A GEOPHYSICAL INVESTIGATION IN THE BITTERROOT VALLEY WESTERN MONTANA

Robert W. Lankston
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Lankston, Robert W., "A GEOPHYSICAL INVESTIGATION IN THE BITTERROOT VALLEY WESTERN
MONTANA" (1975). Graduate Student Theses, Dissertations, \& Professional Papers. 9935.
https://scholarworks.umt.edu/etd/9935

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the meterial. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

76-12,193

LANKSTON, Robert Wayne, 1946-
A GEOPHYSICAL INVESTIGATION IN THE BITTERROOT VALLEY, WESTERN MONTANA.
University of Montana, Ph.D., 1975 Geophysics

Xerox University Microfilms, Ann Arbor, Michigan 48106

by

Robert Wayne Lankston

B.S., Indiana University, 1969
M.A., Indiana University, 1971

Presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

UNIVERSITY OF MONTANA
1.975

Approved by:

Abstract

Lankston, Robert Wayne, Ph.D., April 1975 Geology A Geophysical Investigation in the Bitterroot Valley, Western Montana (112 p.)

Director: Anthony Qamar A map of the complete Bouguer ancmaly for the Bitterroot Valley in western Montana is produced and interpreted to yield the general geometry of Cenozoic valley fill sediments. Various steps in processing the gravity data are discussed including loupass, frequency domain filtering and tro and three dimensional modeling.

Refraction and reflection seismic data are analyzed for the area north of Stevensville to verify the models generated from the gravity data and to investigate the possibility of using seismic methods to gain meaningful data for ground water prospecting. A map of the total magnetic intensity is presented for the area north of Stevensville. Depth estimates based upon the magnetic data indicate anomalies originating from several levels in the subsurface in the vicinity of Ambrose Creek. Three dimensional modeling of the magnetic field verified the existence of a multilayer anomalous body. Integrated geophysical analysis combining gravity and magnetics models, downward continuation of the magnetic field, and seismic refraction data indicates the existence of a continuous surface which extenus from the eastern face of the Bitterroot Range and intersects the anomalous magnetic body in the Ambrose Creek area. This surface may be a gravity glide surface.

The study introduces a set of basic geophysical data which can be used for further studies in groundwater, economic geology, or regional structural geology in western Montana.

table of CONTENTS

Page
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES iv
LIST OF PLATES vi
LIST OF TABLES vii
ACKNOWLEDGEMENTS viii
CHAPTER
I. INTRODUCTION 1
Purpose and Scope 1
Geologic Setting 2
II. DATA COLLECTION AND REDUCTION 5
Gravimetric Survey 5
Magnetic Survey 8
Seismic Survey 8
III. COMPUTER ANALYSIS OF GRAVITY AND MAGNETIC DATA 17
The Bott Program 17
The Talwani and Ewing Program 27
The Henderson Program 38
IV. RESULTS 40
V. CONCLUSIONS 54
APPENDIX I GRAVITY DATA 57
APPENDIX II COMPUTER PROGRAMS 70
APPENDIX III SEISMIC DATA 103
BIBLIOGRAPHY 109

LIST OF FIGURES

Figure
Page

1 Generalized geologic map of the Ambrose and Kootenai Creek
areas 4
2 Magnetic field measurement locations and susceptibility sample locations 9
3 Index map showing seismic refraction and reflection line locations (T9N, R19W) 11
4 Index map showing seismic refraction and reflection line locations ($19 \mathrm{~N}, \mathrm{R} 2 \mathrm{WW}$) 12
5 Comparison of seismic refraction data generated with the Bison seismograph and the multichannel seismograph 14
6 Comparison of bedrock profiles calculated by the Bott program with and without the correction for surface topography 18
7 Assumed sedimentary valley configuration for application of the Bott program 19
8 Outputs of the Bott program and the lowpass filter 22
9 Comparison of observed and calculated Bouguer anomalies along a portion of cross section H 25
10 Comparison of the Bott program output and the loupass filter output 26
11 A sample lamina for the Taluani and Ewing three dimensional modeling program 29
12 Vertical cross section through the three dimensional model of a hypothetical valley 30
13 Digital map output for the gravel bar models 32
14 Total magnetic intensity map of the Ambrose Creek area 34
15 Isometric view of the proposed magnetic body in the Ambrose Creek area 35
1.6 Calculated vertical magnetic field over the roposed magnetic body 36
17 Calculated Bouguer anomaly over sloping and intricately faulted surfaces 41
Figure Page

1. 8 Comparison of calculated depths from gravimetric and seismic refraction data in the Ambrose Creek area 43
19 Comparison of calculated depths from gravimetric and seismic refraction data in the Kootenai Creek area 44
20 Comparison of seismic refraction results with existing well data 46
2. Power curve fit of calculated bedrock elevations 48
22 Cross section of the Bitterroot Valley along line BB° 50
23 Comparison of tro levels of downward continuation with observed total intensity magnetic data in the center of the Bitterroot Valley . 51
24 Frequency response curve of the lowpass filter 72
25 Flow chart for the lowpass filter program 73

Plate

I Bouguer Gravity Anomaly Map of the Bitterroot Valley
II Bedrock Topography Map of the Bitterroot Valley
III Observed Bouguer Anomaly and Calculated Bedrock Profile
a. Cross Section $A A^{\circ}$
b. Cross Section BB' $^{\prime}$
c. Cross Section CC'
d. Cross Section DD'
e. Cross Section EE'
f. Cross Section FF°

LIST OF TABLES

Table Page1 Magnetic susceptibilities from samples collected in thevicinity of Ambrose Creek 37
2 Formation velocities and geologic interpretation, Kootenal and Ambrose Creek areas 45
3 Results of reflection seismic experiments on the Ravalli National Wildife Refuge 52

ACKNOWLEDGEMEN'TS

The completion of this study has been made possible through the combined efforts of numerous individuals and institutions. The geophysical field and laboratory work was marginally funded by the Water Resources Research Center, Bozeman, Montana through an account administered by the University of Montana. The University of Montana provided the geophysical field equipment, laboratory space and computer time.

Individuals from across the United States who contributed to the production of this study include Robert F. Blakely, Indiana Geological Survey, Jim Jordan, Hestern Geophysical Company, Richard I. Gibson and Jeffrey Friedberg, Aero Service Corporation, Jesse K. Douglas and others at Gulf Research and Development Company, Marvin Miller, Montana State Bureau of Mines and Geology, James A. Ferguson, Burlington Northern, Inc., Robert Trist, Federal Bureau of Wildiife and Fisheries, Anthony Qamar and Kenneth Gordon, University of Montana, and the many ranchers in the Bitterroot Valley uho allowed access to their lands during the course of the study, in particular Ernest Bolin and the Brechbill family.

Several fellow students freely contributed time to perform field assistant duties including Richard Asher, Ellen Gressitt, Kathleen Hawley, Kathleen Huguet, David Millen, K. M. Nolan, Gene Suko, and Thomas Williams.

A project with the scope of this one with its volumes of data compilation, analysis and presentation should not have been attempted without the aid of a full time geophysical technician. Special recognition and thanks are due Marian Millen Lankston for her numerous days
spent as field assistant, data reducer, a job which included the tedious terrain corrections, digitizer and key puncher, draftswoman and typist. Without Marian's continuous moral and exceptional technical support, this study would never have been completed.

Chapter I

INTRODUCTION

Purpose and Scope

The Bitterroot Valley in western Montana is an area undergoing rapid growth (Montana Almanac, 1957). Related to the growth are problems of planning, zoning, and resource management. Groundwater and surface water are two resources intimately involved in these problems. Only two hydrogeologic studies have been cinducted in the Bitterroot Valley (McMurtry, et al., 1959, and Nolan, 1973).

Although the present study was undertaken with the intention of providing geophysical data relevant to groundwater resources, problems which developed during the course of the research limited direct data on the amount of groundwater in the valley. On the other hand this study does present basic geophysical data collected in the Bitterroot Valley which allow large scale structures observed around the valley to be mapped in the subsurface and which subsequently act as a basis for more detailed studies of groundwater and regional geologic structure. This study provides an example of some of the geophysical programs and procedures which can be useful in valley fill studies in western Montana.

In addition to providing relevant geophysical data on groundwater resources, a second intention of this study was to investigate the utilization of basic, inexpensive surface geophysical techniques. Engineering methods of seismic exploration can provide direct data on groundwater conditions in the Bitterroot Valley. Gravimetric and surface magnetic methods yield data on regional geologic structure. The engineering
seismic and potential field methods of geophysical exploration are relatively inexpensive and, when they are coupled with proper computer processing of the field data and synergistic evaluation, models of the subsurface can be constructed which are useful to the groundwater hydrologist, stratigrapher, and structural geologist.

No attempt is made in this study to relate the calculated geophysical models of the Bitterroot Valley to all of the known structures in the region surrounding the valley. The only previous geophysical study in the valley (Manghnani and Hower, 1962) is so limited that no attempt has been made to relate its results to the results of the present study. The three parts of this study, 1) potential field surveys, 2) seismic surveys, and 3) computer modeling and analysis, provide data on formation densities, magnetic susceptibilities, porosities, seismic velocities, and water storage volume and provide supporting data for regional structural geologic studies.

Geologic Setting

The Bitterroot Valley, south of Missoula, Montana, is approximately fifty miles (80 km) long and $u p$ to twelve miles (19 km) wide with the long axis extending in a generally north-south direction. The valley is bounded on the west and south by the Bitterroot Mountain Range and on the east by the Sapphire Mountain Range. The Bitterroot Mountains comprise the Idaho Batholith in the southern two thirds of the range, metamorphosed Precambrian sediments in the northern third of the range, and the Frontal Zone Gneiss along the entire eastern edge of the range. The Idaho Batholith is a complex late Cretaceous
to early Tertiary granitic intrusive (Ferguson, 1972). The Frontal Zone Gneiss which bounds the west margin of the valley may represent a gravity glide "plane" along which rocks now comprising the Sapphire Mountain Range slid off of the rising Idaho Batholith (Ron Chase, personal communication). The Sapphire Mountains are composed largely of Precambrian Belt Group sedimentary rocks.

The surface of the Bitterroot Valley is generally flat and is mantled by a veneer of less than $500^{\circ}(153 \mathrm{~km})$ of Quaternary alluvium. The present course of the Bitterroot River trends northward with a gradient of approximately $30^{\circ} / \mathrm{mile}(5.6 \mathrm{~m} / \mathrm{km})$. Under the Quaternary sediments is a section of valley fill sediments up to 4000 feet (1220 m) thick.

The Bouguer gravity anomaly map of the entire valley is interpreted to yield valley fill thicknesses for most of the valley (Plates 1 and 2). However, this study concentrates the geophysical field investigations and computer analyses in the area between Ambrose and Kootenai Creeks north of Stevensville. The geology of the concentrated study is presented in Figure 1. This area was selected for detailed investigations on the basis of the relatively flat gravity anomaly and the strong magnetic anomaly observed in reconnaisance surveys over the area and the ready access to the area.

Gravimetric Survey

The gravimetric survey of the Bitterroot Valley was conducted as outlined by Dobrin (1960) using a Worden gravimeter. The survey covered the surface of the valley within the bedrock boundaries on a grid of approximately one mile (1.6 km) intervals. Only a few (approximately 5%) of the more than 400 gravity stations were occupied in the side canyons off of the main valley. The rationale for this will be discussed in later sections.

Reductions of the field data to the Bouguer anomaly were made with respect to the established gravity station at Johnson-Bell Airport in Missoula (980 443.844 milligals, Jesse Douglas, personal communication, 1972). Station elevations and latitudes were taken directly from published USGS topographic maps. Instrumental and diurnal drifts were determined by reoccupying daily base stations at intervals of two to three hours.

The Bouguer gravity anomaly was evaluated with the aid of a programmable desk calculator and a program written by Sidney Prahl. The program evaluated the complete Bouguer anomaly $\left(g_{B}\right)$ for each station using the relationship

$$
g_{B}=g_{0}+\text { elevation correction }+ \text { terrain correction }-g_{T}
$$

where g_{0} is the observed gravity defined as the difference between the gravity value at the Johnson-Bell Airport base and the gravity difference between the base and the station and g_{T} is the calculated theoretical
gravity at the station calculated from the international gravity formula

$$
g_{T}=978.049\left(1+0.0052884 \sin ^{2} \phi-0.0000059 \sin ^{2} 2 \phi\right) \mathrm{gals}
$$

(Grant and West, 1966) where \varnothing is the station latitude. The free air and Bouguer effects were combined into the elevation correction. The datum was sea level and the density was assumed to be 2.67 grams/cubic centimeter. The elevation correction was $0.060 \mathrm{mgals} / \mathrm{ft}(0.183 \mathrm{mgals} / \mathrm{m})$. Terrain corrections were obtained using templates after Hammer (1939) and tables presented by Douglas and Prahl (1972). The terrain correction was determined to Zone $\mathrm{K}(32,490$ feet, 9.903 km$)$.

The Bouguer anomaly map of the Bitterroot Valley (Plate 1) has several known uncertainties. These arise as a result of the quality of the topographic maps available and the necessity of making terrain corrections. Problems of gravimetric surveying in western Montana are discussed in detail by Burfeind (1967) and Smith (1967).

The greatest problems in gravimetric surveying in the Bitterroot Valley and, consequently the greatest uncertainties, are caused by the elevation and terrain corrections. Minimum station elevation uncertainty along the eastern margins of the valley is ± 50 feet (16.4 m) on the Sapphire (30 minute) quadrangle and ± 40 feet (13.1 m) on the Cleveland Mountain (15 minute) quadrangle where the contour intervals are 100 feet and 80 feet respectively. These elevation uncertainties alone may contribute an error of ± 3 milligals in the Bouguer anomaly in areas where the expected residual anomaly is between zero and five milligals. Though three milligals is small compared to the total anomaly across
the valley of up to 30 milligals (Plate 1), this possible error reduces the reliability of the calculated valley fill thicknesses in the eastern areas. Calculated thicknesses in the central and western portions of the valley are more reliable because the locations and elevations can be interpolated more precisely from the available $7 \frac{1}{2}$ minute maps (contour intervals between 5 and 20 feet).

A second problem in gravimetric surveying in western Montana and particularly the Bitterroot Valley area is the uncertainty introduced into the Bouguer anomaly because of the necessity of making terrain corrections. Although care was exercised in selecting gravity station locations to reduce the effects of Zones A through D (Hammer, 1939) (distances up to 558 feet, 170 m from the gravimeter), the rugged terrain surrounding the valley, the poor quality maps along the east edge of the valley, and the subjectivity inherent in generating a terrain correction allowed the introduction of an uncertainty of as much as ± 0.1 milligal in the center of the valley and ± 5 milligals near the valley margins with the possible error increasing with distance into the mountains until the probable error exceeds ± 20 milligals. These ranges were determined by two methods: a) having the texrain correction calculated at a point by more than one person and b) calculating the terrain correction at a point by using only the highest or only the lowest elevation in each of the terrain correction template segments. The combined problems of location, elevation, and terrain correction discouraged establishing gravity stations outside the bedrock boundaries of the valley. Numerical modeling produced gravity anomalies which indicated that no usable information for the scope
of the study of the Bitterroot Valley was lost by having so few stations in the mountains.

Magnetic Survey

Reconnaisance magnetic surveying with a Barringer total field precession magnetometer (± 10 gammas) through the northern third of the Bitterroot Valley indicated a magnetic high near the mouth of Ambrose Creek canyon on the east side of the valley north of Stevensville. Detailed magnetic surveying with a Geometrics Model G-816 total field precession magnetometer (± 1.0 gamma) delineated a relative anomaly of more than 500 gammas (Flgs. 2 and 14). The reconnaisance survey and the detailed survey were tied together by the reoccupation of stations with both of the recording instruments. The ground level survey agrees very closely in anomaly shape with the aeromagnetic maps presented by Douglas (1972), USGS (1966), and Zietz, et al., (1971).

No latitude or longitude corrections were applied to the data because of the small size of the study area. Diurnal variations were determined by repeated occupation of base stations at intervals of two to tnicee hours.

Seismic Survey

Seismic surveying of the Bitterroot Valley was conducted using an Independent Exploration Company 24 channel analog recording system which incorporated an Electro-Tech oscillograph and a Southwestern Industrial Electronics (SIE) analog magnetic tape recorder and playback unit. A single channel Bison Model 1570 engineering seismograph has also used. The seismic survey was undertaken to check the large scale geologic

models generated from the potential field data. In addition, the engineering refraction seismic method is a basic exploration technique Hhich provides a fast and economical means for developing groundwater information along continuous profiles or at isolated locations. Refraction and reflection seismic data can be correlated directly to existing Well data for extrapolation of groundwater conditions throughout a large area.

Both refraction and reflection seismic techniques were used to collect data from the areas near Ambrose Creek and Kootenai Creek north of Stevensville (Figs. 3 and 4). Problems in equipment condition and design reduced the ability of the seismic experiments to conclusively demonstrate the value of exploration seismic techniques for groundwater prospecting.

The Bison seismic system is limited in that it is designed for shallow refraction investigations with a hammer signal source (Axel Fritz, personal communication). Several of the problems described in a California Division of Highways report (Stevens, 1973) were encountered while using the Bison system in the Bitterroot Valley. In comparing the Bison system to other systems including a multichannel ElectroTech analog system, the California researchers found problems in nonuniformity of time scales from one sweep rate to another, different arrival times when hammer and explosive sources were used, and different travel time plots from data generated with the Bison and a multichannel system. Though these problems were encountered in the survey in the Bitterroot Valley, no concerted attempt was made to duplicate the results of the Stevens (1973) report.

