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(A

Mcllveen, C. L , M. S., December 1996 Geology

An Anomalous Platinum-Group Element Occurrence Below The JM Reef, Stillwater 
Complex, Montana

Director: Donald H. Hyndman

The Coors 602 zone is an anomalous, laterally discontinuous zone containing 
significant platinum group element (PGB) mineralization The area lies below the JM reef 
platinum horizon. The Coors area is associated with the first occurrence of cumulus 
plagioclase, but most o f the significant anomalous PGE values occur in discordant, 
pegmatoidal bronzitites which are within the Norite I zone. PGE mineralization 
predominantly occurs in bronzitite patches within noritic rocks, rather than olivine-bearing 
rocks as it does in the JM Reef. The Coors bronzitites are texturally and chemically 
distinct from bronzitites in the Ultramafic zone below. Most of the Coors bronzitites are 
pegmatoidal with only about 1-2 percent interstitial plagioclase. Magnesium numbers in 
the bronzitites decrease up-section along trend fi'om the Bronzitite zone, however, the 
mineralized samples show significantly lower numbers. Nor do these mineralized samples 
appear to be directly related to the reef rocks either. Rock types as well as the palladium : 
platinum ratio diflfer between the Coors 602 zone and the JM Reef package. Pd/Pt in the 
JM reef averages about 3:1, whereas the Coors zone contains ratios closer to 1:1.

The mineralized bronzitites in the Coors 602 zone are spatially associated with many 
anomalous features, including disturbed layering, discordant units, and the thinning or 
absence of a stratigraphie unit. These features are common throughout the Complex, but 
not at such large scales (hundreds o f feet versus inches). The irregularities in stratigraphy 
appear to be the result o f physical disturbances related to magmatic currents associated 
with an influx of a new magma. This new influx of magma may also have caused the 
precipitation of PGE sulfides. Volatiles likely caused the formation of the pegmatoids. 
The entire Coors zone likely represents a pothole similar to those found in the Bushveld 
Complex. Because of the PGE association, it is important to know if these irregular 
features in the Coors zone are genetically related to the mineralization. Determining this 
relationship, the origin o f mineralization and the significance of the stratigraphie location 
o f this zone are important, as this anomalous zone may represent a potential target for 
exploration elsewhere in the Stillwater and in other layered mafic intrusions.
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INTRODUCTION

Mafic to ultramafic layered intrusions are unique not only because they host the 

majority o f the world's platinum-group element and chromium deposits, but because they 

also provide an excellent opportunity to study magmatic processes in a natural system. 

Concentrations of platinum-group elements (PGE's) in most o f these intrusions occur as 

laterally continuous horizons referred to as reefs. An exception to this occurs in the 

Stillwater Complex. In addition to the reef, there is an anomalous, laterally discontinuous 

area known as the Coors 602 zone contains significant PGE mineralization. The area is 

associated with the first occurrence of cumulus plagioclase, but most o f the significant 

anomalous PGE values occur in discordant, pegmatoidal bronzitites which are within the 

Norite I Zone.

The Coors 602 zone is studied in detail in tliis paper to determine the origin of 

mineralization and the significance of the stratigraphie location as another possible ore 

target in these intrusions. Coors mineralization predominantly occurs in bronzitite patches 

within noritic rocks, rather than olivine-bearing rocks as it does in the JM Reef. The 

Coors bronzitites are texturally and chemically distinct fi'om bronzitites in the Ultramafic 

Zone below. They do not appear to be related to the reef rocks either. Rock types as well 

as the Pd/Pt ratio differ between the Coors 602 zone and the JM Reef package.

The mineralized bronzitites in the Coors 602 zone are spatially associated with 

many anomalous features, including disturbed layering, discordant units, and the thinning 

or absence o f a stratigraphie unit. The irregularities in stratigraphy appear to be the result 

o f physical disturbances related to magmatic currents associated with an influx of a new
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magma. Because o f the PGE association, it is important to know if these irregular 

features are genetically related to the mineralization.

GENERAL GEOLOGY

The Stillwater Complex, a late Archean, 2.70 b y., mafic to ultramafic layered 

intrusion, lies in south-central Montana, along the northeast front o f the Beartooth 

Mountains (Fig. 1). The complex crops out for about 48 kilometers along an approximate 

N  70° W strike; it has an exposed thickness o f 5.5 kilometers and a width o f 7 kilometers 

(Page and Zientek,1985; Zientek et al., 1985; Jackson,1961). Kleinkopf (1985) suggests, 

through gravity studies, that the intrusion may extend 25 kilometers to the northeast under 

Phanerozoic rocks.. Xenoliths o f the Stillwater Complex in Tertiary-Cretaceous intrusions 

north o f the exposed portion o f the complex support Kleinkopf s interpretation 

(Brozdowski, 1985).

The complex was emplaced into Middle Archean metasedimentary rocks, now 

exposed below the southern contact of the Stillwater Complex. The upper part o f the 

intrusion, to the northeast, was removed by erosion and is unconformably overlain by 

Paleozoic and Mesozoic sedimentary rocks. Structural deformation occurred prior to 

middle Cambrian time and again during the Laramide orogeny; the complex now dips 

steeply to the north and is locally overturned (Page and Zientek, 1985). Jones et al. 

(1960), Page and Nokleberg (1974), Segerstrom and Carlson (1982), and others have
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published detailed descriptions o f the structure and geologic setting of the Stillwater 

Complex.

McCallum et al. (1980), described the stratigraphie units o f the Stillwater Complex 

used in this paper (Fig. 2). They subdivided the layered cumulates into five major 

stratigraphie units; the Basal Series, the Ultramafic Series, and the Lower, Middle, and 

Upper Banded Series. The cumulate terminology used in this paper are listed in Table 1. 

Original views on the genesis o f layered intrusions evoked gravity settling as the primary 

means o f producing layered cumulates (Hess, 1960; Jackson, 1961; and others). More 

recent work has strongly suggested other mechanisms to be more important than crystal 

settling in the formation of these intrusions (Campbell, 1978; Irvine, 1980). Irvine et al, 

1983, suggest "cumulus" layering resulted from in situ crystallization and dovmdip 

accretion in a stratified liquid. Although the definition o f cumulates involves processes, 

the term cumulus in this paper, and other recent papers (Campbell, 1978; Todd et al., 

1982), is used descriptively with no genetic implications.

The Basal Series consists primarily o f bronzite-rich cumulates. The base of this 

unit forms the intrusive contact with the metasedimentary rocks beneath the complex. 

Thickness is variable and the unit is missing in some places (Zientek et al., 1985). The 

contact between the Basal Series and the overlying Ultramafic Series is marked by the 

appearance o f significant amounts o f cumulus olivine (Jackson, 1961).
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Name Cumulus minerals Notation*

Anorthosite plagioclase pC

Norite plagioclase, low-Ca pyroxene pbC

(jabbro plagioclase, augite paC

Orthopyroxenite ' 
(Bronzitite)

low-Ca pyroxene (bronzite) bC

Gabbronorite plagioclase, low-Ca pyroxene, augite pbaC

Dunite olivine oC

Olivine-bearing
(Troctolite)

plagioclase, olitnne poC

Olivine gabbro plagioclase, augite, olivine paoC

Olivine gabbronorite plagioclase, augite, low-Ca pyroxene, olivine paboC

Table 1. Terminology for describing rocks of the Stillwater Complex. C = cumulate; p=plagioclase;
b=low-Ca pyroxene; a =* augite; o = olivine. In the shorthand notation, cumulate phases are 
listed in order of abundance, (modified from Page, 1977)
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The Ultramafic Series is subdivided into the Peridotite Zone and the Bronzitite 

Zone The repetitive cycles o f the Peridotite Zone, have been extensively studied 

(Jackson, 1961; Irvine, 1980; Howland, 1955; Raedeke and McCallum, 1984; and others). 

Characteristic cycles contain a sequence of dunite, dunite and chromite, harzburgite, and 

bronzitite. Not all layers are present in every cycle.

Because o f its uniform composition, the Bronzitite Zone has been studied by only a 

few workers (Raedeke and McCallum, 1984; Todd et a l, 1982; McCallum et a l, 1980), 

and not much detailed work has been done. The contact between the Peridotite Zone and 

the Bronzitite Zone is marked by the upward disappearance o f cumulus olivine. The 

Bronzitite Zone makes up approximately the top one-third of the Ultramafic Series, and 

consists o f cumulus orthopyroxene, intercumulus plagioclase, and commonly augite 

oikocrysts. Thin olivine-bearing and chromite-rich layers are found in the bronzitite, near 

the upper contact (Todd et a l, 1982). The amount o f intercumulus plagioclase increases 

towards the top of the Bronzitite Zone until it also becomes cumulus; thereby marking the 

contact with the Norite I Zone o f the Lower Banded Series (McCallum et al., 1980).

The remaining three-fourths o f the Stillwater Complex, the Lower, Middle, and 

Upper Banded Series, overlies the previously mentioned units. These Series, mainly 

plagioclase-bronzite cumulates, plagioclase-bronzite-augite cumulates, plagioclase-olivine 

cumulates troctolites, and plagioclase cumulates, are subdivided into 12 zones (McCallum 

et al , 1980).
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Numerous studies exist on the Lower Banded Series since it hosts the 

PGE-bearing sulfides (Irvine et al., 1983; Campbell et a l, 1983; Naldrett, 1990; Bow et 

a l, 1982; Todd et al., 1982; Page and Moring, 1990). The Lower Banded Series consists 

o f the Norite I and Gabbronorite I zones, the Olivine-bearing I Zone, which hosts the 

PGE-rich sulfides known as the JM Reef, the Norite II, Gabbronorite II, and 

Olivine-bearing II zones (McCallum et a l, 1980).

The Norite I Zone consists o f layers o f plagioclase and bronzite, and cumulates 

with variable amounts o f each. The upper contact with Gabbronorite I is marked by the 

first occurrence o f cumulus augite above the Basal Series (Zientek et al, 1985). The 

overlying Gabbronorite I Zone consists o f plagioclase, bronzite, and augite cumulates, all 

o f  which vary in proportion (Zientek et al, 1985).

Olivine-bearing I Zone begins at the reoccurrence o f cumulus olivine. This unit 

contains olivine, plagioclase, bronzite, and augite cumulates as well as pegmatoids 

(Zientek et al, 1985, McCallum et a l, 1980; Raedeke et a l, 1985). Many o f the 

olivine-bearing units contain less than five percent cumulate olivine (McCallum et a l, 

1980). The one to three-meter PGE-bearing JM reef is generally located near the fifth 

olivine-bearing unit at the base of the anorthosite and the top of the troctolite. The 

location o f the JM reef varies somewhat along strike, but is found approximately 400 to 

450 meters above the contact between the Banded and Ultramafic Series (Todd et a l, 

1982). The upper contact o f Olivine-bearing Zone I is between a plagioclase cumulate 

and a thick plagioclase, bronzite cumulate known as the Norite II (McCallum et a l, 1980,
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Zientek, 1985). The uppermost unit o f the Lower Banded Series, Gabbronorite n, 

consists o f layers o f plagioclase, bronzite, augite cumulates and plagioclase cumulates. 

The reoccurrence o f olivine marks the upper contact with Olivine-bearing Zone II, the 

uppermost layer o f the Lower Banded Series.

The remaining Middle and Upper Banded Series consist o f Anorthosite I, 

Olivine-bearing III, Olivine-bearing IV, Anorthosite II, Olivine-bearing V, and 

Gabbronorite III (McCallum et al., 1980). Zientek et al. (1985), describe these units in 

more detail.

PROBLEMS AND OBJECTIVES

The Stillwater Complex contains several sulfide-bearing intervals, many o f which 

are continuous along the strike of the complex (fig. 3). Only one such horizon, the JM 

reef, contains economic amounts o f PGE’s. PGE-bearing sulfides in layered 

mafic-ultramafic intrusions are typically found in such continuous horizons. However, 

Some sulfide concentrations, as in the Lower Banded Series, are laterally discontinuous 

(Page et al., 1985). One o f these concentrations, the Coors 602 zone, is primarily 

mineralized pegmatoidal bronzitites (Conn, 1979; Volborth and Housley, 1984). The 

study area is named Coors 602 zone after one of the exploration trenches in the area.

In 1967, the Johns-Manville Corporation began soil sampling and drilling to 

delineate the JM reef platinum horizon in the Stillwater (Conn, 1979). A detailed soil 

geochemical traverse across the Coors 602 zone showed significant PGE values (Conn,
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Footnotes: (1), combined Ni + Cu; (2), combined Ft + Pd; (3), based on rocks containing more than 
SO percent visible sulfide (Page, et al., 1985).
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1979). The anomalously high platinum values led to trenching and coring in the area in 

1973 and again in 1982. When the richer PGE reef was discovered stratigraphically above 

the Coors 602 zone, exploration beneath ceased (S. Todd, pers. comm., 5/1991).

Although some of the platinum and palladium values exceed those o f the JM Reef, the 

average value of these elements from the Coors 602 area is less than the JM Reef, and it is 

considered sub-economic. However, it is important to understand how and why 

mineralization occurred at this location. Although the Coors 602 zone is not economic, 

this horizon in which it occurs may represent a potential target for exploration elsewhere 

in the Stillwater and in other intrusions.

The bulk o f the mineralization occurs in pegmatoids o f bronzitite composition.

This feature is very odd in that the pegmatoids occur within the Norite I unit, well above 

the disappearance o f bronzitite in the Ultramafic Zone below. Other interesting features in 

the surrounding rocks include the thinning of the Gabbronorite Zone I to virtual absence, 

and units crosscutting other units. Also in the Coors 602 area, the typical uniform layering 

is disturbed forming highly irregular contacts with adjacent layers. It seems more than 

coincidental that these mineralized pegmatoids are found within a small area with all of 

these other atypical features; thus they are likely related. A viable genetic model must 

account for all these features including the close proximity to the JM reef, plagioclase first 

appearing as a cumulus phase, occurrence of pegmatoids, presence o f significant PGE- 

bearing sulfides, and the stratigraphie disturbances are present.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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COORS 602 AREA

LOCATION AND GENERAL GEOLOGY

The Coors 602 zone is located on the East Boulder Plateau between the East 

Boulder River and Lost Mountain (Fig. 4). Johns-Manville geologists prepared a 1" to 

100’ outcrop map o f the area between 1974 and 1991 (Fig. 5a,in Appendix 1). Figure 5 is 

a 1” to 100’ copy o f this map.

