University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

1996

Anomalous platinum-group element occurrence below the JM Reef Stillwater Complex Montana

C. L. McIlveen The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

McIlveen, C. L., "Anomalous platinum-group element occurrence below the JM Reef Stillwater Complex Montana" (1996). *Graduate Student Theses, Dissertations, & Professional Papers*. 7580. https://scholarworks.umt.edu/etd/7580

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Maureen and Mike MANSFIELD LIBRARY

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

** Please check "Yes" or "No" and provide signature **

	Yes, I g No, I d	grant permiss o not grant p	sion ermission	
Author's S	Signature _	(no)	<u>ni /L</u>	
Date	12-2	20-96		

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN ANOMALOUS PLATINUM-GROUP ELEMENT OCCURRENCE BELOW THE JM REEF, STILLWATER COMPLEX, MONTANA

by

C. L. McIlveen

B. S., The University of the South, 1990

submitted in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

1996

Approved by: Jonald W. Hyndn Chairperson

Dean, Graduate School

Dec. 20, 1996 Date

UMI Number: EP38381

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP38381

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

McIlveen, C. L., M. S., December 1996

(r

An Anomalous Platinum-Group Element Occurrence Below The JM Reef, Stillwater Complex, Montana

Director: Donald H. Hyndman $\mathcal{DW}\mathcal{H}$

The Coors 602 zone is an anomalous, laterally discontinuous zone containing significant platinum group element (PGE) mineralization. The area lies below the JM reef platinum horizon. The Coors area is associated with the first occurrence of cumulus plagioclase, but most of the significant anomalous PGE values occur in discordant, pegmatoidal bronzitites which are within the Norite I zone. PGE mineralization predominantly occurs in bronzitite patches within noritic rocks, rather than olivine-bearing rocks as it does in the JM Reef. The Coors bronzitites are texturally and chemically distinct from bronzitites in the Ultramafic zone below. Most of the Coors bronzitites are pegmatoidal with only about 1-2 percent interstitial plagioclase. Magnesium numbers in the bronzitites decrease up-section along trend from the Bronzitite zone, however, the mineralized samples show significantly lower numbers. Nor do these mineralized samples appear to be directly related to the reef rocks either. Rock types as well as the palladium : platinum ratio differ between the Coors 602 zone and the JM Reef package. Pd/Pt in the JM reef averages about 3:1, whereas the Coors zone contains ratios closer to 1:1.

The mineralized bronzitites in the Coors 602 zone are spatially associated with many anomalous features, including disturbed layering, discordant units, and the thinning or absence of a stratigraphic unit. These features are common throughout the Complex, but not at such large scales (hundreds of feet versus inches). The irregularities in stratigraphy appear to be the result of physical disturbances related to magmatic currents associated with an influx of a new magma. This new influx of magma may also have caused the precipitation of PGE sulfides. Volatiles likely caused the formation of the pegmatoids. The entire Coors zone likely represents a pothole similar to those found in the Bushveld Complex. Because of the PGE association, it is important to know if these irregular features in the Coors zone are genetically related to the mineralization. Determining this relationship, the origin of mineralization and the significance of the stratigraphic location of this zone are important, as this anomalous zone may represent a potential target for exploration elsewhere in the Stillwater and in other layered mafic intrusions.

ACKNOWLEDGEMENTS

My thanks and gratitude go out to Don Hyndman for all of his guidance, support, and especially his continued motivation throughout the years. I would also like to thank Steve Sheriff and Richard Field for serving on my committee. I would like to thank the U.S. Geological Survey and Amoco Production Company, in particular Sara Foland for their financial support for this work. I would especially like to thank Michael Zientek (USGS) for sharing his insight into the Stillwater Complex with me. Without Michael, this thesis would not have been possible. I would also like to thank the Stillwater Mining Company for their assistance in all aspects of my field work. Field assistants whom I would like to thank include Pete Ellsworth, Josh Gladden, Abbey Walden, and Langdon Mitchell. Others who supported me during this whole process that I would like to thank are Steen Simonsen, Robin Shropshire, an especially my husband John Walden.