For the seismic investigations in the Bitterroot Valley, the Bison system was used to measure near surface velocities by refraction techniques. Spread lengths up to 550 feet were attained with a sledge hammer as a signal source. However, signal return at more than 300 feet was minimal. The signal enhancement feature of the instrument had iittle effect because of the weak signal source and the generally poor transmissivity of the near-surface materials. For spread lengths greater than 300 feet, a pattern of ten geophones was used instead of a single geophone for signal reception. The tengeophone pattern increased the signal-to-noise ratio by partially cancelling random high frequency noise near the pattern while adding the more coherent seismic signal. The ten-geophone pattern was usually arranged in a circle uith a diameter of $10-15$ feet ($3-5 \mathrm{~m}$). The Bison system was not used for any reflection experiments because its amplifier and filter circuits are not designed to record reflected seismic energy.

The 24 channel permanent recording system was used for refraction lines up to 2000 feet and for reflection experiments. One test using the Bison and the multichannel system simultaneously checked the reproducibility of the California tests in the Bitterroot Valley. Figure 5 indicates a difference of $20-30 \%$ between the velocities measured with the Bison and the multichannel system. A similar difference between calculated layer thicknesses suggests that care should be taken in interpreting Bison data gathered when using the hammer as a signal source.

Recording seismic reflections from the base of the valley fill section was limited by two basic problems. The condition and age of

the University of Montana multichannel seismic system is such that considerable work needs to be done to restore it to an "on line" status. Unfortunately little information is now available on operating and maintaining the system. The second problem is energy coupling to the ground. The Kinepak explosives used in this study when detonated at the ground surface have the disadvantage of expense, extreme noise, and at best moderate energy transfer to the griuid. The mesent stydy has tied to surface charges because of the expense of drilling blast holes. Stevens (1973) reported the same disadvantages to Kinepak explosives.

The general field procedure for multichannel refraction surveying is to lay the geophone cable out to its full length, place one geophone per channel, and record at fairly high gain with the filter and mixer circuits out. For reflection recording the geophone cable is extended to various lengths ranging from 500 feet (150 m) to 2400 feet (730 m), the channel take-outs being evenly spaced along the total length of the cable. A pattern of eight geophones uas connecited to each channel take-out and each pattern was set in a small circle near the take-out. Best reflection records were obtained when the amplitude modulation level of the SIE tape recorder uas set at 30% using the recording system's internal oscillator as a reference signal. The galvonometer level controls were set at 50 and the amplifier gains at $20-30$ on the Independent Exploration Company amplifiers. In addition to paper oscillograph records, magnetic tape records were produced with the filters and mixers out.

Standard procedures for analyzing the seismic data (Appendix 3)
were employed. Travel time plots were made and analyzed (Henbest, et al., 1969) for the forward and reverse refraction lines. Depths to interfaces and angles of dip were calculated with the aid of a program presented by Mooney (1973). Reflection data were analyzed with the aid of $x^{2}-t^{2}$ plots (Grant and West, 1966, and Dix, 1955). Few of the field oscillograph records showed clear reflection arrivals. The reflections were in general picked from playbacks of the magnetic tape records which were filtered and mixed to enhance each reflection arrival. (As many as three distinct reflection arrivals were seen on some records.)

CHAPTER III
COMPUTER ANALYSIS OF GRAVITY AND MAGNETIC DATA

Three FORTRAN programs were utilized in this study to analyze the gravity and magnetic data gathered in the Bitterroot Valley. An iterative program for determining the thickness of the valley fill section from the Bouguer gravity anomaly was modified from its original form (Bott, 1960) while the Talwani and Ewing (1960) algorithm for calculating gravity and vertical magnetic anomalies over irregular three dimensional bodies and the Henderson (1960) algorithm for continuing potential fields were followed exactly as presented.

The Bott Program

The Bott program was modified for application to the study of the Bitterroot Valley. As originally presented by Bott (1960) the program assumes a flat valley surface. This is reasonable only in the center of the Bitterroot Valley. Because of the desirability of analyzing the gravity data from the grourid surface (Burfeind, 1967), the program was modified to account for irregularities in the topography of the present valley surface. This modification provided considerable improvement in endpoint agreement at the valley margins (Fig. 6).

As originally presented, the computer program calculates the thickness of the valley fill by iteratively applying the equation for the gravitational attraction of a vertical sheet of mass presented by Heiland (1940). A cross section of the valley is divided into a series of vertical, tro dimensional sheets (Fig. 7). The Bouguer anomaly over each of the sheets in the series is calculated. The program cal-

18

Figure 7. Assumed sedimentary valley configuration for application of the Bott program. (A) Original version of the program assumes a flat valley surface. The vertical thickness of each sheet is calculated at the sheets' centerpoints $\left(P_{f}\right)$. The calculated anomaly at each P_{i} is the sum of the effects of each of the n sheets. The difference between the calculated and observed anomalies is used to adjust the calculated sheet thickness. The calculation, comparison, and recalculation proceeds through eight iterations. (B) Modified version of the program corrects for surface topography. All the steps in the original version are followed. In addition, the gravitational effects of the shaded areas are calculated and subtracted from the calculated effect in the original version. Thus, the adjusted sheet thickness is based upon anomalies that are related to a geometry of sheets that is more correct giving a more correct subsurface profile.
culates the mismatch between the observed anomaly and the calculated anomaly and modifies the thickness of each sheet in an effort to reduce the mismatch. The calculation of the anomaly and modification of the thicknesses continues through eight iterations as suggested by Bott (1960). To account for surface topographic variations, the vertical sheet equation is applied twice in each iteration; once for the valley fill material which is below a horizontal reference line through the point under consideration as in the original version, and second for the excess valley fill material that is above the reference line (Fig. 7).

For calculating sediment thickness in the Bitterroot Valley, the Bouguer gravity anomaly map was initially digitized at one quarter mile intervals along west to east trending profiles. The profiles were visually inspected, and an anticipated geologic cross section was imagined bearing in mind that to a first approximation the gravity anomaly was directly reflecting the bedrock topography multiplied by a constant. The geologic cross sections resulting from executions of the modified Bott program were difficult to interpret in light of the anticipated geologic results because of high amplitude irregularities (noise) in the calculated bedrock profiles (Fig. 6). The smooth Bouguer anomalies (Plates 3a-3f, for example) were expected to yield smooth bedrock topography profiles. In addition to not agreeing with the anticipated results the calculated profiles led the interpreter to a geologic conclusion which was not reasonable. The two dimensional assumption required by the Bott program would force the conclusion that the pre-Tertiary floor of the Bitterroot Valley is a series of sheer
cliffs with faces as high as 5000 feet (1.52 km) and extending for distances of several miles in directions perpendicular to the plane of the profile. Although such a geometry is a geologic possibility, it was dismissed in this case because of the preliminary inspection of the gravity anomaly profiles and because no correlation of the irregularities could be found between parallel lines as little as one mile apart.

The noise was assumed to be inherent in the Bott algorithm. Beth the original and modified Bott programs yielded noisy profiles (Fig. 6). In attempting to solve the noise problem, the program was changed to allow more than the eight iterations Bott suggested in 1960. It has assumed that more iterations would improve convergence of the algorithm and thus provide a smoother profile. However, more iterations increased the amplitude of the irregularities while fewer iterations reduced the amplitude of the irregularities (Fig. 8). No attempt was made to solve this problem, though the following discussion illustrates one approach toward the solution which is analogous to one published by 01denburg (1974).

The Bouguer anomaly above each of the vertical sheets of mass into which a profile of the valley was subdivided for application of the Bott program is the sum of the gravity effects of all the sheets of mass in the profile. Thus the calculated elevation at each point is related to the calculated elevation at every other point. Any attempt to remove the noise from one elevation point must take into account. the effect the removal at that point has upon all the other points in the profile. It is assumed, therefore, that a noise function

exists which is the noise amplitude at each point in the profilec The assumption is made, based upon the shape of the Bouguer anomaly profiles, that the desired, true topography function is a low frequency function while the noise is a higher frequency function. The calculated bedrock topography is thus the sum, point for point, of the noise and the true topography Iunctions.

One method of separating low frequency components out of a function is by the application of a lowpass filter to the function. A very sharp, one dimensional, frequency domain, zero phase-shift, lowpass filter has designed for application to the topographic output of the Bott program (after Bendix, 1966, Dean, 1958, Fuller, 1967, Seismograph Service Corp., 1969, Nettleton, 1973, Cooley and Tukey, 1965, and Zurflueh, 1967).

The lowpass filter smoothed the input topography profile. Output of the filter showed only the topography related to the lor frequency components whose wavelengths were equal to or longer than the cutoff wavelength. Figure 8 shows the results of three different iteration schemes in the Bott program. Each output from the Bott program was used as input to the lowpass filter (cutoff wavelength equal to 750 feet, 218 m). The number of iterations was varied in the second part of the Bott program which employed an assumption of infinite planes of mass to make corrections in the calculated valley fill thicknesses.

To test the validity of applying the lowpass filter to the topography calculated by the Bott program, the Bouguer anomaly was calculated from the topographies input and output from the filter program. The Bouguer anomalies were calculated using equations and
nomographs presented by Nettleton (1942). The root mean square (RMS) error between the observed Bouguer anomaly and the anomaly calculated from the topography output by the Bott program (filter input) is 1.73 milligals/21 stations. The RMS error for the output of the filter program is 1.76 milligals $/ 21$ stations. These are the same number considering the uncertainty in the Bouguer anomaly. The observed and the two calculated Bouguer anomaly curves are presented in Figure 9. Because the two methods converge numerically to the same value, the topographic output of the Bott program versus the output of the filter program must be weighed on their geologic credibility. Taking into account the general shape of the anomaly and the two dimensional assumptions employed by the inversion procedure the filtered topography is superior.

Because the Bouguer anomaly data collected in the Bitterroot Valley should not be used to resolve features with horizontal dimensions less than one mile (1.6 km), the Bouguer anomaly was digitized at a one mile (1.6 km) sample spacing and input to the Bott program. A comparison between the one mile sampled input and the quarter mile sampled input high cut filtered at one mile is presented in Figure 10. The disadvantage of using one mile digitization is the loss of model detail that might be available from the Bouguer anomaly map. However, both the filtering approach and the one mile digitization approach minimize problems of using one data point for each model point.

All of the elevations on the bedrock topography map (Plate 2) were generated by the original Bott program as modified to account for surface topography and by digitizing the Bouguer anomaly map at one
 Figure 9. Comparison of observed and calculated Bouguer Anomalies along a portion of

mile intervals along profiles extending from west to east, the area of less uncertainty in the Bouguer anomaly to the area of more uncertainty. The distance between the west-east profiles was one mile (1.6 km). All of the calculations assume a constant bedrock to valley fill density contrast of $-0.5 \mathrm{gm} / \mathrm{cc}$ (Burfeind, 1967, and Cook, et al., 1967).

The above mentioned topographic irregularities appear when the ratio of the horizontal width of the sheet of mass to its vertical thickness is small. If the gravity data can be digitized reliably at short intervals, the analysis program should provide a comparably reliable output. The noise observed in this study should not occur. The Bott program consists of two parts, of which the second appears to introduce the irregularities. The second part of the program iteratively applies the equation for an infinite horizontal sheet of mass to reduce the error betreen the calculated anomaly and the observed anomaly by modifying the thickness of the valley fill. Figure 8 suggests that fewer iterations through the second part of the program would reduce the noise problem. Perhaps the iterations in the second part of the program using the horizontal sheet equation should be replaced with calculations using the vertical sheet equation as is used in part one of the program. Initial tests of this hypothesis indicate it to be correct, though no complete study was attempted.

The Talwani and Ering Frogram

The Talwani and Ewing (1960) program calculates the Bouguer gravity and the vertical magnetic anomalies over any irregular, three dimensional body (Fig. 11).

This versatile program has the ability of summing the effects of more than one anomalous body. However, the coordinates of the polygonal vertices of each lamina of each body must be read into the program in the same sense, i.e., all clockwise, because the sign of the calculated anomaly is dependent upon the direction in which the vertices are read. Because the program incorporates Simpson's Rule for integration, the effects of at least four laminae must be summed to begin to obtain a good numerical solution. The program can generate several forms of output. The form used in this study assumed all the output data to be on a flat, horizontal surface. The output surface was a 25×25 point grid. The grid spacing was varied for different models from 0.1 to 0.5 miles (0.16 to 0.8 km).

The Talkani and Euing program was used to generate a gravity field over a hypothetical valley fill situation (grid spacing equal to 0.25 miles, 0.4 km$)$. The generated Bouguer anomaly, digitized at one quarter mile (0.4 km) intervals was input to the Bott program. As was predictable from potential field theory, the modeled geologic section output of the Bott program agreed very closely with a cross section of the three dimensional Taluani and Ewing model (Fig. 12). In addition, 93.7 per cent of the total gravity anomaly due to the valley fill was seen between the bedrock boundaries of the model valley. This test illustrated that the Bott program could yield satisfactory geologic cross sections, even at short digitization intervals if the anomaly is smooth. However, the test suggested that care must be taken when applying the Bott program to actual field data in which are compourded the uncertainties of surveying plus the unknown lateral and vertical density changes in the valley

Figure 11. A sample lamina for the Talwani and Euing threedimensional modeling program. Lamina (L) represents one of the several laminae which would be used to approximate the cylinder to be modeled. Of course, the more vertices (V_{i}) which are incorporated into each lamina, the closer the lamina will approximate the cross section of the body. Furthermore, the more laminae used in the model, the more the calculated anomaly will approach the true anomaly of the body. Output options of the program allow the anomaly to be calculated on any horizontal plane or at any selected discrete points in space for uhich the $x-y-z$ coordinates are given.

fill and the surrounding bedrock as well as the bedrock topagraphic changes. For the width and thickness of the hypothetical valley (dimensions chosen to be similar to the Bitterroot Valley), the length of the valley had to be twenty miles (32 km) before the anomaly in the center of the valley showed negligible effects of the ends of the valley. Application of the Bott program to model data from profiles not in the center of the model valley yielded valley fill thicknesses that varied by more than 10 per cent from the expected values. This is also predictable because the Bott program is based upon the assumption that the valley has an infinitely long axis.

Another calculation of the gravity anomaly with the Talwani and Ering program involved a hypothetical gravel body buried within the valley fill section (grid spacing equal to 0.5 miles; 0.8 km). The gravel body, approximately one mile (1.6 km) long, 1000 feet (305 m) wide, and 100 feet (30.5 m) thick, was assumed to have a density of 0.1 grams per cubic centimeter less than the valley fill sediments surrounding it. These calculations were necessary to determine the possibility of finding potential underground water storage aquifers with gravimetric techniques (Hall and Hajnal, 1962). The results of the test are presented in digital map form in Figure 13. Figure 13 a and Figure $13 b$ show the slight differences between the valley fill model and the valley fill with the gravel stringer in it. The residual map (Fig. 1.3c), the difference between Figures 13 a and 13 b , indicate a 0.41 mgal maximum anomaly over the gravel body and suggests that for this situation, gravimetry is unable to delineate the potential aquifer. Figure 13 d is the total anomaly calculated with the gravel body at the surface. The

-17.47	-15.35	-12.91	-10.22	-7.36	-17.48	-15.37	-12.92	-10.25	-7.37
-17.46	-15.35	-12.90	-10.21	-7.35	-17.48	-15.37	-12.93	-10.24	-7.37
-17.45	-15.34	-12.90	-10.21	-7.35	-17.49		Kis:		-7.37
-17.44	-1533	-12.88	-10.20	-7.34	-17.48	-15.37	-12.93	-10.24	$-\mathbf{i} .37$
-17.43	-15.32	$\begin{gathered} -12.87 \\ \text { (A) } \end{gathered}$	-10.19	-7.33	(B)				-7.36
-0.01	-0.02	-0.01	-0.03	-0.01	-18.40	-16.29	-13.85	-11.16	-8.29
-0.02	-0.02	-0.03	$-0.03-0.02$		-18.41	-16.29	-13.85	11.16 - ${ }^{\circ}$	
-0.04		- \% \%		-0.02	-18.41	27.09	4.8.03		-8.30
-0.04	-0.04	-0.05	-0.04	-0.03	-18.41	-16.29	-13.85	-11.16	-8.30
-0.04	-0.04	-0.04	-0.03	-0.03	-18.41	-16.29	-13.85	-11.16	-8.29
		(C)							

, $\lll \pi$
Location of model gravel bar
$H-1$ Mile $\longrightarrow-1$
-16.00 Calculated Bouguer Anomaly in milligals and station location
Figure 13. Digital map output for the gravel bar models.
(A) Nodel of hypothetical valley Hithout the gravel bar.
(B) Model of valley with Eravel bar. (C) Residual map, Map A - Map B. (D) Model with gravel bar at the surface. The main part of the gravel body is 1000 feet. (305 m) wide and 100 feet (31 m) thick. The density of the gravel body was assumed to be 0.1 grams/cubic centimeter less than the surrounding valley fill sediments.
calculated anomalies indicate that even the effects of surface stream gravels are difficult to separate from the anomaly of the whole valley fill section. In order to see the anomaly of eitner gravel body, the field data would have to be generated at 0.1 mile (0.16 km) intervals and have a reliability of ± 0.01 milligals. In addition, the true thickness of the valley fill sediments would have to be known on a Similarly dense grid to enable the separation of the anomaly due to variations in depth to bedrock from the anomaly due to the gravel body.

The Talwani and Ewing program was used extensively to find a set of physical and geological parameters that would yield a magnetic anomaly map that corresponded closely to the observed field in the vicinity of Ambrose Creek (Fig. 14).

