response

and preceding interspike interval can be simply calculated from eqn. (3.6.4) and is given by

I (Y ;X1) = H(Y )−H(Y |X1)

= H(Y ) +H(X1)−H(X1, Y ). (3.6.5)

Now consider a channel with two inputs preceding interspike intervals X1 and X2 and a single

output response Y . We can define the transmitted information I(< X1, X2 >;Y ) between the
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output and two inputs variables X1 and X2 jointly as

I (Y ;< X1, X2 >) = H(Y )−H(Y |X1, X2). (3.6.6)

The information can be rewritten by applying eqns. (3.6.2) and (3.6.4) to eqn. (3.6.6) to

obtain

I (Y ;< X1, X2 >) = H(Y )−H(X1, X2, Y ) +H(X1) +H(X2|X1)

= H(Y )−H(X1, X2, Y ) +H(X1) +H(X1, X2)−H(X1)

= H(Y ) +H(X1, X2)−H(X1, X2, Y ). (3.6.7)

We refer to this measure as the mutual information between response Y and the tuple <

X1, X2 >, and it can be interpreted as the reduction of uncertainty in the response Y due to

knowledge of < X1, X2 >.

Following McGill [45] we can extend the definition for mutual information to include more

than two preceding interspike intervals X1, X2, · · · , Xm that transmit to postsynaptic response

Y as follows

I(< X1, X2, · · · , Xm >;Y ) = H(Y )−H(Y |X1, X2, · · · , Xm)

= H(Y ) +H(X1, X2, · · · , Xm)−H(X1, X2, · · · , Xm, Y ).

Note that it is difficult to reliably estimate joint probability distributions of high dimension-

ality. The estimate of f(x1) is more robust than the estimate of f(x1, x2, · · · , xm). As we

mentioned in the previous chapters, the most common and well-known method of calculating

mutual information from empirical data is to use binning to create an approximate probability

density distribution. However, this method is prone to bias in higher dimensions. Therefore,

we use the KSG algorithm instead to estimate mutual information between the postsynaptic

response Y (PSR) as single-output and m preceding interspike intervals ISIs (X1, · · · , Xm)
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as a multivariate inputs.

In order to do this, we need to introduce yet another notion which is “Total Correlation”. In

1960 Watanable [73] was one of the first to discuss total correlation in detail, although the same

concept had been described previously by McGill [45]. Palus [50] and Weinholt and Sendhoff

[75] refer to it as “Redundancy”, while Tononi [68] called this measure “Neural Complexity

(CN)”. Total correlation is sometimes referred to as “multi-information” or “multivariate

mutual information” [6].

Definition 3.6.1. [45] Multi-information or total correlation or redundancy among a m+ 1

set of random variables, X1, X2, · · · , Xm, Y is defined as:

R(X1;X2; · · · ;Xm;Y ) =
m∑
i=1

H(Xi) +H(Y )−H(X1, X2, · · · , Xm, Y ).

This measure is symmetric, non-negative and non-decreasing with the number of variables.

For m = 1 this measure boils down to the mutual information,

R(X1;Y ) = I(X1;Y ).

For m = 2,

R(X1;X2;Y ) = H(X1) +H(X2) +H(Y )−H(X1, X2, Y ).
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If we add and subtract H(X1, X2), we obtain

R(X1;X2;Y ) = H(X1) +H(X2) +H(Y )−H(X1, X2, Y )

= H(X1) +H(X2)−H(X1, X2) +H(X1, X2) +H(Y )−H(X1, X2, Y )

= I(X1;X2) + I(< X1, X2 >;Y ).

Similarly when m = 3, by adding and subtracting H(X1, X2, X3) we have

R(X1;X2;X3;Y ) = H(X1) +H(X2) +H(X3) +H(Y )−H(X1, X2, X3, Y )

= H(X1) +H(X2) +H(X3)−H(X1, X2, X3) +H(X1, X2, X3) +H(Y )−

H(X1, X2, X3, Y )

= R(X1;X2;X3) + I(< X1, X2, X3 >;Y ).

This can be extended to m+1-dimension as

R(X1;X2; · · · ;Xm;Y ) = R(X1;X2; · · · ;Xm) + I(< X1, X2, · · · , Xm >;Y ). (3.6.8)

Note that we can simply rewrite eqn. (3.6.8) as

I(< X1, X2, · · · , Xm >;Y ) = R(X1;X2; · · · ;Xm;Y )−R(X1;X2; · · · ;Xm).

As we have seen in the preceding sections, Kraskov [39] gives formulas for generalized re-

dundancies in higher dimensions. We use [39] to estimate the mutual information between

X1, X2, · · · , Xm preceding interspike intervals and the postsynaptic response Y as follows

R̂(X1, X2, · · · , Xm, Y ) = ψ(k) +mψ(n)− < ψ(nx1) + ψ(nx2) + · · ·+ ψ(nxm) + ψ(ny) > .

Figure 3.8 shows the changes in the information (or reduction in uncertainty) between the

postsynaptic response and m-tuple interspike intervals for increasing m. Mean firing rates
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in the gamma and theta ranges of 50 and 5 Hz, respectively, are plotted for the control

and muscarine conditions. It can be seen that at 50 Hz under both conditions the synapse

is capable of memorizing about 5 preceding interspike intervals. At 50 Hz information in

muscarine condition is always smaller than the control condition. Similarly, at 5 Hz this size

is around 4 preceding interspike intervals for both control and muscarine conditions.
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Figure 3.8: N-tuple information between inter-spike intervals and postsynaptic response for
control and muscarine cases for two frequencies: 5 and 50 Hz.

3.7 Discussion

When presented with Poisson spike train inputs. We observed that depressing synapse acts

as a nonlinear filter for interspike intervals. For high and low mean firing rates, the output

response distribution achieves a maximum at values near zero and Pmax, respectively, aside

a small degree of variation. However, for frequencies near theta, the response distribution

is more spread across the entire interval between 0 and Pmax. Over the gamma frequency

range, the mode and the mean of the distribution remain almost constant, indicating a stable

response size when presented with Poisson spike trains. This would create a stable connection

and is the advantage of having a distribution with low entropy.
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Given a deterministic map, we observed that the mutual information between postsynaptic

response and the preceding interspike intervals is equivalent to the entropy of postsynaptic

response as the response is uniquely determined by the preceding interspike intervals. In the

stochastic model analysis, however, binomial variation was introduced due to release of neuro-

transmitter, and Gaussian variation due to fluctuation in response to a single vesicle release.

We saw that the mutual information as a function of mean firing rate has a peak around 3

Hz for both the muscarine and control conditions, though the overall mutual information was

much lower for muscarine condition. It was seen that the synapses with muscarine added as

a neuromadulator are much less sensitive to changes in frequency overall.

We took our calculations a step further by investigating latency in synaptic response or

the amount of temporal activity of presynaptic neuron synapses can store and transmit. To

address this question, we calculated the mutual information between postsynaptic responses

and the sum of previous interspike intervals, including successively more past times. This

approach somehow ignores the structure of preceding temporal activity, measuring only if it

was overall a long time or a short time, compared to other samples. We saw an overall decline

in mutual information as more interspike intervals were added to the sum under control con-

dition, while muscarine condition was somehow insensitive to this addition, being relatively

flat.

