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Graphs of Two Variable Inequalities: Alternate Approaches to the 
Solution Test 

 
Kyunghee Moon1 

University of West Georgia 
 
 
 
Abstract: In this article I suggest some alternatives to the solution test for the understanding of 
graphs of inequalities in two variables. Based on the work done with two groups of preservice 
secondary mathematics teachers, and by using the idea of variation and the framework of action 
and process conceptions of inequalities, I explain how graphs of inequalities can be viewed as a 
collection of rays or curves. I also explain the potential benefits of these alternative explanations 
in the solving of optimization problems and in the instruction of functions as a medium of one 
variable and two variable functions.    
Keywords: Inequality; Graph; Variation; APOS theory; Preservice teachers   

1 Introduction 

Mathematical inequalities are important in mathematics due to their connections to other 

mathematical topics, such as mathematical equations, and their applications to real-life 

situations. There has however been a general lack of attention from the mathematics education 

community on mathematical inequalities, despite the community’s awareness of their importance 

(Boero & Bazzini, 2004; Halmaghi, 2011; Vaiyavutjamai & Clements, 2006). Further, most of 

the studies on inequalities center on the understandings and/or difficulties related to the problem 

solving of algebraic inequalities in one variable with no graphical representations involved 

(Almog & Ilany, 2012; Schriber & Tsamir, 2012; Tsamir & Bazzini, 2004). A few studies that 

involve graphs utilize the graphs of one variable functions to explain the solutions of inequalities 

in one variable—for example, graphs of y=f(x) and y=g(x) for the solutions of the inequality, 

f(x)>g(x) (Dryfus & Eisenberg, 1985; Verikios & Farmaki, 2010). Research that concerns 
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graphical representations themselves or the connections between algebraic and graphical 

representations of inequalities in two variables is almost non-existent to this date, despite the 

importance of graphs in mathematical understanding (Even, 1998; Leinhardt, Zaslavsky & Stein, 

1990). In fact, there were only 20 articles found (since 1998) in the Eric search engine with the 

command “inequalities, graphs, mathematics,” and of those, only one article by Switzer (2014) 

attended to the graphical representations of inequalities in two variables. 

In many secondary and post-secondary algebra textbooks (see, for example, David et al., 

2011; McKeague, 2008), graphs of algebraic inequalities in two variables are explained through 

either the one-point solution test or its variation that involves multiple points. For a graph of 

y<f(x), for example, an individual performs a series of steps: drawing a graph of y=f(x); selecting 

a point from one of two regions divided by the graph of y=f(x); and substituting the x and y 

coordinates of the point into the inequality y<f(x) to determine the truth value of the inequality at 

the coordinates. If the inequality is true at the coordinates, the entire region from which the point 

is selected is the graph of y<f(x). If not, the other region is the graph of y<f(x). Its variation using 

multiple points instead of one is similar. An individual selects multiple points, tests the truth 

values for multiple coordinates, and determines the graph as the region from which the 

coordinates of the selected points make the inequality y<f(x) true.  

Whether it uses one point or multiple points, the solution test promotes instrumental 

understanding rather than relational understanding (Skemp, 1976), giving instructions on “what 

to do” to represent graphs of inequalities (instrumental understanding), but falling short of 

providing the mathematical “reasoning of why” graphs should be so (relational understanding). 

In addition, this explanation method can potentially impede students’ sound development of 

conceptions about mathematical proof. As shown in several studies, many students and teachers 
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erroneously derive the truth-value of a mathematical sentence from the truth-value(s) of one or 

more of particular cases (see Harel & Sowder, 1998, for example). This solution test is not much 

different from such an error in that it determines the truth value of an inequality y<f(x), with x 

and y representing variables, from one or more of the truth values of b<f(a), with a, b 

representing constant coordinates.  

The goal of this paper is to suggest different ways to explain the graphical representations 

of inequalities in two variables, R(x,y)<0 or R(x,y)≤0, the kinds of explanations that can promote 

relational understanding. The ideas presented are based on the results from my investigation with 

two groups of preservice secondary mathematics teachers, combined with the idea of variation 

and the framework of the action, process and objective perspectives (Breidenbach, Dubinsky, 

Hawks, & Nicholas, 1992). This paper also discusses the applications of alternative explanations 

and implications for future practice and research.  