The assumption was made that the calculated vertical magnetic anomaly would be within 5% of an observed total field anomaly because of the inclination of the magnetic field in the area (71°) (Deel and Hoнe, 1948). The observed field is presented in Figure 14. One possible anomalous body is presented in Figure 15 and its calculated field is presented in Figure 16. The susceptibilities used in the modeling are not all observed at the surface. The average value of the susceptibilities (Table 1) measured at the surface is $300 \times 10^{-6} \mathrm{cgs}$. This value was used for the surface layer of the anomalous body. The lower layers of the body are assumed to have a magnetic susceptibility of 3000×10^{-6} cgs. This susceptibility was chosen on the basis of depth estimates using Peters' (1949) and Nettleton's (1942) methods. In addition to using the average value of the surface susceptibilities, the polygonal outline of the surface layer was held fixed to the outline of the igneous body

Figure 14. Total magnetic intensity map of the Ambrose Creek area. Station locations are presented in Figure 2.

Table 1. Magnetic susceptibilities from samples collected in the vicinity of Ambrose Creek. The susceptibilities were measured on a Bison susceptibility bridge. All samples were rock chips or soil and were measured in standardized sample bottles. No cores were measured. Sample locations are indicated in Figure 2.

Sample Number	Calculated Susceptibility	Rock Type	Remarks
SS-1	0	Granodiorite chips	Weathered sample
SS-2	0	Metamorphosed Belt	
SS-3	-10 ${ }^{-6}$	Metamorphosed Belt	
SS-4	52×10^{-6} cgs	Soil sample	
SS-5a	$1316 \times 10^{-6} \mathrm{cgs}$	Granite	
SS-5b	490×10^{-6} cgs	Granite	
SS-5b'	$31.2 \times 10^{-6} \mathrm{cgs}$	Granite	
SS-6a	$\stackrel{0}{\times} 10^{-6}$	Metasediment	Float sample
SS-6b	$121 \times 10^{-6} \mathrm{cgs}$	Granite	Fresh sample
SS-6\%	0	Amphibolite	Weathered sample
SS-6d	177×10^{-6} cgs	Basic sill	Highly weathered
SS-7a	0	Tertiary sediments	Sand unit
SS-7b	0	Tertiary sediments	Volcanic ash
SS-7b ${ }^{\text {d }}$	0	Tertiary sediments	Volcanic ash
SS-7c	0	Tertiary sediments	Calcite cemented sand
SS-7d ${ }^{\text {d }}$	$8{ }^{0}-6$	Tertiary sediments	Sand below soil
SS-8	$48 \times 10^{-6} \mathrm{cgs}$	Soil sample	
SS-9	$0{ }^{0}$	Soil sample	
SS-10	$127 \times 10^{-6} \mathrm{cgs}$	Soil sample	
SS-11.	0	Tertiary sediments	Volcanic ash
SS-12	0	Tertiary sediments	Volcanic ash

observed at the surface in the vicinity of Ambrose Creek. Nevertheless, the model presented is nonunique though the observed and calculated anomalies are very similar in amplitude and contour pattern. Differences in the two anomalies can be attributed in part to the different density of data points on the two maps. To eliminate this possible problem, an output option of the Talwani and Euing program could be used that calculates the magnetic field only at the points where measurements of the total field were actually observed. This option was not used because of the poor control on subsurface rock types and magnetic susceptibilities.

The Henderson Program

A third FORTRAN program, employed in analyzing the magnetic data, followed an algorithm and set of coefficients presented by Henderson (1960) for upward and downward continuation and first and second derivatives. Continuation involves the application of a mathematical ?perator to the observed anomaly such that a new anomaly is calculated at a higher or lover datum. The observed magnetic field in the Ambrose Creck area was continued downward in order to locate the top of the proposed anomalous body in the center of the valley. The top of the body was located above the level at which the continued data showed oscillations (after suggestions by Peters, 1949, and Rudman, et al., 1971). A limitation of this program is that the field can be continued up or down only in integer multiples of the input data grid spacing.

Cross section GG' (Fig. 23) presents the results of downward continuing the magnetic data observed in the northern Bitterroot Valley
by one and two grid units, 0.5 and 1.0 miles (0.8 and 1.6 km), respectively.

Chapter IV

RESULTS

Inspection of the Bouguer gravity map (Plate 1) indicates several general features. The anomaly pattern follows the bedrock outcrop pattern very closely on the western margin of the valley. The anomaly pattern along the east margin of the valley is very irregular indicating that the eastern wall of the Bitterroot Valley has a different structural origin than the western margin. The Bouguer gravity anomaly map of this study aid the Montana gravity map presented by Bonini, et al., (1973) generally agree with respect to the north south trend of the anomaly and the irregular contour pattern on the east side of the valley. Two geologic features along the east side of the valley probably account for the large negative anomalies near Ambrose Creek north of Stevensville and near Willow Creek north of Hamilton. In both areas, the depression in the Bouguer anomaly corresponds very closely to igneous bodies observed at the surface in the two areas.

Bedrock appears to extend continuously from the exposed face of the Bitterroot Range under the western half of the valley with no discernible, high amplitude, high angle normal faults. However, a several mile wide zone of low amplitude, high angle faults may exist. The gravity data of this study can not be used to distinguish between a smoothly sloping bedrock surface and an intricately faulted surface with low amplitude faults (Fig. 1.7).

The apparent bedrock high north of Victor is probably related to a thinner section of valley fill rather than a bedrock density change.

gure 17. Calculated Bouguer anomaly over sloping and intricately faulted surfaces. (A) Calculated Bouguer anomaly. (B) Two dimensional model of smoothly sloping bedrock surface. (c) Two dimensional model shouing intricately faulted bedrock surface. Note that vertical exaggeration is greater than 5X. Both models yield the same calculated Bouguer anomalv.

The high occurs in an area where the gravity data is as precise as possible in this study. The elevation, location and terrain correction errors $k e r e$ minimal in this area. A thinner section of valley fill is preferred over a denser bedrock because the increase in density would have to be on the order of 1.5 to 2 grams/cubic centimeter. This increase would certainly place the underlying rocks in a range of densities not commonly found in crustal rocks. The density increase Yas calculated using Nettleton's (1940) method.

The calculated valley fill thicknesses along the eastern edge of the valley have some uncertainty as discussed in a previous section. This uncertainty is compounded by the large igneous bodies in Ambrose and Willow Creeks. The densities of the granite are slightly less (Presley, 1970) than the 2.67 grams/cubic centimeter density used in this study to calculate the Bouguer anomaly. Therefore, part of the depression in the gravity anomaly is due to the lower density in the igneous body (Bott, 1962) and not to the lower density in valley fill material. Because the igneous bodies are at the surface, a much smaller density change can account for the observed anomaly than in the case above for the Victor area.

The dip of the Frontal Zone Gneiss on the eastern front of the Bitterroot Range varies from $20-30^{\circ}$. The calculated dip of the bedrock surface as it continues under the western part of the valley is $10-20^{\circ}$. This dip is verified both from gravimetric and seismic data (Fig. 18 and 19). In addition to verification of the average dip of the bedrock surface, the correspondence of the gravity and seismic results indicates that the assumed average density contrast of 0.5 grams/cubic centimeter

- Depth point calculated from refraction data
Δ Depth point calculated from gravity data
$* \mathrm{KCl}$ Shot point and number
Figure 18. Comparison of depths calculated from gravimetric and seismic refraction data in the Ambrose Greek area.

between the valley fill and the bedrock is an adequate assumption for the Bitterroot Valley (Figs. 18 and 19).

Refraction data from the Ambrose and Kootenai Creek areas indicate four formation velocity ranges (Table 2). Though Table 2 appears simplistic, such a tabulation is required if the refraction method is to satisfy the requirement of being an economical and viable method for measuring the groundwater reserves. A comparison of seismic refraction results with existing well data (Fig. 20) inuicates that the wells penetrated into the 7000-8000 feet per second velocity zone and appear to be producing groundwater from that zone. More data is needed to extend the correlation to other parts of the valley.

Table 2. Formation velocities and geologic interpretation, Kootenai and Ambrose Creek areas.

Velocity
700-2000 ft/sec Dry, near surface weathered zone 2000-4000 ft/sec Dry, less weathered Cenozoic deposits above $1.0000 \mathrm{ft} / \mathrm{sec}$
$4000-8000 \mathrm{ft} / \mathrm{sec}$ Water saturated, possibly Tertiary deposits

Interpretation Bedrock

Although the gravity data may be insufficient to resolve structural featu:es with dimensions less than one square mile (2.56 square kilometers), they can test regional tectonic theories. A popular idea is that the Sapphire Mountain Range slid off of the rising Idaho Batholith. The Frontal Zone Gneiss is hypothesized as the zone of deformation along which the overlying plate of Belt sediments and batholithic rocks was transported. The face of the Bitterroot Range exposed at the western edge of the valley may represent the zone of maximum deformation with

the extent of deformation decreasing westward into the range (Ron Chase, personal communication). Thus the total thickness of the Frontal Zone Gneiss may be as much as 1.25 miles (2 km) or more. Such an extensive unit should be traceable with geophysical techniques. Three lines of evidence developed in this study allow the surface which comprises the eastern face of the Bitterroot Range to be continuously traced at depth beneath the valley fill sediments. A fourth line of evidence verifies the position of the surface in the western portions of the valley and suggests a possible thickness for the Frontal Zone Gneiss in that area.

The first line of evidence is based upon the assumption that there is little high amplitude, high angle faulting in the western part of the Bitterroot Valley (Plate 2). Aiso, the assumption is made that the glide surface can be described by a fairly simple mathematical expression. One possible expression is based upon a power curve of the form:

$$
z=c_{1} x^{c_{2}}
$$

where Z is the vertical position, X is horizontal position and C_{1} and C_{2} are two constants to be determined. The major geologic assumption is that the surface exposed at the front of the Bitterroot Range extends under the Bitterroot Valley and is the contact that divides the valley fill sediments from the bedrock. By plotting the calculated bedrock elevations with respect to distance from the mountain front on full logarithmic scales and fitting a straight line to the points, the relationship betreen the elevation and distance can be determined. By extending the line to greater distances from the mountain front, the position of the surface can be computed anywhere. Figure 21 illustrates

the plotting procedure and Figure 22 illustrates how the surface would plot with respect to the western part of the valley and also its location relative to the proposed magnetic body in the east. Similar analyses of other cross sections through the magnetic body follow Figure 22 very closely.

The second line of evidence for the existence of the glide surface is seen in the downward continuation of the observed magnetic field in the Ambrose Creek area. Figure 23 shows the observed field and two levels of downward continuation, 2640 and 5280 (0.8 and 1.6 km) below the surface. The observed profile and the profile from the 2640 foot (0.8 km) level have the same anomaly pattern. The lover profile, hoнever, has a slightly higher amplitude as expected. The profile at the 5280 foot (1.6 km) level, though, shows some oscillation, an indication that the field has been continued belor the surface of the disturbing body (Peters, 1949). The 5280 foot (1.6 km) level corresponds to a plane 100-200 feet (30.5 to 61 m) below the surface of the lower most layer in the proposed magnetic body.

Though the shape of the calculated anomalous body is nonunique, the correspondence of the three surfaces, 1) the surface between the third and fourth layers in the model (elevation $=1200$ feet, 366 m , below sea level), 2) the "glide surface" from the power curve approximation (elevation ≈ 1000 feet, 305 m , below sea level), and 3) the surface from the dounward continuation (elevation $=1280$ feet, 390 m , below sea level, indicate that a geophysical discontinuity of some nature exists in that area.

The reflection seismic data lends limited evidence to the existence

of the above surface because the reflection experiments were conducted too far to the west. However, the seismic data collected near the Bitterroot River between Kootenai and Ambrose Creeks indicates three reflecting horizons (Table 3, Figure 22, and Appendix III).

Table 3. Results of reflection seismic experiments on the Ravalii National Wildlife Refuge. Shot location, NE corner, Sec. 3, T9N, R20W.

Interval Interval Velocity Interpretation

Surface -2000 ft.	$7500 \mathrm{ft} / \mathrm{sec}$	Cenozoic valley fill
$2000-3300 \mathrm{ft}$.	$13200 \mathrm{ft} / \mathrm{sec}$	Frontal Zone Gneiss
$3300-9600 \mathrm{ft}$.	$12700 \mathrm{ft} / \mathrm{sec}$	
$9600-3$		Frontal Zone Gneiss

The first reflecting horizon is the valley fill-bedrock interface. The depth to this interface agrees u ithin 10 percent of the depth calculated from the gravity data (Fig. 22). The second reflecting horizon is presumed to be a surface within the Frontal Zone Gneiss. The lowest reflecting horizon may represent the base of the Frontal Zone Gneiss. The total thickness agrees fairly closely to thicknesses of the Frontal Zone Gneiss measured near the front of the Bitterroot Range (Ron Chase, personal communication).

Planimetric analysis of the calculated bedrock topography may (Plate 2) indicates that the total volume of Cenozoic deposits in the Bitterroot Valley is of the order of 70 cubic miles (290 cubic kilometers). Assuming an average porosity of 20 percent, and assuming that all of that is filled with groundwater, the valley could potentially hold 14 cubic miles (57 cubic kilometers) of water. Of this, four cubic miles (16 cubic kilometers) of groundwater would be within the top 400 feet
(122 m) of the valley fill section.

Chapter V
CONCLUSIONS

Basic surface geophysical techniques, as outlined in this study, are an inexpensive means of generating subsurface information in the search for grounduater resources. Unfortunately, the volume of data provided by such methods does not yield any firm information that can be used entirely as a replacement for actual rell drilling. Seismic refraction and well \log data can be correlated, and the seismic refraction method appears to be the best of the geophysical methods investigated in this study for locating groundrater reserves. Gravity and magnetic techniques do not give direct information on groundwater resources, but they do yield regional structural information. The data of this study say nothing about how much groundwater is actually contained within the valley fill sediments, nor do they say anything about the volume of water which can be produced or what percentage of that produced would be usable. Permeability of an aquifer is best evaluated in downole tests either by pumping or geophysical logging, and nater quality can be determined only after a sample is obtained.

The seismic refraction method offers the best possibilities for generating subsurface data that can be used as a guide to water well drilling, Ceriainly the refraction data from two sites can not be considered as a guide for groundwater prospecting in the whole valley. Perhaps a program of reporting all refraction data to the Montana Bureau of Mines and Geology, as is required for driller's data, could be established. This nould allow a correlation of refraction data and
driller's data to be made and subsequently provide an improved guide to geophysical groundwater prospecting. A complication might exist, however, before the correlation of the two sets of data could be confidently undertaken. That is, few of the water well logs submitted to the state are prepared by trained geologists or groundwater hydrologists.

In addition to the limited information generated on groundwater reserves, the seismic data in this study provide two pieces of information valuable in regional structural geologic studies. Seismic results from the Kootenai and Ambrose Creek areas indicate that the depth to bedrock calculated from gravity data is very close to that calculated from the seismic data. Thus, the assumed average density of the valley fill section of 0.5 grams/cubic centimeter less than the surrounding bedrock is correct.

Furthermore, the presence of at least two reflecting horizons in the western part of the valley indicates that the Frontal Zone Gneiss can be traced at depth with seismic reflection techniques. The dip of the gneiss appears to decrease from 20° at the western margin of the valley to as little as 15° three miles (5 km) east of the mountain front.

The average formation velocity of the valley fill sediments ranges from 6500 to 8500 feet per second. The lowest velocities are observed in the center of the valley. This is explained by suggesting that the Bitterroot River has always favored the center of the valley. The less consolidated and more water saturated sediments there mould be expected to have a lower velocity than the more strongly cemented sediments outside the central portions of the valley.

With the block of geophysical data available through the present study in the Bitterroot Valley, future studies will have a definite starting point. The groundwater prospector can combine new and existing well data and new engineering seismic data to help reduce the number of dry wells drilled for groundrater in the valley.

The present preliminary geophysical study in the Bitterroot Valley invites further geophysical research to define the regional geologic structure. The two best tools for such future studies will be the reflection seismograph and the magnetometer. Both tools could be combined to define precisely the configuration of the proposed magnetic body and the Frontal Zone Gneiss at depth. The high precision now available in airborne magnetometry and digital seismic recording and processing should allow even subtle features like low amplitude normal faults in the valley floor to be interpreted. The answer to the complicated question of the regional geology in western Montana will only be obtained when synergistic geophysical data are thoroughly integrated with surface geologic data.

Appendix I

GRAVITY DATA

The follouing tabulation contains the information compiled to present the Bouguer gravity anomaly map (Plate 1) of the Bitterroot Valley. The field notes, map of station locations, and preliminary Bouguer anomaly map are available through the University of Montana Department of Geology.

Station numbers in the tabulation between 400 and 500 are in the Ambrose Creek area and are called AC-1 through AC-99 in the field notes. Station numbers greater than 500 were incorporated from a small survey initiated by Gary Crosby. These stations correspond to stations numbered 390 to 500 in the field notes. Stations 1 through 61 were also incorporated from a survey initiated by Gary Crosby. Station numbers 158 through 174 are from a survey conducted by Jesse K. Douglas in the presentation of his master's thesis (1972).

Station numbers not appearing in the following table indicate that these stations were not used in this study. All field readings have been referred to the established base station at Johnson-Bell Airport in Missoula. The column labeled observed gravity is the milligal difference betreen the field observation station and the airport station.

Several base stations were carried forward from the airport station to reduce the necessity of traveling to the airport during the surveying. All but one of these base stations were used in the determination of the Bouguer anomaly and therefore appear in the follouing table. It is not recommended that the field observation stations be used as bases
for subsequent studies because positioning the gravimeter on the absolute location of the base station may not be possible.