In an attempt to maintain the structure in a preceding interspike intervals, we performed

m-tuple information analysis using the KSG algorithm. This analysis measures the mutual

information between the response and the sequence of interspike intervals as the number of

interspike intervals in the sequence is increased. It was seen that if information increases with

more interspike intervals in the sequence, then the reduction of uncertainty is greater as longer
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histories are incorporated. It was seen that adding up to 5 interspike intervals to the sequence

improves the prediction of Pr in control vs. 4 ISIs in muscarine. This result is more or less

the same at gamma and theta frequencies. Note that using the sum of the ISIs in the mutual

information calculation obsecures this dependence in the muscarine condition.

Through the analysis shown in this chapter, we have gained insight into the information

processing characteristics of parvalbumin basket cells. It is clear from our quantitative de-

scription that constraining the firing of PV BCs at theta frequency optimizes the information

content of PV BC to pyramidal cells. In the absence of muscarine, PV BCs are optimally

tuned to transfer information at theta frequency. In the presence of cholinergic neuromodula-

tion, when PV BCs may become depolarized and are more likely to fire at gamma frequency,

the information processing capability is reduced.

Future studies include understanding the interaction of the synaptic dynamics with voltage

oscillations in the hippocampus. In addition, analyzing the ability of synapses in information

transmission in the presence of many presynaptic neurons influence on the postsynaptic cell in

hippocampus is of interest. We will continue our quest to quantify the information processing

properties of synapses by expanding beyond mutual information analysis.



Chapter 4

Parsimonious Approximate

Descriptions of the Data

4.1 Motivation

We live in a complex world and its complexity makes it useful to consider that a sample

obtained from measurements is coming from some probability distribution. The natural and

more convenient approach to model this distribution with relatively small number of param-

eters is to use a parametric function. The parameters are then estimated using the sample.

However, empirical data resulting from observed situations almost never exactly follow the-

oretical distributions. Nevertheless, empirical distributions are often similar to theoretical

distributions. It is clear that using a specific parametric distribution can be useful as a model

of the data. Therefore, the goal here is to obtain parsimonious approximate descriptions of

the data. In other words, we would like to find the simplest viable distributional model for

the data. In Chapter 3 it was shown that the map for calcium concentration C, the fraction of

readily releasable vesicles R, and the release probability P driven by a Poisson spike train is

60
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a random recurrence equation. In this chapter we show that while it is not possible to find a

closed form for the exact map, an approximation can be created that reflect on the properties

of the deterministic map.

4.2 Modeling Calcium Concentration Data with a Gamma Dis-

tribution

In this section, we show how the Gamma distribution can be applied to the calcium con-

centration data obtained from the two-dimensional map introduced in Chapter 3 section 3.2.

4.2.1 Characterization of the Calcium Distribution From a Random Dif-

ference Equation

A random difference equation (RDE) is an example of a random recurrence equation. The

recursion is defined by a random affine linear function Ψ(x) = Mx + Q for a pair (M,Q) of

real-valued random variables. More precisely, let (Mn, Qn)n≥1 be a sequence of independent

random variables with the same distribution as (M,Q), and define (Xn)n≥0 recursively by

Xn = MnXn−1 +Qn, n ≥ 1 (4.2.1)

This is a general form of one-dimensional RDE and has been used in many applications to

model a process that is subject to trend with respect to a variable n. An extensive discussion

of the random difference equation is given in Vervaat [70] and Embrechts [21].
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From eqn. (4.2.1) and by substitution, we obtain for n = 1, 2, · · ·

Xn = MnXn−1 +Qn,

= MnMn−1Xn−2 +MnQn−1 +Qn,

= MnMn−1Mn−2Xn−3 +MnMn−1Qn−2 +MnQn−1 +Qn,

...

= MnMn−1 · · ·M1X0 +
n∑
k=1

Mn · · ·Mk+1Qk.

Now use the independence assumptions and replace (Mk, Qk)1≤k≤n with the copy

(Mn+1−k, Qn+1−k)1≤k≤n to see that

Xn
d
= M1M2 · · ·MnX0 +

n∑
k=1

M1 · · ·Mk−1Qk, (4.2.2)

for any n ≥ 1, where
d
= denotes equality in distribution.

We are interested in the conditions that ensure the convergence in distribution of Xn. A

fundamental theoretical result attributed to Kesten [34] states that if

E (ln |M |) < 0 and E (ln |Q|) <∞ (4.2.3)

the series
∑∞

k=1M1 · · ·Mk−1Qk will converge with probability 1. Then the sequence Xn

converges in distribution to a random variable X, which necessarily satisfies the distributional

identity

X
d
= MX +Q.

See [70, 31] for more details on the convergence properties of Xn.
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4.2.2 Random Difference Equation for Calcium Concentration

Suppose independent, identically distributed changes in the amount of calcium {∆n}n≥1

occur at times {tn}n≥1, and we are interested in the distribution of the amount of calcium ac-

cumulated C. In one dimension, the random recurrence equation for the calcium concentration

is given by

Cn = AnCn−1 + ∆n, n ≥ 1, (4.2.4)

where An = e−Tn/τca , and the waiting times T1 = t1, Tn = tn − tn−1, n ≥ 2, are i.i.d., making

the {tn} a renewal process. Moreover, (An,∆n) are assumed to be i.i.d. vectors. C0 is the

base calcium concentration which is assumed to be zero.

Iterating (4.2.4) leads to

Cn = AnCn−1 + ∆n,

= AnAn−1Cn−2 +An∆n−1 + ∆n,

= AnAn−1An−2Cn−3 +AnAn−1∆n−2 +An∆n−1 + ∆n,

...

= AnAn−1. · · · .A1C0 +
n∑
k=1

An. · · · .Ak+1∆k,

for each n ≥ 1. Using the independence assumptions and replacing (Ak,∆k)1≤k≤n with the

copy (An+1−k,∆n+1−k)1≤k≤n we observe that

Cn
d
= A1A2. · · · .AnC0 +

n∑
k=1

A1A2. · · · .Ak−1∆k.

Note that we assumed C0 = 0, so

Cn
d
=

n∑
k=1

A1A2. · · · .Ak−1∆k.
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In previous section we indicated that based on the fundamental theoretical result [34] and

given

E (ln |A|) < 0 and E (ln |∆|) <∞

then the series

C =

∞∑
k=1

A1A2. · · · .Ak−1∆k,

will converge with probability 1 and the distribution of Cn converges to that of C. Here we

check these conditions to ensure the convergence in distribution of Cn. The first condition to

check is that E (ln |A|) < 0. To verify, we calculate

E (ln |A|) = E
(

ln |e−T/τca |
)
,

= E
(

ln e−T/τca
)
,

= E
(−T
τca

)
,

=
−1

τca
E (T ) ,

because T is an exponentially distributed random variables with rate parameter λ, its mean

is equal to reciprocal of its rate parameter , i.e. λ−1. Therefore, we have

E (ln |A|) =
−1

τcaλ
,
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where λ > 0 and τca > 0. Hence

E (ln |A|) < 0.