Stratigraphie units in the Coors area are similar to the rest o f the Stillwater 

Complex, with rocks ranging stratigraphically from the Bronzitite Zone of the Ultramafic 

Series up through the Lower Banded Series (Fig. 2). The Gabbronorite I Zone is only 

partially represented. Cumulate lithologies o f these units are, in general, mineralogically 

and petrologically similar to typical exposures o f the respective units elsewhere in the 

complex. The contact in the Coors 602 zone is also interpreted to be the first occurrence 

o f cumulate plagioclase.

The actual contact between the Bronzitite Zone and the first norite does not occur 

in outcrop in any location in the Coors area. The inferred contact on the map in figure 5 is 

within a meter from the true contact in most places, and less than 0.5 meters in several 

locations. In other locations throughout the complex, for example the Mouat Mine Road, 

the contact is sharp on the scale of a single grain. Thus, the same contact in the Coors 

602 zone is assumed to have a similar sharpness. The contact between norites and 

bronzitites in the trenches is not transitional, but very sharp. The contact between Norite I 

and Olivine-bearing Zone I was not studied in detail. The Reef does not occur in the fifth
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olivine-bearing unit as it typically does throughout the Stillwater Complex. Instead, it 

occurs in the second or third olivine-bearing unit.

Although the Lower Banded Series in the Coors 602 area contains similar geologic 

units as are found in this Series throughout the Stillwater Complex, it displays many 

irregular relationships not typically seen in other locations. These irregularities are 

discussed in detail below.

METHODS

Mapping for the current study was primarily reconnaissance o f previously 

recognized geologic units, contacts, and structures in the area. The map produced by 

Johns-Manville was the basis for this work. Norite and bronzitite samples, both 

pegmatoidal and normal, were collected throughout the Coors area, mostly below the JM 

Reef (figure 6).

Geochen^cal and pétrographie analyses were used to characterize the bronzitite 

masses, both mineralized and non-mineralized, to determine if they are similar to the 

bronzitite in the Ultramafic Series below and possibly originated from that unit. Due to 

the lack o f previous research in the Bronzitite Zone of the Ultramafic Series, a suite of 

samples was collected from this zone along the Mouat Mine Road to add to the current 

sparse database for valid comparisons to the Coors 602 zone.

Thin sections were made fi'om each sample collected and studied or pétrographie 

description using a Zeiss polarizing-light microscope. Additional polished sections were
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cut for examination under reflected light. Polished circular samples were cut and coated 

with carbon for microprobe analyses. Electron microprobe analyses were performed on 

bronzite gr^ns from bronzitites o f the Ultramafic Series, the bronzitites in the Coors 602 

zone, and from norites within the Banded Series. The analyses were done on microprobes 

at both the University o f Montana and Washington State University. The automated, 

wavelength dispersive, ARL-EMX five channel microprobe at the University of Montana 

was used at 15 KV accelerated voltage and 1 microampere o f sample current.

Washington State University’s microprobe is also wavelength dispersive. The importance 

of these microprobe analyses was to determine the magnesium to iron ratio which can 

have a direct correlation to differentiation of the magma.

Representative samples were coarsely crushed and finely pulverized at the 

University o f Montana. Powders were sent to The United States Geological Survey 

(USGS) in Denver and Washington State University for x-ray fluorescence (XRF) 

analyses. Numerous other analyses were done at the USGS in addition to XRF; these 

analyses are listed in table 2. Descriptions of these analytical methods can be obtained 

from the Denver office. Whole rock analyses were done to show whether the pegmatoidal 

samples or possibly the mineralized samples were formed from late-stage differentiates, 

thereby containing many incompatible elements. Magnesium and iron were used to 

compare differentiation trends.
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FIELD RELATIONSHIPS 

Bronzitite in Norite I

Figure 5a shows the distribution o f bronzitite in the Coors 602 area. Bronzitite 

occurs repeatedly upsection through the norite in the lower part o f Norite I. Jones et 

al.(1960) report alternating layers at this contact elsewhere in the Stillwater, but extending 

only over a distance o f about a meter into the Norite I. However, the bronzitites in the 

Coors 602 area randomly extend as much as 450 meters into the Norite I; they do not 

occur in layers. Exploration trench maps and drill logs both show these features. Refer to 

the figure 5a in appendix 1 or figure 6 for location of the trenches.

The thickness of the bronzitite masses zone ranges from only a few feet across to 

100 meters, with respect to the longer axis o f each. The shape o f these bodies is difficult 

to discern given the lack of outcrop. The distribution and location of bronzitite is seen in 

the cores. Because only two of the cores intersect, the shape of the bronzitites is not 

evident As seen in several outcrops, the bronzitites are discordant.

Small fractures are present, but there is no evidence o f post-crystallization 

movement significant enough to have caused repetition of units as seen in the trenches. 

Since the bronzitite and norite alternate as frequently as every 3 meters over a 30 meter 

span, as seen in trench CG602T1, and no direct evidence of faulting was found, a faulting 

scenario is difficult to imagine. Other bronzitite outcrops are found just above this 

interlayered zone in sporadic locations throughout the Coors area.
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In the western portion of the study area, along the Fishscale fault, bronzitite is 

found throughout a 360-meter vertical section beginning 60 meters above the approximate 

contact between the Ultramafic Series and the Banded Series (Fig. 5). Small patches of 

bronzitites are found throughout this fault zone up to the largest bronzitite 

outcrop at the north end. This large outcrop forms a lower contact with anorthosite, and 

occurs within the same outcrop as not only the anorthosite, but with a package of rock 

types including norite and troctolite. The units associated with this large bronzitite pod 

correlate with the adjacent stratigraphy, and have been moved only by rotation. This 

relationship suggests that the large bronzitite body was not displaced up section by 

post-crystallization faulting, but instead seems to have been magmatically emplaced. Most 

of the bronzitite outcrops are in place; however, it is questionable as to whether several of 

the small bronzitite outcrops have been relocated. They could be erratics moved from the 

Ultramafic Zone during glaciation. Although outcrops in the fault zone are scarce, the 

distribution of bronzitite is elongate and discordant and appears to be "dike-like."

Bronzitite rarely occurs above the Ultramafic Series in the Stillwater. In the 

Stillwater mine, many small (10 to 30 centimeters) ellipsoidal pods of orthopyroxenite are 

found 10 to 30 centimeters beneath the JM Reef. These pods beneath the JM reef are 

interpreted by Bow et al. (1982) as xenoliths from the Ultramafic Series.

Another occurrence o f bronzitite in the Banded Series is in the Contact Mountain 

area. Pegmatoidal bronzitite pods as large as two meters occur along the contact o f the
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Olivine-bearing Zone I and the Gabbronorite I, as well as within the Gabbronorite I 

(Raedeke et al., 1985).

Drilling in Dow meadows, northeast o f the Coors area, has documented another 

large bronzitite occurrence. The drill core goes through the reef, continues through 

normal stratigraphy below the reef, hits several meters o f bronzitite, goes back into norite, 

and continues through bronzitite for the remainder of the hole. The core has been logged 

in detail, and the repetition of bronzitite is was not found to be a result o f fault repetition 

(Zientek, pers. comm., April, 1993)

Secondary dunite in the Stillwater and Pt-rich dunite pipes in the Bushveld are 

examples o f other discordant bodies found within different rock types. Although the 

composition of these bodies is quite different, similarities exist between them and the 

bronzitites.

The discordant dunites at Chrome Mountain lie stratigraphically beneath the Coors 

area. They crosscut cumulate layers approximately at right angles up through the 

Peridotite Zone on Lost Mountain. The secondary dunites, referred to as pipes in the 

Bushveld, are more predominant in regions of maximum faulting (Viljoen and Heiber, 

1986).

Disturbed stratigraphy

The stratigraphy overlying the Coors area is similar to the same horizon in the rest 

o f the Stillwater. However, the stratigraphy below the reef in the Coors area is very
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irregular. Layering between the reef and the Ultramafic Series contact with the Banded 

Series is disturbed and shows sinuous and highly irregular contacts (figure 5.). Many of 

the observed irregular contacts lie within the same outcrop; where it is clear that they were 

not produced by brittle deformation.

Norite I and Gabbronorite I typically contain irregular features (Foose, 1985). The 

thinner layers in Norite 1 often show scouring, slumping, and are laterally discontinuous. 

The upper portion of Norite I contains a laterally extensive layer exhibiting disturbed 

layering and irregular mixing of norite, anorthosite, and coarse-grained pyroxenite 

(McCallum et al., 1980). They suggest that such features could be the result o f strong 

currents, slumping or both. Gabbronorite I also contains many irregular features such as 

graded layers, slumps, and the occurrence of inclusions o f bronzitite that is texturally 

identical to that o f the uppermost thirty meters in the Ultramafic Series (McCallum et al., 

1980). In both units however, these irregularities are typically small, on the scale of 

centimeters, compared to the large discordances in the Coors area which may range across 

the entire study area (Fig. 5), a distance of about 2400 feet.

The disturbed layering described above for the Coors 602 zone generally occurs 

within the scale o f one outcrop. However, discordant features also exist across the entire 

study area. An olivine-bearing pod occurs approximately 590 feet above the Bronzitite 

Zone, in the west part o f the study area. This outcrop is interpreted to be the lower 

contact o f the Olivine-bearing Zone I. The JM Reef above this olivine pod is about 885 

feet above the Bronzitite Zone. The position of both o f these units is well below the
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average location in the Stillwater Complex for the first olivine-bearing unit, and the 

stratigraphie units below are unusually thin. In the east side o f the study area, near Lone 

Tree Meadow fault, the reef is close to the average location in the Stillwater Complex at 

about 1375 meters above the Bronzitite Zone (Fig. 5).

Several outcrops in the Coors 602 area contain discordant features, including the 

olivine-bearing pod described above, which are evidence of downcutting into the norite. 

One location in particular, contains truncated olivine-bearing and anorthositic layers 

against norite (Fig. 7).

The Stillwater mine has exposed a similar feature with the reef downcutting 

layering in the rocks below (Turner, 1985; Bow et al., 1982; Zientek, April, 1993, pers. 

comm.). The reef reaches to within 98 feet o f the Bronzitite Zone, and proceeds to cut 

upsection to its original position. The Gabbronorite I Zone varies in thickness throughout 

the complex, but not to the degree that it does in the Coors area. The Gabbronorite I 

Zone is virtually absent in the Coors area; augite-bearing rocks appear in very few 

samples.

An overall decrease in thickness in the stratigraphy between the Reef and the 

Bronzitite Zone is present beginning as far east as the Janet 50 claims. Figure 8 shows the 

location o f Janet 50 with respect to Coors 602. Janet 50 also contains mineralized 

bronzitite pegmatoids. Detailed descriptions can be founded in Volborth and Housely, 

1984. The association of both the Coors 602 and Janet 50 mineralized zones with 

thinning o f the stratigraphy below the reef, may be significant. The
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Figure 7. Sample outcrop sketches showing irregular layering and truncating features.
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fact that the reef reaches lower than normal in these sites could be important in the genesis 

o f the mineralization.

Pegmatoids

Pegmatoids are widespread in layered intrusions. The term pegmatoid is preferred 

over pegmatite here because the latter typically refers to granitic composition.

Pegmatoid is a textural term referring to the coarse grain size, but the presence of 

volatiles, presumably water, can also be inferred. Pegmatoids occur in various rock types 

in layered intrusions, including chromitites, norites, bronzitites, troctolites, and gabbros; 

they have the same composition as the rock type in which they occur.

Most workers do not address the association between mineralization and 

pegmatoids. Pegmatoids commonly occur in both sulfide and chromite deposits. 

Pegmatoids are also found in areas of the Stillwater Complex which have no 

mineralization, as well as those associated with PGE mineralization. Many workers simply 

indicate that the pegmatoids are evidence for the presence of volatiles, not why the 

volatiles are there or where they came from.

In the Coors 602 area, rocks which have mineral grain sizes over the 5 mm are 

considered pegmatoids. Grain sizes range fi^om approximately 5 mm to 150 mm. 

Pegmatoidal textures are found in both bronzitites and norites in the Coors 602 zone. 

Several pegmatoid patches o f various sizes exist near the contact between the Ultramafic 

and Banded Series and elsewhere in the Lower Banded Series in the Coors 602 area.
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Contacts in the trenches between pegmatoids and adjacent rock units are presently difficult 

to find due to collapse and weathering in the trenches. Where it was somewhat exposed, 

the contact seemed gradational over several centimeters. One contact observed between 

norite pegmatoid and bronzitite, in the CG789T-2 trench, is gradational over 15 cm.

Pegmatoids associated with the JM Reef contain a significant amount of 

phlogopite and thus water at magmatic temperatures; whereas those along the contact 

between the Banded and Ultramafic Series in the Coors area do not. Only a few 

pegmatoids sampled in the Coors area contained phlogopite. Bronzitite pegmatoids in the 

Coors 602 area, however, are unusual because they occur within norites.

PGE Mineralization

Many of the bronzitites in the Coors 602 area contain PGE mineralization. 