TABLE OF CONTENTS

ABSTRACT	ii						
ACKNOWLEDGEMENTS	iii						
TABLE OF CONTENTS							
LIST OF TABLES	v						
LIST OF FIGURES	vi						
I. INTRODUCTION	1						
GENERAL GEOLOGY	2						
PROBLEMS AND OBJECTIVES	9						
II. COORS-602 AREA	12						
LOCATION AND GENERAL GEOLOGY	12						
METHODS	15						
FIELD RELATIONSHIPS	19						
Bronzitite in Norite I	19						
Disturbed Stratigraphy	21						
Pegmatoids	26						
PGF Mineralization	27						
MINER ALOGY AND PETROLOGY	28						
Bronzitite	20						
Norite	20						
Sulfdog	20						
Alteration	21						
Autration Deservice	21						
CEOCUENTSTDV	21						
GEOCHEMISTRI	21						
DOE Sulfider	24 42						
	43						
III. INTERPRETATIONS	49						
	49						
PHYSICAL DISTURBANCE	23						
Strong Currents, Turbulent Mixing of Magma, and	50						
Magmatic Erosion	53						
Topography in the MagmaChamber	55						
Slumping, Compaction, and Faulting During	~~						
Formation	59						
CHEMICAL DISTURBANCES	61						
Mg Number	61						
Resorption	63						
Increase in fH ₂ O	63						
PGE Mineralization Below the JM Reef	65						
IV. SUMMARY AND CONCLUSION							
V. REFERENCES CITED	69						
VI. APPENDICES	70						
Appendix A: Johns-Manville Company Outcrop Map	pocket						
Appendix B: USGS Geochemical Analyses (disk)	pocket						
	-						

LIST OF TABLES

Ta	<u>ble</u>	Page
1.	Terminology for describing rocks of the Stillwater Complex	. 6
2 .	USGS geochemical analytical methods	. 18
3.	Sample description including rock type, grain size, percent orthopyroxene	
	and approximate percent sulfide	. 29
4.	Electron microprobe analyses of orthopyroxene from the Coors area and	
	Mouat Mine road given in weight percent	. 35
5.	Microprobe data for figure 10 including Mg number, height, and rock type	. 38
6.	Whole rock analyses (XRF) of Coors area and Mouat Mine road	. 39,40
7.	Data for figure 11 including Mg number, height, and rock type	. 42
8.	Assay data including PGE analyses from four exploration trenches	
	in the Coors area	. 44
9.	PGE, Cu and Ni Data for Coors area and Mouat Mine road samples	. 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

<u>Fig</u>	<u>ure</u>	<u>Page</u>
1.	Geologic map of the Beartooth Mountains	. 3
2 .	Stratigraphic subdivisions of the Stillwater Complex	. 5
3.	Schematic columnar section for the Stillwater Complex showing relative locations of sulfide, platinum-group-element and chromite mineralization, and representative analyses of rocks	. 10
4.	Simplified geologic map of the Stillwater Complex showing location of Coor anomaly	s . 13
5.	Outcrop map (1"=400") prepared by geologists at Johns-Manvillle Company	. 14
5 a .	Outcrop map (1"=100') prepared by geologists at Johns-Manville Company	ocket
6.	Sample location map $(1^{"=} 400^{"})$ from the Coors area. Note: use in combination with figure 5	. 16
7.	Sample outcrop sketches showing irregular layering and truncating features	. 24
8.	Simplified map of the Stillwater Complex showing location of Janet 50 with respect to Coors.	. 25
9.	Pressure - temperature diagrams for a dry magma and a water undersaturated magma and temperature-composition diagrams for a binary system	l . 32
10.	Plot of stratigraphic height versus Mg number based for microprobe data of orthopyroxene	. 37
11.	Plot of stratigraphic height versus Mg number of whole rocks	. 41
12a	a. Plot of Pd versus Pt for trench samples in the Coors area	. 46
128	b. Plot of Pd versus Pt for Coors area and Mouat mine road samples	. 46
13a	a. Plot of Cu and Ni versus Pd for trench samples in the Coors area	. 47
13t	b. Plot of Cu and Ni versus Pd for Coors area and Mouat mine road samples	. 47

14a.	Plot of Cu and Ni versus Pt for trench samples in the Coors area	48
14b.	Plot of Cu and Ni versus Pt for Coors area and Mouat mine road samples	48
15.	Schematic diagram illustrating the variation in the solubility of iron sulfide with fractionation	50
16.	The effect of variations in the silicate:sulfide ratio (R) on the precious metal content of a sulfide liquid for different values of D	51
17.	Schematic model of disturbed layering in the Coors area	56
18	Reconstruction of the base of the Stillwater Complex showing idealized basins and topographic highs at the time of JM Reef deposition	57
19.	Conceptual view of basin and ridge development before Laramide deformation in the eastern part of the Stillwater Complex	58
20.	Schematic diagram showing disturbed layering caused by a crystallized block slumping off a topographic high	60

INTRODUCTION

Mafic to ultramafic layered intrusions are unique not only because they host the majority of the world's platinum-group element and chromium deposits, but because they also provide an excellent opportunity to study magmatic processes in a natural system. Concentrations of platinum-group elements (PGE's) in most of these intrusions occur as laterally continuous horizons referred to as reefs. An exception to this occurs in the Stillwater Complex. In addition to the reef, there is an anomalous, laterally discontinuous area known as the Coors 602 zone contains significant PGE mineralization. The area is associated with the first occurrence of cumulus plagioclase, but most of the significant anomalous PGE values occur in discordant, pegmatoidal bronzitites which are within the Norite I Zone.