Earlier in this section, we assumed that the change in calcium concentration ∆ is a ran-

dom variable. For a reason that we will justify later in this section, we consider that this

random variable follows a gamma distribution with rate and shape parameter 1, denoted as

∆ ∼ Gamma(α = 1, λ = 1) which is simpler to call ∆ is an exponentially distributed random

variable with rate parameter λ = 1.

The second condition is that E (ln |∆|) < ∞. In order to show that the second condition

holds, we start by stating a simple theorem concerning the logarithmic expectation of gamma

random variable.

Theorem. The expected value of the natural logarithm of a gamma random variable X with

shape parameter α > 0 and rate parameter λ > 0 is formulated as

E (lnX) = ψ (α)− ln(λ), (4.2.5)

where ψ(α) = Γ′(α)
Γ(α) is the digamma function.

Proof. The probability density function for the gamma random variable is


f(x;α, λ) = λα

Γ(α)x
α−1e−λx for x > 0 and α, λ > 0,

0 x ≤ 0

(4.2.6)

where Γ(α) is the gamma function.
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The expectation of natural logarithm of gamma random variable X is written as

E (ln(X)) =
λα

Γ(α)

∫ ∞
0

xα−1e−λx lnxdx.

Let z = λx. Then,

E (ln(X)) =
λα

Γ(α)

∫ ∞
0

(
z

λ
)α−1e−λz/λ ln

z

λ

dz

λ
,

=
1

Γ(α)

∫ ∞
0

zα−1e−z ln
z

λ
dz,

= ln(λ−1)

∫ ∞
0

1

Γ(α)
zα−1e−zdz︸ ︷︷ ︸
1

+
1

Γ(α)

∫ ∞
0

zα−1e−z ln zdz︸ ︷︷ ︸
Γ(α)ψ(α)

,

= − ln(λ) + ψ(α).

Therefore, given ∆ ∼ Gamma(1, 1) by eqn. (4.2.5), E (ln |∆|) is

E (ln |∆|) = ψ(1)− ln(1),

= ψ(1),

=
Γ′(1)

Γ(1)
,

= −γ,

where γ ≈ 0.577215 · · · is the Euler-Mascheroni constant.

Thus, by the fundamental theoretical result in [34], we infer from previous subsection that

Cn
d→ C, then C satisfies the distributional identity

C
d
= AC + ∆, C and (A,∆) independent.
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Following [70] let X := AC, then we can write

X
d
= A (X + ∆) , (4.2.7)

and hence

C
d
= X + ∆.

Iterating eqn. (4.2.7) results in

X
d
=
∞∑
n=1

A1A2. · · · .An∆n

where An = e−Tn/τca .

The theorem below indicates that if Tn is exponentially distributed with rate parameter λ,

then random variable An has Beta distribution with shape parameters (λτca,1) and is denoted

by An ∼ Beta (λτca, 1).

Note that probability density function for a Beta distributed random variable X with shape

parameters α and β is given by

f (x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1 and α, β > 0

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

Theorem. If X is an exponentially distributed random variable with rate parameter λ, then

for every c > 0, Y = e−X/c follows the beta distribution with shape parameters λc and 1.

Proof. The transformation Y = g(X) = e−X/c is 1-1 transformation from X = R+ to y =

[0, 1]. The inverse of the transformation is X = g−1(Y ) = −c lnY , and the associated Jacobian
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is dX
dY = −c

Y . By the transformation theorem, the probability density function of Y is

fY (y) = fX(g−1(X))

∣∣∣∣dxdy
∣∣∣∣ ,

= λe−λc ln y c

y
,

= cλycλ−1,

=
1

B(cλ, 1)
ycλ−1,

where B(cλ, 1) = Γ(cλ)Γ(1)
Γ(cλ+1) and Γ is gamma function. Note that for any α > 0, the gamma

function satisfies the recursive property Γ(α) = (α− 1)Γ(α− 1). Thus here we have

B(cλ, 1) =
HHHΓ(cλ)

1︷︸︸︷
Γ(1)

cλHHHΓ(cλ)
=

1

c

Thus Y ∼ Beta(cλ, 1).

Therefore, A = e−T/τca follows Beta distribution with shape parameters λτca and 1.

By applying a beta-gamma algebra identities ([20]) which state that for some a, b > 0, we

have

Beta (a, b)�Gamma (a+ b, 1)
d
= Gamma (a, 1) .

Note that the notation “X ∼ f(x)” stands for “the variable X has probability distribution f .

“If Xi ∼ fi, i = 1, 2, are independent, then the distribution of X1X2 is denoted f1 � f2.

Also,

Beta (a, b)� (Gamma (a, 1) +Gamma (b, 1))
d
= Gamma (a, 1) . (4.2.8)
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Applying eqn. (4.2.8) in eqn. (4.2.7), and considering that An ∼ Beta (λτca, 1), then

X ∼ Gamma (λτca, 1) ,

∆ ∼ Gamma (1, 1) .

Note that C
d
= X + ∆ implies

C
d
= Gamma(λτca, 1) +Gamma(1, 1).

Finally

C ∼ Gamma(λτca + 1, 1).

4.2.3 Assessing the fit of the calcium concentration distribution with the

Kolmogorov-Smirnov (k-s) test

Here we use one sample Kolmogorov-Smirnov test to assess evidence supporting the calcium

concentration follows a gamma distribution. The application of this test involves a simple

calculation comparing the empirical cumulative distribution function of calcium concentration

data, Fobs, with the cumulative distribution function associated with the null hypothesis, Fexp.

Let c1, c2, · · · , cn be calcium observations on continuous i.i.d. r.vs C1, C2, · · · , Cn with

common cumulative density function F . We want to test the hypothesis

H0 : F (c) = Fexp(c) for all c,

where Fexp is gamma CDF.
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The Kolmogorov-Smirnov test statistic D is defined by

D = sup
c∈R
|Fobs(c)− Fexp(c)|,

where Fobs is an empirical cumulative distribution defined as

Fobs(c) =
#(i : ci ≤ c)

n

Note that the p-value returned by the k-s test has the same interpretation as other p-values.

Table 5.6.4 displays the results of Kolmogorov-Smirnov for calcium data at different mean

firing rates. 20000 simulations were performed using stochastic map to generate calcium

concentration data for mean firing rates 0.5, 3, 8, 10, 20, 100, 5000, 8000. It is observed that

with such large p-values, there is not enough evidence to reject the null hypothesis at 5% for

all mean firing rates. Therefore, it is concluded that the simulated calcium concentration are

gamma distributed. In addition, gamma distribution matches simulation results well over a

range of parameter values. Simulation and analytic results in Figure 4.1 indicates the good

of fit of the gamma distribution to the calcium concentration.
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Table 4.2.1: Kolmogorov-Smirnov test gamma distributed on Calcium data

ν Statistics (D) p-value

ν = 0.5 0.00805 0.5360

ν = 3 0.006 0.8643

ν = 8 0.0066 0.7764

ν = 10 0.00945 0.3337

ν = 20 0.0034 0.9998

ν = 100 0.0071 0.6945

ν = 5000 0.0103 0.2392

ν = 8000 0.0252 0.1097

D is the Kolmogorov-Smirnov Statistic

The hypothesis to be tested was formulated as;

H0: Calcium concentrations are gamma distributed vs

H1: Calcium concentrations are not gamma distributed.
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Figure 4.1: Histograms of calcium concentration data for mean firing rates 0.5, 3, 8, 10, 20,
100, 5000 and 8000 Hz, together with fitted gamma pdfs. Plots show adherence to a linear
relationship between the simulated and theoretical quantiles, confirming our analytic results.