Trenches dug by Johns-Manville help delineate the mineralized rocks. Both pegmatoids 

and nonpegmatoids contain mineralization. Sulfides appear to be randomly distributed 

throughout the bronzitites. Most o f the mineralization is within the bronzitites in the 

lower Norite I. One bronzitite outcrop in the Fishscale fault zone contains significant 

proportions o f sulfide mineralization The large bronzitite at the top of the fault zone, does 

not contain appreciable sulfide mineralization. However, the rocks here are extremely 

sheared and altered, so any sulfides that were present may have been remobilized.
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MINERALOGY AND PETROGRAPHY

Sample descriptions including rock type, grain size o f cumulate bronzite, and approximate 

percent orthopyroxene and sulfides are located in table 3.

Bronzitite

The orthopyroxenites o f the Bronzitite Zone are mineralogically and texturally 

similar to those elsewhere in the Stillwater. Euhedral to subhedral bronzite is the cumulate 

phase with augite and plagioclase as intercumulate phases. Augite is present as exsolution 

blebs and lamellae in bronzite crystals, as oikocrysts, and less commonly as intercumulus 

grains. Bronzite grains range fi-om 2 to 5 mm in diameter. Augite oikocrysts range from 

0.5 to 2 cm in diameter. Plagioclase grains, typically anhedral and interstitial, are not 

zoned. Modal proportions of minerals are 95 to 80% bronzite, 5 to 15% plagioclase, and 

1 to 5% augite.

The bronzitite cumulates in the trenches and elsewhere in the Norite I Zone are 

quite different texturally from those in the Bronzitite Zone. Many bronzitites do not 

exhibit the normal cumulate texture and may be affected by recrystallization. Although 

bronzite must be the cumulate phase, it is often anhedral; it is difficult to discern whether it 

is actually cumulate. Similarly, it is difficult to tell if the plagioclase is intercumulus.

Many samples seem to be marginally bronzitite and possibly could be norites. The 

plagioclase content in these bronzite cumulates ranges from 5% to 30%.
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4 2 0 4 7 5 5 5 0 4 3 0 0 .7 8 bC 10-20 3  5 .5-1 .5 P 3 9 2 4 0 0 3 2 5 1 .7 0 0 5 .2 3 bC 20-30 tr 1 1-1.7 pap
9 1 0 1 ,0 9 5 9 2 5 8 0 0 0 .8 6 bC 10 1 3 .5-1.5 P 8 0 5 4 8 0 6 ,2 0 0 1 1 ,0 0 0 1.77 bC 20-30 tr 1 1-1.8 pap
5 3 0 8 0 0 7 7 5 75 0 0 .9 7 bC 10-20 1-5 .5-1.5 P 8 5 5 6 2 0 6 ,8 0 0 1 3 ,0 0 0 1.91 bC 2(ytO tr-1 1 1 .9 pap
2 5 5 3 8 0 15 0 1 3 0 0 .8 7 bC 10-20 1-5 .5 -1 .0 P 1 ,6 5 0 1 ,4 5 0 1 4 .6 0 0 3 4 .0 0 0 2 .33 bC 5 tr-S 1-1.5 pap
3 1 8 4 5 0 75 7 0 0 .9 3 bC 10-20 1-5 .5 -1 .0 P 4 5 0 4 3 0 1 ,4 5 0 5 ,5 0 0 3 .7 9 bC 20 tr pap
4 0 5 5 7 0 17 5 13 0 0 .7 4 pbC 5 0 -6 0 .5-1 .0 P 4 4 0 3 8 5 1 ,4 5 0 4 ,7 0 0 3 .2 4 bC 20 tr 1-2 pap
3 9 103 < 5 0 2 0 pbC 5 0 -8 0 .5-1 .0 P 8 7 182 SO 105 2 .1 0 pbC 50-60 .3 -5
17 65 < 5 0 2 0 pbC 5 0 -8 0 0 .5 5 0 138 5 0 65 1 .30 pbC 50-60
14 7 0 < 5 0 25 pbC 5 0 -6 0 0 .5 72 116 3 0 0 6 2 0 2 .07 pbC 50-80
14 54 < 5 0 25 pbC 5 0 -6 0 0 .5 28 8 0 5 0 4 0 0 .8 0 pbC 50-60
16 8 0 5 0 2 5 0 .5 0 pbC 5 0 -8 0 0 .5 28 68 5 0 25 0 5 0 pbC 50-60

178 3 9 0 3 0 0 24 5 0 .8 2 bC 20-35 tf-2 1 .5 2 5 2 3 3 6 2 0 0 2 6 0 1 .40 bC 20 tr pap
1 9 0 3 4 0 2 0 0 24 5 1 .23 bC 20-35 tr-2 .1 .5 2 9 2 3 6 5 42 5 1 ,0 0 0 2 3 5 bC 20 tr pap
19 2 3 3 0 3 0 0 2 2 0 1 .10 bC 20-35 tt-2 .1 .5
1 6 8 2 9 5 2 0 0 1 7 0 0 .8 5 bC 20-35 # 2 1 5 C 602T -3
3 8 0 4 3 0 5 0 0 3 0 0 0 .6 0 bC 20-35 11-2 .1 .5 3 6 85 < 5 0 20 pbC 60
3 5 2 4 8 5 5 0 0 3 2 5 0 .6 5 bC 20-50 1 2 . 3 .4 3 2 70 < 5 0 25 pbC 60 .3 .4
4 9 9 8 1 0 0 8 0 0 .8 0 pbC 60-70 3  4 16 0 3 9 0 < 5 0 55 bC 5-25 0-tr
18 5 2 5 0 3 0 0 .6 0 pbC 6 0 -7 0 J  .4 2 4 9 5 7 0 to o 2 * 0 2 .1 0 bC 5-15 tr  5 < 1 pap
12 5 0 5 0 25 0 .5 0 pbC 80-70 a  4 2 4 2

3 3 6
4 4 5
7 5 0

150
20 0

3 3 0
43 5

2 .2 0
2 .18

bC
bC

10
< 1

< 1
< 1

pap
pap

C 802T -2 1 44 3 4 0 SO 8 0 1 .60 bC 10-20 5 2 pap
2 8 8 3 2 5 8 5 0 1 ,7 0 0 2 .63 bC 10 < 3 P*0 3 0 0 4 4 0 20 0 275 1 3 8 bC 10-20 0-tr < 3 pap

1 1 8 1 8 8 ISO 18 0 1 .2 0 pbC 50-80 0-.5 0 .4 4 6 0 57 5 3 2 5 4 0 0 1 .23 bC 5 0-tr
3 2 4 3 0 0 1 ,4 0 0 3 ,7 0 0 2 6 4 bC 10 ti-.S p*g 2 0 0 3 8 0 25 0 8 0 0 3 .2 0 bC S 0-ti

3 6 5 3 8 0 8 7 5 1 ,800 2 .87 bC 10 ti*.5 P#Q 3 5 2 5 1 0 2 ,8 0 0 8 ,9 0 0 2 .4 6 bC 5 0-tr
5 0 0 4 2 5 3 2 5 595 1 .83 bC 10 t l  .5 < 3 p*0 1 ,2 6 0 1 ,1 5 0 10 ,0 0 0 2 6 ,0 0 0 2 80 bC 5 0-tr pap

5 3 2 0 0 < 5 0 4 5 pbC 80 1 ,3 5 0 1 5 5 0 5 ,5 5 0 2 2 ,0 0 0 3 .9 6 bC 5 5-10

2 2 3 1 2 < 5 0 7 0 pbC 60 0 8 5 0 8 7 5 3 ,0 5 0 5 ,5 0 0 1 .60 bC 5 tr  2 < 2 pap

9 8 2 1 2 5 0 6 0 1 .2 0 pbC 80 4 6 0 4 9 5 20 0 2 4 0 1 .20 bC 1 8.20 ti-2 .2-1 .2 pap
2 2 4 3 8 5 3 5 0 1 ,000 2 .8 6 bC 20 tl  .5 .5 1 P*6 5 8 0 88 5 3 2 5 3 5 0 1.08 bC 10-20 tr  2 .2-1 .2 pap
5 9 0 5 2 0 2 ,7 0 0 9 ,0 0 0 3 .3 3 bC 20 ti-.5 .5 1 P#q 8 4 0 7 8 0 3 5 0 4 2 0 1 .2 0 bC 10-20 tl 2 0 .5

4 3 5 4 4 0 8 0 0 2 .5 0 0 3 .1 3 bC 20 tf < 2 p#g 3 8 8 4 0 0 3 5 0 6 2 0 1 .77 bC 10-20 ti-2 .2-1 2 pap
2 9 2 3 2 4 3 0 0 4 2 5 1.42 bC 20 tl < 2
18 4 2 2 0 1 0 0 120 1 .2 0 bC < 5 tr .2 .7 1 Pd/Pi Av« # 1 .77  I

14 2 2 0 0 1 25 100 0 .8 0 bC < 5 tf .8  .7 '

14 4 2 1 2 1 2 5 9 0 0 .7 2 bC < 5 tf .2-.7

5 8 184 7 5 8 0 1.07 pbC 80 a  .5
18 5 4 75 5 5 0 .7 3 pbC 60 ,3  5
2 0 5 4 5 0 75 I S O obC 6 0 .3 5

Table 3. Sample description including rock type, grain size, percent orthopyroxene, and approximate 
percent sulfide. Shorthand notations include; mm=Mouat Mine; cc=Coors Claim; Tl, T2, 

T3=trench 1,2,3 respectively; 8,9,1 l=drill core 8,9,11 respectively.
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Norite

The Norite I Zone contains anhedral to subhedral cumulus plagioclase and 

bronzite, with interstitial augite. Augite, as in the Bronzitite Zone, forms lamellae and 

blebs in orthopyroxene, and oikocrysts. The exsolved blebs are more abundant in the 

Norite I Zone compared with the Bronzitite Zone. Augite also forms incomplete rims on 

some o f the bronzite. Excluding the pegmatoidal samples, the bronzite ranges from 2 to 5 

mm, the plagioclase from 1 to 5 mm. Where plagioclase is within an augite oikocryst, the 

grains tend to be small laths, 0.1 to 1 mm long. Rounded plagioclase grains can be found 

in bronzite, and bronzite grains in plagioclase. Some samples show slight to extreme 

embayment o f both types of grains. The possibility that resorption caused the embayment 

is discussed below.

Sulfides

In the Coors area, sulfides are commonly found as discrete grains interstitial to or 

within cumulus orthopyroxenes. Sulfides are also found along cleavage fractures in 

bronzites. Sulfides are more abundant in bronzitites than norites, and they occur within 

both pegmatoidal and nonpegmatoidal rocks. The distribution o f sulfide mineralization is 

podlike and highly irregular. Chalcopyrite, pyrrhotite, pentlandite, and pyrite are 

intergrown in blebs and disseminated grains and seem to have formed from an immiscible 

sulfide liquid. Sulfide blebs range in grain size from a fraction o f a millimeter to a 

centimeter. Total sulfides range from 0.5% to 5%; the average is 2.
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Economic reserves of PGE mineralization in the Stillwater are confined to the JM 

Reef. The PGE mineralization is associated with sulfides, predominantly pyrrhotite, 

pentlandite, chalcopyrite, and various PGE minerals (Bow et al. 1982). There is a direct 

correlation with the amount o f sulfides and the PGE value in all rocks assayed

Alteration

The most common alteration mineral is serpentine. Serpentine and chlorite occur 

as veinlets and replacement material within bronzites. Plagioclase alters to saussurite and 

clinozoisite. Actinolite often occurs as acicular crystals in and around sulfides.

Resorption

Many of the rocks studied, especially norites and plagioclase-rich bronzitites, show 

slight to intense embayments o f bronzite. Orthopyroxenes in the plagioclase-rich 

bronzitites also show a texture that could be attributed to slight remelting of the 

cumulates. The bronzites contain irregularly shaped inclusions o f plagioclase which seem 

to have formed in preexisting depressions or embayments. Several reasons why resorption 

might occur, include temperature increase, load-pressure decrease, and addition of 

lower-temperature constituents or volatiles (fig. 9).

Temperature increase may result from either a pulse of new magma injected at 

slightly higher temperatures, or settling o f crystals into a hotter melt. Assuming the
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composition of the crystallizing magma in both cases was similar to that from which the 

bronzite formed, heating would cause melting of crystals (Fig. 9a). Textural evidence and 

microprobe analyses o f resorbed grains do not indicate any adcumulus growth or further 

crystallization of bronzite with continued cooling. One possibility is that the Mg-Fe 

diffusion rate in bronzite was high. Alternatively, either the bronzite constituents which 

went into the melt during resorption were later separated from the interstitial melt before 

crystallization or the interstitial melt composition was changed with bronzite no longer on 

the liquidus.

Resorption textures could also result from a decrease in load pressure to initiate 

remelting (Fig. 9b). This could be accomplished by mechanical means such as fracturing 

within the crystallized part o f the complex. Lipin (1992), suggested that the Stillwater 

magma erupted many times during formation. Such an event would cause a pressure 

decrease over the entire complex, and the resorbed grains should be a common feature for 

that entire horizon in which they are found.

I f  low-temperature components were added, possibly by upward migration of 

more differentiated melt, and mixed with the interstitial fluid o f the crystallizing magma, 

the composition would shift, causing instability o f pyroxene crystals (Fig. 9c). Such new 

constituents could have been introduced by one or more pulses o f magma.

Addition of water could also cause resorption. Carbon dioxide has a similar but 

much lesser effect. Such volatiles could have been added to the resorbed area, by 

movement o f late-stage volatiles concentrated from another crystallizing area, or from
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country rocks being metamorphosed below the intrusion. The effect is similar to addition 

of other low-temperature constituents (Fig. 9d); it would lower the liquidus temperature. 

The lower liquidus places the orthopyroxene crystals out o f equilibrium; thus resorption 

occurs.

Embayed grains may be explained by surface energies. Two minerals with different 

composition have different surface energies. When the two are touching, the mineral with 

the highest surface energy dominates the crystallization pattern (Spry, 1979). As a result, 

the mineral with the highest energy seems to be protruding into the other mineral, thus 

producing an embayed margin in the latter. This can account only for some o f the 

embayed textures seen in the bronzitites from the Coors-602 area. Other embayed 

textures are difficult to explain by tWs model.