 

2 Framework of action, process, and object perspectives 

The theoretical framework I use in this paper is the APOS theory, which has been widely used 

for research and curriculum development in undergraduate mathematics (Asiala, Brown, Devries 

et al., 1996; Breidenbach, Dubinsky, Hawks, & Nicholas, 1992; Cottrill et al., 1996; Dubinsky & 

Harel, 1991). In particular, I primarily use the action and process conceptions for inequalities to 

explain graphs of inequalities, R(x,y)<0 or R(x,y)≤0.  

An action is a mental or physical manipulation of objects that can transform one object to 

another, which is somewhat external (Breidenbach et al., 1992). It can be a single-step action, 

such as recalling memorized facts, or a multi-step action that involves a number of steps without 

conscious control of the transformation (Cottrill et al., 1996). When actions are repeated and 
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interiorized, the actions collectively become a process (Breidenbach et al., 1992). That is, an 

internal representation of the same actions is constructed in an individual’s mind, but not 

necessarily with extra stimuli.  

In working with the graph of a one variable function y=f(x), an individual with the action 

conception has the ability to plug in numbers for x to find the corresponding values for y by 

applying necessary actions—for example, multiplying 2 to the values of x and then adding 1 to 

the results in the case of the function, f(x)=2x+1. The individual may also have an ability to 

convert the results of the actions above to ordered pairs, represent the pairs as points in the 

Cartesian plane, and connect them to sketch a graph of the function y=f(x). It is also possible that 

an individual may simply come up with a shape from memory associated with the function 

expression y=f(x).  

With the process conception, an individual understands that a graph of y=f(x) is the result 

of the representational transfer from ordered pairs to points in the plane via the Cartesian 

connection—‘a point is on the graph of a line if, and only if, its coordinates satisfy the line 

equation’ (Moschkovich et al., 1993). Unlike an individual with only the action perspective, who 

may associate the graph of y=f(x) to a shape envisioned from memorized facts or see the graph as 

a shape formed by connecting a few plotted points, an individual with the process perspective of 

function acknowledges the dynamic nature of variables—i.e. variation which denotes the idea of 

variables as varying objects—in the graph of the function y=f(x), and hence understands the 

presence of “all” points in the graph of the function, which is the result of the “running through” 

a continuum of points (see Herscovics & Linchevski, 1994; Leinhardt, Zaslavsky, & Stein, 1990; 

Thompson, 1994, for the description of variables). 
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 In regards to two variable functions, recent research unravels students’ understanding of 

graphs of two variable functions with the lens of the APOS theory or covariational reasoning 

(Trigueros & Martinez-Planell, 2010; Weber & Thompson, 2014). Trigueros and Martinez-

Planell (2010) showed that most students could not internalize actions into processes and had 

difficulty visualizing graphs of two variable functions in subsets of the domain. Students could 

not flexibly connect algebraic and graphical objects other than points in the 3-dimensional space 

and were unable to explain the plane y=x+z+3 as a set of points despite their knowing of the 

equation as a plane from their memorized facts. They also could not explain the graph of z = 

x2+y2 at y=3 as the intersection of the paraboloid z = x2+y2 and the plane y=3, even though they 

knew from their memorized facts that the former was a paraboloid and the latter was a plane.  

The action and process conceptions related to graphs of two variable functions are also 

observed in the work of Weber and Thompson (2014), although the researchers used 

covariational reasoning—seeing a function as a covarying relationship among quantities 

involved in the function relation—as a framework. The researchers in particular investigated 

how students’ understanding of graphs of one-variable functions influenced their understanding 

of two-variable functions.  