4.2.4 Quantile Gamma Graph Plot

We compare this result with the distribution obtained by numerical simulation of the recur-

rence relation for C by creating qq-plots. Figure 4.2 displays quantile plots for the map with

input mean firing rates 0.5, 3, 8, 10, 20, 100, 5000, 8000 Hz, with the theoretical quantiles

based upon the gamma distribution. This graphical display shows whether the simulated data

can reasonably be described by a gamma distribution. These plots indicate the simulated data

aligns with gamma distributed random variables in a straight line, indicating that the calcium



4.2. CALCIUM CONCENTRATION MODEL 73

concentration have a gamma distribution. It is clear that when there is confidence that data

are sampled from a family of distributions described by some parameters it is possible to use

that information to obtain more data-efficient estimators such as mean.
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Figure 4.2: Gamma qq-plot of calcium concentration for 0.5, 3, 8, 10, 20, 100, 5000 and 8000
Hz mean firing rates.
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4.3 Distribution of Pr for small τca and Large Interspike Inter-

val T

We conclude from the previous subsection that the calcium concentration does have a closed

form distribution, and indeed a gamma distribution when the data is simulated according to

the model in hand. However, this is not the case for the variable R due to the complexity of

the map, and so a closed form for the distribution of Pr = PrR is not possible. However, we

can understand it partially by considering the mechanisms involved, as done in the preceding

section. We can also use some information from the deterministic map. The map has a single

attracting fixed point, and the collapse to this fixed point from physiological initial conditions

is very rapid [66]. The value of the fixed point depends on the firing rate, with a smaller

value for larger firing rate in general. In Figure 4.3 we plot the expression for the fixed point

of the deterministic map vs. rate, along with the mean of the distribution of Pr for varying

frequencies. The values decrease with increasing frequency, as expected, and are remarkably

close.
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Figure 4.3: Fixed point values and mean of Pr for the deterministic map as a function of
mean firing rates.
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This motivates the idea that if the Pr value was directly determined by the fixed point value

for the ISI value preceding it, we would be able to approximate distribution of Pr through the

fixed point. We examine this when the calcium decay time (τca) is notably smaller than the

inter-spike interval (T ). With this approximation C,Pr and R have time in between pulses to

decay to their steady state value before another pulse. This means that the fixed point value

for a rate is given by 1/T where T is the preceding interspike interval is more likely to give a

good estimate of the actual value of Pr = PrR.

It was shown in [66] that the fixed point of the map which represents the peak IPSC over

long term is

C =
∆

1− e−T/τca ,

P r =
PmaxC

4

C
4

+K4
,

R =
1− γ(C)

1− γ(C)(1− Pr) ,

where

γ(C) =

(
Ce−T +Kr

C +Kr

)∆k

e−kminT .

As T increases C → ∆ and hence Pr → Pmax.

Therefore, the fixed point R is then

R̄ =
1− e−kminT

1− (1− Pmax)e−kminT
.

From this we can compute the probability density function of R, given an exponential

distribution for the variable T . For the ease of notation, let assume that X = R is a random
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variable and is defined as follows

X =
1− e−kminT

1− (1− Pmax)e−kminT
.

Also, we assumed that random variable T have exponential distribution with probability

density function

fT (t) = λe−λt t > 0.

We can compute an analytical expression for probability density function (PDF) of fixed point

R using the distribution for T .

The transformation X = g(T ) = 1−e−kminT
1−(1−Pmax)e−kminT

is a 1-1 transformation from T = {t| t >

0} to X = {x| 0 < x < 1} with inverse T = g−1(X) = 1
kmin

log
(

1−(1−Pmax)x
1−x

)
and Jacobian

dT

dX
=

1− (1− Pmax)

kmin(1− x)(1− (1− Pmax)x)

By the rule for functions of random variables, the probability density function of X is

fX(x) = fT
(
g−1(x)

) ∣∣∣∣ dtdx
∣∣∣∣

=
λ (1− (1− Pmax))

kmin
(1− x)−(1−λ/kmin) (1− (1− Pmax)x)−(1+λ/kmin)

Thus, an analytic expression for its probability density function (PDF) exists and is given

by

f (x|λ, c, kmin) =
λ(1− c)
kmin

(1− x)−(1−λ/kmin)(1− cx)−(1+λ/kmin), (4.3.1)

where c = 1 − Pmax, λ > 0 is the rate and kmin > 0 is the baseline recovery rate. The

distribution is supported on the interval [0, 1].
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From the expression 4.3.1, the expected value of random variable X = R is given by

E (X) = (1− c)λ

 1

λ(1− c) −
2F1

(
1, kmin+λ

kmin
; 2 + λ

kmin
; c
)

kmin + λ

 ,

where 2F1

(
1, kmin+λ

kmin
; 2 + λ

kmin
; c
)

is the hypergeometric function.

Similarly, we can compute the analytical expression of the probability density function of

fixed point Y = PrR. We will refer to this in what follows as the stochastic fixed point. Hence,

the probability density function for the stochastic fixed point is

f (y|λ, c, kmin) =
λPmax(1− c)

kmin
(Pmax − y)−(1−λ/kmin)(Pmax − cy)−(1+λ/kmin).

This distribution is supported on the interval [0, Pmax]. Figure 4.4 shows this expression for

different mean input inter-spike interval, in milliseconds.
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Figure 4.4: PDF of the stochastic fixed point PrR for varying interspike intervals of 10, 50,
100 , 120, 330, 2000 in millisecond. Parameters kmin = 0.0013 and Pmax = 0.85, are from
the control set.

Figure 4.5 are histograms of Pr values obtained from the map with very small τca, and
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other parameters from the control set, as in Figure 4.4. The similarity between the two is

evident. Apparently this approximation captures not only the mean value of the numerical

distribution, but also the shape of the distribution and how it changes with varying input

spike train rate.
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Figure 4.5: Frequency Distribution of Pr for varying mean input ISI A) 10 B) 50 C) 100 D)
120 E) 330 and F) 2000 in milliseconds, when interspike interval T is significantly larger that
the calcium decay time τca

Figure 4.6 compares these two distributions via quantile-quantile plots, for mean ISI of 10,

50, 100, 120, 330, and 2000 milliseconds. In every QQ-plot the quantiles of all PR are plotted

against the quantiles of all Pr values. If the values of the two different data sets have the

same distribution, the points in the plot should form a straight line. From these plots it is

clear that when the mean ISI is significantly larger than calcium decay time, the distribution

of the stochastic fixed point is similar to that of Pr. However, for smaller mean ISI (10 msec)

the approximation becomes less exact, so the similarity between two distributions decreases.
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Figure 4.6: Quantile plot of two data sets obtained from Pr and PR.

