University of Montana ScholarWorks at University of Montana

University of Montana Conference on	2018 University of Montana Conference on
Undergraduate Research (UMCUR)	Undergraduate Research

Apr 27th, 11:00 AM - 12:00 PM

Building Prime Towers to Understand Prime Number

Alexis J. Feffer University of Montana, alexisjulianna22@gmail.com

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/umcur

Feffer, Alexis J., "Building Prime Towers to Understand Prime Number" (2018). University of Montana Conference on Undergraduate Research (UMCUR). 1.

https://scholarworks.umt.edu/umcur/2018/amposters/1

This Poster is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Conference on Undergraduate Research (UMCUR) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Building Prime Towers to Understand Prime Number A teaching experiment investigating the use of a manipulative to support student understanding of prime and composite numbers. Pretest and Posttest

Introduction

There has been a fair amount of research over the past several decades on teachers' understanding of the multiplicative structure of integers. Yet, very little research has examined children's understanding of this mathematical idea. In this quasi-experimental study, we focus on the effects of the use of a manipulative, the prime towers, in a three-day teaching experiment carried out in fourth grade classrooms. Students "build" towers of blocks that represent each number 2-100 as a product of prime factors. Towers are studied, compared, and contrasted to build understanding of the significance of prime factorization in predicting a number's multiplicative structure.

Standards

Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1– 100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1–100 is prime or

composite. (Common Core Standard 4.OA.4)

Core Questions

1. To investigate the procedural learning gains associated with a three-day educational lesson incorporating the prime towers manipulative in a 4th grade educational setting.

2. To investigate the conceptual learning gains associated with a three-day educational lesson incorporating the prime towers manipulative in a 4th grade educational setting.

3. To identify and refine mathematical tasks and instructional practices that may promote procedural and conceptual understanding of the Fundamental Theorem of Arithmetic and its application to factors among 4th grade elementary school students.

Literature Review

Research has shown that many preservice elementary school teachers have difficulty applying a number's unique prime decomposition to the understanding of "factors" (i.e. Zazkis & Campbell, 1996a; Zazkis & Campbell, 1996b; Zazkis, 1999; Brown, Thomas & Tolias, 2002). Poor understanding of the Fundamental Theorem of Arithmetic has been demonstrated among preservice teachers, but no research has investigated the understandings of elementary school students.

Number	Туре	Number	Туре
1	Prime Composite Neither	13	Prime Composite Neither
2	Prime Composite Neither	14	Prime Composite Neither
3	Prime Composite Neither	15	Prime Composite Neither
4	Prime composite Neither	16	Prime Composite Neither
5	Prime Composite Neither	17	(Prime) Composite Neither
6	Prime Composite Neither	18	Prime Composite Neither
7	Prime Composite Neither	19	Prime Composite Neither
8	Prime Composite Neither	20	Prime Composite Neither
9	Prime Composite Neither	21	Prime Composite Neither
10	Prime Composite Neither	22	Prime composite Neither
11	Prime Composite Neither	23	Prime Composite Neither
12	Prime Composite Neither	24	Prime Composite Neither

1.	Write the prime Build a tower fo
	Number
	15
	46
	63
	79
	78
	85
	91
	92

Methods

Pretest students understanding of prime numbers, prime factorization, and unique factorization Three days of instruction

Posttest students understanding of prime numbers, prime factorization, and unique factorization

Day One: What Are Prime Numbers?

Explore the difference between prime and composite numbers Identify primes and composite numbers 1-100 using the sieve of Eratosthenes

	Number of Divisors
	-
2	2
3	2
, ⁴	3
1,5	2
G	4
1	2
4,8	4
1, 3, 9	3
5,10	Ц
1	2.
34611	6*

91	92	93	94	95	96	97	98	99	100
81	82	83	84	85	86	87	88	89	90
71	72	73	74	75	76	77	78	79	80
61	62	63	64	65	66	67	68	69	70
51	52	53	54	55	56	57	58	59	60
41	42	43	44	45	46	47	48	49	50
31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	19	20
	2	3	4	5	6	7	8	9	10

Day Two: What is a Number's Prime Factorization? Construct the prime factorization for any number 2-100

Day Three: What Does a Number's Prime Factorization Tell Us?