In the case of one student, Jesse, his understanding of the graph of one-variable function 

as a sweeping out of points in the plane—showing covariational reasoning and process 

conception—helped him generalize his understanding to the graph of two-variable functions—as 

a sweeping out of curves in 3-dimensional space. For example, in the case of a one-variable 

function, y=f(x)=a(x2-2x), with a acting as a parameter representing a distance of the graph from 

the x-y plane, his understanding of the graph of the one-variable function, y=x2-2x, as a collection 

of points in a plane helped him see the graph of f(x)=a(x2-2x) as a vertical stretching of the points 
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on the graph of y=x2-2x and at the same time as a moving object along the a-axis, with a working 

as a variable. Yet in the case of another student, Lana, her lack of process conception of a graph 

of a function—seeing a graph as a picture associated with an algebraic equation and the graph of 

y = a(x2 - 2x) as a graph of parabola that “molds differently” with the value of a changed one at a 

time (an action perspective)—confounded her visualization of two variable functions. Although 

she referred to a as a parameter, she could not visualize the graph of f(x) = z(x2 - 2x) as a 

sweeping out of the parabolas, y = a(x2 - 2x).  

As shown above, memorization of graphs in the lower dimensions do not aid the 

understanding of graphs in the higher dimensions. When the understanding of variation and 

covariation is combined with the action perspective, the actions can potentially be interiorized 

into processes. In this respect, there is a need for alternative explanations for graphs of 

inequalities, which can replace the current method of teaching, the solution test. In fact, the 

solution test mainly promotes the action perspective by testing the truth value(s) for inequalities 

at one or multiple points, and the test has no specific emphasis on variation or process and 

objective perspectives.  

 

3 Alternative ways to explain graphs of inequalities in two variables 

The alternative ways I suggest here are based on the works of two groups of preservice 

secondary mathematics teachers in the U.S., incorporating the action and process conceptions of 

inequalities. One group consisted of 14 preservice teachers in a post-baccalaureate, teacher 

education program at a large research university in the West and the other group consisted of 15 

preservice teachers on an undergraduate secondary teaching track at a small doctoral 

comprehensive university in the Southeast. For the former group, I analyzed their individual 
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portfolios on the Cookies unit, which focused on the understanding and solving of real-life 

problems by using graphs of linear equations and inequalities, from a high school mathematics 

curriculum, Interactive Mathematics Program. Having been educated in a classroom where 

relational understanding was particularly emphasized, the preservice teachers were expected to 

explain critical ideas embedded in the problems and to solve the problems with detailed 

explanations on why they used certain procedures or ideas in their problem solving.  

Despite having taken the class in which relational understanding was particularly 

emphasized, ten of the fourteen teachers did not explain graphs of inequalities at all. Two of the 

remaining four explained graphs only by using the solution test, while the other two explained 

graphs by using the solution test and the idea of variation. The two preservice teachers who 

explained the graphs by using variation and the solution test mentioned “near-by points” as part 

of their arguments. For example, one wrote, “a big idea that students realize is that ‘near-by 

points in the feasible region also satisfy inequalities.’ This big idea lets the students see the 

reason why it is necessary to test only one point in order to find the feasible reason.”  

I interviewed the latter group with three inequality problems (linear, parabolic, and 

circular) as part of a larger project that investigated big ideas in algebra. In the interviews, I 

asked them to represent the solutions of three algebraic inequalities— x+2y−32<0, y<x2+1, and 

x2+y2>1—in the Cartesian plane and to explain why their graphs made sense. A complete 

analysis of their work is shown in a different paper (see BLINDED). In summary, only 2 of them 

represented all three graphs correctly—8 successfully providing the linear inequality graph, 5 the 

circular inequality graph, and 2 the parabolic inequality graph. For the explanations of why their 

graphs made sense, most of those who provided correct graphs used the solution test or an 

argument that “less than means lower part.” There were some explanations that varied from the 
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above, which were related in part to variation or the action and process perspectives. For the 

graph of x2+y2>1, three of the teachers mentioned that “any point” chosen outside of the circle 

x2+y2=1 would satisfy x2+y2>1 because the equation x2+y2=c, with c greater than 1, would 

represent a circle with the radius greater than 1, thus showing some understanding that the graph 

of x2+y2>1 is a collection of circles with the radii greater than 1 (as the result of a sweeping out 

process of circles). For x+2y−32<0 or y<x2+1, three of them considered infinitely many values as 

the solutions of algebraic inequalities by taking an action of fixing x or y values as a constant, by 

saying “y-values have to be less than16 when x is 0” in the case of x+2y−32<0 or “if y is 1, then 

1 is less than x square plus 1, which makes x greater than 0” (which had to be x2 greater than 0 

instead) in the case of y<x2+1.  