4.4 Discussion

Creating closed form expressions for Pr distributions in not possible as the map is too

complex. However, the stochastic recurrence relation for the calcium concentration alone is

simple enough to be analyzed and we discovered that it follows a gamma distribution with

shape and scale parameters λτca+1 and 1, respectively. For the Pr distribution we had to rely

on an approximation motivated by numerical results. We found the mean of the distribution

followed the frequency in the same way that the fixed point of the map did. The collapse to

the fixed point is very rapid which justifies our assumption that the Pr values are determined

by the fixed point value associated with the instantaneous rate of the preceding inter spike

interval. Then the formula for the fixed point as a function of frequency could be used to

generate a distribution, using the exponential distribution of the T ’s. The results confirm

the validity of this approximation and most importantly, the “sloshing” of the distribution

between zero and Pmax as the frequency that is decreased through the physiological range is

captured by this form.



Chapter 5

Data Driven Models of Synaptic

Plasticity

5.1 Motivation

It is important to recognize that neurons are computational devices and convey the results of

their computations in the form of the output spike trains. We often observe the output spikes,

however the input is almost always unknown and thus, it is very difficult to determine the

functional form of these computations. In previous chapters we used information theoretic

basics to determine, via the estimation of entropy and mutual information, the amount of

information presynaptic neuron can transmit, given Poisson stimulated spikes. These measures

mainly quantify randomness and provide limited understanding about the structure of output

spike train or the amount of computation required to produce this structure. In this chapter,

we introduce the most compact and sufficient description of a process capable of statistically

reproducing the observed large “1” and small “0” postsynaptic response output. We will do

this through identifying the minimal hidden Markov Model that generates binary postsynaptic

80
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responses and can statistically predict the future of the response without loss of information.

5.2 Theoretical Foundations

According to Shalizi and Crutchfield [57, 16] we define some important concepts of compu-

tational mechanics.

5.2.1 Causal States

Consider a stochastic process give by consecutive discrete random variables, · · · , S−2S−1S0S1S2 · · · ,

where each Si may take a symbol si drawn from a finite countable set A of size k. At any

time t, we can divide the sequence into a past (history)
←−
S t and a future

−→
S t. If the process

is conditionally stationary; i.e. for all possible future events A, P (
−→
S t ∈ A|←−S t = ←−s ) does

not depend on t, then we can drop the subscript and use
←−
S and

−→
S instead. Note that

←−
S L

denotes the last L symbols of the history, while
−→
S L refers to the first L symbols of the future.

Two histories ←−s and
←−
s′ are equivalent if P (

−→
S = −→s |←−S = ←−s ) = P (

−→
S = −→s |←−S′ =

←−
s′ ), i.e.,

when they share the same distribution for the future. We can define a function that maps

histories to their equivalence classes:

ε(←−s ) = {
←−
s′ : P (

−→
S = −→s |←−S =

←−
s′ ) = P (

−→
S = −→s |←−S =←−s )}

The range of the function ε, groups of histories sharing future distributions, are named causal

states of the process. We denote the ith causal state as σi and the set of all causal states as

S; the corresponding random variable is denoted S and its realization σ.
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5.2.2 Causal States Transitions

At any point in time, the current causal state and the next symbol in the sequence determine

the next causal state. Therefore, we can define state-to-state transitions between causal states

and the probabilities of these transitions. The probability of moving from state σi to state σj

on symbol s is

Tij(s) = P (
−→
S 1 = s,S = σj |S = σi)

Note that ∑
s∈A

∑
σj∈S

Tij(s) =
∑
s∈A

P (
−→
S 1 = s|S = σi) = 1.

We can now define a machine that combines the set of causal states and transitions that

represent the process. This machine is called ε-machine [17].

5.2.3 Properties of Causal States

Causal states have many important properties that make them a representation of a process.

Here we state main properties of causal state See [57] for proofs.

• Causal states are minimal sufficient statistics for predicting the process’s future.

• Given an initial Causal State and the next symbol from the original process, only certain

successor causal states are possible.

• The causal states are homogeneous over future events: That is, all histories belonging

to a single causal state σ have the same conditional distribution of future events.

• Strict Homogeneity of Causal States: A process’s causal states are the largest subsets

of inputs that are all strictly homogeneous with respect to the future event.

• Each causal state has a unique morph, i.e., no two causal states have the same conditional
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distribution of futures.

5.2.4 ε-machine Reconstruction

Any procedure that produces ε-machine which represents a given process is ε-machine re-

construction. There are plenty of algorithms that reconstruct ε-machine based on the data

sequences. In section 5.3 we use an algorithm that estimate an ε-machine from samples of a

process, while respect the necessary properties of causal states outlined above.

5.2.5 Statistical complexity

From the constructed ε-machine, P (σi), the probability of finding a system in the causal

state i after the machine has been running infinitely long is given by the left eigenvector of

transition matrix T with eigenvalue 1, normalized in probability. That is

P (σi) =

‖S‖∑
i=1

P (σi)Tij ,

where ‖.‖ represents the carnality of a set. Thus the Statistical Complexity is defined as

Cµ = −
∑
i

P (σi) log2 P (σi).

Cµ measures the minimum amount of historical information needed to make optimal predic-

tion. In other words, statistical complexity is able to quantify the degree of physical structure

present in a time series.
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5.3 Causal-State Splitting Reconstruction (CSSR)

In this section we describe an algorithm introduced by Shalizi [59] that infers the causal

states of a process and the transition probabilities between causal states from sequential data.

It builds the minimal set of hidden Markovian states that is capable of producing the behavior

presented in the data. This algorithm makes no prior assumption about the process’s causal

structure (the number of hidden states and their transition structure), but infers this from

the observed data. The input and output of the algorithm are:

• Input: Length (N) of the data sequence, the measurement alphabet size (k), maximum

history length (Lmax), and the significant level for the hypothesis test (α).

• Output: A set of estimated causal states σ̂i and the transition matrix T .

5.3.1 The Algorithm

CSSR algorithm starts by assuming the process is an independent and identically distributed

(IID) sequence and all the histories belong to the single state, and then successively tests

whether longer and longer suffixes result in the conditional distribution for the next observa-

tion which differ significantly from the state to which they currently belong and thus adds new

states. The Causal State Machine (CSM) is divided into three steps: Initialize, Homogenize

and Determinize.

1. Initialize: Initially we assume that the process is an IID sequence. (L = 0, Ŝ = {σ̂0},

where σ̂0 = ∗λ); i.e., σ̂0 contains only null sequence λ. Note that ∗λ is a suffix of any

history, so initially all the histories are mapped to this single state. We can calculate
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the morph of this state as

P (
−→
S 1 = a|σ̂0) = P (

−→
S 1 = a). (5.3.1)

The initial model can be thought of as tossing a fair coin long enough and try to predict

the outcome in the coin flip. It is clear that we do not need to keep track of outcome

because the flips are independent. Thus, having knowledge of previous tosses does not

reduce the uncertainty about the next toss. Hence, in this case no memory is needed

to optimally predict the next observation. As a consequence, the statistical complexity

vanishes (Cµ = 0).

2. Homogenize: We generate states whose histories lead to the same morph; i.e., states

whose members of histories have no significant difference in their individual morphs.