The one base station that could be used in future studies is in the basement of the Science Complex on the campus of the University of Montana. The gravity value is $980,446.583$ milligals in the center of the north edge of the pier in the Earthquake Laboratory. The small circles on Plate 2 indicate station locations.

STATION	STATION	STATION	STATION	OBSERVED	BOUGUER
NUMBER	ELEVATION	LATITUDE	LONGITUDE	GRAVITY	ANOMALY
	$[M E T E R S] ~$	[DEG.N]	[DEG. W]	[MGALS]	[MGALS]

1	1103.4	46.5738	114.0925	-47.281	-176.3
2	1033.0	46.5738	114.1080	-53.289	-173.5
3	1075.9	46.5738	114.1242	-59.328	-170.0
4	1098.5	46.5738	114.1301	-62.555	-168.2
5	1143.0	46.5760	114.1427	-59.367	-153.9
0	1252.7	46.5789	114.1555	-90.570	-159.5
7	1353.3	46.5802	114.1761	-107.625	-152.0
8	1389.9	46.5825	114.1814	-124.602	-161.6
9	983.9	46.5738	114.0654	-49.883	-181.4
10	1067.4	46.5662	114.0546	-55.648	-170.2
11	1021.7	46.5662	114.0329	-58.281	-181.9
12	1057.4	46.5662	114.0020	-63.562	-180.0
13	990.0	46.5892	114.0884	-43.492	$=174.6$
14	991.5	46.6030	114.0864	-41.133	-173.0
15	995.8	46.6174	114.0880	-41.852	-173.9
16	993.0	46.6317	114.0784	-41.477	-175.2
17	1090.6	46.4370	114.1516	-61.477	-160.9
16	1121.7	46.4370	114.1611	-71.625	-159.1
19	1205.5	45.5910	114.1792	-91.797	-148.2
210	$1243 \cdot 6$	46.5430	114.1977	-100.375	-159.9
21	1034.0	46.5300	114.1304	-57.703	-173.5
22	1009.2	46.5300	114.1115	-55.625	-177.2
23	1004.0	46.5280	114.0867	-59.086	-182.6
24	1037.5	46.5200	114.0656	-66.961	-183.1
26	1104.0	46.1590	114.0453	-81.930	-184.6
26	1132.0	46.5190	114.0236	-80.344	-177.7
27	1161.3	46.5180	114.0018	-80.242	-171.0
28	972.0	46.7570	114.0822	-6.523	-156.1
29	972.0	46.7480	114.0830	-7.750	-156.2
36	965.0	46.7360	114.0801	-9.414	-157.8
31	964.7	46.7230	114.0774	-16.047	-163.3
3 c	1003.1	46.5170	114.0967	-60.625	-183.0
33	1000.7	46.5190	114.1183	-56.891	-179.0
34	1024.1	46.5130	114.0809	-65.820	-184.0
35	1021.4	46.5340	114.0654	-62.203	-182.7
36	998.5	46.5540	114.0654	-54.898	-181.8
37	992.4	46.5880	114.0465	-49.789	-180.9
38	994.9	46.6110	114.0380	-46.477	-179.1
39	995.2	46.6310	114.0385	-42.273	-176.5
40	1042.4	46.6410	114.0166	-46.258	-171.8

STATION	STATION	STATION	STATION	OBSERVED	HOUGUER
NUMBER	ELEVATION	LATITUDE	LONGITUDE	GRAVITY	ANOMALY
	[METERS]	[DEG. N]	[DEG.W]	[MGALS]	[MGALS]

41	1093.9	46.6430	113.9904	-53.844	-169.3
42	1143.0	46.6470	113.9699	-58.937	-164.7
43	1240.8	46.6380	113.9445	-80.086	-164.5
44	1310.9	46.6320	113.9271	-94.187	-163.5
45	981.5	40.6750	114.0812	-23.008	-161.1
40	1075.9	46.8070	114.0350	-75.414	-159.1
47	1033.3	46.7940	114.0462	-65.117	-156.2
48	1146.7	46.7780	113.9570	-91.586	-157.1
49	1195.1	46.7530	113.9409	-104.828	-155.0
51	1269.8	46.7230	113.9023	-124.500	-158.6
51	1241.5	46.7340	113.9161	-117.281	-157.7
5 c	1229.3	46.7370	113.9344	-112.617	-156.0
53	1177.7	46.7650	113.9400	-100.289	-154.5
54	1158.8	46.7740	113.9444	-94.852	-157.1
b	1143.0	46.7800	113.9651	-89.789	-156.2
50	1124.1	46.7830	113.9826	-86.172	-157.2
57	1495.1	46.7830	114.0022	-89.352	-165.6
58	1061.9	46.7840	114.0264	-72.039	-155.5
59	986.6	46.8030	114.0663	-58.016	-159.1
01	972.9	46.8060	114.0814	-52.469	-156.4
01	960.7	46.8180	114.0644	-51.141	-158.9
03	957.4	46.7870	114.0925	-. 133	-155.8
64	963.2	46.7640	114.0623	-3.305	-155.0
65	970.8	46.7580	114.0734	2.578	-147.1
66	1046.7	46.7910	114.0365	-16.484	-154.5
69	1097.3	46.7830	114.0389	-27.461	-154.3
70	1084.5	46.7790	114.0424	-25.734	-154.5
71	969.3	46.7710	114.0590	-5.305	-156.5
72	1138.4	46.7680	114.0455	-20.641	-137.0
73	975.4	46.8150	114.0920	-2.312	-156.5
74	975.4	46.7950	114.0997	-5.125	-156.8
75	972.3	46.7690	114.0792	-3.266	-154.1
76	963.2	46.7480	114.0648	-5.805	-155.9
77	972.3	46.7030	114.0772	-25.875	-169.8
78	970.8	46.6880	114.0782	-24.141	-166.6
79	978.4	46.6690	114.0789	-28.875	-167.7
80	1055.2	46.6960	114.0917	-41.258	-166.5
81	1055.5	46.6810	114.0922	-32.813	-154.2
$8{ }^{\text {c }}$	1115.6	46.6740	114.1045	-48.406	-155.2
83	972.0	46.6690	114.0563	-28.031	-170.1

STATION	STATION	STATION	STATION	OBSERVED	BOUGUER
IVUMBER	ELEVATION	LATITUDE	LONGITUDE	GRAVITY	ANOMALY
	[METERS]	[DEG. N]	[DEG.W]	[MGALS]	[MGALS]

84	995.2	46.6460	114.0789	-38.375	-173.2
85	977.2	46.6300	114.0535	-38.773	-176.4
80	1008.3	46.6480	114.0385	-38.531	-171.6
87	1021.1	46.6580	114.0312	-34.828	-166.1
88	1024.1	46.6690	114.0257	-30.781	-161.9
89	1164.3	46.6760	114.0035	-57.430	-160.4
91	986.0	46.6810	114.0299	-23.711	-163.0
91	1040.9	46.6950	114.0334	-30.195	-158.7
92	1115.6	46.6920	114.0233	-43.750	-156.6
93	1277.1	46.6990	114.0037	-73.672	-153.1
94	1426.5	46.7080	113.9980	-102.906	-153.0
95	982.4	46.7070	114.0337	-19.523	-160.8
90	963.2	46.7350	114.0711	-10.367	-159.5
97	963.2	46.7280	114.0532	-10.828	-159.2
90	963.2	46.7210	114.0478	-12.031	-159.6
99	996.1	46.7310	114.0437	-16.492	-158.2
100	1072.9	46.7340	114.0216	-31.102	-157.0
101	1130.0	46.7400	114.0017	-43.781	-159.0
102	1197.9	46.7400	113.9804	-57.508	-159.4
103	963.2	46.7160	114.0546	-15.016	-162.4
104	1103.4	46.7220	114.0229	-38.820	-157.1
105	1182.6	46.6990	114.1146	-62.273	-160.0
100	1249.7	40.6880	114.1164	-77.523	-158.9
107	1170.4	46.6630	114.1061	-61.242	-156.1
100	1200.9	46.6570	114.1075	-70.547	-158.9
149	1106.4	46.6560	114.0993	-51.977	-161.0
110	1025.7	46.5010	114.0826	-67.039	-183.8
111	1053.1	46.5010	114.0654	-71.336	-182.7
112	1082.0	46.5010	114.0455	-74.086	-179.7
113	1112.5	46.5010	114.0238	-76.812	-176.4
114	1141.5	46.5010	114.0018	-78.922	-172.1
111	1204.0	46.4840	113.9776	-93.078	-172.3
116	1234.4	46.4790	113.9576	-104.625	-177.0
117	1298.4	46.4630	113.9387	-114.898	-173.4
116	1325.9	46.4530	113.9221	-126.172	-176.2
119	1356.4	46.4410	113.9123	-134.523	-176.4
120	1402.1	46.4270	113.9057	-148.531	-179.6
122	1216.2	46.4760	113.9929	-98.375	-174.5
123	1129.3	46.4840	114.0234	-84.820	-179.4
124	1164.3	46.4770	114.0027	-91.289	-178.0

STATION	STATION	STATION	STATION	OBSERVED	BOUGUER
NUMBER	ELEVATION	LATITUDE	LONGITUDE	GRAVITY	ANOMALY
	[METERS]	[DEG. N]	[DEG. W]	[MGALS]	[MGALS]

	1216.2	46.4720	114.0095	-101.836	-172.4
126	1231.4	46.4580	114.0080	-101.445	-172.8
127	1188.7	46.4570	114.0299	-95.867	-175.9
128	1178.1	46.4720	114.0301	-94.859	-178.6
129	1103.4	46.4820	114.0485	-82.375	-182.0
130	1051.6	46.4850	114.0664	-71.812	-182.0
131	1019.6	46.4850	114.0897	-65.445	-182.0
132	979.9	46.4720	114.0897	-64.656	-187.9
133	1012.9	46.4570	114.0912	-65.680	-181.0
134	1033.3	46.4570	114.0777	-69.766	-180.1
135	1015.0	40.4420	114.0940	-65.b39	-179.1
136	1027.2	46.4420	114.0731	-68.141	-179.2
137	1143.0	46.4430	114.0536	-89.187	-177.2
136	1252.7	46.4520	113.9880	-112.125	-178.4
139	1319.8	46.4520	113.9666	-122.289	-175.0
$141)$	1022.3	46.4240	114.0967	-67.844	-178.3
141	1033.0	46.4240	114.0728	-67.750	-176.0
142	1086.6	46.4270	114.0515	-82.164	-176.9
143	1133.9	46.4270	114.0314	-92.148	-180.1
144	1065.3	46.4420	114.0528	-72.750	-173.4
145	1129.3	46.4420	114.0286	-82.930	-173.3
146	1015.3	46.4420	114.1154	-66.117	-179.4
147	1022.6	46.4420	114.1349	-67.180	-178.8
148	1034.8	46.4420	114.1462	-69.937	-178.9
149	1033.3	46.4270	114.1473	-70.648	-178.7
150	1036.3	46.4130	114.1437	-73.227	-179.7
151	1021.1	46.4130	114.1264	-69.227	-179.1
$15 \times$	1024.1	46.4130	114.1121	-69.977	-179.2
153	1025.7	46.4090	114.0938	-70.805	-179.3
154	1029.6	46.3970	114.0933	-73.695	-180.3
155	1091.2	46.3970	114.0684	-84.031	-178.2
156	1129.6	46.3970	114.0508	-89.836	-176.2
157	1193.3	46.3970	114.0347	-100.242	-173.6
161	1059.5	46.5740	114.0018	-57.047	-171.0
173	1052.5	46.5600	114.0018	-54.656	-171.4
174	1034.5	46.5600	114.0236	-53.086	-173.4
175	1051.9	46.4137	114.1678	-77.172	-180.2
170	1083.3	46.4287	114.1678	-80.625	-177.7
177	1067.7	46.4465	114.1678	-75.875	-176.7
176	1127.8	46.4658	114.2141	-97.000	-165.6

STATION NUMBER Number

STATION
LATITUDE
CDEG. N?

STATION
LONGITUDE
[DEG. W]

OBSERVED
GRAVITY
[MGALS]

BOUGUER ANOMALY [MGALS]

179	1228.3	46.4960	114.1920	-96.727	-165.4
182	1601.7	46.4370	114.2209	-173.492	-160.8
183	1074.4	46.4559	114.1679	-71.906	-171.7
184	1106.4	46.4721	114.1674	-74.789	-168.8
185	1050.0	46.4721	114.1448	-66.352	-173.5
180	1072.9	46.4903	114.1475	-67.344	-170.9
187	1037.5	46.5008	114.1463	-62.297	-174.0
186	1002.5	46.5000	114.1232	-56.977	-177.1
189	1004.3	46.4885	114.1271	-57.766	-176.6
191	1015.0	46.4721	114.1296	-61.719	-177.2
191	1086.6	46.4544	114.1362	-66.391	-166.3
192	1082.0	46.4175	114.1890	-78.844	-174.3
193	1117.1	46.4171	114.2093	-83.391	-170.4
194	1152.1	46.4155	114.2209	-87.219	-165.4
196	1116.8	46.3990	114.1997	-93.062	-1.80.9
196	1202.7	46.3940	114.2209	-103.250	-172.6
197	1123.5	46.3810	114.1993	-95.969	-181.1
198	1175.9	46.3810	114.2209	-99.406	-173.0
199	1243.6	46.3791	114.2405	-108.242	-163.0
200	1089.7	46.3854	114.1784	-94.562	-187.7
201	1085.7	46.3998	114.1782	-89.125	-184.2
202	1051.6	46.3998	114.1462	-81.672	-184.1
203	1048.5	46.3854	114.1465	-94.836	-196.6
204	1075.0	46.3782	114.1678	-93.766	-189.4
zus	1120.1	46.3660	114.1940	-98.086	-183.2
200	1147.0	46.3530	114.1942	-106.297	-184.4
207	1238.1	46.3530	114.2146	-116.891	-175.6
200	1132.0	46.3421	114.1992	-103.539	-183.4
209	1082.0	46.3415	114.1709	-101.000	-191.7
210	1180.5	46.333 u	114.2209	-105.148	-173.6
211	1228.3	46.3210	114.2209	-114.523	-172.0
212	1150.6	46.3240	114.1927	-108.094	-182.9
213	1079.0	46.3124	114.1737	-99.852	-188.5
214	1063.1	46.3134	114.1561	-99.719	-192.0
215	1056.4	46.3283	114.1560	-98.336	-193.4
216	1052.2	46.3421	114.1556	-96.430	-\$93.6
217	1058.0	46.3566	114.1558	-95.211	-190.8
218	1061.9	46.3710	114.1558	-92.680	-190.5
219	1098.0	46.3710	144.1777	-99.008	-189.1
220	1066.8	46.3259	144.1729	-98.047	-190.3

STATION
NUMBER

STATION
elevation
[METERS]

STATION
LATITUDE
[DEG. N]

STATION
LONGITUDE [DEG. W]

OBSERVED	BOUGUER
GRAVITY	ANOMALY
[MGALS]	[MGALS]

221	1033.9	46.3819	114.1046	-80.062	-184.6
222	1036.3	46.3709	114.1046	-83.211	-186.2
223	1056.7	46.3709	114.0821	-86.766	-185.5
224	1092.7	46.3778	114.0623	-90.586	-182.8
225	1109.8	46.3888	114.0615	-93.937	-183.6
220	1167.4	46.3798	114.0399	-103.492	-180.7
227	1107.9	46.3620	114.0618	-92.344	-180.0
228	1115.6	46.3560	114.0608	-96.023	-181.6
229	1130.8	46.3400	114.0611	-92.789	-174.0
230	1072.6	46.3460	114.0829	-94.367	-187.7
231	1072.9	46.3570	114.0830	-91.336	-182.0
3 c	1041.5	46.3570	114.1046	-86.992	-187.7
233	1045.2	46.3460	114.1204	-93.586	-192.7
234	1053.1	46.3255	114.1196	-97.695	-193.4
235	1058.0	46.3129	114.1359	-100.617	-194.1
236	1057.4	46.3255	114.1030	-97.375	-192.1
237	1096.1	46.3255	114.0814	-103.180	-190.0
238	1141.8	46.3255	114.0618	-109.695	-186.9
235	1228.0	46.3246	114.0336	-125.047	-183.5
246	$1<89.3$	46.3270	114.0188	-134.383	-181.1
241	1417.3	46.3393	113.9980	-165.164	-187.5
24%	1341.1	46.3266	114.0086	-148.312	-184.6
243	1176.5	46.3130	114.0415	-115.828	-183.5
244	1117.1	46.3130	114.0615	-109.047	-i90.2
245	1044.9	46.3132	114.1133	-99.742	-195.6
246	1077.5	46.2986	114.1678	-100.578	-188.4
247	1123.2	46.3024	114.1890	-104.211	-182.5
248	1181.4	46.3090	114.2113	-109.002	-175.4
249	1254.0	46.2986	114.2207	-123.187	-172.3
250	1225.3	46.2876	114.2206	-116.898	-170.5
251	1107.9	46.2876	114.1950	-100.750	-180.5
25%	1231.4	46.2693	114.2209	-122.422	-172.6
253	1155.8	46.2692	114.1992	-111.742	-180.6
254	1150.6	46.2547	114.1993	-114.359	-182.6
255	1249.7	46.2554	114.2204	-127.523	-172.6
999	1109.5	46.2692	114.1779	-107.867	-186.4
250	1092.7	46.2550	114.1779	-107.109	-187.5
257	1065.3	46.2887	114.1628	-100.141	-189.7
258	1084.2	46.2552	114.1563	-109.172	-192.0
259	1074.4	46.2690	114.1561	-103.734	-189.6