Using the ideas embedded in the works of the preservice secondary teachers for graphs of 

inequalities—variation, the action of fixing the x or y constant, and the process of sweeping 

out—and by complementing the gap in their understanding, I hereby suggest alternative ways to 

explain graphs of inequalities in two variables. I use the inequality y<x+1 as an example, and the 

graphs of other inequalities in two variables, in the form of R(x,y)>0 or R(x,y)≥0, can be 

explained similarly.  

 

Graphs of y < x+1  

The graph of the inequality y<x+1 can be seen in the following ways (shown in Figure 

1(a), (b), (c), respectively): 

A.  As a collection of vertical rays, x=c and y<c+1, if the x variable is kept constant, 

B. As a collection of horizontal rays, y=c and c–1<x, if the y variable is kept 

constant, 
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C. As a collection of lines, y–x=c, with c<1, if y–x is kept constant.  

 

Figure 1(a). In order to see the graph of y<x+1 as in Figure 1(a), an individual needs to 

be able to do or understand the following: 

• An individual assigns a value for the x variable and obtains infinitely many y values 

that satisfy y<x+1 (the action conception of inequalities in algebraic representation). 

This is an action similar to that involved in the graphical representation of y=x+1. 

However, instead of having one corresponding y value for each fixed x value in the 

case of y=x+1, the individual has infinitely many y values that satisfy y<x+1. The 

individual then represents the x and y values as ordered pairs in the Cartesian plane, 

which is represented as an open ray. This conversion still involves the action 

conception, but requires the connection between algebraic and geometric 

representations. As an example, when an individual assigns the value 0 for x, the 

individual has infinitely many y values that satisfy y<0+1. The individual then 

represents (0, y) with y<0+1 as an open vertical ray on the y-axis with the end point, 

(0, 0+1).  

• The individual then repeats similar actions multiple times for other assigned values of 

x and realizes that for each assigned value of x, there are infinitely many y values 

satisfying the inequality y<x+1, which are represented as an open vertical ray with the 

end point (x, x+1) on the Cartesian plane. After repeating such actions, the individual 

then interiorizes these actions into a process and visualizes the graph of the inequality 

y<x+1 as a collection of all vertical open rays, which is an open half-plane with the 

boundary line of y=x+1. This idea is similar to that of Weber and Thompson (2014), 
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which interprets a three-dimensional surface as a sweeping out of two-dimensional 

curves in the fundamental curves (x=c or y=c). For graphs of inequalities in two 

variables, the graph is the result of a sweeping out process of rays in the fundamental 

lines (x=c).  

Figure 1(b). This case works similarly to Figure 1(a) and is left to the reader. 

Figure 1(c). In order to see the graph of y < x+1 as in Figure 1(c), an individual needs to 

be able to do or understand the following: 

• An individual sees y<x+1 as an equivalent statement to y−x<1. Instead of taking 

an action of assigning a value for x or y variables as in Figures 1(a) or (b), the 

individual in this case takes an action of fixing y−x as a constant less than 1. For 

example, the individual assigns the value of 0 for y−x and then visualizes the 

graph of y−x=0 as a line passing through the origin.  

• The individual repeats the same actions for other values, such as y−x= –1 and y−x 

= –2 and visualize them as lines. The individual then can interiorize these actions 

into a process without externally representing them all, and sees the graph of 

y−x<1 as a collection of those lines, y=x+b with b<1, which forms the lower half 

of the line graph of y=x+1.  
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Figure 1 Graph of Inequality, y < x+1 

 

4 Applications of the alternatives in mathematical problem solving 

The line of thinking embedded in the explanations can offer different kinds of understanding for 

prospective teachers and calculus students. As an example, consider a problem that asks the 

maximum profit of sale, represented as a two-variable function, f(x,y)=x+2y, with constraints 

x+y≤6, 2x+y≤10, 0≤x, and 0≤y, a similar problem to those in the Cookies unit in the reform-based 

high school curriculum, Interactive Mathematics Program.  