This procedure is as follows.

• For each σ̂ ∈ Ŝ, compute state morph.

P̂ (
−→
S 1|Ŝ = σ̂)

Note that since the conditional distribution over the futures can be seen as “the

shape of the future” , we call this the state’s “morph”.

(a) For L = 0 we use eqn. 5.3.1.

(b) For each sequence ←−s L ∈ σ̂, estimate the morph of the history ←−s L. This can

be calculated as follows,

P̂ (
−→
S1 = a|←−S L =←−s L) =

ν(
←−
S L =←−s L,−→S 1 = a)

ν(
←−
S L =←−s L)

(5.3.2)

(c) The morph of the state σ̂ is the weighted average of the morphs of its histories
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←−s L ∈ σ̂, with weights proportional to ν(
←−
S L =←−s L)

P̂ (
−→
S 1 = a|Ŝ = σ̂) =

1

z

∑
←−s L∈σ̂

ν(
←−
S L =←−s L)P̂ (

−→
S 1 = a|←−S L =←−s L),

where z =
∑
←−s L∈σ̂ ν(

←−
S L = ←−s L) is the number of occurrence in sN , s ∈ A of

suffixes in σ̂

• For each σ̂ ∈ Ŝ, test the null hypothesis (similarity in histories’ morph). For each

L history ←−s L ∈ σ̂ and each a ∈ A, generate the suffix a←−s L of length L+ 1.

(a) Estimate the morph of a←−s L using eqn. 5.3.2.

(b) If the morphs of a←−s L and σ̂ do not differ according to the significance test,

add a←−s L to σ̂.

(c) If they do differ, test whether there are any states in Ŝ whose morphs do not

differ significantly from that of a←−s L . If so, add a←−s L to the state whose morph

its morph matches most closely, as measured by the score of the significance

test.

(d) If the morph of a←−s L is significantly different from the morphs of all existing

states, then create a new state and add a←−s L to it.

(e) Recalculate the morphs of states from which sequences have been added or

deleted.

• Increment L by one.

• Repeat above steps until reaching the maximum history length Lmax.

3. Determinize: Split the states until they have deterministic transitions. To do this, in

each state we compute transitions for each suffix. If two suffixes in one state transit to

different state for the same symbol, we split them into two different states.
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5.3.2 Parameter selection for CSSR Algorithm

CSSR has two user-specified parameters. The significant level α which is assigned when

we use Kolmogorov-Smirnov (KS) test to decide whether the estimated morphs of histories’

subsequences are significantly differ from all other state’s morph. In case of significant differ-

ence, new states is formed for these subsequences. By assigning different values to significant

level α, we control the risk of seeing structure that is not there and the states are merely

created due to sampling error, rather than the actual differences between their morphs. Some

common choices of α that work well are 0.001, 0.01, 0.1 and 0.05. If α is small, we need larger

statistics to reject the null hypothesis and split the the states.

Also, the CSSR Algorithm depends crucially on another user-set parameter Lmax which is

the maximum subsequence length considered when inferring the model structure (machine).

Setting Lmax too large results in data shortage for long strings and algorithm tends to produce

too many states and hence results become unreliable. On the other hand, if L is too small, the

algorithm won’t be able to capture all statistical dependencies in the data and hence the state

structure of the inferred machine is not valid. Shalizi [59] showed that there is a lower bound

for the acceptable value of Lmax; i.e., it must be large enough that every state contains at least

one suffix of that length. However, an optimal choice of Lmax is not straight forward. One

approach which is used in this work is to determine the longest history length according to the

relationship derived from Hanson [28]. Hanson showed that, for a given fixed finite amount of

data N , and fixed significance level α, we choose the maximum length of subsequence L such

that √
|A|Lmax
N − Lmax

= α. (5.3.3)
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5.4 Study of CSSR to Capture the Structure of PSRs

In this section, we study dynamical aspects of short-term synaptic plasticity using the CSSR

algorithm. This algorithm describes synaptic dynamics as a hidden Markov process and

illustrates how to infer a model of the hidden process that generated the observed behavior.

The ultimate goal is a categorization of the types of processes a synapse can create, and an

assignment of those to different synapse types under varying conditions.

5.4.1 Analyzing the map

A synapse can be classified as being “depressing”, “facilitating” or “mixed” depending on

its response to stimulation at a relevant frequency. The model here [66] is built so that,

depending on the parameters, facilitation, depression, and mixture of both is possible. For

instance, by varying the parameters we can create a “mock” facilitating synapse, where the

size of response increases with increasing input frequency, or a mixed synapse, where the

response is decreased for low and high frequency, but increases for moderate values of the

frequency. Table 5.4.1 shows the parameter values for each synapse type we considered.

Table 5.4.1: Parameter values for “mock” synapses

parameter facilitating mixed

K 4.0 1.0

kmin 0.002 1/msec 0.002 1/msec

kmax 6.0 1/msec 6.0 1/msec

Kr 0.1 0.1

τCa 30 msec 30 msec

Pmax 0.6 0.6
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Figure 5.1 shows the fixed point for different types of synapse dynamics as a function of

input mean firing rates. It can be seen that the depressing synapse fixed point decreases

quickly from Pmax over 0 − 10 Hz, and then decays slowly to almost zero for higher mean

firing rates. The facilitating synapse fixed point however, increases over the physiological

range, but decreases very slowly for larger values of the frequency. The mixed synapse fixed

point starts at a base value of 0.2, increases to a local maximum near 25 Hz and decays

thereafter. The competition between increasing release probability and decreasing fraction of

release ready vesicles creates the local maximum in the mixed synapse, see Figure 5.2.
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Figure 5.1: Fixed point values of normalized postsynaptic response for three synapse models
of “depressing”, “mixed”, and “facilitating ” stimulated by Poisson spike trains with mean
firing rates ranging from 0.1 to 250.
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Figure 5.2: Fixed point values for release probability P , fraction of readily releasable pool R
and normalized postsynaptic response Pr for varying mean firing rates ranges from 0.1 to
100 Hz for (A) depressing synapse and from 0.1 to 250 Hz for (B) facilitating and (C)
mixed synapse.

5.4.2 Method

Here we consider output responses of different types of synapses as a stochastic binary time

series where “1” corresponds to large response and “0” to relatively small response. Our goal

is to find a minimal representation of the computational structure present in this time series.

In other words, the structure present in the output responses can be described by the CSSR

algorithm. Note that the causal states created are optimal predictors of the output response’s

future, using information from the response’s history. Each causal state is defined by grouping

histories of past response activity which are statistically equivalent in terms of predicting the

future response. The CSM is represented by a directed graph, with nodes indicating the

process’s hidden states and edges the transitions between states. Each edge is labeled with

symbol emitted during the transition (“1” for large response, “0” for small response), and the
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probability of state-to-state transition.

Partition

One of the CSM assumptions is that the observed process is formed by sequence of discrete

symbols, so it is not designed for processes with continuous variables. Thus, in order to

reconstruct CSMs, the output responses need to be partitioned into a sequence of 1’s and

0’s, which requires the consideration of a threshold value. There are many threshold values

approaches are available such as half Pmax cut off, median, mean or fixed point value for the

map. However, since we want to extract the maximum structure present in the observed data,

and statistical complexity quantifies the degree of this structure, we use the threshold within

[0, 1] which provides maximum statistical complexity in the resulting machine.