The Coors 602 zone is studied in detail in this paper to determine the origin of mineralization and the significance of the stratigraphic location as another possible ore target in these intrusions. Coors mineralization predominantly occurs in bronzitite patches within noritic rocks, rather than olivine-bearing rocks as it does in the JM Reef. The Coors bronzitites are texturally and chemically distinct from bronzitites in the Ultramafic Zone below. They do not appear to be related to the reef rocks either. Rock types as well as the Pd/Pt ratio differ between the Coors 602 zone and the JM Reef package.

The mineralized bronzitites in the Coors 602 zone are spatially associated with many anomalous features, including disturbed layering, discordant units, and the thinning or absence of a stratigraphic unit. The irregularities in stratigraphy appear to be the result of physical disturbances related to magmatic currents associated with an influx of a new magma. Because of the PGE association, it is important to know if these irregular features are genetically related to the mineralization.

GENERAL GEOLOGY

The Stillwater Complex, a late Archean, 2.70 b.y., mafic to ultramafic layered intrusion, lies in south-central Montana, along the northeast front of the Beartooth Mountains (Fig. 1). The complex crops out for about 48 kilometers along an approximate N 70° W strike; it has an exposed thickness of 5.5 kilometers and a width of 7 kilometers (Page and Zientek, 1985; Zientek et al., 1985; Jackson, 1961). Kleinkopf (1985) suggests, through gravity studies, that the intrusion may extend 25 kilometers to the northeast under Phanerozoic rocks.. Xenoliths of the Stillwater Complex in Tertiary-Cretaceous intrusions north of the exposed portion of the complex support Kleinkopf's interpretation (Brozdowski, 1985).

The complex was emplaced into Middle Archean metasedimentary rocks, now exposed below the southern contact of the Stillwater Complex. The upper part of the intrusion, to the northeast, was removed by erosion and is unconformably overlain by Paleozoic and Mesozoic sedimentary rocks. Structural deformation occurred prior to middle Cambrian time and again during the Laramide orogeny; the complex now dips steeply to the north and is locally overturned (Page and Zientek, 1985). Jones et al. (1960), Page and Nokleberg (1974), Segerstrom and Carlson (1982), and others have 2

Figure 1. Simplified geologic map of the Beartooth Mountains showing location of the Stillwater Complex (modified from Page and Zientek, 1985).

published detailed descriptions of the structure and geologic setting of the Stillwater Complex.

McCallum et al. (1980), described the stratigraphic units of the Stillwater Complex used in this paper (Fig. 2). They subdivided the layered cumulates into five major stratigraphic units: the Basal Series, the Ultramafic Series, and the Lower, Middle, and Upper Banded Series. The cumulate terminology used in this paper are listed in Table 1. Original views on the genesis of layered intrusions evoked gravity settling as the primary means of producing layered cumulates (Hess, 1960; Jackson, 1961; and others). More recent work has strongly suggested other mechanisms to be more important than crystal settling in the formation of these intrusions (Campbell, 1978; Irvine, 1980). Irvine et al, 1983, suggest "cumulus" layering resulted from in situ crystallization and downdip accretion in a stratified liquid. Although the definition of cumulates involves processes, the term cumulus in this paper, and other recent papers (Campbell, 1978; Todd et al., 1982), is used descriptively with no genetic implications.

The Basal Series consists primarily of bronzite-rich cumulates. The base of this unit forms the intrusive contact with the metasedimentary rocks beneath the complex. Thickness is variable and the unit is missing in some places (Zientek et al., 1985). The contact between the Basal Series and the overlying Ultramafic Series is marked by the appearance of significant amounts of cumulus olivine (Jackson, 1961).

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name	Cumulus minerals	Notation*
Anorthosite	plagioclase	рС
Norite	plagioclase, low-Ca pyroxene	pbC
Gabbro	plagioclase, augite	paC
Orthopyroxenite (Bronzitite)	low-Ca pyroxene (bronzite)	bC
Gabbronorite	plagioclase, low-Ca pyroxene, augite	pbaC
Dunite	olivine	оС
Olivine-bearing (Troctolite)	plagioclase, olivine	роС
Olivine gabbro	plagioclase, augite, olivine	paoC
Olivine gabbronorite	plagioclase, augite, low-Ca pyroxene, olivine	paboC

Table 1. Terminology for describing rocks of the Stillwater Complex. C = cumulate; p=plagioclase;
b=low-Ca pyroxene; a = augite; o = olivine. In the shorthand notation, cumulate phases are
listed in order of abundance. (modified from Page, 1977)

The Ultramafic Series is subdivided into the Peridotite Zone and the Bronzitite Zone. The repetitive cycles of the Peridotite Zone, have been extensively studied (Jackson, 1961; Irvine, 1980; Howland, 1955; Raedeke and McCallum, 1984; and others). Characteristic cycles contain a sequence of dunite, dunite and chromite, harzburgite, and bronzitite. Not all layers are present in every cycle.