STATION STATION NuMiber
 ELEVATION
 [METERS]

STATION latitude
[DEG. N]

STATION LONGITUDE [DEG. W]

OBSERVED GRAVITY [MGALS]

BOUGUER ANOMALY [MGALS]

260	1067.1	46.2840	114.1399	-103.539	-192.5
261	1062.2	46.2986	114.1410	-101.820	-193.1
262	1083.9	46.3130	114.0872	-102.789	-191.0
263	1132.6	46.2985	114.0618	-110.867	-187.9
264	1185.1	46.2985	114.0412	-123.422	-188.6
205	1229.6	46.2980	114.0183	-132.789	-187.8
260	1258.8	46.2951	114.0017	-140.406	-189.1
267	1310.6	46.2960	113.9816	-154.203	-192.4
268	1386.8	46.2940	113.9570	-171.695	-194.4
269	1118.0	46.2952	114.0870	-113.656	-193.6
270	1065.9	46.2985	114.1146	-102.578	-193.2
271	1085.1	46.2841	114.1146	-107.773	-191.5
272	1118.6	46.2770	114.0930	-115.953	-194.0
273	1140.0	46.2770	114.0714	-119.055	-189.2
274	1200.3	46.2770	114.0312	-131.000	-192.4
275	1237.5	46.2770	114.0297	-138.281	-191.6
276	1338.1	46.2770	114.0073	-153.141	-185.1
277	1088.1	46.2681	114.1354	-111.680	-194.9
270	1101.9	46.2547	114.1359	-116.758	-196.0
279	1147.6	46.2541	114.0716	-121.672	-191.7
280	1030.5	46.5892	114.0234	-57.164	-180.9
281	1121.7	46.6032	113.9867	-72.539	-174.7
282	1094.2	46.5885	114.0018	-69.250	-180.3
283	1140.0	46.5883	113.9679	-72.164	-173.8
204	1194.8	46.6035	113.9380	-78.531	-170.7
285	1243.6	46.6180	113.9184	-85.891	$-16 ? .2$
286	1341.1	46.6211	113.8954	-107.523	-170.2
287	1511.8	46.6015	113.8555	-138.367	-165.4
288	1658.1	46.6035	113.8256	-171.906	-168.8
289	1414.3	46.0100	113.8741	-122.414	-169.6
290	1255.8	46.6044	113.9209	-94.047	-171.7
291	1116.8	46.5736	113.9595	-67.008	-172.0
292	1084.5	46.5736	113.9806	-66.562	-178.2
293	990.0	46.5581	114.0864	-51.398	-180.3
294	998.2	46.5412	114.1005	-52.477	-177.6
295	1033.3	46.5519	114.1201	-55.281	-173.4
290	996.4	46.5581	114.1026	-50.617	-177.5
297	1095.1	46.5588	113.9814	-64.969	-173.0
298	1134.8	46.5588	113.9598	-76.258	-176.2
299	1255.8	46.5430	113.9183	-97.312	-171.4

STATION	STATION	STATION	STATION	OBSERVED	BOUGUER
NUMBER	ELEVATION	LATITUDE	LONGITUDE	GRAVITY	ANOMALY
	$[M E T E R S]$	[DEG.N]	[DEG.W]	[MGALS]	[MGALS]

300	1341.1	46.5414	113.8970	-117.133	-173.8
301	1536.2	46.5339	113.8756	-160.422	-177.4
302	1731.3	46.5220	113.8618	-188.477	-164.7
303	1466.1	46.5472	113.8763	-143.516	-175.6
304	1524.0	46.5589	113.8756	-147.664	-169.6
305	1423.4	46.5657	113.8950	-131.711	-174.0
306	1240.5	46.5543	113.9380	-95.297	-173.7
307	1058.0	46.5448	114.0234	-65.078	-179.4
308	1098.2	46.5303	114.0246	-71.734	-176.7
309	1086.6	46.5337	114.0420	-72.359	-180.0
310	1045.9	46.2956	113.9199	-217.180	-188.3
311	1798.3	46.3129	113.9442	-241.087	-184.0
31 c	1767.8	46.3371	113.9576	-252.844	-203.7
313	1706.9	46.3394	113.9676	-257.281	-221.1
314	1090.9	46.2409	114.1563	-111.898	-192.1
315	1092.7	46.2265	114.1563	-112.305	-190.7
316	1100.0	46.2113	114.1561	-113.492	-183.7
317	1108.6	46.1968	114.1561	-115.062	-187.5
318	1118.0	46.1824	114.1561	-116.156	-185.1
319	1082.0	46.1682	114.1639	-114.781	-180.6
320	1146.0	46.1542	114.1375	-126.961	-185.8
321	1204.0	46.1444	114.0917	-143.977	-188.4
322	1216.2	46.1388	114.0731	-153.578	-190.1
323	1275.0	46.1301	114.0480	-165.937	-189.9
324	1200.9	46.1464	114.1138	-134.422	-179.7
325	1131.7	46.1968	114.1347	-121.352	-189.3
320	1149.1	46.1972	114.1143	-124.336	-189.0
327	1135.4	46.2115	114.1143	-124.500	-193.3
320	1124.7	46.2113	114.1304	-121.422	-192.3
329	1109.2	46.2371	114.1349	-120.414	-196.9
330	1145.1	46.2290	114.1113	-127.117	-195.5
331	1163.7	46.2262	114.0928	-122.195	-186.5
332	1206.4	46.2115	114.0927	-138.359	-192.7
333	1216.2	46.1972	114.0927	-138.250	-189.3
334	1156.7	46.1535	114.1636	-126.156	-181.8
335	1173.5	46.1384	114.1593	-131.773	-181.8
336	1161.3	46.1107	114.1694	-132.359	-179.3
337	1156.4	46.0956	114.1794	-129.945	-175.0
330	1248.2	46.0962	114.2056	-147.477	-174.3
339	1181.1	46.1064	114.2053	-134.703	-182.1

STATION	STATION	STATION	STATION	OBSERVED	BOUGUER
NUMBER	ELEVATION	LATITUDE	LONGITUDE	GRAVITY	ANOMALY
	[METERS]	[DEG. N]	[DEG. W]	[MGALS]	[MGALS]

346	1155.8	46.1107	114.1844	-126.641	-174.6
341	1190.9	46.1207	114.2038	-135.391	-178.3
342	1236.9	46.1207	114.2242	-137.844	-172.6
343	1143.0	46.1244	114.1827	-125.484	-179.3
344	1191.8	46.1276	114.2038	-135.906	-180.3
345	1219.2	46.2430	114.2209	-123.508	-173.5
340	1127.8	46.2404	114.1938	-112.047	-183.8
347	1151.8	46.2265	114.2078	-112.312	-175.5
348	1107.9	46.2265	114.1889	-109.148	-184.1
349	1116.2	46.2113	114.1781	-112.062	-184.8
350	1122.6	46.1968	114. 781	-114.523	-182.9
351	1123.2	46.1824	114.1842	-113.187	-179.6
352	1124.1	46.1680	114.1842	-114.023	-178.5
353	1130.8	46.1535	114.1844	-118.359	-179.2
354	1133.9	46.1384	114.1772	-123.109	-181.0
355	1141.5	46.1384	114.1975	-124.297	-180.7
356	1136.0	46.1535	114.2023	-118.922	-177.7
357	1186.3	46.1682	114.2040	-123.422	-174.6
350	1120.1	46.2442	114.1144	-122.125	-197.1
359	1141.5	46.2442	114.0930	-125.750	-196.2
360	1157.6	40.2371	114.0830	-125.570	-191.9
361	1204.0	46.1747	114.0714	-141.227	-191.8
$36 \hat{2}$	1234.4	46.1718	114.0503	-150.695	-192.6
363	1248.2	46.1586	114.0081	-165.297	-199.3
377	1252.7	46.1623	114.0296	-156.000	-191.4
376	1304.5	46.2688	114.2415	-134.297	-165.0
379	1542.3	$46 \cdot 2526$	114.2501	-134.617	-160.4
380	1143.0	46.5422	113.9522	-77.953	-174.7
381	1268.0	46.5257	113.9520	-104.383	-174.4
$38{ }^{\circ}$	1377.7	$46 \cdot 5124$	113.9565	-118.719	-165.8
383	1117.1	46.5430	114.0018	-156.766	-171.4
384	1066.8	46.6091	114.0136	-61.687	-179.8
385	1271.0	46.5874	114.1402	-90.766	-159.8
380	1706.9	46.5969	114.1646	-174.227	-152.5
387	1035.1	46.5892	114.1078	-48.375	-169.3
380	1033.3	46.6031	114.1078	-44.000	-167.9
389	981.5	46.6046	114.0585	-43.070	-177.7
390	979.0	46.6180	114.0551	-40.789	-177.0
401	1092.8	46.5575	113.9814	-67.312	-175.5
$40<$	1088.1	46.5582	113.9814	-66.250	-175.5

STATION
NUMBER

STATION ELEVATION
[METERS]

STATION
LATITUUE
[DEG. N]

STATION LONGITUDE
[DEG. W]
OBSERVED
GRAVITY
[MGALS]

BOUGUER
ANOMALY
[MGALS]

403	1083.2	46.5588	113.9814	-65.195	-175.5
404	1088.8	46.5588	113.9787	-65.531	-174.7
405	1095.1	46.5588	113.9760	-66.016	-173.8
400	1101.4	46.5588	113.9733	-66.422	-172.9
407	1117.6	46.5588	113.9706	-69.625	-172.8
408	1124.7	46.5588	113.9679	-71.266	-173.0
409	1132.5	46.5588	113.9652	-72.547	-172.6
410	1140.5	46.5588	113.9625	-73.664	-172.1
411	1155.1	46.5588	113.9598	-76.289	-171.7
412	1164.0	46.5588	113.9571	-78.406	-172.0
413	1172.8	46.5588	113.9544	-80.445	-172.2
414	1184.3	46.5588	113.9517	-82.398	-172.3
415	1196.5	46.5588	113.9490	-85.328	-172.3
410	1208.7	46.5588	113.9463	-87.227	-171.1
417	1218.0	45.5588	113.0436	-88.898	-171.4
418	1247.3	46.5543	113.9380	-95.109	-171.3
419	1101.9	46.5534	113.9814	-69.461	-175.5
4 CO	1095.2	40.5526	113.9814	-68.289	-175.5
421	1099.1	46.5526	113.9787	-68.781	-175.1
422	1106.5	46.5526	113.9760	-70.062	-174.9
$4<3$	1122.5	46.5520	113.9733	-73.164	-174.8
$4<4$	1131.4	46.5526	113.9706	-74.656	-174.4
425	1127.5	46.5526	113.9679	-73.742	-174.2
420	1087.5	46.5504	113.9814	-66.719	-175.1
427	1489.6	46.5484	113.9814	-67.531	-175.3
420	1095.0	46.5467	113.9814	-69.336	-175.8
429	1098.7	46.5445	113.9814	-70.664	-176.2
430	1106.4	46.5445	113.9787	-72.219	-176.2
431	1115.7	46.5445	113.9760	-74.242	-176.3
432	1112.5	46.5445	113.9733	-71.695	-174.3
433	1115.6	46.5445	113.9706	-74.164	-176.2
434	1127.8	46.5445	113.9679	-77.852	-177.5
435	1149.1	46.5445	113.9652	-80.297	-175.7
beb	1079.0	46.5165	114.1399	-68.156	-173.1
527	1231.4	46.5220	114.1614	-92.906	-162.0
528	1414.3	46.5216	114.1766	-131.055	-161.5
529	1527.0	46.5125	114.1727	-153.570	-162.5
536	1682.5	46.5006	114.1957	-184.930	-162.4
539	1101.2	46.4793	114.1561	-72.547	-169.1
540	1194.8	46.4772	114.1736	-88.727	-164.0

STATION Numiber	STATION ELEVATION [METERS]	STATION LATITUDE [DEG.N]	STATION LONGITUDE [DEG. W]	OBSERVED GRAVITY [MGALS]	BOUGUER ANOMALY [MGALS]
541	1304.5	46.4930	114.1664	-109.195	-164.1
64%	$1450 \cdot 8$	46.5065	114.1716	-137.281	-161.8
543	$1560 \cdot 6$	46.4988	114.1774	-161.789	-165.3
544	1284.7	46.4685	114.1829	-108.203	-164.5
545	1456.9	46.4803	114.1830	-141.625	-163.6
546	1062.7	46.4713	114.2003	-182.617	-160.5

COMPUTER PROGRAMS

Five FORTRAN programs were used in this study of the Bitterroot Valley. The Bott (1960) wrogram for iteratively determining the thickness of valley fill from the Bouguer anomaly, the Talwani and Euing program (1.960) for calculating gravity and magnetic fields over arbitrary three dimensional bodies and the Henderson (1960) program for generating first and second derivatives and continued fields are fairly well documented uithin the bodies of the respective programs. Additional information on the Talwani and Ewing program and the Henderson program as used in this study is available through the Indiana Geological Survey, Bloomington, Indiana 47401. For flow charts of these three programs, the user is advised to refer to the original papers from which these programs were written.

The lowpass filter program used in this study is also included in this appendix. The program requires a Fourier transform subroutine to complete the filtering process. In general, the program reads the input signal in the spatial (time) domain, Fourier transforms into the frequency domain, applies the frequency domain filter function, and inverse transforms the data to yield the filtered signal. The filter function is defined to be a very sharp, zero-phase shift filter (Fig. 24). The Fourier transform subroutine used in this study followed the fast transform algorithm of Cooley and Tukey (1965). However, any Fourier transform program could be used with the filter program.

The following list of variables and explanations should help the
user implement the lowpass filter program.

1. TITLE a 72 character title of the data to be filtered
2. N the number of equispaced points in the input signal
3. FREQ the cutoff frequency for the filter functions. This is expressed as a wavelength and must be in the range $2 \leq$ FREQ $\leq(N-1) / 2$
4. SPACE the distance between the equispaced data points
5. $A(I)$ the input signal array, not complex
6. DATA (I, J) the array used in the Fourier transform, complex
7. PLOT(I) the array used for a line printer plot of the power spectrum ard the filtered and unfiltered time domain signals
8. $B(I)$ the filtered output signal array, not complex
9. $F(I)$ the distance from the origin of the input signal. This is related to SPACE.