Reconstructed Causal State Machines

After partitioning the output responses into a sequence of 0’s and 1’s, we apply the CSSR

algorithm [58], using Causal State Modeller Toolbox in Matlab [33] to built machines for the

three different types of synapse. We use N = 105 data points and consider a countable set A

of size 2, such as {0, 1} with the choice of α = 0.01. We set the maximum length Lmax = 3

that can be reliably used from formula 5.3.3. We examine the reliability of setting Lmax, by

checking that the hidden Markov Model inferred using CSSR with Lmax = 3 is consistent

with the model structure inferred using Lmax + 1 = 4 [54]., i.e. the process has converged.



5.5. RESULTS 92

5.5 Results

Results for the depressing synapse are shown in Figure 5.3 and the histories of each causal

state for all these machines are shown in Table 5.6.3 in Appendix 2. On the histograms, we

indicated the maximum statistical complexity threshold with a red line. We can see that for

low mean firing rates, the probability of getting large response values, “1”, is high and its

corresponding reconstructed CSM captures the dynamic with only one state. Similarly, for

very high mean firing rate the probability of getting small response values, “0”, is high and a

one state machine results with the probabilities reversed. For intermediate mean firing rates,

near the maximum entropy value of 2-3 Hz, the machine has 2 states, indicating more complex

structure. Both 2 and 5 Hz result in identical machines in structure with slight variations

in the transition probabilities. Note that even though the distribution sloshes around as the

frequency is varied, there is little change in complexity in the epsilon machines through this

range.
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Figure 5.3: Causal state machines (CSMs) reconstructed and their corresponding relative
frequency distributions obtained from depressing FD model. Model is stimulated by Poisson
spike trains with mean firing rates (A) 0.1, (B) 2, (C) 5 and (D) 100 Hz. The transitions
between states are indicated with symbol emitted during the transition (1= large synaptic
response, 0 = small synaptic response) and the transition probability. In both (A) and (D),
CSMs for 0.1 and 100 Hz Poisson spiking process consist of a single state “1” which
transitions back to itself, emitting a large response with probabilities 0.9 and 0.06 for low and
very high mean firing rates, respectively. In both (B) and (C), 2-state CSMs reconstructed
for 2 and 5 Hz Poisson spiking process emit large responses with nearly similar probabilities.

Histograms of output response for the facilitating synapse are shown in Figure 5.4, for 50,

77, 100, 125, 200, 250 Hz along with their corresponding reconstructed CSMs of Lmax = 3.

all the machines can be described by referring to a persistent inner cycle and outer cycle. At
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50 and 77 Hz, the machine structures are similar, with small variations in their transition

probabilities. However, the histograms for these two mean firing rates are not similar and

thus the machine identifies the underlying unifying stochastic process. At 50 and 77 Hz, the

outer cycle connects state 0 to 1 to 2 and back to 0 while the inner cycle connects states 1 to

3 to 4 to 2 and back to 1. Note that an additional transition exists between state 3 and 2.

State 4 has self-connecting edge that emits a “1”. The self-connecting edge appears in all the

other machines. At 100 Hz, the machine structure is more complex with more edges, vertices,

and one set of parallel edges from state 3 to 6. This increase in complexity is not surprising

as this is inflection point of the normalized fixed point response, See Figure 5.1. The machine

found at 125 Hz has an outer cycle connecting states 0 to 1 to 3 and back to 0, while the inner

cycle connects 1 to 2 to 3 and back to 1. The 200 Hz machine has the same number of inner

cycles as 125 Hz machine. The machine for 250 Hz is the simplest and can be derived from

the machine at 125 Hz by merging state 1 and 2.
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Figure 5.4: Causal state machines (CSMs) reconstructed and their corresponding relative
frequency distributions obtained from facilitating FD model driven by Poisson spike train
with mean firing rates (A) 50, (B) 77, (C)100, (D) 125, (E) 200 and (F) 250 Hz. State
“0” is the baseline state. Similar graph structure is seen for mean firing rates of 50 and 70
Hz. Under mean firing rate of 100 Hz, the graph structure is more complex with more edges,
vertices, and one set of parallel edges from state “3” to “6”. In nonphysiological range from
125 to 250 Hz, the complexity of graph structure decreases.
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The mixed synapse dynamic has a less complex structure compared to the facilitating

synapse, see Figure 5.5. At 25 Hz, where local maximum occurs, the machine is complex.

The machines at 5, 50, and 125 Hz have 2 states with small variations in the transition prob-

abilities. At 25 and 250 Hz the machines are similar with different transition probabilities.
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Figure 5.5: Causal state machines (CSMs) reconstructed and their corresponding relative
frequency distributions obtained from mixed FD model driven by a Poisson spike train with
mean rates (A) 5, (B) 25, (C) 50, (D) 125 and (E) 250 Hz. In (A), (C), and (D), CSMs
for mean firing rates of 5, 50, and 125 Hz consist of two states with similar structure,
emitting successive large responses followed by small responses. 3-State CSM for mean firing
rate 25 Hz has more complex graph structure. Note that this is inflection point for this
synapse model, (see Figure 5.1).
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5.6 Discussion

The depressing synapse has the simplest structure of the three cases. For very small and

very large mean firing rates, the data points are mostly 1’s and 0’s, respectively, which results

in one-state machines. For intermediate mean firing rates the transition from left to right

skewness of the response distribution occurs, the 2-state CSM explains the dynamics. The

structural content of the response in facilitating and mixed synapses are more complex. The

complexity of the machines for these three synapses can be understood by comparing the

decomposed fixed point spectrum. Figure 5.2 clearly shows the difference between three cases.

For instance, in the depressing synapse, the response fixed point Pr is completely controlled

by changes in the fraction of readily releasable vesicles R, while in the facilitating synapse

both the fraction of release ready vesicles and probability of release of vesicles changes across

the spectrum. The mixed synapse has a small variation in release probability, while fraction

of release ready vesicles changes across the spectrum. Therefore, both R and P play role in

increasing the complexity of the machines, although in an indirect manner.

The goal of this chapter was to present methods for exploring the structural content of

output response while making minimal a priori assumptions as to the form of that structure.

It is however clear that this work needs to be seen as one of the first investigations into the

application of computational mechanics in differentiating synapse types and that the number

of limitations need to be addressed before large neuronal problems can be tackled. There is

still work to be done regarding the implementation of the algorithm and the tunning of the

parameters. For instance, we would like to implement a more reliable techniques to choose

maximum history length, such as minimizing Schwartz’s Bayesian Information Criterion (BIC)

over history length. BIC is known to be consistent for selecting the order of Markov chains.

Also, we plan in future work to investigate different choices of threshold other than traditional

defaults as the selection of this value can have dramatic effects on model accuracy.
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Appendix 1

Table 5.6.1, 5.6.2 and 5.6.3 shows the histories of length L = 2 or L = 3 of the causal states

for mixed, facilitating and depressing synapse for different firing rates.