GEOCHEMISTRY

Silicate

Microprobe analyses for bronzites in the Coors area are given in table 4. The 

Bronzitite Zone in the Stillwater Complex shows little chemical variation vertically; the 

Mg numbers (Mg/Mg+Fe) for orthopyroxene vary by only a few percent (Raedeke and 

McCallum, 1985 and Lambert, 1982). Lambert's data (1982) contain a few Mg 

enrichment zones which may indicate reversals, but they are not as pronounced as in the 

Peridotite Zone below. Orthopyroxenes from two locations in the Bronzitite Zone, the 

Coors and the Mouat Mine area, were analyzed by electron microprobe for Si, Al, Ca,
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Mg and Fe. Figure 10 is a plot showing Mg number (Mg/Mg+Fe) trends. The data for 

this graph is listed in Table 5. The Mouat Mine samples begin roughly 200 meters below 

the contact between the Bronzitite Zone and the Lower Banded Series. A decrease in Mg 

number from 0.84 to 0.80 towards the upper contact indicates the magma was becoming 

progressively more iron-rich probably as a result o f magma differentiation. Only the top 

600 feet o f the Coors area were sampled and analyzed. McCallum (1980), cites 

Mg/(Mg+Fe) values o f 0.84 at Chrome Mountain and 0.85 at Mountain View. McCallum 

suggest that the variation in these two sites may mark a lateral change in composition of 

the Bronzitite Zone. However, the differences do not seem statistically significant.

A significant jump does occur, however, across the contact from the Ultramafic 

Series into the Banded Series at Coors. Mg numbers drop as much as thirteen percent, 

with all the lower values occurring in mineralized samples (group B in Fig. 10). 

Unmineralized bronzitites and norites have bronzites with higher Mg numbers relative to 

the mineralized samples, even in samples higher up-section (groups C and E in Fig. 10). 

An exception to this is group D1 in Figure 10, with high Mg numbers, which are 

mineralized samples from the JM reef. Group D2 in Figure 10, with low Mg numbers are 

mineralized samples from the bC “dike”

XRF whole rock analyses for the Coors area are given in table 6. Samples show a 

decrease in Mg/(Mg+Fe) up section, indicating an increase in iron, similar to the bronzite 

microprobe analyses (Fig. 11). The data for this graph are listed in table 7. Again, similar 

to the probe graph, the mineralized samples (group B and D2 on Fig. 11) have the lowest
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Sample# SI02 AI203 TK)2 FeO MnO CaO MsO K 20 Na20 P205
mm-O S4.74 4.66 0.130 8.85 0.189 4.10 27.59 0.05 0.38 0.000 NA 100.69
mm-100 SS.03 5.37 0.124 8.45 0.182 4.29 27.30 0.05 0.43 0.000 NA 101.23
mm*2S0 S5.16 4.17 0.167 8.88 0.194 4.34 27.39 0.05 0.46 0.000 NA 100.81
inin-SO SS.13 3.54 0.192 9.55 1.199 3.64 28.13 0.05 0.41 0.000 NA 100.84
mm-510 54.79 4.67 0.191 9.44 0.203 4.99 26.47 0.05 0.36 0.000 NA 101.16
mm-SM S3.92 5.84 0.193 10.29 0.206 4.72 24.84 0.05 0.46 0.002 NA 100.52
mm-C S3.8 5.18 0.16 10.1 0.02 4.21 26.0 0.05 0.35 <0.05 0.72 100.59
mm-F 53.3 5.13 0.22 11.8 0.21 4.88 24.2 0.04 0.32 <0.05 0.66 100.76
WF-BC 54.3 X88 0.13 10.6 0.21 3.20 28.1 0.02 <0.15 <0.05 0.45 99.89
cc-1 47.5 19.6 0.10 5.05 0.09 11.5 10.9 0.25 0.80 <0.05 3.45 99.24
cc-2 50.7 11.2 1.02 1X2 0.13 7.85 11.2 0.10 0.52 <0.05 3.82 98.74
cc>3 5X3 5.97 0.21 10.5 0.27 6.06 19.7 0.02 <0.15 <0.05 4.39 99.42
ec-4 43.6 15.8 0.17 10.0 0.14 10.1 14.8 0.08 0.57 <0.05 3.93 99.19
cc-( 50.7 13.2 0.16 9.74 0.17 8.98 15.3 0.07 0.82 <0.05 0.98 100.12
cc-9 50.4 8.10 0.23 15.0 0.23 5.45 17.9 0.10 0.32 <0.05 2.44 100.17
cc-10 51.7 7.01 0.19 13.0 0.22 7.07 20.1 0.04 0.46 <0.05 0.83 100.62
cc-10 46.0 26.1 0.08 4.62 0.07 13.0 6.59 0.13 1.51 <0.05 1.62 99.72
cc-11 51.9 7.33 0.19 11.8 0.19 6.85 19.8 0.04 0.46 <0.05 1.19 99.75
cc-12 52.0 7.04 0.21 12.5 0.23 6.87 20.3 0.07 0.53 <0.05 1.06 100.81
cc>13 52.5 8.86 0.16 9.02 0.18 7.64 20.8 0.06 0.45 <0.05 0.48 100.15
cc-14 51.4 10.5 0.11 9.10 0.17 6.65 19.8 0.05 0.48 <0.05 1.29 99.55
ce-lS 54.0 3.73 0.14 10.2 0.21 4.64 26J 0.02 0.22 <0.05 0.27 99.73
cc*10l 48.4 24.4 0.08 4.02 0.07 13.5 7.53 0.06 1.19 <0.05 0.70 99.95
CC'102 47.0 25.4 0.09 3.64 0.06 14.9 5.66 0.12 1.44 <0.05 1.18 99.49
ec-103 49.5 16.4 0.13 5.23 0.12 14.4 11.5 0.07 0.86 <0.05 1.10 99.31
cc*104 49.6 20.6 0.01 5.40 0.10 1X5 10.6 0.05 0.93 <0.05 0.22 100.01
cc-1OS 46.7 28.0 0.10 3.01 0.05 14.8 3.91 0.15 1.76 <0.05 1.32 99.80
cc-107 48.4 11.1 0.16 10.4 0.20 4.81 16.6 0.02 <0.15 <0.05 7.86 99.55
cc-108 48.3 4.85 0.22 16.9 0.21 4.81 19.2 0.02 <0.15 <0.05 4.87 99.38
cc-109 47.1 6.20 0.26 18.9 0.25 4.76 18.1 0.03 <0.15 <0.05 4.03 99.63
cc-110 47.4 20.9 0.08 5.68 0.10 11.1 11.6 0.10 0.91 <0.05 1.74 99.61
ec-112 51.1 6.60 0.20 14.1 0.23 5.88 20.5 0.05 0.42 <0.05 0.58 99.66
cc-113 46.7 21.3 0.11 7.18 0.17 9.57 7.83 0.02 1.70 <0.05 4.90 99.48
cc-114 46.9 23.0 0.11 5.84 0.09 1X0 8.89 0.09 1.16 <0.05 1.85 99.93
cc-1 IS 51.4 10.6 0.13 9.75 0.17 6.71 19.8 0.04 0.55 <0.05 0.40 99.55
cc-116 45.9 20.5 0.09 6.37 0.10 11.1 11.1 0.09 1.09 <0.05 3.16 99.50
cc-117 53.6 4.78 0.14 9.99 0.19 4.09 26.0 0.05 0.30 <0.05 0.84 99.98
cc-118 53.9 2.16 0.19 10.3 0.19 2.67 28.1 0.05 <0.15 <0.05 1.74 99.30
CC-I19 52.3 10.8 0.51 11.4 0.13 8.33 11.4 0.14 0.61 <0.05 3.11 98.73
cc-120 53.3 5.57 0.17 10.1 0.20 5.50 24.2 0.04 0.33 <0.05 0.61 100.02
cc-121 52.0 6.12 0.17 11.9 0.21 5.15 22.8 0.03 0.31 <0.05 0.79 99.48
cc-122 40.1 6.14 0.09 1X8 0.13 305 29.3 0.02 <0.15 <0.05 8.05 99.68
cc-123 52.2 7.98 0.16 11.6 0.22 5.27 21.3 0.08 0.45 <0.05 0.85 100.11
cc-124 49.5 9.89 0.19 11.3 0.20 5.26 17.8 0.02 <0.15 <0.05 4.85 99.01
cc-126 46.9 21.5 0.11 4.77 0.12 9.62 9.60 0.98 2.21 <0.05 3.57 99.38
cc-127 49.9 8.85 0.17 11.9 0.20 5.82 18.8 0.05 0.46 <0.05 3.05 99.20
cc-128 49.5 10.2 0.19 10.9 0.24 5.38 17.6 0.05 0.29 <0.05 5.16 99.51
cc-130 51.3 6.74 0.19 14.1 0.23 5.41 20.8 0.05 0.42 <0.05 0.49 99.73
cc-131 46.1 25.0 0.10 5.69 0.09 9.14 5.19 1.29 1.88 <0.05 4.07 98.55
cc-200 52.4 4.60 0.21 17.5 0.28 2.96 22.4 0.07 0.19 <0.05 0.10 100,71
cc-AP 51.1 7.85 0.18 1X9 0.21 5.63 19.8 0.06 0.46 <0.05 1.29 99.48
cc-Tl-Sf 51.5 11.3 0.13 8.91 0.16 7.45 18.9 0.07 0.62 <0.05 0.91 99.95
cc-Tl-20f 52.6 7.91 0.12 10.1 0.19 5.86 2X3 0.04 0.41 <0.05 0.56 100.09
cc-Tl-2Sf 52.2 7.60 0.13 10.7 0.19 6.14 21.9 0.04 0.42 <0.05 0.39 99.71
cc-Tl-10 51.1 15.0 0.16 8.48 0.15 9.23 14.8 0.06 0.90 <0.05 0.33 100.21
ec-Tl-22 49.1 19.2 0.11 6.64 0.12 11.4 11.2 0.07 0.93 <0.05 0.82 99.59
CC-T1-2S 52.1 9.76 0.14 9.33 0.17 6.41 20.7 0.05 0.50 <0.05 0.64 99.80
CC-T1-2S 52.0 8.77 0.17 11.8 0.21 0.21 19.8 0.04 0.05 <0.05 0.35 93.40
cc-Tl-35 51.5 9.33 0.17 13.1 0.22 5.75 19.0 0.06 0.49 <0.05 0.30 99.92
CC-T1-4S 49.3 18.8 0.10 5.85 0.11 1X7 10.9 0.06 0.96 <0.05 0,93 99.71
cc-Tl-SS 48.6 20.2 0.08 5.28 0.10 0.10 10.9 0.05 0.94 <0.05 1.60 87.85
CC-T1-6S 51.3 11.2 0.15 9.96 0.18 8.69 17.3 0.05 0.60 <0.05 0.43 99.86
cc-Tl-80 5X1 5.92 0.17 13.0 0.23 4.94 22.7 0.04 0.29 <0.05 0.15 100.24
cc-Tl-90 52.3 5.87 0.17 12.4 0.19 4.38 22.7 0.04 0.27 <0.05 1.48 99.80