The fifth program included in this appendix was used to calculate layer thicknesses and dips from the seismic refraction data. The program has been copied (with permission) exactly as it was presented by Mooney (1973). The input is documented in the program and the output is self explanatory. For a discussion of the theory and a flow chart of the program, the user should refer to the original paper.


```
                                    IMENSION TITLE{12}
                                    DIMENSION A(4DO)
                                    DOUBLE PRECISION TITLE
                            INTEGER SPACE
        1000 READ (2,3, END=1001) (TITLE(I),I = 1,12)
    READ(2,2) N,FREQ,SPACE
    REAJ(2,1) (A\I),I = 1,N)
    TEMP = 0.
        1 FCRMAT (5F)
        3 FORMAT (12A6)
        2 FCRMAT(2I,F)
            CALL LOPASS (N,A,FREQ,TEMF,SPACE,TITLE)
    GO TO 1000
        1001 CALL EXIT
    END
    SUBROUTINE LOPASS (N,A,FREO,TEMP,SPACE&TITLE)
    DIMENSION TITLE(12), PLOT (75)
    DIMENSION F(430!
    DIMENSION A(400), DATA(400). WORK(409)
    DIMENSION G(400)
    DOUGLE PRECISION TITLE
    COMPLEX DATA,HORK
    INTEGER FREN, TPLOT
    DO 1 I = 1,N
    DATA(I) = 0.
    1 DATA(I) = CMPLX(A(I)-TEMP,0.0)
        103 CALL FOURT(OATA,N,1,-1,1,WORK)
    PRINT 100,(TITLE(I),I = 1,12)
        100 FORMAT (1H1,///I2X,12AE://SX,'FOURIEO TRANSFORM OF INOUT SIGNAL',/
            *5X.'I ', 'FT/CYCLE',5X, 'REEAL',&X,
            1'IMAGINARY',5X,"A!!PLITUDE', 30X, 'AMPLITUDE SPECTPUN*,///1
                    DO 3 I = 1,(N+1)/2
                    POWER = SOFT(IREALIDATA(I))**2.) +(AIMAG(חATA(II)**2.1)/**
                    TI = N*SPACE/(I-1)
                    J=I-1
            DO 106 JJ = 1,75
        106 PLOT(JJ) = 1H
            TPLCT = (PCHER/2) +0.5
            DO 107 JJ = 1,TPLOT
        107 PLOT(JJ) = 1HX
            3 PRINT 2, J, TI, DATA(I), PO:4ER,(PLOT(JJ), JJ = 1,75)
            2 FCRMAT (1X,I5,FB.1,3F14.2,75A1)
            CALL FILFUN (DATA,N,FREO,OATAI
            THETA = 0.
            0020 I = 1,N
            SUH = 0.
            FTHETA = 0.
            DO 22 J = 2,(N/2)
            22 SUM = SUM + REAL(DATA(J))*COSO((J-1)*THETA) + IIMAG(OATA(J))
            1 *SIND ((J-1)*THETA)
                    THETA = THETA - 350./N
            FTHETA = SUM + REAL(OATA(1))/2.)/(N/2)
            20 F(I) = FTHETA + TEMP
            PRINT }
            5 FCRMAT (//// FILTERED DATA, FPEQUENCY DOMIAN. */I
                    DO 6I = 1,(N+1)/2
                    J = I-1
            6 PRINT 7,J,DATA(I)
```

```
    FORMAF R2X,IS:2F2J.C
    CALL FOURT (OATA,N,1,1,1,HORK)
    PRINT 9, FREQ, WAVE
    00 3 I = 1,N
    DATA(I) = OATAIII/FLOATINI
    B(I) = PEALIDATA(I)) + TEMP
    DO 23 J = 1,50
    23 PLOT(J) = 1H
        PLOT(30) = 1H.
        TPLOT =((A(I) + 1500)/50.) + %.5
        PLOT(TPLOT) = 1H*
        TPLOT = (PAPI) + 1500) /50. ) +0.5
    PLOT(TPLOT) = 1H+
        102 FORMAT (2XI5,3F15.2,*.....',EOA1)
        8 PRINT 102, I, A(I), B(I),F(I),(PLOT(J),N =.1,60)
        104 CONTINUE
            9 FORMAT////" FILTERED DATA, TIME NGMAIN."/" GUTOFF FDEQUENTV = *
        *,I," CYCLES/OERIOD HAVELENGTH=.'FS.2," FT/SYCLE'
        */% I*.7x.
        1'INPUT +',15x,'OUTPUT *',10x,'....',6('T..........'','T',/
```



```
        3'500',5x,'1000',5x,'1500'//1
            RETURN
            END
            SUBROUTINE FILFUN (C,N,FREQ,F)
            DIMENSION E(400, 2),F(400)
            COMPLEX F
            INTEGER FREO
            DIMENSION C14001.D(400)
            COMPLEX C.O
            DO 12 I = 1,N
            IF(I.LE.(FREQ*1).OR.I.GT.(N-FREO)) GO TO 13
            P=0
            R=-AINAG(C(T))
            D(I) = CMPLX (O,R)
            GO TO 12
            13 P = 1
            R=0
            D(I) = CMFLX(P,R)
        12 CONTINUE
            0010I=1.N
            A = REAL(C(I))*REAL(O(I))
            B = AIMAG(C(I)) +AIMAG(DII))
            E(I,I)=A
        10 E(I,2)=B
            DO 11 I = 1,N
        11F(I)=CMPLX(E(I,1),E(I,2))
            RETURN
            END
```

```
C LABEL - GRAVI
    PROGRAM FCR DIRECT GRAVITY INTERPRETATION OF SEOIMENTAPV BASINS.
    AFTER BOTT, GEOPHYSICAL JCURNAL ?..
    FORTRAN 4H APRIL 1972 BY PRAHL.
    FIRST DATA CARO SFECIFIES OPT, FLAT, SYSTEM, NUN, AND EEA.
    IF FLAT=0, BASIN IS ASSUMED TO BE FLAT ANO IF FLAT=1, INPUT
    ELEVATIONS OF TOFS OF 3LOCKS - ELEV(II IN FEET OD YETERS.
    SYSTEM = O FOR ENGLIST OR SYSTEM = 1 FOR NETOIS.
    DEN=DENSITY CONTRAST IN GRAMS PER CUBIC CENTIMETEP.
    NUM=NUM OF ANOMALIES OR BLOCKS.
    IF OPT=O, HALF WIDTH OF RLOCKS IS CONSTANT - W.IN FEET DF METERS.
    OBSERVED ANOMALIES MUST BE EVENLY SPACED I 2W BETWEEN CONSECUTIVE
    OBSERVED ANOMALIES APE AT CENTER OF RLOCKS.
    ANOMALIES, ANO MUST BE AT CENTER OF BLOCKS.
    SECONO OATA CARD CONTAINS TITLE OF INPUTTEO EATA.
    FOR OPT=O THIRO DATA CARO CONTAINS HALF WIJTH - W AND LAST MATA
    CAROS CONTAIN THE ELEVATIONS.ELEVIII, ANO/OP THF OQSFRVEO ANOMALT=S,
    AOBS(+1, AT CENTE* OF EACH BLOCK.+N CONSECUT+VE O-DE-F-OM LEFT.
    IF OPT=1, HALF WIDTHS OF RLOCKS APE WHITY IN FEFT OR NETEPS.
    SECOND DATA CARD CONTAINS IITLE OF INPUTTED DATA.
    FOR OPT=1 NEXT OATA CAROS CONTAIN HALF WIITH,WHIII,AND ELFVATIONG,
    ELEV(+), AND/O- OBSE-VED ANOMAL+ES,AOQS(+), AT CENTE- OF FACH
    BLOCK FOR EACH BLOCK IN CCNSECUTIVE OPDER.FROM LERT.
    AOBS(I)=ORSERVEO ANONALIES IN MTLLIGALS--ORDED 10.
    BE CAREFUL WITH THE ALGESPAIC SIGNS OF DEN AND AOTSII).
    PROGRAM CAN HANDLE ANY NUNRFP OF DATA SETS IN ANY OROEO.
    OUTPUT IS DEPTH OF BLOCKS FROM SURFACF.
    DEPTHS AT ENO OF PROFILES WILL BE ANOMALOLS BECAUSE OF ENE EFFESTS.
    OIMENSION T(100),AOBS(100),ACALC(1.00), AX(23),TT(100),XX(1001,H:N113
        10).SYSTN(4), ELEV (100)
    DIMENSION ELSL(100), TEMP1(100), TEMP?(107)
    DATA SYSTH/'FEET"," *,'METE', 'RS %/
    IATEGER OPT,SYSTEM,FLAT, SET
    FELEV(X,H,ELDIFF)=ELDIFFF(ATAN((X-W)/ELDIFF)-ATAN((X+W)/ELOIFF))
        C
            9 READ (5,200,END=30) (AX(I), I=1,20)
                            READ( 5,103) OPT,FLAT,SYSTEM,NUM,DEN
        305 HRITE! 8,203)(AX(I),I=1,?0)
    SEDIMENTARY INTERPRETATIOA
    PART 1
    IF(OPT.EQ.3)GO TO 31
    IF(FLAT.EO.D)GO TO 32
    READ(5,100)(HW(I),ELEV(I),AORS(I),I=1,NUN)
    60 TO 18
    REAO ( 5,101)(HH(I),AOSS(I),I=1,NUM)
    18 X ( (1) =0.0
    00 34 J=1,NUM-1
        34 XX(J+1)=XX(J)+WH(J)+HH(J+1)
            GO TO 33
        31 REAO( 5.100) W
    IF(FLAT.ED.0)GO TO 19
    REAO (5,109) (AOBS(I), ELEV(I), I = 1, NUN)
    GO TO 20
    __.... 19 READ( 5,100) (ACBS(I),I=1,NUM)
        320 00 69 I=1,NUM
            69 ELEV(I)=0.3
```

```
    20 x < (1)=0.0
    00 50 I=1,NUM-1
    50 XX(I+1)=XX(I)+2. *W
    DO 51 I=1,NUM
    51 HW(I)=W
    33 IFISYSTEM.EO.OIGO TO 25
    KK=3
    CON1=4.191E-02
    CON2=1.334E-02
    GO TO 26
    25 KK=1
    CON1=1.2775-02
    CON2=4.066E-03
    26 00.1 T=1,NUM
        T(I)=0.0
    1 ACALC(I)=0.0
        MM=0
    700 6 I=1,NUM
        TH=(AOBS(I)-ACALC(I))/(CON1 ... *DEN)
        T(I)=T(I)+TH
        C T(I)=-THICKNESS CR DEPTH
            8 ACALC(I)=0.0
        C CALCULATICN OF ANOMALY USING EXACT FORMULA
        DO 2 I=1,NUM
        DO 2 J=1,NUM
        ABCALC=0.0
        IF(OPT.EO.O)GOTO }3
        36 X=ABS(XX(J)-XX(I))
        H=WH(J)
        GO 10 37
        35 B = J - I
        X=2.*ABS(B)*W
        37 IF(FLAT.EO.1)GO TO 66
        ELOIFF=0.0
        GOTO 61
        66 ELDIFF=ELEV(I)-ELEV(J)
        IF(ELDIFF.GE.0.0) GO.TO 51
    60 TEMP=\(J)
        T(J)=-ELOIFF
            ABGALC=CON2 *OEN*ABS ((X-H)/2.*ALOG((T(J)**2+(X-4)**2)/(x-4)**
            12)-(X+H)/2.*ALOG (TT(J)**2+(X+W)** ?)/(X+W)**2)+T(J)*(ATAN( (X-W)/T(J
            Z)!-ATAN((X+W)/T(J)))
                T(J)=TEMP
                GOTO 52
            61 IFPELDIFF.EQ.0.0IGOTO 62
                FELL=FELEV(X,H,ELDIFF)
                GO 10 63
            62 FELL=0.0
            63 AACALC=CON2 *DEN*ABS (TX-W)/2.*ALCG((T(J)**2+(X-N)**こ)/(X-W)**
                        12)-(X+W)/2.*ALOG({T(J)**2+(X+W)**2)/(X+W)**?)+T(J)*(ATAN((X-W)/T(J
            2)!-ATAN((X+H)/T(J))I-FELL)
        2 ACALC(I)=ACALC(I)+AACALC-ABCALC
                        IF IMM. LE. OI GC TO 10
                        OUTPUT SECTION
            00 12 I=1,NUM
            ELSL(I) = ELEV(I) - T(I)
            12 ACALC(I)=AOSS(I)-ACALC(I)
            GO IO 42
            42 WRITE( 8,204)DEN,((SYSTN(J),J=KK,KK+1),I=1,4),(XX(I),HH(I),A\capQSIT
            1),ACALC(I),T(I),ELEV(I),ELSL(I),I = 1,NUM)
```

```
    G0.109
```

 G0.109
 C PART ?
 C PART ?
 C. IM PART 2 THE THICKNESS OR DEPTH IS AZJUSTED TO GIVE A VFFY SVALL
 C. IM PART 2 THE THICKNESS OR DEPTH IS AZJUSTED TO GIVE A VFFY SVALL
 RESIOUAL ANOMALY
 RESIOUAL ANOMALY
 10 DO 3 K=1,8
 10 DO 3 K=1,8
 5004 I=1,NUN
 5004 I=1,NUN
 TT(I)=(AOES(I)-ACALC(I))/(CON1 *DEN)
 TT(I)=(AOES(I)-ACALC(I))/(CON1 *DEN)
 4T(I)=T(I)+TTII)
 4T(I)=T(I)+TTII)
 00 3 I=1,NUM
 00 3 I=1,NUM
 DO 3 J=1,NUM
 DO 3 J=1,NUM
 IF(OPT.EO.O)GOTO 38
 IF(OPT.EO.O)GOTO 38
 39 X=ABS{XX(J)-XX(I))
 39 X=ABS{XX(J)-XX(I))
 W=HW(J)
 W=HW(J)
 GO TO 40
 GO TO 40
 38日=J - I
 38日=J - I
 X=2.*ABS(B)*W
 X=2.*ABS(B)*W
 C APPROXIMATION---HORIZONTAL SHEET OF MASS
 C APPROXIMATION---HORIZONTAL SHEET OF MASS
 40 AACALC=CON2 *OEN*TT(J)*AES(ATAN((X-H)/T(J))-ATAN((X+W)/T(J)))
 40 AACALC=CON2 *OEN*TT(J)*AES(ATAN((X-H)/T(J))-ATAN((X+W)/T(J)))
 3 ACALC(I)=ACALC(I)+AACALC
 3 ACALC(I)=ACALC(I)+AACALC
 MM=1 + MM
 MM=1 + MM
 C RETURN TO PART 1 FOR FINAL STEPS--CALCULATICN OF RESIOISAL WITH
 C RETURN TO PART 1 FOR FINAL STEPS--CALCULATICN OF RESIOISAL WITH
 C CORRECTED DEPTH OR IHICKNESS
 C CORRECTED DEPTH OR IHICKNESS
 GO 107
 GO 107
 30 CONTINUE
 30 CONTINUE
 CALL EXIT
 CALL EXIT
 -C
 -C
 100 FORMAT(10F)
 100 FORMAT(10F)
 103 FORMAT(4I,F)
 103 FORMAT(4I,F)
 200 FORMAT(20A4)
 200 FORMAT(20A4)
 203 FORMAT: '1 PROGRAM FOR DIRECT GRAVITY INTERPRETATION OF SEJT:AEVT
 203 FORMAT: '1 PROGRAM FOR DIRECT GRAVITY INTERPRETATION OF SEJT:AEVT
 1A-Y BAS+NS'//20A4//1
 1A-Y BAS+NS'//20A4//1
 204 FCRMAT(2X,'DEVSITY CONTRAST = ',F5.2//ZX,'OISTANSE DF ANONMLY',?YY.
 204 FCRMAT(2X,'DEVSITY CONTRAST = ',F5.2//ZX,'OISTANSE DF ANONMLY',?YY.
 1'HALF HIOTH', 2X,'OBSERVED ANCMALY', 2X,', ERROP ', 'X,'NFOTH
 1'HALF HIOTH', 2X,'OBSERVED ANCMALY', 2X,', ERROP ', 'X,'NFOTH
 2*,4X,"ELEVATION'/IX,'VALUSS FROM CRIGIN*,IX,'OF BLOCK',&Y, YILLTSA
 2*,4X,"ELEVATION'/IX,'VALUSS FROM CRIGIN*,IX,'OF BLOCK',&Y, YILLTSA
 3LS',9X, 'MILLIGAL 5',1X,2(4x,2A4) /2X,'\DeltaT LEFT OF PDOFILF',4X,?A4/9Y
 3LS',9X, 'MILLIGAL 5',1X,2(4x,2A4) /2X,'\DeltaT LEFT OF PDOFILF',4X,?A4/9Y
 4,2A4//(9X,F8.1,7X,FR.1,7X,FA.3,1SX,F8.3,3X,F8.1,4X,FQ.1, 4X,FQ.71)
 4,2A4//(9X,F8.1,7X,FR.1,7X,FA.3,1SX,F8.3,3X,F8.1,4X,FQ.1, 4X,FQ.71)
 END
    ```
                END
```

| |
| :--- | :--- | :--- |

 * (200), Prev (025), ariom (625), SU. $1(625)$. FFX(700), FFY(700), FFZ 170 * $1 / 2$ a

 LivTEGFK aUXPSLluou
 * FZR

20 FCRMAT (CFR. De4F6. C.e2F1 .Ue I2)
400 FCRIMAT(Gi5x.F1C.5))
IE (EGF $=(01)$) 14ale 30 rikITE(0, 230)
 $1 \quad 0 F 2 k$
 *SX.'DELTA1 =1,F6.2.18X $\operatorname{SCALEFM}=1, F 10.5 .15 \mathrm{X} \cdot \mathrm{SCALEFG}=1 . \mathrm{F} 10.5 \mathrm{~m} / \mathrm{m}$
 KEAD (5,50) SLIF,(UU PFWUUTPVIFLD.DELTK, PUNG,PUNM

WFITE (o,00) SLI:OU ofPOUT, VMFLE,DELTK, PUNG, PUIVM

- K2

WK2 $=625$
$1=1$
$k_{2}^{2}=25$
KEIN1 $=x \cdot 110$
1F(FZR) 70.110.70
$71140.461=16 \dot{1} 5$
LC 8U K $=K 1, K 2$
$E X(K)=X N I N$
FY(K) $=$ YMIN
$X M I N=X U L N+$ UELTAI
$A=0.0$

- 80 Colitilus
$\lambda_{m I N}=\lambda_{H}$ INI
$k_{1}=k 1+25$
к2 $=k 2+25$
YKIN $=$ YMIN $t+W E L A 1$
go continue

100 F(FIIAT (6 (F12.7))
$-110[0-1371=1.25$
Lo $12 \mathrm{f} . \mathrm{K}=\mathrm{K} 1, \mathrm{k} 2$
EX(K) $=X M I N$
$F Y(K)=Y M I N$
EZ(K) - FPZ
XMIN $=$ XMIN + DELTAI
$A=0.01$
120 CONTIIUUE
XNIN = XMIHI
$k_{1}=k_{1}+25$
$K_{2}=k_{2}+25$
YMIN $=$ YMIN + LELTAI
-130 CONTLIVE
1F(FPUCUT) 140.100 .140
-140 WRITE(E . 150)


```
    \(X(14 C I)=X(M R I)=V E E T)\)
    410 Y(M,I) \(=Y(M O I) * V F A T I\)
    420 CONTL:UE
    430) IF (U)44U.450.440
    440 )
        \(\angle E E(1)=2 U\)
        v(1)=vU
            GGTO 400
    450 NO \(=2\)
    \(450 \mathrm{LF}(\mathrm{T}) \mathrm{C} 70,480,470\)
    \(470 \mathrm{M} P=\mathrm{Nuit1}\)
        \(2 E E(M P)=2 T\)
        KCRRL=VI
        GCTO 490
```



```
    490 NGO= inp-inu+1
        NikS=مich
        NGG=NGO-2
    -500 IE 51.1001 ) \(510.540: 50\)
    510 WRITE(0.52U)
    S20-CRHAT \(72 H 1\) FIELO_ROINI COOROIUATES
```



```
    530 FCRMATIUOH LAN:INA \(X \quad\) Y
    540 LO \(87 n \mathrm{~K}=\) NK. 1 NK 2
    550 DC63u \(\mathrm{N}=2 \mathrm{NHA}\)
        SIGA \(=0\)
        SEEL \(=0\)
    560 IF (AUX) 570.596 .57 (s
```



```
    580 FCRNAT \(11 \mathrm{H} / / / 12.12 \mathrm{H}\) VERTICES=12.9H DEPTH=F7.2.11H DENSITY=F
        \(* 5.2 / 1.011 \quad I \quad X(I) \quad Y(I) \quad X(I+1) \quad Y(I+1)\)
        \(\begin{array}{cccccl}* & \mathrm{H} & \mathrm{C} & \text { Parfez } / 1 \mathrm{H})\end{array}\)
    590. SEACE \(=10.0\)
        CALL SLUAN
        SIGMA (M) =SIGA
        IF ( SLIUOU ) 600.620:く00
```