Because of its uniform composition, the Bronzitite Zone has been studied by only a few workers (Raedeke and McCallum, 1984; Todd et al., 1982; McCallum et al., 1980), and not much detailed work has been done. The contact between the Peridotite Zone and the Bronzitite Zone is marked by the upward disappearance of cumulus olivine. The Bronzitite Zone makes up approximately the top one-third of the Ultramafic Series, and consists of cumulus orthopyroxene, intercumulus plagioclase, and commonly augite oikocrysts. Thin olivine-bearing and chromite-rich layers are found in the bronzitite, near the upper contact (Todd et al., 1982). The amount of intercumulus plagioclase increases towards the top of the Bronzitite Zone until it also becomes cumulus; thereby marking the contact with the Norite I Zone of the Lower Banded Series (McCallum et al., 1980).

The remaining three-fourths of the Stillwater Complex, the Lower, Middle, and Upper Banded Series, overlies the previously mentioned units. These Series, mainly plagioclase-bronzite cumulates, plagioclase-bronzite-augite cumulates, plagioclase-olivine cumulates troctolites, and plagioclase cumulates, are subdivided into 12 zones (McCallum et al., 1980). Numerous studies exist on the Lower Banded Series since it hosts the PGE-bearing sulfides (Irvine et al., 1983; Campbell et al., 1983; Naldrett, 1990; Bow et al., 1982; Todd et al., 1982; Page and Moring, 1990). The Lower Banded Series consists of the Norite I and Gabbronorite I zones, the Olivine-bearing I Zone, which hosts the PGE-rich sulfides known as the JM Reef, the Norite II, Gabbronorite II, and Olivine-bearing II zones (McCallum et al., 1980).

The Norite I Zone consists of layers of plagioclase and bronzite, and cumulates with variable amounts of each. The upper contact with Gabbronorite I is marked by the first occurrence of cumulus augite above the Basal Series (Zientek et al, 1985). The overlying Gabbronorite I Zone consists of plagioclase, bronzite, and augite cumulates, all of which vary in proportion (Zientek et al, 1985).

Olivine-bearing I Zone begins at the reoccurrence of cumulus olivine. This unit contains olivine, plagioclase, bronzite, and augite cumulates as well as pegmatoids (Zientek et al, 1985, McCallum et al., 1980; Raedeke et al., 1985). Many of the olivine-bearing units contain less than five percent cumulate olivine (McCallum et al., 1980). The one to three-meter PGE-bearing JM reef is generally located near the fifth olivine-bearing unit at the base of the anorthosite and the top of the troctolite. The location of the JM reef varies somewhat along strike, but is found approximately 400 to 450 meters above the contact between the Banded and Ultramafic Series (Todd et al., 1982). The upper contact of Olivine-bearing Zone I is between a plagioclase cumulate and a thick plagioclase, bronzite cumulate known as the Norite II (McCallum et al., 1980, Zientek, 1985). The uppermost unit of the Lower Banded Series, Gabbronorite II, consists of layers of plagioclase, bronzite, augite cumulates and plagioclase cumulates. The reoccurrence of olivine marks the upper contact with Olivine-bearing Zone II, the uppermost layer of the Lower Banded Series.

The remaining Middle and Upper Banded Series consist of Anorthosite I, Olivine-bearing III, Olivine-bearing IV, Anorthosite II, Olivine-bearing V, and Gabbronorite III (McCallum et al., 1980). Zientek et al. (1985), describe these units in more detail.

PROBLEMS AND OBJECTIVES

The Stillwater Complex contains several sulfide-bearing intervals, many of which are continuous along the strike of the complex (fig. 3). Only one such horizon, the JM reef, contains economic amounts of PGE's. PGE-bearing sulfides in layered mafic-ultramafic intrusions are typically found in such continuous horizons. However, Some sulfide concentrations, as in the Lower Banded Series, are laterally discontinuous (Page et al., 1985). One of these concentrations, the Coors 602 zone, is primarily mineralized pegmatoidal bronzitites (Conn, 1979; Volborth and Housley, 1984). The study area is named Coors 602 zone after one of the exploration trenches in the area.