39

Table 6. Whole rock analyses (XRF) of Coors area and Mouat Mine road 
Samples given in weight percent (contin. on next page)
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Sample# SK)2 A1203 TK» PeO MnO CaO MgO K20 Na20 P205 LOI Total
CC-T1-9S 51.1 8.09 0.17 1X3 0.20 0.20 19.9 0.05 0.39 <0.05 X04 94.44
cc-Tl-105 49.0 21.4 0.08 4.79 0.09 13.0 9.80 0.05 0.97 <0.05 0.63 99.81
cc-Tl-110 49.5 20.1 0.08 5.41 0.11 11.3 11.7 0.05 0.89 <0.05 0.59 99.73
cc-Tl-130 48.3 21.7 0.07 4.65 0.09 13.1 9.33 0.05 0.99 <0.05 1.06 99.34
ec-Tl-135 51.2 11.0 0.16 IX 1 0.20 6.35 18.2 0.06 0.57 <0.05 0.24 100.08
CC-T2-S 5Z1 3.74 0.25 17.0 0.27 X89 22.8 0.05 0.20 <0.05 0.80 100.10
C6-T2-10 50.1 16.1 0.10 6.88 0.13 9.64 14.8 0.06 0.74 <0.05 1.44 99.99
CC-T2-15 5Z3 1.69 0.29 18.6 0.29 1.77 23.8 0.04 <0.15 <0.05 1.21 99.99
CC-T2-20 50.0 11.4 0.21 1X8 0.21 6.42 16.6 0.09 0.58 <0.05 1.26 99.57
CC-T2-23 51.6 6.47 0.20 14.7 0.24 4.18 21.1 0.06 0.32 <0.05 1.00 99.87
CC-T2-25 47.4 23.7 0.07 3.79 0.09 13.1 7.29 0.23 1.27 <0.05 2.40 99.34
CC-T2-33 52.5 4.99 0.20 15.3 0.25 3.89 2X2 0.04 0.31 <0.05 0.50 100.18
CC-T2-3S 51.1 12.7 0.11 7.60 0.15 9.56 17.2 0.05 0.57 <0.05 0.67 99.71
CC-T2-5S 47.4 21.3 0.12 4.67 0.11 12.4 9.13 0.20 1.19 <0.05 2.53 99.05
CC-T2-60 49.1 18.7 0.07 5.55 0.11 11.8 11.7 0.08 0.90 <0.05 1.40 99.41
CC-T2-65 48.8 22.0 0.09 4.46 0.09 13.0 9.36 0.08 1.03 <0.05 0.79 99.70
CC-T2-7Î 49.5 19.1 0.09 5.63 0.11 11.4 12.1 0.09 0.89 <0.05 0.80 99.71
CC-T3-10 50.5 9.58 0.22 14.1 0.24 5.66 17.8 0.12 0.55 <0.05 0.99 99.76
ee-T3-15 53.0 1.44 0.33 19.4 0.30 1.60 23.9 0.04 <0.15 <0.05 1.06 101.07
CC-T3-20 SZO 1.94 0.32 19.1 0.29 1.74 23.8 0.04 <0.15 <0.05 1.09 100,32
CC-T3-25 53.6 3.93 0.12 10.4 0.20 3.94 26.7 0.10 0.15 <0.05 0.79 99.93
cc-T3-30a 51.3 5.87 0.26 16.6 0.27 3.75 20.7 0.10 0.32 <0.05 1.03 100.20
cc-T3-30b 51.1 6.17 0.27 16.4 0.27 3.83 20.4 0.12 0.36 <0.05 0.95 99.87
CC-T3-33 52.1 X73 0.30 18.2 0.29 X21 23.0 0.06 <0.15 <0.05 0.82 99.71
CC-T3-40 51.2 5.02 0.26 16.9 0.28 3.37 21.2 0.11 0.27 <0.05 1.24 99.85
CC-T3-45 50.7 6.81 0.27 15.9 0.26 4.11 19.6 0.11 0.39 <0.05 1.53 99.68
cc»T3-S 49.7 19.1 0.09 5.88 0.11 0.11 12.1 0.05 0.87 <0.05 0.57 88.58
CC-T3-60 52.4 6.40 0.24 14.2 0.25 0.25 20.3 0.05 0.44 <0.05 0.07 94.60
CC-T3-70 50.1 9.61 0.12 10.6 0.18 0.18 19.3 0.05 0.45 <0.05 1.89 92.48
cc-T3-70a 49.5 7.13 0.14 1X7 0.20 0.20 20.0 0.05 0.34 <0.05 X54 9X80
CC-T3-75 5X3 7.65 0.13 11J 0.20 0.20 22.1 0.04 0.37 <0.05 0.54 94.83
CC-T3-M 52.5 5.97 0.15 1X4 0.22 4.82 22.8 0.04 0.32 <0.05 0.71 99.93
CCT3-85 5X7 4.61 0.16 13.2 0.24 3.75 24.5 0.04 0.21 <0.05 0.45 99.86
CC-T3-90 51.9 7.70 0.13 11.8 0.20 5.41 21.6 0.04 0.39 <0.05 0.73 99.90
(-414-25 47.4 3.57 0.09 10.1 0.13 3.08 28.2 0.04 <0.15 <0.05 6.41 99.02
(-425-35 46.7 2.51 0.08 11.3 0.19 X77 30.7 0.03 <0.15 <0.05 5.38 99.66
8-489-99 50.8 2.64 0.23 1X4 0.21 3.56 27.0 0.04 <0.15 <0.05 0.75 97.63
8-555-65 53.6 1.99 0.15 10.6 0.20 3.99 27.8 0.05 <0.15 <0.05 0.99 99.37
8-565-74 52.2 3.56 0.12 10.1 0.19 3.92 27.5 0.15 <0.15 <0.05 2.09 99.83
8-573-04 52.8 X74 0.12 10.8 0.20 3.07 28.7 0.09 <0.15 <0.05 1.47 99.99
8-574-84 50.5 3.54 0.11 10.5 0.19 3.64 28.2 0.12 <0.15 <0.05 3.19 99.99
8-584-93 53.4 1.73 0.15 11.2 0.20 2.82 28.5 0.03 <0.15 <0.05 1.57 99.60
9-229-38 51.0 13.5 0.10 8.11 0.15 9.02 16.9 0.03 0.61 <0.05 0.53 99.95
9-233-48 51.5 11.4 0.11 8.90 0.16 7.89 18.9 0.04 0.52 <0.05 0.76 100.18
9-24-32 50.0 16.8 0.15 7.28 0.13 11.5 12.2 0.09 0.98 <0.05 0.60 99.73
9-32-41 51.4 11.7 0.17 9.92 0.18 8.21 17.0 0.08 0.73 <0.05 0.63 100.02
9-334-43 52.3 7.51 0.20 11.1 0.20 5.93 21.0 0.10 0.45 <0.05 0.70 99.49
9-562-72 52.3 5.55 0.22 14.4 0.25 5.37 21.6 0.05 0.31 <0.05 0.31 100.36
9-601-10 5X1 5.14 0,22 16.3 0.27 3.64 22.1 0.06 0.24 <0.05 0.16 100.23
9-62-71 49.3 19.6 0.09 5.71 0.11 11.9 11.3 0.05 0.92 <0.05 1.04 100.02
9-638-47 51.9 9.20 0.18 1X0 0.22 636 19.3 0.08 0.54 <0.05 0.46 100.24
9-647-56 5X2 6.95 0.19 13.1 0.23 5.79 21.0 0.05 0.41 <0.05 0.35 100.27
9-71-80 49.5 19.5 0.09 5.81 0.11 11.5 11.6 0.06 0.92 <0.05 0.81 99.90
11-172-82 5X0 4.58 0.20 14.9 0.25 3.48 23.0 0.07 0.24 <0.05 1.31 100.03
11-184-92 52.5 4.44 0.21 14.6 0.25 3.81 23.2 0.06 0.22 <0.05 1.04 100.33
11-192-01 5X4 X33 0.24 15.7 0.26 4.17 24.0 0.04 <0.15 <0.05 0.98 100.12
11-249-58 51.7 6.29 0.21 13.1 0.22 5.38 20.9 0.08 0.48 <0.05 1.56 99.92
11-277-87 52.4 5.78 0.21 13.9 0.24 4.90 21.9 0.06 0.40 <0.05 0.60 100J9
11-314-24 49.1 20.6 0.08 5.23 0.10 1X1 10.6 0.06 0.95 <0.05 0.80 99.62
11-324-332 48.9 21.2 0.09 4.83 0.09 12.8 9.97 0.07 0.99 <0.05 1.07 100.01
11-341-50 48.6 22.6 0.09 4.43 0.08 1X7 8.96 0.14 1.05 <0.05 1.26 99.91
11-359-72 46.1 25.7 0.06 3.24 0.06 13.9 5.63 0.19 1.34 <0.05 3.39 99.61
11-372-82 46.4 26.7 0.06 2.75 0.05 14.2 4.95 0.18 1.32 <0.05 3.08 99.69

Continued firom previous page
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Figure 11. Plot of straiigraphlc height verses magnesium number (mol percent Mg) of whole rocks using the Banded Series - Ultramafic Series contact as 
the datum. Data is based on Coors area whole rock analyses (XRF).
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Sample # Rock Type raol% Mg Height
mm-0 UbC 84.75 -588
mm-SO UbC 84.00 -538
ram-100 UbC 85.20 -488
mm-250 UbC 84.61 -338
mm-510 UbC 83.33 -50
rara-S88 UbC 81.14 0
ram-C UbC 82.11 -10
rara-F UbC 78.52 -20
cc-1 pbC 79.37 475
cc-2 pbC 62.07 1215
cc-3 bC 76.98 1605
cc-4 poC 72.51 930
cc-8 poC 73.68 870
cc-9 pbC 68.02 985
cc-10 bC 73.38 575
cc-10 pbC 71.77 575
cc-11 bpC 74.94 560
cc-12 bC 74.32 635
cc-13 bC 80.43 915
cc-14 pbC 79.50 440
cc-101 pC 76.95 710
cc-102 pbC 73.49 1170
cc-103 pbC 79.67 865
cc-104 pC 77.77 510
cc-105 pbC 69.84 1050
cc-108 bC 66.94 1350
cc-110 pbC 78.45 1250
cc-112 bC 72.16 520
cc-113 pC 66.03 1680
cc-114 poC 73.07 825
cc-115 pbC 78.35 1210

Sanral^^ Rock Type mol% Mg Height
cc-116 pC 75.65 860
cc-117 UbC 82.27 -150
cc-118 UbC 82.94 -100
cc-119 pbC 64.06 1240
cc-120 UbC 81.03 -200
cc-121 UbC 77.35 -75
cc-122 bC 80.32 510
cc-123 bC 76.60 320
cc-124 pbC 73.74 1520
cc-126 UbC 78.20 25
cc-127 pbC 73.79 1310
cc-128 pC 74.21 1500
cc-130 bC 72.45 560
cc-131 pbC 61.92 1555
cc-AP bC 73.23 670
cc-Tl-5f pbC 79.08 325
cc-Tl-20f bC 79.74 325
cc-Tl-25f bC 78.49 325
cc-Tl-10 pbC 75.67 295
cc-Tl-22 pbC 75.04 297
cc-Tl-25a bC 79.82 300
cc-Tl-25b bC 74.94 300
cc-Tl-35 bpC 72.11 310
cc-Tl-45 pbC 76.86 320
cc-Tl-55 pbC 78.63 330
cc-Tl-65 pbC 75.59 340
cc-Tl-80 bC 75.68 355
cc-Tl-90 bC 76.54 365
cc-Tl-95 bC 74.25 370
cc-Tl-105 pbC 78.48 380
cc-Tl-110 pbC 79.40 385

_^m»gle# Rock Type mol% Mg Height
cc-Tl-130 pbC 78.15 405
cc-Tl-135 pbC 72.83 410
CC-T2-5 bC 70.51 505
CC-T2-10 pbC 79.31 501
CC-T2-15 bC 69.52 499
CC-T2-20 bC 69.80 497
CC-T2-23 bC 71.90 495
CC-T2-25 pbaC 77.42 494
CC-T2-33 bC 72.12 492
CC-T2-35 bC 80.13 491
CC-T2-55 pbC 77.70 486
CC-T2-60 bC 78.98 484
CC-T2-65 pbC 78.91 482
CC-T2-75 pbC 79.30 480
CC-T3-5 pbC 78.58 345
CC-T3-10 bpC 69.23 340
CC-T3-15 bC 68.71 335
CC-T3-20 bC 68.95 330
CC-T3-25 bC 82.07 325
cc-T3-30a bC 68.97 315
cc-T3-30b bC 68.92 315
CC-T3-35 bC 69.25 300
cc-T3^0 bC 69.10 295
CC-T3-45 bC 68.72 290
CC-T3-60 bC 71.82 285
CC-T3-70 bC 76.44 280
cc-T3-70a bC 73.73 280
CC-T3-75 bC 77.71 275
CC-T3-80 bC 76.62 270
CC-T3-85 bC 76.79 265
CC-T3-90 bC 76.54 260

Table 7. Data for figure 11, including rock type, mol percent magnésium, and height in feet.
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Mg number’s. The JM Reef mineralized samples (D1 on Fig. 11) and the unmineralized 

samples (groups C and E in Fig. 11) have the highest Mg numbers.

PGE Sulfides

The trench samples were assayed by Stillwater PGM labs for nickel, copper, 

platinum, and palladium (Table 8). Values range from <50 to 1550 ppm nickel, <20 to 

1650 ppm copper, <50 to 14600 ppb platinum, and <20 to 34000 ppb palladium. As seen 

in table 8, the ratio o f Pd to Pt averages 1.77 for trench samples. Coors and Mouat Mine 

samples where also analyzed for PGE’s Cu and Ni.. These analyses are listed in table 9. 

The average Pd to Pt ratio in these samples is 1.2. The JM reef has an average Pd Pt ratio 

of 3.5 to 1. Figures 12a and 12b show a positive correlation between Pd and Pt. Note 

that samples 102, 110, 115 have ratios above 3 .0. These three samples are from the JM 

reef. Positive correlations also exist between copper and nickel versus palladium and 

copper and nickel verses platinum in both sets o f analyses (Figs. 13 and 14).
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% W M #
Cu Ml m N M/m m M lemt 6M Cu Ml m P8 M/m DfaM «4» (fliWl

cessT 'i € 8 0 2 7 1
ISO 2 6 4 12 5 1 3 0 1.04 pbC 3 5 -4 5 9 -.S 5 8 0 7 0 0 1 ,6 0 0 2 ,7 5 0 1.72 bC 20 tr < 1 5 P#0
23 3 2 7 2 75 11 5 1 53 pbC 5 0 0 .3 158 190 10 0 145 1.45 bC 20 tf-1 9  6
25 7 2 8 5 6 5 8 5 1,31 pbC 3 0 .6 0 ti-1 9  .5 8 8 138 5 0 85 1 .70 pbC 4 0 tr .1-10 p«*
t « 4 2 2 5 1 0 0 9 5 0 .9 5 pbC 80-70 1* .5 9  5 173 232 75 2 2 5 3 .0 0 pbC 40 tr .1-10 PM
1 4 2 2 3 0 5 0 8 5 1 ,3 0 pbC 60-70 *  5 9 . 5 1 3 0 168 5 0 75 1 .50 pbC 4 0 ti .1-10 P M
7 2 3 2 0 < 5 0 5 0 pbC 5 0 If .5-1.5 p 128 242 10 0 39 5 3 9 5 pbC 4 0 tr .1 10 P M
8 0 4 5 0 < 5 0 8 5 bC 1 0 -3 0 b  1 9  5 2 3 3 4 0 5 6 0 0 2 9 0 0 3 .8 7 bC 20 tr 5 1-1.5 P#0