Explore the difference between prime and composite factors Identify factors and multiples using prime factorizations Identify common factors of two numbers using prime factorizations Identify factor/multiple relationships using prime factorizations

actorization of the 8 numbers your group investigated in the table below. each number at your table. Prime Factorization	2. Which of your group's number(s) have a divisor of 3? How can you tell? 15,63,78 because they all have 3	
15 = 5×3 46= 2×23	3. Which of your group's number(s) have a divisor of 6? How can you tell? 18 because it has	3
$63 = 7 \times 3 \times 3$	2 and a 3 2x3=6	
79 ×2×37 78=13 ×2×3	4. Which of your group's number(s) have a divisor of 15? How can you tell? 15 bccaube it has a 3 and a 5 Justice it	
85=5×17		
91 = 7×13 92=23× 2×2	5. Which of your group's number(s) is a factor of 60? (How can you tell? 15 because 3 and 5 goes into 15 and 6d	

Alexis Feffer College of Education and Human sciences Special Thank You to Matt Rosco, Ph.D., Department of Mathematics Education at the University of Montana for his contributions and guidance throughout this project.

becc	205	e	a	11	C	t		t	re		number
are	2										
Recreate	the sie	ve of	Eratos	thenes	s belov	v, this	time f	or 1-1	40.	cutt.	1
	131	132	133	134	135	136	137	138	139	140	
	121	122	123	124	125	126	127	128	129	130	
	111	112	113	a14	ilà	116	117	118	119	120	
	101	102	103	104	105	106	107	108	109	110]
	91	92	93	94	95	96	97	98	99	100	1
	81	82	83	84	85	86	87	88	89	90	
	71	72	73	74	75	76	77	78	79	80	1
	61	62	63	64	165	66	67	68	69	70	
	51	52	53	54	55	56	57	58	59	60	
	41	42	43	44	45	46	47	48	49	50	1
	31	32	33	34	35	36	37	38	39	40	
	21	22	23	24	25	26	27	28	29	30	
	11	12	13	14	15	16	17	18	19	20	
		2	3	4	15	6	7	8	9	10	

- 1
 6
 7
 21
 31
 37
 49
 65

 A number N has a prime factorization of:
 65
 65
 65
 N= 2×2×2×3×5×11 I honestly KNOW
- I am sorry do not know the rest b. Is 7 a divisor of N? Explain how you kno
- sorry do not know the rest Is 22 a divisor of N? Explain how you kno
- sorry don't know the rest d. Is 21 a divisor of N? Explain how you know no sorry don't know the rest

- 33 49 (67) (79) A number N has a prime factorization
- no there is 7 there but there is no 1 to
- no because there is no I and no 11 50 M
- yes because I see 3x5 and it Equals 15
- NO because there is no 33 and no

Data and Result Pretest and Posttest Comparisons

d=1.7/ is associated with the result. prime and composite numbers (Q1). There was a gain of 6.63 points in the and multiples (Q2-6).

Conclusion

- Students clearly showed a procedural above.
- fragile.
- moment.

Future Research

Question number seven on the pre and post tests where not used in this data as the results were inconclusive. More research should be done to determine how the manipulative can support reversibility of "finding factors given a number".

Students' understanding of the role of prime factorization was very evidently still fragile. Future research should investigate how the manipulative can support the solidification of students' emerging

-1			
		Mean	SD
	Pretest	3.43	0.8386
st	Posttest	16.15	4.0349
	Pre-post	7.36	4.1590

♦ Validity analysis resulted in 87.5 % agreement Students gained an average of 7.36 points /between the pre and post tests, a statistically significant result ($p < 10^{-25}$). An effect size of ✓ Weysaw a 1.18 point gain in understanding of understanding of prime factorization, factors

understanding of the material represented though the assessment and data presented

Conceptual understanding was represented though students ability to explain answers. It was clear that this was still emerging and

Some elements worked better than others. We found that using a small subset of towers to compare was an incredibly successful