In 1967, the Johns-Manville Corporation began soil sampling and drilling to delineate the JM reef platinum horizon in the Stillwater (Conn, 1979). A detailed soil geochemical traverse across the Coors 602 zone showed significant PGE values (Conn,

		Schematic	Description		Rep	reser	tatve	Conc	entra	tions	n Roc	:ks		
		Columnar Sec		S	Cu	N	Pt	Pd	Rh	Ru	hr ann	Au	P ^M S	
(-			W196	w(96	W140	090	ppe	ppo	ppo	ppo	000	700	
	Lipper Banded sames													
			Disseminated suffices Potes fin deposit: disseminated suffices and transpreserie suffices Closeminated suffices	23 .120	.11 .27	.10 .14	96 270	140 340					1.24	Major References
			Discommend sufficies	.11	.02	.02	5	5						0
BANDED SEMES	Migdie Bandedi Senee		Disseminated sufficies Disseminated sufficies	.96 {.12 {.12	.18 .01 .04	.12 .01 .04	93 7 280	83 5 6 40						0
			Distantionaled Auffidee	.10	.00	. 0 6	130	5						
	Lours Banded sonse	R2	Grames instruction with convegee of anyonne-non and sufficiency rook. Observmented sufficien Classministed sufficien J-M Real; digesministed sufficien	.16 .44 .43	.03 .16 .14	.24 .11 .14 .24	5100 550 3650 6257	3400 25 3250 24038	40				1.08]@]@
	- 1		Constraints of the second seco			.241		27002						ງອ
	Bronation 2019	•					21	12	14	٠	1	2]
		}	K alvonike J alvonike				87 171	29 149	76 102	167 482	341 104	2 3		
3	Pendos		i alvamilla H alvamilla G alvamilla Small massive suffice pads				31 103 63	24 39 61	31 66 61	84 203 178	12 21 34	3		10
	2018		Eatronite		[10	5	11	<81	1.6	.4		•
	-		Cleoorden dunke, shromitte C alvomitte Local deseminated to	.01	.01	.06	2316 45 137	2500 36	42 81	374 90	60 71	2	1.2	10
BASAL			A divornation matte and		.37	.57		2290	246	834	613	80	.12	
(nonte 20n Sille and dikes m		Pode of measure to mesta sufficies: disseminated sufficies in meta- sedimentary rock ³		.94	.63) ²⁰			-3	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-1.20	
	rook		Y Migenous sufficies in the mediaedimentary rooks Quartz - Door homists Quartz - Deering nomists					•					2.60 2.17	

Figure 3. Schematic columnar section for the Stillwater Complex showing the relative locations of sulfide, platinum-group-element and chromite mineralization, and representative analyses of rocks. Footnotes: (1), combined Ni + Cu; (2), combined Pt + Pd; (3), based on rocks containing more than 50 percent visible sulfide (Page, et al., 1985). 1979). The anomalously high platinum values led to trenching and coring in the area in 1973 and again in 1982. When the richer PGE reef was discovered stratigraphically above the Coors 602 zone, exploration beneath ceased (S. Todd, pers. comm., 5/1991). Although some of the platinum and palladium values exceed those of the JM Reef, the average value of these elements from the Coors 602 area is less than the JM Reef, and it is considered sub-economic. However, it is important to understand how and why mineralization occurred at this location. Although the Coors 602 zone is not economic, this horizon in which it occurs may represent a potential target for exploration elsewhere in the Stillwater and in other intrusions.

The bulk of the mineralization occurs in pegmatoids of bronzitite composition. This feature is very odd in that the pegmatoids occur within the Norite I unit, well above the disappearance of bronzitite in the Ultramafic Zone below. Other interesting features in the surrounding rocks include the thinning of the Gabbronorite Zone I to virtual absence, and units crosscutting other units. Also in the Coors 602 area, the typical uniform layering is disturbed forming highly irregular contacts with adjacent layers. It seems more than coincidental that these mineralized pegmatoids are found within a small area with all of these other atypical features; thus they are likely related. A viable genetic model must account for all these features including the close proximity to the JM reef, plagioclase first appearing as a cumulus phase, occurrence of pegmatoids, presence of significant PGEbearing sulfides, and the stratigraphic disturbances are present.

11

COORS 602 AREA

LOCATION AND GENERAL GEOLOGY

The Coors 602 zone is located on the East Boulder Plateau between the East Boulder River and Lost Mountain (Fig. 4). Johns-Manville geologists prepared a 1" to 100' outcrop map of the area between 1974 and 1991 (Fig. 5a,in Appendix 1). Figure 5 is a 1" to 100' copy of this map.