3 7 2 5 0 0 4 2 5 3 8 0 0 .8 9 bC 10-30 b-1 .3 .5 6 7 5 4 9 0 3 ,6 0 0 9 ,2 0 0 2 .5 6 bC 20 II-.S 1-1.5 P«Q
3 7 2 4 9 0 5 2 5 55 5 1 .0 6 bC 10-30 b  1 9  5 4 6 0 50 5 2 ,2 5 0 6 ,4 0 0 2 .8 4 bC 20 tr 5
4 3 5 5 8 0 4 2 5 1 ,2 5 0 2 3 4 bC 10-30 b-1 9  5 2 2 6 3 6 4 15 0 6 0 0 4 .0 0 bC 20 tr  5
8 0 0 5 5 0 7 0 0 5 1 5 0 .7 4 bC 10-15 0 9 6 0 110 SO 6 0 1 .8 0 pbC 40 -5 0 9  1 P*0
2 8 9 5 9 5 5 7 5 4 5 5 0 .7 9 bC 10-15 .5 -7 15 6 160 SO 6 0 1 .6 0 pbC 40 -5 0 .3-2 p#g
8 8 0 1 ,0 7 5 4 5 0 4 1 0 0 .91 bC < 5 0 .5 2 6 5 3 6 0 4 0 0 1 ,2 0 0 3 .0 0 pbC 40 -5 0 9 - 3 P M
3 7 0 4 8 0 6 5 0 5 5 0 0 9 5 bC 10-15 0 .5 2 8 0 3 3 8 4 0 0 1 ,4 0 0 3 .5 0 pbC 40 -5 0 9 - 4 P M
7 4 0 8 7 0 9 0 0 6 0 0 0 .6 7 bC 10-20 b  5 .5-1.5 p 4 6 0 37 5 1 ,050 4 ,0 0 0 3 8 1 bC 20-30 tr  1 1-1.5 P M
9 2 0 1 ,2 5 0 6 0 0 9 5 0 1 .19 bC 10-20 3 5 .5-1.5 p 3 4 4 3 5 0 5 5 0 1 ,7 0 0 3 .0 9 bC 20-30 tr 1 1-1.6 P*«
4 2 0 4 7 5 5 5 0 4 3 0 0 .7 8 bC 10-20 3 5 .5-1.5 p 3 9 2 4 0 0 3 2 5 1 ,7 0 0 5 ,2 3 bC 20-30 tr 1 1-1.7 P M
9 1 0 1 ,0 9 5 9 2 5 8 0 0 0 8 6 bC 10 1-3 .5-1.5 p 8 0 S 4 8 0 6 .2 0 0 1 1 ,0 0 0 1 .77 bC 20-30 tr 1 1-1.8 P#0
5 3 0 6 0 0 7 7 5 75 0 0 9 7 bC 10-20 1 5 .5-1.5 p 8 5 5 8 2 0 6 .8 0 0 1 3 .0 0 0 1.91 bC 20 -3 0 ti-1 1-1.9 P#8
2 5 5 3 6 0 1 5 0 130 0 9 7 bC 10-20 1 5 .5-1 .0 p 1 ,650 1 ,4 5 0 14 ,6 0 0 3 4 ,0 0 0 2 9 3 bC 5 tr 5 1-1.5 p««
3 1 8 4 5 0 75 7 0 0 9 3 bC 10-20 I S .5-1 .0 p 4 5 0 4 3 0 1 .450 5 ,5 0 0 3 .7 9 bC 20 tr PM
4 0 5 5 7 0 175 1 3 0 0 ,7 4 pbC 5 0 -8 0 .5 -1 .0 p 4 4 0 3 8 5 1 .450 4 ,7 0 0 3 .2 4 bC 20 tr 1 2 P M
3 6 103 < 5 0 2 0 pbC 5 0 -6 0 .5-1 .0 p 6 7 162 50 105 2 .1 0 pbC 50 -6 0 3 5
17 6 5 < 5 0 2 0 pbC 5 0 -6 0 0 .5 5 0 1 3 6 SO 65 1 .30 pbC 50 -6 0
14 7 0 < 5 0 25 pbC 5 0 -8 0 0 .5 72 118 3 0 0 8 2 0 2 .07 pbC 50 -6 0
14 5 4 < 5 0 25 pbC 5 0 -8 0 0 .5 28 6 0 50 4 0 0 .8 0 pbC 50 -6 0
16 80 SO 2 5 0 .5 0 pbC 5 0 -8 0 0 .5 2 8 68 50 25 0 .5 0 pbC 50-60

178 3 9 0 3 0 0 24 5 0 .6 2 bC 20-35 b -2 . 1 5 2 5 2 3 3 6 2 0 0 2 8 0 1 .40 bC 20 tr PM
1 9 0 3 4 0 2 0 0 245 1 .23 bC 20-35 tf-2 .1 .5 2 9 2 3 6 5 4 2 5 1 ,0 0 0 2 .3 5 bC 20 tr PM
1 9 2 3 3 0 2 0 0 3 2 0 1 .1 0 bC 20-35 b -2 .1 -5
1 8 6 29 5 2 0 0 1 7 0 0 8 5 bC 20-35 b -2 . 1 .5 C 8 0 2 T 9
3 8 0 4 3 0 5 0 0 3 0 0 0 .6 0 bC 20-35 b -2 .1 .5 3 6 65 < 5 0 2 0 pbC 60
3 5 2 4 8 5 5 0 0 32 5 0 6 5 bc 20-50 1-2 9 - .4 3 2 70 < 5 0 25 pbC 80 9 . 4
4 9 9 8 1 0 0 6 0 0 .6 0 pbC 60-70 9 . 4 16 0 3 9 0 < 5 0 55 bC 5 2 5 0-ti
18 52 5 0 3 0 0 .6 0 pbC 6 0 -7 0 9 - 4 2 4 9 5 7 0 100 2 1 0 2 .1 0 bC 5 1 5 11-5 < 1 P«0
12 5 0 5 0 2 5 0 .5 0 pbC 60-70 9 . 4 2 4 2

3 3 8
4 4 5
7 5 0

ISO
2 0 0

3 3 0
4 3 5

2 .2 0
2 .1 8

bC
bC

10
< 1

< 1
<1

p«0

PM
€6077.2 1 4 4 3 4 0 5 0 8 0 1 .6 0 bC 10-20 .5-2 P«8

28 8 3 2 5 6 5 0 1 ,7 0 0 2 .6 2 bC 10 b <3 P»9 3 0 0 4 4 0 2 0 0 27 5 1 .38 bC 10-20 0-tr < 3 PM
1 1 8 1 6 6 1 5 0 1 8 0 1 .2 0 pbC 5 0 -6 0 0-.S 0 .4 4 6 0 5 7 5 3 2 5 4 0 0 1 .23 bC 5 0-tf
3 2 4 3 0 0 1 .4 0 0 3 ,7 0 0 2 .8 4 bC 10 b  .5 P M 2 0 0 3 6 0 2 5 0 8 0 0 3 .2 0 bC 5 0-ti
3 6 5 3 6 0 6 7 5 1 ,8 0 0 2 .6 7 bC 10 b  .5 PM 3 5 2 5 1 0 2 ,8 0 0 6 9 0 0 2 .4 6 bC 5 0-ti

5 0 0 4 2 5 3 2 5 595 1 .83 bC 10 b-.S < 3 PM 1,260 1 ,1 5 0 10 ,0 0 0 2 6 ,0 0 0 2 .6 0 bC 5 0-tr P M
53 2 0 0 < 5 0 4 5 pbC 8 0 1 9 5 0 1 .5 5 0 5 ,5 5 0 2 2 ,0 0 0 3 .9 6 bC 5 5 -1 0

22 2 1 2 < 5 0 7 0 pbC 6 0 0 8 5 0 87 5 3 ,0 5 0 5 ,5 0 0 1 .8 0 bC 5 tr  2 < 2 P M
9 8 2 1 2 5 0 6 0 1 .20 pbC 8 0 4 6 0 49 5 200 24 0 1 .20 bC 10-20 tr  2 -2-1.2 P««

2 2 4 3 6 5 3 5 0 ^J000 2 .8 6 bC 2 0 b  .5 5  1 P M 5 8 0 685 3 2 5 3 5 0 1 .06 bC 10-20 tr 2 -2 1 2 PM
5 9 0 5 2 0 2 ,7 0 0 9 ,0 0 0 3 .3 3 bC 2 0 b  .5 .5-1 PM 8 4 0 78 0 3 5 0 4 2 0 1 .20 bC 10-20 tr  2 0 .5

4 3 5 4 4 0 8 0 0 2 ,5 0 0 3 .1 3 bC 2 0 b < 2 P M 3 8 8 4 0 0 3 5 0 6 2 0 1.77 bC 10-20 tr  2 .2 -1 .2 PM
2 9 2 3 2 4 3 0 0 425 1.42 bC 20 b < 2
18 4 2 2 0 1 0 0 1 20 1 .20 bC < 5 b . 2 .7 1 M/mAva # 1 .77

14 2 2 0 0 1 25 1 00 0 .8 0 bC < 5 b .8  .7

14 4 2 1 2 125 9 0 0 .7 2 bC < 5 b .2 .7

5 8 1 6 4 7 5 8 0 1.07 PbC 6 0 .3 -5

18 5 4 7 5 5 5 0 .7 3 pirC 80 9  5
20 54 SO 75 1 .5 0 obC 8 0 9 - .5

Table 8. Assay data including PGE analyses from trenches T1,T2, T3, and T63S from the Coors area. 
Data is expressed in ppm for copper and nickel and for platinum and palladium.
Assay data were provided by the Stillwater Mining Company
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tanrato#
Cu M PI 
(ppm) ippml (ppb)

Pd
(PP61

Rh Ru 
(PPOl (PPM

Ir
( P f * t PMPd P d fi

mmC » 1ST 6.5 5.7 3.2 <1 <1 1.1 0.9
mm-F 47 NT 29.0 11.0 8 9 1.0 <1 26 0.4
WF.8C a TN 3.4 6.4 <0.5 <0.5 <0.5 0.5 1 9
ee-1 M a s 17.0 14.0 2 5 <0.5 <0.5 1.2 0.8
ec-2 1M 4M 500.0 440.0 14.0 10.0 4.0 1.1 0.9

IN 444 1.6 1.0 <0.5 <0.5 <0.5 1.6 0.6
e cu 11 344 9.6 5.0 <0.5 <0.5 <0.5 1.9 0.5

M 4 n 82.0 81.0 0.5 <0.5 <05 1.0 1.0
ce-9 M 4M 13.0 11.0 <0.5 <0.5 <0.5 1.2 08
oe-10 IS a s 6500 1100.0 6.8 4 2 2 0 0.6 1.7
oe-10 4M SN 7.2 5.4 <0.5 <0.5 <0.5 1.3 0.8
ee-11 ITS 444 590.0 590.0 2 9 21 10 1.0 1.0
ee-12 I N 4M 53.0 280 <1 <1 <1 1.9 0.5
ec-13 14 SIS 180.0 140.0 6.0 0.8 0.5 1.3 0.8
ce-14 N 444 570.0 560.0 6.6 0.9 0.5 1.0 1.0
CC-15 SI s a 140 6.4 5.3 1.1 1.3 2 2 0 5
cc-101 « MS 350 19.0 3 2 <0.5 <0.5 1.8 OS
cc-102 34 US 13.0 41.0 0.6 <0.5 <0.5 0.3 32
cc-103 M 344 220 110 2.0 <0.5 <0.5 2.0 05
ce-104 N a s 42.0 460 2 3 <0.5 <05 0 9 1.1
CC-105 M ITS 7.5 5.8 0.5 <0.5 <0.5 1.3 0.8
ee-107 U 4M 0.7 0.6 <0.5 <0.5 <0.5 12 09
cc-108 434 SU 690.0 160.0 1.7 2 6 13 4.3 02
cc-109 3N s n 390.0 260.0 1.8 1.6 0 9 1.5 0.7
cc-110 3M 440 7300 31000 280 7 6 3.1 0.2 4.2
cc-112 1SN 3400 24000 23000 29.0 180 6 0 1.0 1.0
cc-113 N 2 0 2.0 <0.5 <0.5 <0.5 1.0 1.0
cc-114 N 344 1.9 22 0.5 <0.5 <0.5 0.9 12
ce-1lS SM 1TM 8940.0 23300.0 1700 670 260 03 3.4
ee-116 11 4M 9.5 5.3 <0.5 <0.5 <0.5 1.8 0.6
cc-117 a s a 31,0 170 9.4 12 0.9 1.8 0.5
ce-118 a s n 170 13.0 7.8 1.4 1.1 1.3 0.8
cc-119 IIS 41S 8000 4800 26.0 17.0 5.7 1.7 0.6
cc-120 41 SN 17.0 7.9 5.3 0 6 <05 22 0.5
cc-121 ST s n 2100 180 190 1.4 1.2 11.7 0.1
ee-122 IS 1TN 290.0 210.0 26.0 4.9 22 14 0.7
ce-123 44 a s 300.0 3800 24 0.6 <05 0.8 1.3
cc-124 TS 4M 1.2 2 0 <0.5 <0-5 <0.5 0.6 1.7
cc-126 IS US 55.0 130 3.2 <0.5 <0.5 42 0.2
cc-127 NS s u 390.0 370.0 4 0 2.6 1.1 1.1 0.9
ec-128 TS 4M 1.6 0.7 <0.5 <0.5 <0.5 23 04
cc-130 TN 1SN 34000 28000 310 22.0 9 3 12 08
cc-131 IN MS 15.0 17.0 <0.5 <0.5 <0.5 0.9 1.1
CO-200 S4S 4M 130.0 160.0 4.6 0.8 0 6 0.8 1.2
CC-AP a s SM 680.0 6100 7.6 4.8 20 1.1 0.9
CC-T1-» 344 SM 980.0 2200.0 22.0 9.1 3.9 0.4 22
CC-T1-2W IN TM 3500 6500 48 1.8 0.7 0.5 1.9
ce-T1-2Sf 4M IMS 3600.0 85000 800 30.0 12.0 0.4 24
cc-Tl-10 IIS 4M 380 64.0 <0.5 <0.5 <0.5 0.6 1.7
cc-Tl-22 H a s 18.0 17.0 1.8 <0.5 <0.5 1.1 0.9
CC-T1-29 344 no 5900 1100.0 120 4.8 1.8 0 5 1.9
CC-T1-25 i n SIS 73.0 1600 1.2 <0.5 <05 0.5 2 2
ec-TI-35 a s 444 97.0 140.0 1,4 0.9 <05 0.7 1.4
cc-Tl-45 a a s 9.8 15.0 1.1 <0.5 <05 0.7 15
CC-T1-55 a a s 4.4 3.3 1.5 <05 <0.5 1.3 0.8
CC-T1-55 MS 4M 45.0 390 32 0.5 <0.5 12 0 9
cc-Tl-80 i n SIS 150.0 230.0 3.6 10 <05 0.7 1.5
ec-Ti-90 1S4 SU 750 290.0 2.1 <0.5 <05 0.3 3.9
cc-Tl-95 u s TM 1000 1400 2.1 0.7 <0.5 0.7 1.4
cc-Tl-105 a a s 290 540 2.1 <0.5 <0.5 0.5 1.9
cc-Tl-110 a a s 22.0 140 2.7 <0.5 <0.5 1.6 0.8

smmpls#
C u  M  Pt 
ippm) (ppm) (ppb)