 

  

 

 

 

 

 

 

       

Figure 2 Maximization of f(x,y)=x+2y with Constraints, x+y≤6, 
2x+y≤10, 0≤x, and 0≤y, Using Level Curves 
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One way to solve the problem, which is also shown in the Cookies: Teacher’s Guide 

(Fendel et al., 1998) is to find the region that meets all constraints by using the solution test for 

each of the four inequalities and then by running a family of lines x+2y=k over the constrained 

region. The core idea behind this strategy is the Cartesian Connection (Moschkovitch et al., 

1993), which stipulates that for every point on the line graph of x+2y=k, its x and y values satisfy 

the equation x+2y=k and thus yield the same profit of k. That is, the profit function f(x,y)=x+2y 

has the value 0 when (x,y) is on the line graph of x+2y=0, and has the value 5, 8, and 12 when 

(x,y) is on the line graph of x+2y=5, 8, and 12, respectively (see Figure 2). As a result, the 

maximum profit with the given constraints is 12.  

An alternative way to solve this problem is to use the line of thinking involved in the 

action and process conceptions for graphs of inequalities, which sees the constrained region as a 

collection of vertical or horizontal segments by fixing x or y as a constant. In this case, an 

individual can consider the values of f(x,y)=x+2y on each of the vertical (or horizontal) line 

segments by keeping x (or y) constant, for example x=1, and realizes that the maximum of 

f(1,y)=1+2y on that segment occurs when y is the greatest, which happens at the upper boundary 

point of the segment (see Figure 3).  

 

 

 

 

 

 

Figure 3 Maximization of f(x,y)=x+2y with Constraints, x+y≤6, 2x+y≤10, 
0≤x, and 0≤y, Using the Action, Process, and Object perspectives 
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The individual then repeats the same actions for other values of x and can interiorize the actions 

into a process and realizes that for any vertical segment, the maximum occurs at the upper 

boundary point, which is in fact on the line x+y=6 when 0≤ x≤4, and on the line 2x+y=10 when 

4≤x≤5. That is, the original problem becomes the maximization problem of f(x,y)=x+2y with the 

constraint x+y=6 when 0≤ x≤4, and with the constraint 2x+y=10 when 4≤x≤5. When 0≤ x≤4, 

f(x,y)=f(x,6-x)=x+2(6-x)=12-x takes values between 8 and 12, inclusive, as x+y=6 is equivalent to 

y=6-x. When 4≤ x≤5, f(x,y)=f(x,10-2x)=x+2(10-2x)=20-3x takes values between 5 and 8, 

inclusive, as 2x+y=10 is equivalent to y=10-2x. As such, the maximum profit of f(x,y)=x+2y is 

12, which occurs at x=0 and y=6. This problem can also be done by fixing y as a constant and by 

seeing the constrained region as a collection of horizontal line segments. As the steps involved in 

this process are similar to those above, the details are left to the reader. 

Another example is from a multivariable calculus book by Larson, Hostetler, and 

Edwards (2006), which finds the extreme values of f(x,y)=x2+2y2-2x+3 with a constraint, 

x2+y2≤10. The solution in the book utilizes the Lagrange multipliers to find the maximum and 

minimum values of the function f on the circle boundary, uses the first and second partial 

derivatives to find relative maximum and minimum for the inside of the circle, and combines the 

two results to determine the maximum of 24 and the minimum of 2 (see p. 972 for a detailed 

explanation).  