Stratigraphic units in the Coors area are similar to the rest of the Stillwater Complex, with rocks ranging stratigraphically from the Bronzitite Zone of the Ultramafic Series up through the Lower Banded Series (Fig. 2). The Gabbronorite I Zone is only partially represented. Cumulate lithologies of these units are, in general, mineralogically and petrologically similar to typical exposures of the respective units elsewhere in the complex. The contact in the Coors 602 zone is also interpreted to be the first occurrence of cumulate plagioclase.

The actual contact between the Bronzitite Zone and the first norite does not occur in outcrop in any location in the Coors area. The inferred contact on the map in figure 5 is within a meter from the true contact in most places, and less than 0.5 meters in several locations. In other locations throughout the complex, for example the Mouat Mine Road, the contact is sharp on the scale of a single grain. Thus, the same contact in the Coors 602 zone is assumed to have a similar sharpness. The contact between norites and bronzitites in the trenches is not transitional, but very sharp. The contact between Norite I and Olivine-bearing Zone I was not studied in detail. The Reef does not occur in the fifth

Figure 4. Simplified geologic map of the Stillwater Complex showing the location of the Coors anomaly (modified from Volborth, 1984)

olivine-bearing unit as it typically does throughout the Stillwater Complex. Instead, it occurs in the second or third olivine-bearing unit.

Although the Lower Banded Series in the Coors 602 area contains similar geologic units as are found in this Series throughout the Stillwater Complex, it displays many irregular relationships not typically seen in other locations. These irregularities are discussed in detail below.

METHODS

Mapping for the current study was primarily reconnaissance of previously recognized geologic units, contacts, and structures in the area. The map produced by Johns-Manville was the basis for this work. Norite and bronzitite samples, both pegmatoidal and normal, were collected throughout the Coors area, mostly below the JM Reef (figure 6).

Geochemical and petrographic analyses were used to characterize the bronzitite masses, both mineralized and non-mineralized, to determine if they are similar to the bronzitite in the Ultramafic Series below and possibly originated from that unit. Due to the lack of previous research in the Bronzitite Zone of the Ultramafic Series, a suite of samples was collected from this zone along the Mouat Mine Road to add to the current sparse database for valid comparisons to the Coors 602 zone.

Thin sections were made from each sample collected and studied or petrographic description using a Zeiss polarizing-light microscope. Additional polished sections were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6. Sample location map (1"=400') from the Coors area. Note: use in combination with figure 5.

cut for examination under reflected light. Polished circular samples were cut and coated with carbon for microprobe analyses. Electron microprobe analyses were performed on bronzite grains from bronzitites of the Ultramafic Series, the bronzitites in the Coors 602 zone, and from norites within the Banded Series. The analyses were done on microprobes at both the University of Montana and Washington State University. The automated, wavelength dispersive, ARL-EMX five channel microprobe at the University of Montana was used at 15 KV accelerated voltage and 1 microampere of sample current. Washington State University's microprobe is also wavelength dispersive. The importance of these microprobe analyses was to determine the magnesium to iron ratio which can have a direct correlation to differentiation of the magma.

Representative samples were coarsely crushed and finely pulverized at the University of Montana. Powders were sent to The United States Geological Survey (USGS) in Denver and Washington State University for x-ray fluorescence (XRF) analyses. Numerous other analyses were done at the USGS in addition to XRF; these analyses are listed in table 2. Descriptions of these analytical methods can be obtained from the Denver office. Whole rock analyses were done to show whether the pegmatoidal samples or possibly the mineralized samples were formed from late-stage differentiates, thereby containing many incompatible elements. Magnesium and iron were used to compare differentiation trends.