Pd
(PPO)

Rh
.iPf»)

R \i

(PP*>I
Ir

1PP*>) PPPd PdiPt
cc-Tl-130 14 288 10.0 13.0 1.4 <0.5 <0.5 0.6 1.3
CC-T1-135 2 » 888 92.0 100.0 9.0 12 0.7 0.9 1.1
CC-T2-5 718 160.0 480.0 4.7 1.3 0.6 0.3 3.0
CC-T2-10 81 388 15.0 13.0 2.5 <0.5 <0.5 1.2 0 9
CC-T2-15 184 788 63.0 95.0 4 4 1.0 0 6 0.7 1.5
CC-T2-20 848 888 20.0 140.0 1.2 0.5 <0.5 0.1 7-0
CC-T2-23 818 888 13.0 31.0 0.7 <0-5 <0.5 0.4 Z4
CC-T2-25 1# 174 18.0 21.0 28 <0.5 <0.5 0 9 19
CC-T2-33 228 728 62.0 200.0 1.4 0.7 <0.5 0.4 Z4
CC-T2-35 18 888 5 0 1.0 3.4 <0.5 <0.5 5.0 0.2
CC-T2-55 12 238 16.0 16.0 2.4 <0.5 <0.5 1.0 1.0
CC-T2-60 18 288 11.0 20.0 0.5 <0.5 <0.5 0.6 16
CC-T2-65 14 218 26.0 32-0 Z4 <0.5 <0.5 0.6 19
CC-T2-75 21 288 27.0 46.0 Z6 <0.5 <0.5 0.6 1.7
CC-T3-5 I t 278 50.0 140.0 2 7 <05 <0.5 0.4 Z»
CC-T3-10 87 488 22.0 19.0 2 7 <0.5 <0.5 19 0.9
CC-TJ.15 181 838 430 540 4.4 1.4 0.5 0.6 1.3
CC-T3-20 182 887 65.0 110.0 2 0 20 1.0 0.6 1.7
CC-T3-25 84 848 23.0 25.0 7.2 1.1 0.7 0.9 1.1
CC-T3-30S 84 830 20.0 36.0 1.0 0.6 <0.5 0.6 16
CC-T3-30P 82 830 20.0 3Z0 0.5 0.6 <0.5 0.6 1.6
CC-T3-35 87 840 260 59.0 1,3 <0.5 <05 0.4 9 3
CC-T3-S0 188 840 22.0 230 1.2 <0.5 <0.5 1.0 1.0
CC-T345 188 888 40.0 81.0 1.4 08 <05 0.5 2.0
CC-T3-60 118 820 52.0 690 0 7 <0.5 <0.5 0 8 1.3
CC-T3-70 1888 1488 5200.0 120000 100.0 40.0 140 0.4 93
CC-T3-70» 1888 2880 10000.0 35000.0 310.0 97.0 410 0.3 3.5
CC-T3-75 888 788 56.0 88.0 1.0 <0.5 <0.5 0.7 1.5
CC-T3-80 848 1188 110.0 1500 2.7 1.0 <0.5 0.7 1.4
CC-T3-65 822 738 140.0 210.0 4.9 1.0 <1 0.7 1.5
CC-T3-90 848 1888 1100.0 2900.0 380 11.0 5.3 0.4 96
8-414-25 18 888 23.0 23.0 1.6 1.1 <0.5 1.0 10
8-425-35 38 1108 150 160 1.4 1.0 <0.5 0.9 11
8-489-99 288 1888 5800 440.0 100.0 40.0 260 1.3 0.8
8-55565 38 888 19.0 21.0 2.3 1.0 <0.5 0.9 1.1
8-56574 21 878 22.0 37.0 3.4 1.8 0.7 0.6 1.7
557504 28 710 8.5 11.0 1.8 1.7 <0.5 0 6 1.3
557*64 14 780 16.0 25.0 1-9 1.0 <0.5 0.6 1.6
598593 41 880 1Z0 22.0 1.5 1.1 <0.5 0 5 1.8
5229-38 18 488 7.6 1.5 1.3 <0.5 <0.5 5.1 09
5233-48 18 448 9.4 4.2 1.3 <0.5 <05 2.2 0.4
5 2 5 3 2 184 43# 4Z0 43.0 16 <0.5 <05 1.0 1.0
532-41 184 438 62.0 100.0 2.2 <05 <0.5 OS 18
5334-43 77 48# 590 1200 100 0.9 <0.5 05 90
5562-72 288 700 180.0 110.0 4.1 0.7 <0.5 1.6 0.6
5601-10 488 1808 2300 260.0 11.0 1.3 OS 0.9 1.1
562-71 12 240 22.0 17.0 2.2 <05 <0.5 1.3 0.8
5638-47 218 #88 11.0 16.0 <0.5 <05 <05 0 7 1.5
5647-56 888 788 35.0 36.0 1.4 0.6 <0.5 1.0 1.0
571-80 18 24# 280 200 2 5 <05 <0.5 1.4 0.7
11-172-82 848 1180 290.0 380.0 2 3 1.5 0 6 0.6 1.3
11-18592 388 778 210.0 7300 5.3 1.7 0.6 0.3 3.5
11-192-01 888 1808 580.0 1300.0 6.2 2.7 10 0.4 92
11-24558 238 748 120.0 100.0 0.7 0.5 <0.5 19 0.8
11-277-87 124 #48 30.0 130 <0.5 <0.5 <0.5 2.3 0.4
11-31524 84 288 21.0 14 0 2 2 <0.5 <0.5 1.5 0.7
11-32533 18 238 18.0 14.0 2 3 <05 <0.5 1.3 06
11-341-50 13 28# 22-0 18-0 2.5 <0.5 <0.5 1.2 08
11-35572 84 184 27.0 22.0 3.7 <0.5 <0.5 1.2 0.8
11-372-82 17 138 28.0 18.0 4,0 0.5 <0.5 1.6 

P iV P I A v p s

0.6

1.2

Table 9. PGE, Cu and Ni analyses for Coors area and Mouat Mine Road samples.
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Figure 12a. Plot of palladium versus platinum for trench samples in the Coors area 
(Stillwater Mining Co. analyses).
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Figure 12b. Plot of palladium verses platinum for (%oors area and Mouat mine road 
sangles (USGS analyses this report).
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Figure 13a. Plot of copper and nickel versus palladium for trench samples 
in the Coors area (SMC).
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Figure 13b. Plot of copper and nickel versus palladium for Coors area and 
Mouat mine road samples.
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Figure 14a. Plot of copper and nickel versus platinum for trench samples 
in the Coors area (SMC).

10000 T

1000 -  O
I ,

□
O cP,

□ °B<P

I
100 I  4

Iw w . ♦  ♦ ♦  ♦

V  ♦

10 100
♦  cu  ONI

1000
Pt(ppb)

10000

t  1000

I
I 100

 i-------------------1- 10
10000 100000

Figure 14b. Plot of copper and nickel versus platinum for trench samples 
in the Coors area (SMC).
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INTERPRETATIONS

JM REEF

Numerous models have been proposed to explain the PGE-rich JM Reef. Because 

some o f these ideas could relate to the Coors mineralization, several o f the more accepted 

ones are discussed. Two general approaches exist, one involving a magmatic origin, the 

other involving a hydrothermal origin. Trace-element and isotopic studies of the parental 

magmas o f the Stillwater Complex suggest that at least two different magmas were 

involved (Irvine et al., 1983, Lambert, 1982). The JM reef is thought to have formed as a 

result of mixing of these magmas; one of anorthositic lineage, A-type, and the other o f 

ultramafic lineage, U-type (Todd et al., 1982; Irvine et al, 1983). Sulfur is thought to 

come fi'om the anorthositic magma and PGE fi’om the ultramafic magma. Other workers 

argue that the mixing was between the resident, sulfide-saturated magma with plagioclase 

on its liquidus and a less fractionated magma from the same parent (Naldrett et al., 1990; 

Campbell et al, 1983). Sulfide saturation in this latter theory is attained by crystallization 

of silicates to concentrate sulfur (Fig. 15, Naldrett et al, 1990).

Both theories state the need to have the sulfides exchange with a large amount of 

silicate magma, Campbell et al. (1983), derive the equation Y=XD(R+1)/(R=D) where R 

is the silicate- to sulfide-liquid mass ratio, Y is Pd/Pt, X is the initial concentration of 

Pd/Pt in the magma, and D is the Nemst distribution coefficient. This equation determines 

the PGE content o f a magmatic sulfide liquid, and is illustrated in Figure 16. The R factor,
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Figure 15. Schematic diagram illustrating the variation in the solubility of iron 
sulfide with the fiactionation of a sample of chilled marginal material 
from the Bushveld Complex. (Naldrett, 1990)
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Figure 16. The eSect of variations in the silicate:sulfide ratio (R) on the precious
metal content of a sulfide liquid for different values of D. The concentration 
of the precious metal in the silicate melt (X,) is assumed to be 10 p.p.b..
Note that if R is less than a tenth of D, Y is virtually independent of D. (Naldrett, 1990)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

the mass ratio o f silicate to sulfide liquid, must be high in order for platinum to precipitate 

(Mathez et al., 1989; Naldrett et al., 1990). These authors suggest that turbulent mixing of 

the two magmas raised the R factor sufficient to allow the sulfides to scavenge PGE fi'om 

the magma and precipitate (Naldrett et al., 1990).

Boudreau and McCallum, (1992), and Boudreau, (1988), present arguments for 

hydrothermal, in situ formation o f the JM Reef. Boudreau (1988) suggested that a 

volatile-enriched melt was high in chlorine, or a chlorine-rich volatile fluid became locally 

concentrated, to produce the textures and mineralogy present in the reef package. A 

chlorine-rich volatile fluid enriched in PGE may have evolved during crystallization of 

intercumulus liquid below, migrated up through the cumulate pile, and may have 

redissolved in a vapor-undersaturated intercumulus melt to cause partial melting of the 

cumulates. This horizon, within which the fluid is redissolved, marks a chemical or 

physical discontinuity in the pile Evidence supporting the presence of a chlorine-rich 

volatile fluid includes the presence of chlorine-rich hydrous phases, pegmatoidal textures, 

resorbed plagioclase, and hydrous and anhydrous mineral inclusions in chromite and 

apatite (Boudreau, 1988). Other indications of in-situ formation of the reef are the 

presence o f anorthosites separating the olivine-bearing units from norites and 

gabbronorites. These anorthosite layers, with rather sharp contacts, are monomineralic 

and may represent metasomatic zones (Boudreau, 1988).
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The association with pegmatoids argues in favor of a deuteric or hydrothermal 

origin for the platinum mineralization. However, the fact that the PGE reef in most of 

these intrusions is laterally continuous and lies stratigraphically in a similar position with 

respect the first appearance of cumulus plagioclase and the reappearance o f olivine, is 

difficult to account for by a hydrothermal process alone. However, this theory could be 

applied to the Coors anomaly.

PHYSICAL DISTURBANCES

The Lower Banded Series o f the Stillwater Complex shows many unusual features 

which are caused by physical disturbances at the time of formation. Since the Stillwater 

Complex is a sequence of layered cumulates, magmatic conditions are analogous in this 

respect to sedimentary environments. Slumping, scouring, cross-bedding, and other 

sedimentary structures are documented throughout the complex (Foose, 1985). Many of 

the irregular anomalous features described above for the Coors 602 can be explained by 

sedimentary processes.

Strong Currents, Turbulent Mixing Of Magma, And Magmatic Erosion

Both the JM and Merensky reef packages show ultramafic xenoliths, slump 

structures, and disturbed layering suggesting turbulence during mixing (Naldrett et al., 

1990). Pulses o f magma likely entered the magma chamber numerous times during
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formation o f the layered complex. Many workers use this idea to explain reversals in 

fractionation trends upsection in the Stillwater Complex. Turbulent mixing is also needed 

in models o f the JM Reef formation (Campbell et al, 1983; Naldrett et al, 1990). Bow et 

al. (1982) argue that the ellipsoidal bronzitites directly beneath the JM Reef in the 

Stillwater Mine area, are xenoliths from the Ultramafic Series. They suggest that the 

xenoliths are similar to rip-up clasts acquired during times of turbulent mixing. Strong 

currents could produce scouring in the cumulate pile into which they intrude. The layers 

through which the JM Reef downcuts in the Coors 602, could have been scoured by 

strong currents prior to or during Reef formation. The Reef would then form in the 

trough created.

Bow (1982), Irvine et al. (1983) and Turner et al. (1985), argue that the 

downcutting features described in the Stillwater mine may represent a pothole. Potholes 

are believed to be formed from scouring or thermal erosion from a new pulse of magma 

(Bow, 1982). Buntin et al. (1985) argue that the potholes are scars o f the sit o f C-H-O-S 

rich fluids in the new magma are being injected.

Layers in potholes can dip smoothly or drop abruptly into the pothole, or even 

terminate against the pothole margin. PGE mineralization occurs in the bottom of the 

potholes, presumably because the reef dips into them. Layers in the Coors area also dip 

and terminate and mineralization takes an unusual dip in the stratigraphie section (Fig. 5a). 

