University of Montana ScholarWorks at University of Montana

Syllabi Course Syllabi

Spring 2-1-2016

PHSX 327.01: Optics

David A. Macaluso *University of Montana - Missoula*, david.macaluso@umontana.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation

Macaluso, David A., "PHSX 327.01: Optics" (2016). *Syllabi*. 7294. https://scholarworks.umt.edu/syllabi/7294

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Physics 327: Optics Spring 2016

Course Information

Instructor: Dr. David A. MacalusoOffice: C.H. Clapp Building, room 119

• Telephone: (406) 243-6641

• Email: david.macaluso@umontana.edu

• Lectures: MWF 2:10 - 3:00 PM, CHCB 230/231

Office Hours: Monday & Wednesday 3-5

Course Website: Moodle

Overview

From Wikipedia: Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.

This is a one-semester course in Optics. The selection of material is based on a traditional optics course, with additional material to be added at the end of the semester - time permitting.

Learning Outcomes

Upon completing this course, students should have:

- 1. A qualitative and quantitative understanding of:
 - a) geometric optics
 - b) optical instruments
 - c) the mathematical formalism of the wave equation
 - d) interference and coherence
 - e) diffraction
 - f) polarization
 - g) applications: lasers, fiber optics, spectrometers, and interferometers
- 2. Improved problem solving and study skills in preparation for advanced physics coursework.

Textbook

Required

Introduction to Optics, 3^{rd} Edition, By Pedrotti × 3 ISBN-10: 0131499335 | ISBN-13: 978-0131499331

Suggested

Optics, 5thEdition, By Hecht ISBN-10: 0133977226 | ISBN-13: 978-0133977226

Add/Drop/Withdraw

Please refer to the University policy on adding, dropping, and withdrawing from the course at http://www.umt.edu/registrar/students/dropadd.php.

From the 16th through the 45th instructional day, all classes must be dropped using Drop forms (instructor signature required, advisor signature required for undergraduates). **\$10** fee applies.

From the 46th to the last instructional day prior to finals week, classes must be dropped using the Drop form (instructor and Dean signatures required, advisor signature required for undergraduates). **\$10** fee applies.

Course Expectations

This is an upper division course intended for physics majors. The expectations are appropriate for advanced undergraduate students who are familiar with the concepts of personal responsibility, accountability, and academic honesty.

Prerequisites/Co-requisites: I expect all students to have completed the prerequisite course, Oscillations & Waves (PHSX 311). It is also expected that students be fluent in mathematics, with specific experience in matrix analysis and calculus.

Attendance: Exams will be based on homework assignments, readings, lectures, in-class discussions, and in-class assignments. In addition, quizzes represent a significant percentage of the course grade. Thus regular attendance, while not compulsory, is vital to student success.

Reading Assignments: Students are expected to read the assigned material before class. Intermittent quizzes will be given usually at the beginning of class that will be based at least partially on the assigned reading.

Please do not use electronics in class, including phones and <u>laptops</u>.

Grading Policy

Midterm Exams (three at 15% each)	45%
Cumulative Final Exam	25%
Homework	15%
Quizzes	15%

Midterm exams will take place in the regular classroom during normal class time. If you are unable to attend an exam, arrangements must be made *beforehand* so your exam can be rescheduled.

Missed exams will be scored as a zero.

Homework will be due at the beginning of class unless prior arrangements are made with me. A subset of the problems in each assignment will be selected "at random" to be graded.

Late assignments will be accepted with a maximum grade of 50%.

Students with Disabilities:

Whenever possible, and in accordance with civil rights laws, The University of Montana will attempt to provide reasonable modifications to students with disabilities who request and require them. Please feel free to setup a time with me to discuss any modifications that may be necessary for this course. For more information, visit the Disability Services for Students website at http://life.umt.edu/dss/.

Final Exam

The Final Exam will take place in the normal classroom from 3:20 – 5:20 PM, Monday, May 9th.

	Date	Topic	Reading Assignment
M	Jan 25	syllabus, course intro, mathematics review	
W	Jan 27	light, photons, EM spectrum, radiometry	Ch. 1 (all)
F	Jan 29	geometrical optics	Ch. 2 up to 2-4
М	Feb 01	geometrical optics	2-5 to 2-8
W	Feb 03	geometrical optics	2-9 to 2-12
F	Feb 05	apertures, aberrations, prisms	Ch.3 up to 3-3
М	Feb 08	cameras, microscopes, telescopes	3-4 to 3-7
W	Feb 10	1D wave equation, harmonic waves, i, plane waves	Ch. 4 up to 4-5
F	Feb 12	spherical cylindrical & EM waves, polarization, Doppler effect	4-6 to 4-10
М	Feb 15	Presidents Day – no class	
W	Feb 17	superposition, coherence	Ch. 5 up to 5-3
F	Feb 19	standing waves, beats, phase & group velocities	5-4 to 5-6
M	Feb 22	quantization, blackbody and non-laser sources, exam review	Ch. 6 up to 6-3
W	Feb 24	Exam I, Chapters 1 - 5	•
F	Feb 26	Return exams, Einstein, laser basics	6-4 to 6-6
M	Feb 29	laser light and types of lasers	6-7 to 6-8
W	Mar 02	interference, double slit, films	Ch. 7 up to 7-4
F	Mar 04	fringes, Newton's rings, Stokes, multi-beam interference	7-5 to 7-9
M	Mar 07	Michelson interferometer	Ch. 8 up to 8-3
W	Mar 09	Fabry-Perot interferometer	8-4 to 8-6
F	Mar 11	Fabry-Perot interferometer & gravitational waves	8-7 to 8-10
M	Mar 14	Fourier analysis, coherence	Ch. 9 up to 9-3
W	Mar 16	coherence	9-4 to 9-6
F	Mar 18	fiber optics and applications	Ch. 10 up to 10-4
<u>.</u> М	Mar 21	modes, attenuation, distortion	10-5 to 10-8
W	Mar 23	diffraction, exam review	Ch. 11 up to 11-3
F	Mar 25	Exam II, Chapters 6 - 10	Om 11 up to 11 5
M	Mar 28	return exams, resolution, double slit, many slits	11-4 to 11-6
W	Mar 30	grating basics	Ch. 12 up to 12-4
F	Apr 01	gratings continued	12-5 to 12-9
<u>.</u> М	Apr 04	Spring Break – no class	11 3 to 11 3
W	Apr 04	Spring Break – no class	take a break
F	Apr 08	Spring Break – no class	take a break
<u>.</u> М	Apr 11	Fresnel diffraction, phase shifts	Ch. 13 up to 13-5
W	Apr 13	Fresnel diffraction, Cornu spiral	13-6 to 13-9
F	Apr 15	matrices and polarization	Ch. 14 (all)
<u>'</u> М	Apr 18	matrices and polarization	Ch. 14 (all)
W	Apr 10	polarization	Ch. 15 up to 15-3
F	Apr 22	polarization, double refraction	15-4 to 15-5
<u>'</u> М	Apr 25	optical cavities, photoelasticity	15-6 to 15-7
W	Apr 27	laser operation, exam review	Ch. 26 up to 26-4
F	Apr 29	Exam III, Chapters 11 - 15	511. 20 up to 20 T
<u>'</u> M	May 02	broadening, pulsed lasers	26-5 to 26-10
W	May 04	laser characteristics	Ch. 27 (all)
F	May 04	final exam review and course evaluations	Cii. 27 (dii)
	ινιαγ υυ	illai Chaill Teview alla Course evaluations	
М	May 09	Final Exam, 3:20 – 5:20 PM	everything