17

ŧ	EDXRF												
l	NB PPM	RB PPM	SR PPM	ZR PPM	Y PPM	BA PPM	CE PPM	LA PPM	CU PPM	NI PPM	ZN PPM	CR PPM	
ļ	Optical Spec	troscopy - ICI	P-AES, 40EL										
ł		AL %-S	CA %-S	FE %-S	K %-S	MG %-S	NA %-S	P %-S	TI %-S	MN PPM-S	AG PPM-S	AS PPM-S	AU PPM-S
		B PPM-S	BA PPM-S	BE PPM-S	BI PPM-S	CD PPM-S	CE PPM-S	CO PPM-S	CR PPM-S	CU PPM-S	EU PPM-S	GA PPM-S	GE PPM-S
I		НО РРМ∙S	LA PPM-S	LI PPM-S	MO PPM-S	NB PPM-S	ND PPM-S	NI PPM-S	P8 PPM-S	SC PPM-S	SN PPM-S	SR PPM-S	TA PPM-S
I		TH PPM-S	U PPM-S	V PPM-S	W PPM·S	Y PPM-S	YB PPM-S	ZN PPM-S	ZR PPM-S-				
I	X-Ray Spect	rascopy	WDXRF Majo	or Elements as	s Oxides								
	SIO2 %	AL2O3 %	FETO3 %	MGO %	CAO %	NA2O %	K2O %	TIO2 %	P2O5 %	MNO %	LOI 925C		
ł	AAHydride (Generation											
ł	AS PPM	SE PPM											
I	Graphite Fu	nace AAS											
Į	AU PPM												
I	Chemical Se	paration Flam	ne AAS										
	TE PPM												
l	ICP Mass Sp	ec.											
	PT PPB	PD PPB	RH PPB	RU PPB	ir ppb								
	Radiochemi	stry - INAA Lo	ong Count										
Į	FE %	NA %	BA PPM	CO PPM	CR PPM	CS PPM	HF PPM	RB PPM	SB PPM	TA PPM	TH PPM	U PPM	ZN PPM
I	ZR PPM	SC PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GO PPM	тв ррм	тм ррм	YB PPM	LU PPM	CA %
I	К %	AS PPM	AU PPB	NI PPM	SR PPM								
I	FeO Potenti	ometric Titrati	ion										
	FEO %	•											
	Heat-weight	loss H2O+-											
	H2O+ %	H2O- 9	6										
ł	Coulometric	ilitration Carl	p.Ç.										
I	02 %	0											
1													
I													
1	CUIIWAYCE	1 L											
	Infrared	v											
	TOTAL S	6											
Ĩ	10112 01	-											

True 2. USGS geochemical analytical methods including method used to analyze each element.

FIELD RELATIONSHIPS

Bronzitite in Norite I

Figure 5a shows the distribution of bronzitite in the Coors 602 area. Bronzitite occurs repeatedly upsection through the norite in the lower part of Norite I. Jones et al.(1960) report alternating layers at this contact elsewhere in the Stillwater, but extending only over a distance of about a meter into the Norite I. However, the bronzitites in the Coors 602 area randomly extend as much as 450 meters into the Norite I; they do not occur in layers. Exploration trench maps and drill logs both show these features. Refer to the figure 5a in appendix 1 or figure 6 for location of the trenches.

The thickness of the bronzitite masses zone ranges from only a few feet across to 100 meters, with respect to the longer axis of each. The shape of these bodies is difficult to discern given the lack of outcrop. The distribution and location of bronzitite is seen in the cores. Because only two of the cores intersect, the shape of the bronzitites is not evident. As seen in several outcrops, the bronzitites are discordant.

Small fractures are present, but there is no evidence of post-crystallization movement significant enough to have caused repetition of units as seen in the trenches. Since the bronzitite and norite alternate as frequently as every 3 meters over a 30 meter span, as seen in trench CG602T1, and no direct evidence of faulting was found, a faulting scenario is difficult to imagine. Other bronzitite outcrops are found just above this interlayered zone in sporadic locations throughout the Coors area. In the western portion of the study area, along the Fishscale fault, bronzitite is found throughout a 360-meter vertical section beginning 60 meters above the approximate contact between the Ultramafic Series and the Banded Series (Fig. 5). Small patches of bronzitites are found throughout this fault zone up to the largest bronzitite outcrop at the north end. This large outcrop forms a lower contact with anorthosite, and occurs within the same outcrop as not only the anorthosite, but with a package of rock types including norite and troctolite. The units associated with this large bronzitite pod correlate with the adjacent stratigraphy, and have been moved only by rotation. This relationship suggests that the large bronzitite body was not displaced up section by post-crystallization faulting, but instead seems to have been magmatically emplaced. Most of the bronzitite outcrops are in place; however, it is questionable as to whether several of the small bronzitite outcrops have been relocated. They could be erratics moved from the Ultramafic Zone during glaciation. Although outcrops in the fault zone are scarce, the distribution of bronzitite is elongate and discordant and appears to be "dike-like."

Bronzitite rarely occurs above the Ultramafic Series in the Stillwater. In the Stillwater mine, many small (10 to 30 centimeters) ellipsoidal pods of orthopyroxenite are found 10 to 30 centimeters beneath the JM Reef. These pods beneath the JM reef are interpreted by Bow et al. (1982) as xenoliths from the Ultramafic Series.

Another occurrence of bronzitite in the Banded Series is in the Contact Mountain area. Pegmatoidal bronzitite pods as large as two meters occur along the contact of the Olivine-bearing Zone I and the Gabbronorite I, as well as within the Gabbronorite I (Raedeke et al., 1985).

Drilling in Dow meadows, northeast of the Coors area, has documented another large bronzitite occurrence. The drill core goes through the reef, continues through normal stratigraphy below the reef, hits several meters of bronzitite, goes back into norite, and continues through bronzitite for the remainder of the hole. The core has been logged in detail, and the repetition of bronzitite is was not found to be a result of fault repetition (Zientek, pers. comm., April, 1993)

Secondary dunite in the Stillwater and Pt-rich dunite pipes in the Bushveld are examples of other discordant bodies found within different rock types. Although the composition of these bodies is quite different, similarities exist between them and the bronzitites.