```
    610 FORMAT(18.3F15.7.F15.6)
    620 V(U) \(-0.57 * 8 \operatorname{til}(N 1 *\) SEE 2
    630 CONTILUE
    640 IE SHINUN) \(650 .-70.60\)
    \(65^{\circ}\) WRITE (0 , 600)
    660 ECRMAT ( 240 )
    670 IF (U) \(080,690,680\)
    640 KiO \(=1\)
        \(\operatorname{MID}(1)=0\)
        III(1)
            \(\angle E E(1)=20\)
            RHOC1) KH HO (2)
            SIGMA (1) \(=0\).
            V (1)=14
            GO TO 700
    690 MO \(=2\)
    \(700 \mathrm{IF}(\mathrm{T}) 710.720,710\)
    710 NiP \(=\mathrm{Als+1}\)
```

```
    MIN(NE)=MIU(SiNiL+1
    III(M.\rho)=1
    LEE(NO)=6T
    RHIO (IMP.)=RHO (MM)
    SIG4ACMES=0.
    G(N:P)=VT
    G0 T0 730
    720 MP=MM
-730 (EEL(NO)}=0
    UELP(i,O)=0.
    UFLP(:O+1)=0.
    LEZL(MD)=0.
    ANOM(x)=0
    MN=MP-2
    IF (190.GE,3) 50 In 760
    740 UC 750 M=2,Mino2
```



```
    SuM(K) = (V(ii) - v(M+1.)* CVERT + SuM(K)
    751) CONTL:ME
    760 CO 77.M M MO.14N
        UEL(N+1)= NV(Ni) ((2EE(N)-ZEE(N+1))/ (2EE(M)-2EE(M+2)))*
        *(3.0 * 2EE(M+2) - 2. * ZEE(M) - ZEE(M+1)) + V(N+1) * ((ZEE(M) - 2E
```



```
        *LEE(*)) + V(仙+2) * ((Z,E(M) - ZEE(M+1)) ** 3 )/(( ZEE(M+1) - ZEE
```



```
            CELP(m+2)= (V(M,* ((ZEE(M+1)-ZEE(M+2)) ** J ) / ((ZEE(M
```



```
        *(N+2)) / (ZEE(M) - ZEE.M+1))) * ( ZEE(M+2) + 2.*ZEE(M+1) - 3.*ZEE
```



```
        *E(M+1) + 2. * 2ढ̈F(M+2) - 3. * ZEE(M)))/6.0
-770 (CNTICHL
            ANOM(K)=0.5*(CEL(MO+1) UELP(MP))
            NO7804=10.NP
            A(van(k)=AivOM(k)+0.5*(D L(M)+DELP(:M))
            G(M)-ACON(K)-0.5*NF(P_N:P)
        780 CONTINUE
            GC(MO)=U.0
            GG(MO+1)=0.0
            GG(MP)=GG(MP)+0.5*DELP T,P)
        790 FREV(k)=PREV (K)+\DeltaI:UM(K
```



```
        610 WFITE(ó,820) (GG(M). = MO,MP)
        G2D FORMAT(1H 9E12.4)
        830 LIM = N:O-1
            IE (IMO_LE.2) GO IO - 87U
            10 840 m = 2, LIM
            Nun=N+1
            2ZEE(N) = 2EE(MAD) - 000030480096
-840 C(NTINUE
            ZZEE(NQ) = ZEE(MM)
            DO 850.M=2eN(u
            SIGA = U
            SFFLZ =0
            Space = 20.0
            CALL SLDAN
    SIGma(M) = SIGA
```



```
_1070_&RITE(b.1080)
    LGHU FORMAT(SSX.'THIS :AP H S THE X AND Y OIMENSIUNS OF FEET',//)
        60 T0 1130
    1090 WHITE(6 0.1100)
```



```
        GG TO 11s0
-1110_6RIFE&O.112()
    1120 FORMAT(35X.'THIS MAP H S THE X AND Y DIMENSIONS OF KILOMETERS',//)
-1131l Co 1140 K=1202s
        SLM(K)=SUM(K)*SCLF:M
1140 CENTILUE
        1 = 0
1150 L = + +25
        WHITE ( a,1440)
        WWIE+b--1+64) (GHNi(K) K=-NK1+N*2)
    1160 FURMAT(2X,25(F4.1),1X)/1
        *-1二1N+1+25
        NK2=Nk<+25
        [F(HK1-625)1150,1170-1170
    1170 WFITE(0 ,1180) (FFX(I) 1 = 1, 25, 2)
```



```
        60 TU 1190
M180NK1=1
        Nk2=25
        IF-(PHNG) 1200+12200.1200
    1200) nRITE(7.250)
        WHITE(Z.1210)
    1210 FCRMAT(3x."VALUES OF T E GRAVITATIONAL ANOMALY',/1
```



```
    1'21) NRITE(ó .123u)
IE30 EGRMAT(72H) VALUES FOR GRAVIIY MAP BEEORE ROUIIOD
        *FF
-1-1-1}=
        L2 = 25
```



```
        HKITE(0. .950) J
        WhIIE(6,1240) (ROEV(K. K= L1, L2)
    1240 FCRMAT(S(E15.7.4X))
        NkITE+6,12501
    1250 FORMAT(1HO)
        L_=L1+25
        L}2=L\mp@code{L}+2
        B2O(N)}=0.
    1261) CONT FRUE
    1270 EORMAT(1H1)
        WFITE (6 ,1270)
        BRITE(0 c250)
        WRITE(6 ,1280) MG.ZZUG, ,ZT,VMFLD.LELTK
```



```
        *GNETIC INTENSITY =.eEL .4e/e5XeOSUSCEPILBILIIY CONTRAST=18E10.4. 
    * / J
        HELTE16 & 10Qu)
        CO 1200 M = 2,mM
        MEIIE1G_1010) MID(M) & RHO(M)
    12g0 CONTINUE
        WRITE(6.1300)
```


$204011=111(M)$
30 2ヶ20 I＝え，IT
ALRHZ $=x(M-1)-F A(K)$
DETAL $=Y(M, D I)-F Y(K)$

IF（Kว）2050，234い， 200
$2051 \mathrm{GANN} 2=\mathrm{ALPH} \angle \angle 2$
LELTC＝HETAL／kP

2070 SS＝SGRT（（ALFH1－ALPH2）＊2＋（DETA1－BETA2）＊＊2）
EGA＝CMLRHL－ALPH21／5S
IAU＝（RETA1－BETAZ）／SS
$P=T A U$ ALHH1－EG－$E E$ FAL
IF（AÑS（P）－．UOOU1）2340 2340．2080

$20915=-1$ ．
$2100 \mathrm{~s}=1$.
2110 ENM＝EETA1＊ALPH2－HETA2＊－ALPH1
2120 JF（EAM）2130，2340． 2140
$2130=-1$ ．
GO TU 2150
$-2140-$
2150 मF（Z）210ú2170．2160
21－0 $15 \mathrm{SI}=5 *\left(\angle S O R I \quad\left(P_{+}+2+2 * 2\right)\right.$
2170 Aん＝G～～M1＊GAMM2＋LFLT1＊D LT2
$E F S=-1-E-1 C$
（AA）－1

if（AG）2190． 21 मत， $2 \hat{2} 0$
$2180 A=W * 1.570796327$
GO TO $2<10$

GO TO 2え10

2210 if（2）2230．2220．2230
$2220 \quad 5=0$
$c=0$
G TO 2330

LE（ER－ $1,12254-224,2250$
$2241 t=1.570790327$
GC TO 2280
2250 if（ $\mathrm{HB}+1.12270 .226 .2270$
2260 k $=-1.5707903<17$
GO TO 2́280

$228^{\circ} \mathrm{CC}=$（PSI＊（FGA＊GAMM2＋TAU＊OELT2 ）
$2290 C=1.570796327$
GOTO 2330
230D LF（CC＋1．）2320．231U．，320
$23106=-1.570796327$
GO TO 2330
$2320 C=A T A *$（CC／LSQEY（1R－C＊＊ 2 ）1）
2330 ப二Cーn
EELZ $=4+12$

30．TU－2350

2340 FELZ＝11
$A=0$
$\mathrm{b}=0$
C－0
L＝0
2350 IE（Aux） 2360 240U 2360
2Ј゙ィ1）PARFEン＝6．07＊KHO（M）＊F LZ
2370 UCG $=A L P H I+F X(K)$
LCGS＝bETA $1+\tilde{r} Y(k)$
WOGG＝chPti2＋FK（K）
DOGGS＝6ETAZ＋FY（N）
IEWiA $=I-1$
C WrITEE（6 ，239U）IK，AMJO COGS．DOGG．DOGGS，A，B，CDDPAFFEZ
C KPIIEGG R 2300）SETIAUR GARP
238心 FURN：AT（4E18．7）

24015 SFELZ 2 SFELZ FFELC
S1GA＝？．16A＋A
2410 ALPH1＝ALPH2
－EFAL＝GETA2
GAMM1＝GA：MM2
Lfinl＝［15il2
$\mathrm{F} .1=\mathrm{R} 2$
2420 COH．CIUt
$2430 \mathrm{JF}: S \mathrm{~S}(\mathrm{gA}) 2440,257 \mathrm{n}, 2460$
－2440 IE SIGAt OOOOU11247012450．2451
2450 SFEL $\angle=S F E L Z-S I G A$
GOTO2570
$24601 F\left(S_{1}(G A-.00001) 2450 \cdot 245012520\right.$
2470 IF（SIGAto． $28317 \mathrm{~L}+1) 2510$－2510． 2440
244i）IF（SIGA＋3．1416027）2570 2500，2490
2491）لESSIGAt 3.141582712540 2500．2570
2500 SFELZ二SFELZ－SIOA゙ー3．141927
GOTO 2670

GGTacs 70
2520 IF（SIGA－0．2031754）2530 2560，2560
2530 IF $(S 16 A-3.141582712570$ 2550．2540
2541）IF（SIG，A－3．1416027）2550 2550，2570

GOTO 2570
2560．SEEL2－SEELZ－SIG4＋6．243． 854
2570 KETURI：
END

Reproduced with permission of the copyright owner．Further reproduction prohibited without permission．

The Henderson Program


```
    36 PRINT 10, (P(I,J), I= 26,35)
    13 FORMAT ((1X,11F1D.2/11(9x,14*)////))
        PRINT 1:
        DO 1020 IHAXI = 45,65,10
        IMINI = IMAXI - 10
        IF ( IMAX. LE. IMINI) GO TO 30
        IF(IMAX.LT.IMAXI) 1000.1100
        100000 1040 J = 25, JMAX
        ImAXX = IMAX + 1
        DO 1010 I = IHAXX, IMAXI
    1010 P(I,J) = -999999.99
    1040 CONTINUE
        IHXI = IMAXI
        GO TO 52O
        1100 IMXI=IMAXI
    520 PRINT 101, (HEAD(I), I = 1,10)
        IPAGE = IPAGE + 1
        IF( L. LE. 10 ) GO TO 710
        IF (L. EQ. 11) GO TO 720
        IF (L. LE. 15 ) GO TO 730
        IF (L. ED. 15) GO TO 720
        IF (L. LE. 19 )750, 90
        710 PRIAT 171, OUTLEV(L), IPAGE
        GO TO 3200
    720 PRINT 172, OUTLEV(L), IPAGE
        GO TO 32a0
    730 PRIAT 173, OUTLEV(L), IPAEE
        GO TO 3200
    750 PRINT 175, OUTLEV(L), IPAGE
    3200 CONTINUE
        DO 39 J = 26, J4ax
    39 PRINT 13, (D(I,J), I= IMINI,IMXI)
    1020 PRINT 11
    30 CONTINUE
    1030 CALL EXIT
    90 PRINT 91
    91 FORMAT(1X,'ERROR, TOO LARGE L VALUE')
        CALL EXIT
        END
```

```
            OIMENSION W(101,V(10),VA(10):ALPH(10), SETA(10), -110).
            1 A(10),A(10), TAI(10),TAI(10),HA(10), 43(13:,OA(10), חR(10),
            2 P(10), TITLE(8)
                    OIMENSION VG(10)
                            DOUBLE PRECISION TITLE
C SET M = 1 IF INTERCEFT TIMES ARE IN MEILLISECONOS, M=? IE IN SECOMTS
C N=NUMGER OF LAYERS OR TRAVEL TIME SEGMENTS
C X=PRCFILE LENGT!, FRON A TO R, IN METERS, KILOMETERS, IR FEET
C.VA(I) = APPARENT VELCCITIES FODY ENC A
C VB(I) = APPARENT VELCCITIES FOOM ENO B
C TAI(I) = INTERCEPT ITMES FRCM END A
C TBI(I) = INTERCEPT TINES FPCM END B
C
        400 REAO (2,405, ENO = 1000) M,N,X,(TITLE(I), I = 1,F)
        405 FORMAT (2I,F,6AB)
                                IF (N) 640, 640, 407
        407 REAS (2,41J) (VA(I): I = 1,N)
        410 FOR4AT (9F)
                REAO (2,410) (VG(I), I = 1,N)
                REA] (2,410) (TAI(I), I = 2.N)
                REAO (2,41J) (TBI(I), I = 2,N)
                TAI(1) = 0.
                TBI(1)=0.
* PRINT 411, (TITLE(I), I = 1,6)
        411 FOR:AAT 12X, EAS,15HSPREAN LENGTH = ,FR.I,//1
                PRINT 412
        412 FORMAT (2X,ICHINFUT DATA //1GX,5HLAYEP,1JX,GHADDAREVT, :?Y,
            18HAPPARENT,10X94INTERCEPT,9X,ЭHINTEPCEPT/ / 23X,13HVELORITTFS,A
            25X,13HVELOCITIES, B,7X,8HTIYES,A,IJX,3HTIMES, 3 ///
                IF (M) 414,417,414
        414 PRINT 415,(I,VA(I),VR(I),TAI(I),TRI(I),I = 1,N)
        415 FORMAT II12,F22.2,F18.2,F17.2,F18.21....
            DO 415 I = 2,N
            TAI(I) = TAI(T)/1000.
        416 TBI(I) = TGI(I)/1000.
            GO TO 419
        417 PRINT 41R, (I,VA(I),VE(I),TAI(I),TRI(I),I = 1,NI
        418 FORMAT (I12,F22.2,F18.2,F17.4,F18.4)
        4 1 9 ~ C O N T I N U E
        421.00 430 I = 2,N
            TBB = TAI\I| + X*(1./VA(I) - 1./VP(I))
            IF |TBIII|| 422,422,423
        422 TBIII) = TBR
            GO TO 430
        423 TAENO = TAI(I) + X/VA(I)
            TBEND = TBI(I) + X/VRII)
            ERRQR = ARSITAENC/TBEND -1.J
                IF (ERROR - D.10) 430,424,424
        424 PRINT 425, I
        425 FCRMAT (5X,74HAPPATENT VELDCITY ANO TIME INTEOCEOT TATA A*E IN:
            1CONSISTENT AT LAYER NUMSEF IT2./7X,55HEND-TO-ENO TEEVEL
            2TIMES DIFFER BY MORE THAN 10 DERCENT. ,//)
        430 CONTINUE
                        V(1)=(VA(1) +V(1))*.5
            OO 570 M = 2,N
            K = 1
            ALPH(1) = ASIN(V(1)/VG(M))
            BETA (1) = ASIN (V(1)/VA(M))
```

```
    IF (M - 2) 500,500,510
    500 A(1) = (ALPH(1) + BETA(1))*.5
    H(2)=(ALOH(1) -RETA(1))*.5
    V(2) = V(1)/SIN (A(1))
    GC TO 55C
    510 A(1) = ALPH(1) - H(2)
    B(1) = BETA(1) + W(2)
    520 K = K + 1
    VV = V(K)/V(K-1)
    P(K) = ASIN (VV*SIN(A(K-1)))
    O(K)=ASIN(VV*SIN(B(K-1)))
    IF (K+1-M) 530.549,540
    530A(K)=P(K)-H(K+1)+W(K)
    B(K)=D(K)+W(K+1)-W(K)
    ALPH(K) = A(K) +W(K+1)
    BETA(K) = O(K) -H(K+1)
    GO TO 520
    540 A(K) = (P(K)+Q(X))*.5
    B(K)=A(K)
    W(K+1)=W(K)+(D(K)-Q(K))*.5
    ALPH(K) = A(K) +N(K+1)
    日ETA(K) = B(K) - W(K+1)
    V(K+1)=V(K)/SIN(A(K))
    550
    HHA = 0.
    HHB = 0.
    IF (KK) 561,551,551
    551 DO 561 I = 1.KK
    HH=COS(ALPH(I)) + COS(BETA(I))
    HH=HH/V(I)
    HHA = HHA + HH*पA(I)
    560 HHB = HHB + HH*HP(I)
    561 CONTINUE
    R=V(K)/(COS(ALFH(K)) + COS(AETA(K)))
    HA(K) = P* (TAI(K+1) - HHA)
    HB(K)= R*(TBT(K+1) - HHB)
    DA(1) = HA(1)
    DB{1) = HQ(1)
    IF (K-1) 570,57],559
    559 DA(K) = DA(K-1) + HA(K)
    OB(K)=OB(K-1) + HB(K)
    570 CONTINUE
    00 580 J = 2,N
    580 W(J) = W(J)*57.2958 +.001
    PRINT 620
    620 FORMAT ////2X,18HCOHPUTED STOUCTUPE // gX,5HLAYEP, 5X, gHVELOEITY
    1 , 6X,11HTHICKNESS A, 4X,11HTHICKNESS E,8X, 3HNIP,1OX,7H?EOTH A,
    2 8X,7HDEPTH B //)
    I = 1
        QRINT 625, I,V(I),HA(I),HE(I),DA(I),OQ(I)
    625 FCRMAT (I12,3F15.2,15X,2F15.2)
```