Stratigraphie units are missing or thinned due to erosion in forming potholes. This could 

explain the virtual absence of Gabbronorite I in the Coors 602 area. The reef dips in these
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areas and crosscuts stratigraphy along the upper edges o f the potholes. Many contacts in 

the Coors are show the units truncating norite layers, and could mark the upper edge o f a 

pothole (Fig. 17). Faulting and lack of exposure may obscure such an occurrence in the 

Coors area.

Buntin et al. (1985) describe discordant, pegmatoidal gabbroic dikes, within the 

potholes, that pinch out a few meters above and below the layers they cut. Some o f these 

rare dikes contain fragments o f the pothole margin. Based on these dikes, they proposed a 

plutonic fumarole model. The bronzitite body along the Fishscale fault, as well as the 

pods at the base o f the Coors-602 area, could be similar to these dikes, in that it crosscuts 

layering and pinches out in both directions.

One inconsistancy in the idea of the Coors area representing one of these potholes 

is the presence o f the JM reef above the lower, anomalous, Coors mineralization. 

However, without three-dimensional control, the presence of potholes cannot be ruled 

out. A pothole in the Coors area could extend approximately perpendicular to the strike 

o f the layers and into the rocks, and could have an irregular shape.

Topography In The M agma Cham ber

The absence or thinning o f units in the Coors area, as mentioned above, could 

form in other ways besides potholes. Turner et al. (1985), Raedeke and McCallum 

(1985), and Naldrett (1990) describe variations in thickness in the Ultramafic Zone (Figs. 

18 & 19). The Peridotite Zone at Chrome Mountain is about half as thick as that at
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Mountain View (Raedeke and McCallum, 1985). These authors explain the differences as 

platform versus basinal features formed from magma crystallizing dense, ultramafic 

cumulates causing the floor o f the magma chamber to subside. The thicker Mountain 

View section forms in the basin, and the Chrome Mountain section forms on a stable 

platform (Raedeke and McCallum, 1984).

Slumping, Compaction, And Faulting During Formation

Based on field observations and drill core examination, models other than faulting 

must be used to explain the irregular contacts in the Coors area. Various magmatic 

processes seem most plausible. A crystals and melt combination creates a layered 

crystalline mush, which eventually crystallizes to produce the sedimentary-style layering. 

Crystals forming on a slope, along the crystallizing front or on a topographic high in the 

chamber, could slump causing compaction (Fig. 20). A load o f crystals settled on top of 

the crystalline mush could also cause compaction in the layers below.

The bronzitite masses in the Coors area can also be attributed to sedimentary 

processes during formation. A disturbance such as compaction, faulting, or slumping 

during crystallization could not only bring xenoliths up from below, but could also force a 

bronzite crystal mush up through fractures in the manner of a clastic dike.

The origin o f the pegmatoids in the Coors area could possibly be related to the 

same processes that disrupted the stratigraphy below the reef. Any late-stage movement 

within the solidifying pile o f cumulates could have created channelways to facilitate
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Figure 20. Schematic diagram showing layering disrupted tqr a crystallized 
block slumping off a topographic high in the magma chamber.
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Streaming o f volatiles separated during late-stage, differentiation. Concentration of 

volatiles could have inhibited nucléation of late-stage phases thereby forming pegmatoids.

CHEM ICA L DISTURBANCES

Not all o f the anomalous features in the Coors-602 area can be explained strictly 

by physical events. Some chemical disturbances are present which may or may not be 

related to the physical disruptions discussed above.

M g N um ber

Naldrett et al. (1987) and Raedeke et al.(1985) give representative Mg numbers 

for the Stillwater complex. As stated earlier, McCallum suggests an increase in Fe in the 

Chrome Mountain area (McCallum, 1980). The Mg/(Mg+Fe) content o f bronzites o f the 

Bronzitite Zone from the Coors and Lost Mountain areas, both relatively close to Chrome 

Mountmn, average 0.83. Although the data from Coors and Lost Mountain may support 

the suggested increase in Fe in the Chrome Mountain area, the difference in the data does 

not seem statistically significant enough to use as evidence for Fe increase. However, the 

bronzite analyses from the Lower Banded Zone do show a significant Fe increase.

The Mg/(Mg+Fe) values o f samples from the Coors area show some interesting 

relationships. An upward decrease, as seen in groups A and E in Figure 10, in Mg 

numbers in bronzites is what one would expect through differentiation, Bronzites from 

the unmineralized samples have a slightly higher Mg number. Mineralized samples from
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the lower Banded Series and along the bC “dike” have low Mg numbers as compared with 

reef samples (group D l)  which have high magnesium numbers. If  mineralization of PGE- 

bearing sulfides caused the iron increase in the bronzitite samples from the Banded- 

Ultramafic contact, one would expect PGE-bearing sulfides to cause a similar iron 

increase in reef samples. The reef samples do not show an iron increase and they are not 

far off the fi*actionation trend (groups E and C in Fig. 10). These results are evidence that 

the iron increase in the anomalous bronzitites in the Norite I Zone is due to some other 

event, not the presence of sulfides.

One explanation for the presence of bronzitites in the lower Banded Series is the 

possibility that they are xenoliths fi'om the Bronzitite Zone. Assuming the bronzitite 

masses in the Norite I Zone o f the Coors-602 area are xenoliths detached fi'om the 

Bronzitite Zone, the chemical signatures should be similar and an upward decrease in Mg 

number should not occur. In Coors, the Mg numbers of orthopyroxenes from 

unmineralized bronzitites in the lower Banded Series is similar to Mg numbers of samples 

analyzed from the Bronzitite Zone. These unmineralized samples may represent xenoliths 

fi'om the Bronzitite zone. The mineralized bronzitites, however, have low Mg numbers. 

The possibility that these mineralized bronzitites are xenoliths from the Bronzitite Zone 

can therefore be ruled out.
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Resorption

An injection of a new batch of magma, as proposed for the formation o f potholes 

(Bow et al., 1982; Buntin et al., 1985; Vermaak and Von Gruenewalt, 1981), as well as 

the formation of the reef (Naldrett et al., 1990; McCallum et al., 1980, and others) and 

cyclic units, is consistent with the textures observed in the Coors samples. Many o f the 

bronzites exhibit a resorbed or remelting texture. The grains not only have rounded 

boundaries, but they contain numerous embayments as if they have come in contact with a 

melt with which they were not in equilibrium. If  the intercumulus melt around the 

bronzites mixed with a more fractionated melt from above, the bronzite would become 

unstable. Volatile influx could also cause instability of bronzite grains.

Increase in f i i iO

Raedeke and McCallum (1984), suggest an increased water fugacity during 

crystallization in the Chrome Mountain vicinity could cause an increase in Fe in 

orthopyroxene relative to those from Mountain View. The presence of numerous 

pegmatoids, some o f which contain phlogopite, along the Ultramafic-Banded Series 

contact in the Coors area, and the presence of secondary dunite lower in the section, 

support the idea o f increased f i h O .  Stumpfl and Rucklidge (1982) suggest that Fe-rich 

hydrous fluids rising through the cumulate pile form similar dunite pipes in the Bushveld 

Complex by a metasomatic origin. Pegmatoidal pyroxenite near the pipes in the Bushveld
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shows an increase in Fe content compared to nearby pyroxenites (Stumpfl and Rucklidge, 

1982). Schiffries (1982) suggests that the plagioclase in the dunites was removed by 

hydrolysis and olivine was produced by removal o f silica from pyroxene. He argues that 

the pipes represent conduits for intercumulus flow of Fe-rich hydrous fluid.

Assuming the discordant dunites in the Stillwater formed the same way as those in 

the Bushveld, the Fe-rich hydrous fluid responsible for the formation of dunite could have 

migrated upwards through fractures, equilibrating with interstitial melt, thereby becoming 

silica saturated. Instead o f Fe-rich, Si-undersaturated hydrous fluids, the hydrous fluid, 

once in the Banded Series, was probably Fe-rich and Si-saturated, thus forming bronzitites 

rather than dunites. The infiltrating fluids also would have provided the necessary mixing 

needed for PGE to collect in the sulfides (Naldrett et al, 1990). The disrupted stratigraphy 

in the Coors area could have been caused by volume change due to dissolution of 

plagioclase (Schifrries, 1982).

Schiffries (1982) suggests that the location of the pipes is structurally controlled, 

the metasomatizing fluids flowing through irregular channelways along structural 

weaknesses. Naldrett et al. (1987) mention the possibility of growth faults forming along 

the margins o f basins in the magma chamber. Such faults could have been the structural 

weaknesses in which these pipes formed. He suggests pegmatoids could have formed as 

open-space filling when fluids crossed over fractures and crystallized rapidly. The large 

Fishscale fault zone in which some of bronzitite occurs could be a reactivated growth 

fault.
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PG E M ineralization Below the JM  Reef

Irvine et al. (1983) argues that a dissolved volatile component, especially water, 

diffuses faster than other components and could be the dominant component in mixing by 

double-diffusive convection. If  this is the case, and water is present in the melt, mixing 

could be triggered earlier or more extensively than in areas with less water. Evidence is 

presented above for elevated amounts o f water in the Coors area; thus the onset of mixing 

could have been earlier, that is lower in the stratigraphie section. If mixing did not begin 

until the Olivine-bearing Zone I had formed, as elsewhere in the Stillwater, the presence of 

water could have brought the mixing horizon down to the present position in the Norite I 

Zone seen in the Coors-602 area.

Naldrett et al. (1990) show that the R factor, the ratio o f silicate to sulfide in the 

melt, must be sufficiently high for PGE sulfides to form. Mixing with large volumes of 

new magma would have accomplished this to form the JM reef. Considering the Coors 

mineralization, mixing must have occurred in the lower Norite I Zone prior to deposition 

of the JM reef. Alternatively, some of the hybrid melt from the mixing horizon, where the 

reef subsequently formed, could have migrated to the Coors area and deposited the PGE 

sulfides.

The fact that the Pd/Pt values are lower in the Coors-602 area than in the reef, and 

that the overall PGE content o f the Coors 602 zone is less than the Reef, and that the 

mineralized bronzitites have higher Mg numbers than mineralized reef rock may suggest 

that the Coors mineralization had a different origin from the reef.
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SUMMARY AND CONCLUSION

The Coors-602 area contains numerous irregular features including disturbed 

stratigraphy, PGE mineralization below the reef, absence of the Gabbronorite I, discordant 

pegmatoidal bronzitites, and low Pd/Pt ratios. Because the sulfides in the 

Coors area contain significant PGE values, although presently uneconomic, it is important 

to determine whether the area is just a random anomaly, or this stratigraphie location 

represent another possible ore horizon. The irregular features in the Coors area are likely 

genetically associated with the PGE-bearing sulfides. A viable model needs to encompass 

all such features. Two models, based on data from this work, are proposed below.

Model 1

The Coors-602 area is the first recognized outcrop exposure o f a pothole in the 

Stillwater Complex. Because the region was on a topographic high in the magma chamber 

and in an overall thinner portion of the complex, crystallization occurred slightly earlier 

than other areas. Crystallized blocks slumped to cause disruption of the layers below. 

Bronzitite masses from the Ultramafic Series were ripped up during this process. An 

influx o f a new magma caused further disruption in the layers Layering disturbed just 

prior to Reef deposition, provided the necessary surface irregularity needed for the onset 

o f pothole formation. Scouring or thermal erosion caused the downcutting to form the 

pothole. When the new magma came in contact with the bronzitite masses, the bronzites 

became unstable and resorbed. Volatiles fostered formation of pegmatoids in the
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bronzitites as well as the reef. The^HiO of the volatiles thus increased the iron content in 

the bronzitites. When the layering was disrupted, conduits were created through which 

mixed magma (high R value), which ultimately formed the JM reef, flowed down into 

bronzitite masses precipitating PGE-bearing sulfides. The highly mixed magma, 

which later precipitated the sulfides with the greater amounts o f PGE in the reef, did not 

mix with the bronzitites below.

Model 2

Syndepostional “growth” faulting occurred during formation of the Stillwater 

complex. These faults created conduits through which Cl-rich volatiles, produced by 

metamorphosing the country rocks below, could flow. The location of the dunite “pipes”, 

at Chrome Mountain represents one such fault. Volatiles rose through this fault, caused 

recrystallization o f bronzitites in the Peridotite Zone to form the dunite “pipes” and 

continued up to the Coors area. These volatiles created pegmatoids, resorbed bronzites, 

and increased the f i i i O  which increased the iron content in upper Bronzitite Zone. The 

Cl- rich volatiles scavenged PGE along the way upsection. The PGE’ mixed with the 

sulfide-saturated bronzites, and occasionally norites, to form the anomalous mineralization 

in the Coors area. The PGE in the volatiles had a low Pd/Pt ratio. A new magma 

injection, just above the Coor level, along with continued movement along the 

syndepostional fault, disrupted the stratigraphy in the Coors area. The disturbed layering 

provided the
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necessary surface irregularity needed for the onset o f pothole formation. Scouring or 

thermal erosion caused downcutting to form the pothole in which the JM reef formed.

Both of these models account for the disrupted stratigraphy, the pegmatoidal 

bronzitites, the PGE-bearing sulfides, and the absence of Gabbronorite I in the Coors 602 

zone. Some combination of these two models may represent the best viable genetic 

process to explain this anomalous zone In both models, the possibility exists that enough 

PGE could concentrate to form an economic ore zone. The concentrating process did not 

go far enough in the Coors area to make it economic. The process did, however, go far 

enough to provide insight as to how such an anomaly could form and where one would 

look for other anomalies o f this sort elsewhere in the Stillwater and other layered mafic 

intrusions.
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APPENDICES

Appendix A: Outcrop map (1” =100’) prepared by geologists at the Stillwater 
Mining Co and Johns-Manville (in pocket)

Appendix B; USGS Geochemical Analyses
(3.5 floppy disk - IBM format) (in pocket)
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