Table 5.6.1: The casual states of ε-machine reconstructed from mixed synapse data

State name Histories ←−x Morph Pr(1|←−x ) Pr(State)

0 00, 10, 000, 010, 100, 110 0.39497 0.59461

rate=5 hz

1 01, 11, 001,011, 101, 111 0.42066 0.40538

0 00, 000, 100 0.23205 0.54651

rate=25 hz 1 01, 11, 011, 001, 111, 101 0.39858 0.28318

2 10, 010, 110 0.25531 0.17030

0 00, 10, 010, 000, 110, 100 0.46753 0.51145

rate=50 hz

1 01, 11, 011, 001, 111, 101 0.51053 0.48855

0 11, 01, 111, 101, 001, 011 0.50224 0.47144

rate=125 hz

1 10, 00, 110, 100, 000, 010 0.44397 0.52855

0 00, 000, 100 0.474059 0.546511

rate=250 hz 1 01, 11, 011, 001, 111, 101 0.601587 0.28318

2 10, 010, 110 0.488314 0.17030
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Table 5.6.2: The casual states of ε-machine reconstructed from facilitating synapse data

State name Histories ←−x Morph Pr(1|←−x ) Pr(State)

0 00, 000, 100 0.21658 0.47924

1 01, 001, 101 0.58359 0.13662

rate=50 hz 2 10, 010, 110 0.24030 0.13662

3 1, 011 0.64431 0.07973

4 11, 111 0.69382 0.16778

0 00, 000, 100 0.19802 0.44910

1 01, 001, 101 0.65377 0.11920

rate=77 hz 2 10, 010, 110 0.25396 0.11920

3 1, 011 0.71936 0.077931

4 11, 111 0.76098 0.23455

0 000 0.21851 0.27980

1 001 0.69264 0.08160

rate=100 hz 2 11, 011, 111 0.77652 0.39156

3 010 0.29741 0.03601

4 110 0.35668 0.08750

5 100 0.25076 0.08159

6 101 0.73926 0.04192

0 00 0.35821 0.17470

1 01 0.80351 0.12185

rate=125 hz 2 11 0.83166 0.58160

3 10 0.48645 0.12184

0 00, 000 0.35822 0.21312

1 01, 001, 101 0.52965 0.21672

rate=200 hz 2 10, 010, 110 0.42328 0.21672

3 11, 011, 111 0.49759 0.22846

4 100 0.38921 0.12498

0 0, 00 0.37234 0.35489

rate=250 hz 1 1, 01, 11 0.48872 0.42686

2 10 0.39453 0.21824
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Table 5.6.3: The casual states of ε-machine reconstructed from depressing synapse data

State name Histories ←−x Morph Pr(1|←−x ) Pr(State)

rate= 0.1 hz 0 11, 10, 01, 00, 111, 110, 101, 100, 011, 010, 001, 000 0.902427 1

0 00, 10, 000, 010, 100, 110 0.443366 0.544131

rate= 2 hz

1 01, 11, 001, 011, 101, 111 0.470802 0.455869

0 11, 01, 111, 101, 001, 011 0.498163 0.471689

rate= 5 hz

1 10, 00, 110, 100, 000, 010 0.448049 0.528311

rate= 100 hz 0 10, 11, 00, 01, 100, 101, 110, 111, 000, 001, 010, 011 0.0582917 1

Appendix 2

The choice of the threshold impacts the results, therefore in order to examine the effect of

thresholding on the structure of machines, we shifted the default thresholds for each type of

short-term plasticity slightly downwards (τ = −0.05) and upwards (τ = +0.05). We observe

that in depressing and mixed synapses in physiological range, small changes in the partitioning

threshold does not affect the models’ structure and they are robust within this small interval

with slight variations in the transition probabilities. However, in facilitating synapse due to

higher complexity in the structure of machines, we observed more variation in the structure

of the CSMs with varying the threshold. These results are summarized in Tables 5.6.4, 5.6.5

and 5.6.6 and Figures 5.6, 5.7 and 5.8.
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Table 5.6.4: Depressing synapse parameter set. Topology of the machines (number of states)
and statistical complexity (SC) as threshold is varied up and down by 0.05 from the
maximum statistical complexity value for four different input frequencies.

Threshold (τ)/

Number of States/(SC)

Firing rate

(Hz)
0.1 2 5 100

τ/number of states/(SC) 0.75/1/(0) 0.5/2(0.996) 0.3/2/(0.998) 0.15/1/(0)

τ + 0.05/number of states 0.8/1/(0) 0.55/2/(0.960) 0.35/2/(0.945) 0.2/1/(0)

τ − 0.05/number of states 0.7/1/(0) 0.45/2/(0.995) 0.25/2/(0.965) 0.1/1/(0)
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Table 5.6.5: Mixed synapse parameter set. Topology of the machines (number of states) and
statistical complexity as threshold is varied up and down by 0.05 from the maximum
statistical complexity value for four different input frequencies.

Threshold (τ)/

Number of States/(SC)

Firing rate

(Hz)
5 25 50 125

τ/number of states/(SC) 0.32/2/(0.97) 0.52/3/(1.491) 0.52/2/(0.998) 0.47/2/(0.971)

τ + 0.05/number of states 0.37/2/(0.85) 0.57/3/(1.091) 0.57/2/(0.934) 0.52/2/(0.670)

τ − 0.05/number of states 0.27/2/(0.88) 0.47/3/(1.202) 0.47/2/(0.950) 0.42/2/(0.866)
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Table 5.6.6: Facilitating synapse parameter set. Topology of the machines (number of
states) and statistical complexity as threshold is varied up and down by 0.05 from the
maximum statistical complexity value for four different input frequencies.

Threshold (τ)/

Number of States/(SC)

Firing rate

(Hz)
50 77 100 125

τ/number of states/(SC) 0.1/5/(1.470) 0.2/5/(2.02) 0.25/7/(2.106) 0.25/4/(2.49)

τ + 0.05/number of states 0.15/5/(1.410) 0.25/5/(1.184) 0.3/5/(1.711) 0.3/4/(2.266)

τ − 0.05/number of states 0.05/5/(1.452) 0.15/5/(2.001) 0.2/5/(2.056) 0.2/4/(2.451)
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Figure 5.6: Depressing synapse parameter set. Causal state machines at input frequency of 5
Hz for varying partition threshold. The maximum statistical complexity threshold value, τ ,
is 0.3 (machine shown in A)), In B) and C) the machine for τ + 0.05 = 0.35 and
τ − 0.05 = 0.25, respectively.
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Figure 5.7: Mixed synapse parameter set. Causal state machines at input frequency of 25 Hz
for varying partition threshold. The maximum statistical complexity threshold value, τ , is
0.52 (machine shown in A)), In B) and C) the machine for τ + 0.05 = 0.57 and
τ − 0.05 = 0.47, respectively.
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Figure 5.8: Facilitating synapse parameter set. Causal state machines at input frequency of
125 Hz for varying partition threshold. The maximum statistical complexity threshold value,
τ , is 0.25 (machine shown in A)), In B) and C) the machine for τ + 0.05 = 0.3 and
τ − 0.05 = 0.2, respectively.
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