```
    627 NN = N-1
    PRINT 630,(I,V(I),HA(I),HP(I),W(I),OA(I),2Q(I), I=2,NN)
    630 FORMAT (I12,6F15.2)
    632 PRINT 635,N,V(N),H(N)
    635 FCRMAT (I12,F15.2,30X,F15.2)
```



```
    638 FORYAT (" DEGIMAL PLACES DC NOT NECESSARILY HAVE SIGNIFICANGE''
        GO 10 400
```


640 Continue
 1000 CALL EXIT
 ENO

i^{-}
....-.
.-....
$-$

--- --....

Bison Data
Ambrose Creek \#B

| Distance | T1me |
| :---: | :---: |
| 5 ft . | .0036 sec. |
| 10 ft . | . 0085 sec . |
| 20 ft . | .0175 sec . |
| 30 ft . | . 0175 sec . |
| 40 ft . | . 0225 sec . |
| 50 ft . | . 0253 sec . |
| 75 ft. | .0323 sec . |
| 100 ft . | .0386 sec . |
| 150 ft 。 | .0522 sec. |
| 200 ft. | . 0606 sec . |
| 250 ft . | . 0754 sec . |
| 300 ft . | . 0866 sec . |

Ambrose Creek \#2B

| Distance | Time |
| :---: | :---: |
| 10 ft . | . 0085 sec . |
| 15 ft . | . 0130 sec . |
| 20 ft . | . 0175 sec . |
| 30 ft . | . 0230 sec . |
| 40 ft. | . 0245 sec . |
| 50 ft | . 0272 sec . |
| 75 ft . | . 0325 sec . |
| 100 ft . | . 0365 sec . |
| 150 ft . | . 0435 sec . |
| 200 ft . | . 0495 sec . |

Sheep Creek \#1B

| Distance | Time | |
| :---: | :---: | :---: |
| 10 ft . | . 009 | sec. |
| 20 ft . | . 016 | sec. |
| 50 ft . | . 028 | sec. |
| 100 ft . | . 048 | sec. |
| 150 ft . | . 063 | sec. |
| 200 ft 。 | . 059 | sec. |
| 250 ft. | . 098 | sec. |
| 300 ft . | . 108 | sec . |
| 350 ft . | . 118 | sec. |
| 400 ft . | . 128 | |

T9N, R19W, NW $\frac{1}{4}$ NW $\frac{1}{4} \mathrm{SEF}_{\frac{1}{4}}$ Sec. 24
$\frac{\text { Interpretation }}{\text { (Two layers) }}$
Velocity Thickness Geology

1. $v_{1}=1300^{\circ} / \mathrm{sec}$. 8° Dry recent colluvium
2. $\mathrm{v}_{2}^{1}=4000^{\circ} / \mathrm{sec}>75^{\circ}$ Dry Cenozoic deposits

T9N, R19N, on road near section line betreen Sections 12 and 13

T9N, R19W, NW $\frac{1}{4} \mathrm{SW}_{4} \frac{1}{4} \mathrm{SE}_{\frac{1}{4}} \mathrm{Sec} \cdot 15$

Interpretation

(Three layers)

Thickness Geology
27' Dry recent colluvium 2. $4700^{\circ} / \mathrm{sec} .110^{\circ}$ Dry Cenozoic deposits 3. $8500 \% \mathrm{sec}$. $>75^{\circ}$ Water bearing Tertiary sediments

| 450 ft. | .136 | sec. |
| :--- | :--- | :--- |
| 500 ft | .142 | sec |
| 560 ft | .196 | sec. |

Sheep Creek \#2B

| Distanc | Time | |
| :---: | :---: | :---: |
| 1.0 ft . | . 016 | |
| 20 ft . | . 025 | |
| 50 ft . | . 045 | |
| 100 ft . | . 058 | |
| 1.50 ft . | . 066 | |
| 200 ft . | . 068 | |
| 250 ft . | . 074 | |
| 300 ft . | . 080 | |
| 350 ft . | . 084 | |
| 400 ft . | . 089 | |
| 450 ft . | . 099 | |
| 500 ft . | . 102 | |

Sheep Creek \#3B

| Distance | TYme |
| :---: | :---: |
| 10 ft . | . 0088 |
| 20 ft. | . 0149 |
| 50 ft . | . 0262 |
| 100 ft . | . 042 |
| 150 ft . | . 054 |
| 200 ft . | . 056 |
| 250 ft . | . 068 |
| 300 ft . | . 075 |

T9N, R19W, NW $\frac{1}{4} \mathrm{NE}_{\frac{1}{4}} \mathrm{SW} \frac{1}{4} \mathrm{Sec} \cdot 22$

| | Interpretation | |
| :---: | :---: | :--- |
| (Three layers) | | |
| Velocity | Thickness | Geology |
| 1. $800^{\circ} / \mathrm{sec}$. | 13° | Dry recent colluvium |
| 2. $4100^{\circ} / \mathrm{sec}$. | 47° | Dry Cenozoic deposits |
| 3. $11800^{\circ} / \mathrm{sec}$. | $>100^{\circ}$ | Metamorphic bedrock |

T9N, R19W, NW $\frac{1}{4}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ Sec. 15

| | $\frac{\text { Interpretation }}{\text { (Three layers) }}$ | |
| :---: | :---: | :---: |
| Velocity | Thickness | Geology |
| 1. 1000 /sec. | $3{ }^{\prime}$ | Dry recent colluvium |
| 2. 3300% sec. | 55° | Dry Cenozoic deposits |
| 3. 8500% sec. | $>50^{\circ}$ | Water bearing Tertiary sediments |

(Three layers)

3' Dry recent colluvium
55' Dry Cenozoic deposits Water bearing Tertiary sediments

Kootenai Creek \#1B T9N, R20W, SE $\frac{1}{4} \operatorname{SW} \frac{1}{4}$ NW $\frac{1}{4}$ Sec. 17
Geophone 2 at west end of survey. Geophone 1265° east of Geophone 2. Distance with respect to Geophone 1 (- is east, + is west).

| Distance | Time(1) | Time(2) |
| :---: | :---: | :---: |
| -100 ft. | . 0478 sec . | . 095 sec . |
| - 80 ft. | . 0414 sec . | .0925 sec . |
| - 60 ft . | .0366 sec . | .091 sec. |
| - 40 ft . | .0315 sec . | .087 sec. |
| - 20 ft . | .0183 sec . | .087 sec . |
| - 10 ft . | . 0093 sec . | |
| - 5 ft . | .0043 sec. | - |
| 0 ft . | - | .084 sec . |
| + 5 ft . | .0053 sec . | . 086 |
| + 15 ft . | . 0140 sec . | - |
| +25 ft. | . 0255 sec . | . 079 sec |
| + 40 ft . | . 0321 sec . | .077 sec. |
| + 60 ft . | . 0391 sec . | . 0754 sec . |
| + 80 ft | .0426 s | . 0718 |

Interpretation
(Four layers)
Velocity Thickness Geology (1) (2)

1. $800^{\circ} / \mathrm{sec}$. 9' 9° Dry colluvium 2. $3300^{\circ} / \mathrm{sec} .40^{\circ} 47^{\circ}$ Dry Cenozoic deposits
2. $7750 \% / \mathrm{sec}$

69' Water bearing Tertiary deposits Frontal Zone Gneiss

| +100 | $f t$. | . 0486 | S | . 0690 |
| :---: | :---: | :---: | :---: | :---: |
| +120 | ft. | . 0558 | sec. | . 0662 |
| +140 | ft. | . 0580 | sec | . 0610 |
| +160 | ft. | . 0646 | sec. | . 0538 |
| +180 | ft. | . 0662 | sec | . 0482 |
| +200 | ft. | . 0694 | sec. | . 0418 |
| +220 | ft. | . 0714 | sec. | . 0354 |
| +240 | $f t$. | . 0730 | sec. | . 0302 |
| +260 | f f. | . 0762 | sec. | . 0070 |
| +280 | ft. | . 0790 | sec. | |

Ambrose Creek 3 T f.
T9N, RI9W, 1320' west of section corner on section line between
Sec. 2 and II.
Gain = 30
Filters - Broad
LC=20
$H C=48$
Interpretation is in Fig. 19.

Ambrose Creek 3 T r.
Shot point 1180° west of AC3T
forword
Gain $=30$
Filters - Brood
$L C=20$
$H C=48$
Interprotation is in Fig. 19.

Ambrose Creek 4T f.
Same shot point as AC3T reverse
Gain $=30$
Filters - Broad
LC $=20$
$H C=48$
Interpretation is in Fig. 19.

Kootenai Creek IT f.
T9N, R2OW, SEI/4SWI/4NW 1/4 Sec. 17

Line location same as KCIB.
Goin = 20
Filters out
Interpretation is in Fig. 18.

Kootenai Creek 2T r.
T9N, R2OW, Sec. 17 Shot location II70' e0st of KC IT f.
Gain = 20
Fitters out

Kootenai Creek 3T f
Same shot point as KC IT r.
Gain = 20
Filters out
Interpretation is in Fig. 18.

Timing lines on seismic records on p. 106 and 107 are 10 milliseconds apart.

Variable area presentation of three reflection records filtered at $10-45 \mathrm{~Hz}$. Event A. Reflection from base of Cenozoic sediments. Event B. Intra-Frontal Zone Gneiss reflection. Event C. Reflection from base of Frontal Zone Gneiss (?). Calculated depths below surface in parentheses.

BIBLIOGRAPHY

Bonini, W. E., Smith, R. B., and Hughes, D. W., 1973, Complete Bouguer gravity anomaly map of Montana: Mont. State Bur. of Mines and Geol.: spec. pub. 62, Butte, 1 p.

Bott, H. M. P., 1960 , The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins: Geophys. Jour., v. 3, p. 63-67.
, 1962, A simple criterion for interpreting negative gravity anomalies: Geophysics, v. 27, p. 376-381.

Burfeind, W. J., 1967, A gravity investigation of the Tobacco Root Mountains, Jefferson Basin, Boulder Batholith, and adjacent areas of southwestern Montana: Ph.D. dissertation, Indiana University, Bloomington, 146 p.

Cook, K. L., Berg, J. W., and Lum, D., 1967, Seismic and gravity profile across the northern Wasatch Trench, Utah: Seis. Refrac. Prospecting, Soc. Explor. Geophys., Tulsa, 604 p.

Cooley, J. W. and Tukey, J. W., 1965, An algorithm for the machine calculation of complex fourier series: Math. of Computation, v. 19, p. 297-301.

Cordell, L., and Henderson, R., 1968, Iterative three-dimensional solution of gravity anomaly data using a digital computer: Geophysics, v. 33, p. 596-601.

Davis, T. M., 1974, Theory and practice of geophysical survey design: Ph.D. dissertation, Penn State University, Philadelphia, 137 p.

Dean, H. C., 1952, Frequency analysis for gravity and magnetic interpretation: Geophysics, v. 23, p. 97-127.

Deel, S. A., and Howe, H. H., 1948, United States magnetic tables and magnetic charts for 1945: United States Coast and Gecdetic Survey, serial 667, Washington, 137 p.

Dix, C. A., 1955, Seismic velocities for subsurface measurement: Geophysics, v. 20, po 68-86.

Dobrin, M. B., 1960, Introduction to geophysical prospecting: McGrawHill, Neu York, 446 p.

Douglas, J. K., 1972, Geophysical investigation of the Montana lineament: M.S. dissertation, University of Montana, Missoula, 75 p.

Douglas, J. K., and Prahl, S. R., 1972, Extended terrain correction tables for gravity reductions: Geophysics, v. 37, p. 377-379.

Ferguson, J. A., 1972, Fission track and K-Ar dates on the northeast border zone of the Idaho batholith: M.S. dissertation, University of Montana, Missoula, 32 p.

Fuller, B. D., 1967, Two dimensional frequency analysis and design of grid operators: Mining Geophysics, v. 2, Soc. Explor. Geophys., Tulsa, 708 p .

Grant, F. S., and West, G. F., 1965, Interpretation theory in applied geophysics: McGraw-Hill, New York, 584 p.

Hall, D. H., and Hajnal, Z., 1962, The gravimeter in studies of buried valleys: Geophysics, v. 27, p. 939-951.

Hammer, S., 1939, Terrain corrections for gravimetric stations: Geophysics, v. 4, p. 184-194.
\qquad , 1974, Approximation in gravity interpretation calculations: Geophysics: v. 39, p. 205-222.

Heiland, C., 1940, Geophysical explorations Prentice-Hall, Englewood Cliffs, N.J., 1013 p.

Henbest, O. J., Erinakes, D. C., and Hixson, D. H., 1969, Seismic and resistivity methods of geophysical exploration: United States Dept. of Agri. Tech. report $44,250 \mathrm{p}$.

Henderson, R. G., 1960, A comprehensive system of automatic computation in magnetic and gravity interpretation: Geophysics, v. 25, p. 569586.

Hutchison, D. M., 1959, Volcanic ash in the northern part of the Bitterroot Valley, Ravalli County, Montana: M.S. dissertation, University of Montana, Missoula, 62 p.

Keunzi, W. D., and Fields, R. W., 1971, Tertiary stratigraphy, structure, and geologic history, Jefferson Basin, Montana: Geol. Soc. of Amer., v. 18, p. 3373-3394.

Langton, C. M., 1935, Geology of the northeastern part of the Idaho batholith and adjacent region in Montana: Jour. of Geol., v. 43, p. 27-66.

Lankston, R. Wo, 1975, Depth to magnetic basement in the northern Bitterroot Valley and Sapphire Mountains in western Montana: Geol. Soc. of Amer., abstracts with programs, Rocky Mountain Section, p. 1000.

Manghnani, Mo, and Hower, J., 1962, Structural significance of gravity profile in the Bitterroot Valley, Ravalli County, Montana (abs.): Geol. Soc. of Amer., spec. paper 68, p. 93.

McMurtry, R. G., Konizeski, R. L., and Stemitz, F., 1959, Geology and water resources of the Bitterroot Valley, Montana: Mont. Bur. of Mines and Geol., bull. v. 9, 45 p.

Montana Almanac, 1957, University of Montana Press, Missoula.
Montana State Geologic Map, 1955, United States Geol. Survey and Mont. Bur. of Mines and Geol., 1 p.

Mooney, H., 1973, Engineering geophysics: Bison, Minneapolis, 45 p.
Musgrave, A. W., 1962, Application of the expanding reflection spread: Geophysics, v. 27, p. 981-993.

Nettleton, L. L., 1942, Gravity and magnetic calculations: Geophysics, v. 7, p. 293-310.
\qquad , 1971, Elementary gravity and magnetics for geologists and seismologists: Soc. Explor. Geophys., Tulsa, 75 p.

Nolan, K. M., 1973, Flood hazard mapping of the Bitterroot Valley, Montana: M.S. dissertation, University of Montana, Missoula, 56 p.

Oldenburg, D. W., 1974, The inversion and interpretation of gravity anomalies: Geophysics, v. 39, p. 526-536.

Peters, L. J., 1949, The direct approach to magnetic interpretation and its practical applications: Geophysics, v. 14, p. 290-320.

Peterson, R. A., and Dobrin, M. B., 1966, A pictoral, digital atlas: United Geophys. Corp., Houston, 53 p.

Presley, M. W., 1970, Igneous and metamorphic geology of West Creek drainage basin, southern Sapphire Mountains: M.S. dissertation, University of Montana, Missoula, 64 p.

Rudman, A. J., Mead, J., Whaley, J. F., and Blakely, R. F., 1971, Geophysical analysis in central Indiana using potential field continuation: Geophysics, v. 36, p. 878-890.

Seismograph Service Corporation, Editors, 1969, The Robinson-Treitel reader: Seismograph Serv. Corp., Tulsa, 176 p.

Sheriff, R. E., 1973, Encyclopedic dictionary of exploration gecphysics: Soc. Explor. Geophys.c Tulsa, 266 p.

Smith, R. B., 1967, A regional gravity survey of western and central Montana: Ph.D. dissertation, University of Utah, Salt Lake City, 1.40 p.

Stephens, E. E., 1973, Shallow seismic techniques: Calif. Div. of Highways, Sacramento, 71 p.

Talwani, M., and Eking, M., 1960, Rapid computation of gravitational attraction of three dimensional bodies of arbitrary shapes Geophysics, v. 25, p. 203-225.

United States Air Force, 1962, Air Force gravity base measuring stations network: Geophysics, v. 27, p. 1035.

United States Department of Defense, 1974, Gravity files Dept. of Defense Gravity Services Division, St. Louis.

United States Geological Survey, 1966, Three aeromagnetic profiles in the Bitterroot Valley area, Montana and Idaho: United States Geol. Survey, open file report.

Wollard, G. P., and Rose, J. C., 1963, International gravity measurements: University of Wisconsin Press, Madison, 518 p.

Zeitz, I., Hearn, B. C., Higgins, M. W., Robinsion, G. D., and Swanson, D. $A_{0}, 1971$, Interpretation of an aeromagnetic survey across the northwestern United States: Geol. Soc. of Amer., bull., v. 82, p. 33.

Zurflueh, E. C., 1967, Applications of two-dimensional linear wavelength filtering: Geophysics, v. 32, p. 1015-1035.

BOUGUER GRAVITY ANOMALY MAP OF THE BITTERROOT VALLEY

Plate I gougace granty unualy wio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