This problem can also be solved when the constrained region is viewed as a collection of 

vertical line segments (or horizontal line segments), with mathematical understanding at the 

secondary level. When an individual considers f(x,y)=x2+2y2-2x+3 at a constant value of x, for 

example x=1, the constraint x2+y2≤10 at x=1 becomes12+y2≤10, or equivalently -3≤y≤3, which is 
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geometrically representing the closed line segment connecting (1,-3) and (1,3) (see Figure 4). As 

such, f(1,y)=12+2y2-2+3=2y2+2 has the maximum value of 20 at y=3 or -3 (i.e., at the end points 

of the line segment) and the minimum value of 2 at y=0 (at the point on the horizontal diameter) 

on that segment. When the individual repeats the same actions for other vertical segments and 

can interiorize the actions into a process, she can find that the function f(x,y)=x2+2y2-2x+3 must 

have the maximum on some points on the circle and the minimum on some points on the 

horizontal diameter.  

 

 

 

 

 

 

 

 

 

 

In order to determine on what points of the circle f(x,y)=x2+2y2-2x+3 has the maximum, 

the individual rewrites f(x,y)= x2+2y2-2x+3=x2+2(10-x2)-2x+3=-x2-2x+23=-(x+1)2+24, using the 

constraint x2+y2=10 (or equivalently, y2=10-x2) and by completing the square, and finding the 

maximum of 24 at x=-1. For the minimum, the individual considers f(x,y)=x2+2y2-2x+3 at points 

on the horizontal diameter, represented as y=0 with 

 

− 10 ≤ x ≤ 10 . She then writes 

 

Figure 4 Maximization of f(x,y)=x2+2y2-2x+3 with a Constraint, 
x2+y2≤10, Using the Action, Process, and Object Perspectives 
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f(x,0)=x2+2y2-2x+3= x2-2x+3=(x-1)2+2 by completing the square and finds the minimum of 2 at 

x=1.  

 

 

 

5 Discussion and conclusion  

In this article, I suggested alternative explanations to the solution test for graphs of algebraic 

inequalities in two variables by using the framework of action and process conceptions by 

Dubinsky and others (Breidenbach et al., 1992). Unlike the solution test, which basically 

provides multi-step instructions on how to graph inequalities in two variables, the suggested 

alternatives offer a relational understanding (Skemp, 1976) for graphs of inequalities in two 

variables by incorporating the critical concept of the variable (see for example, Leinhardt et al., 

1990, for the concept of variable). Further, the line of thinking embedded in the alternatives 

could bring a different kind of understanding and solving for optimization problems with 

constraints (with constraints represented as inequalities), by enabling an individual to see graphs 

of inequalities locally and globally, similar to the ideas discussed in the function concept by 

various researchers (see for example, Even, 1998; Weber & Thompson, 2014). 

One potential benefit of the alternatives is that they may be used as the medium in 

instruction, transitioning from graphs of one-variable functions to graphs of two variable 

functions. To elaborate, in order to graph such functions and inequalities, a learner performs an 

action of fixing a variable as a constant value, x=c for example, and then finds the value of the 

other variable in the case of y=f(x) or the relationship between the other variables for the case of 

z=f(x,y). Such an action then yields a geometric object—a point (c,f(c) in a plane in the case of 
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y=f(x); a ray, which is the graphical representation of {(c, y)|y<f(x)}, in a plane in the case of 

y<f(x); or a curve z=f(c,y) in a 3-dimensinal space in the case of z=f(x,y). The graph is then a 

collection of all geometric objects, with the x variable running through a continuum of values in 

the domain. In this regard, the alternatives provide a consistency in mathematical thinking 

through the concept of the variable and the process perspective of functions and inequalities. 

They thus have great potential to help students strengthen their understanding of the role of 

variables in graphs of functions, which researchers have shown many students to lack 

(Breidenbach et al., 1992; Demana, Schoen, & Waits, 1993; Even 1998; Weber & Thompson, 

2014).  

The ideas proposed here are my suggestions based on preservice teachers’ understanding 

of graphs of inequalities and some research on the graphs of one variable and two variable 

functions, but the effects of implementations using the alternatives are yet to be determined. 

Future research should examine students’ understanding of and difficulties in understanding 

graphs of inequalities using the alternatives, as well as the effects of alternatives on students’ 

understanding of one variable and two variable functions.  
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