The discordant dunites at Chrome Mountain lie stratigraphically beneath the Coors area. They crosscut cumulate layers approximately at right angles up through the Peridotite Zone on Lost Mountain. The secondary dunites, referred to as pipes in the Bushveld, are more predominant in regions of maximum faulting (Viljoen and Heiber, 1986).

Disturbed stratigraphy

The stratigraphy overlying the Coors area is similar to the same horizon in the rest of the Stillwater. However, the stratigraphy below the reef in the Coors area is very irregular. Layering between the reef and the Ultramafic Series contact with the Banded Series is disturbed and shows sinuous and highly irregular contacts (figure 5.). Many of the observed irregular contacts lie within the same outcrop; where it is clear that they were not produced by brittle deformation.

Norite I and Gabbronorite I typically contain irregular features (Foose, 1985). The thinner layers in Norite I often show scouring, slumping, and are laterally discontinuous. The upper portion of Norite I contains a laterally extensive layer exhibiting disturbed layering and irregular mixing of norite, anorthosite, and coarse-grained pyroxenite (McCallum et al., 1980). They suggest that such features could be the result of strong currents, slumping or both. Gabbronorite I also contains many irregular features such as graded layers, slumps, and the occurrence of inclusions of bronzitite that is texturally identical to that of the uppermost thirty meters in the Ultramafic Series (McCallum et al., 1980). In both units however, these irregularities are typically small, on the scale of centimeters, compared to the large discordances in the Coors area which may range across the entire study area (Fig. 5), a distance of about 2400 feet.

The disturbed layering described above for the Coors 602 zone generally occurs within the scale of one outcrop. However, discordant features also exist across the entire study area. An olivine-bearing pod occurs approximately 590 feet above the Bronzitite Zone, in the west part of the study area. This outcrop is interpreted to be the lower contact of the Olivine-bearing Zone I. The JM Reef above this olivine pod is about 885 feet above the Bronzitite Zone. The position of both of these units is well below the

22

average location in the Stillwater Complex for the first olivine-bearing unit, and the stratigraphic units below are unusually thin. In the east side of the study area, near Lone Tree Meadow fault, the reef is close to the average location in the Stillwater Complex at about 1375 meters above the Bronzitite Zone (Fig. 5).

Several outcrops in the Coors 602 area contain discordant features, including the olivine-bearing pod described above, which are evidence of downcutting into the norite. One location in particular, contains truncated olivine-bearing and anorthositic layers against norite (Fig. 7).

The Stillwater mine has exposed a similar feature with the reef downcutting layering in the rocks below (Turner, 1985; Bow et al., 1982; Zientek, April, 1993, pers. comm.). The reef reaches to within 98 feet of the Bronzitite Zone, and proceeds to cut upsection to its original position. The Gabbronorite I Zone varies in thickness throughout the complex, but not to the degree that it does in the Coors area. The Gabbronorite I Zone is virtually absent in the Coors area; augite-bearing rocks appear in very few samples.

An overall decrease in thickness in the stratigraphy between the Reef and the Bronzitite Zone is present beginning as far east as the Janet 50 claims. Figure 8 shows the location of Janet 50 with respect to Coors 602. Janet 50 also contains mineralized bronzitite pegmatoids. Detailed descriptions can be founded in Volborth and Housely, 1984. The association of both the Coors 602 and Janet 50 mineralized zones with thinning of the stratigraphy below the reef, may be significant. The

Figure 7. Sample outcrop sketches showing irregular layering and truncating features.

Figure 8. Geological map of the Stillwater Complex showing location of Janet 50 in relation to Coors 602.. (modified after Conn, 1979)
fact that the reef reaches lower than normal in these sites could be important in the genesis of the mineralization.

Pegmatoids

Pegmatoids are widespread in layered intrusions. The term pegmatoid is preferred over pegmatite here because the latter typically refers to granitic composition. Pegmatoid is a textural term referring to the coarse grain size, but the presence of volatiles, presumably water, can also be inferred. Pegmatoids occur in various rock types in layered intrusions, including chromitites, norites, bronzitites, troctolites, and gabbros; they have the same composition as the rock type in which they occur.

Most workers do not address the association between mineralization and pegmatoids. Pegmatoids commonly occur in both sulfide and chromite deposits. Pegmatoids are also found in areas of the Stillwater Complex which have no mineralization, as well as those associated with PGE mineralization. Many workers simply indicate that the pegmatoids are evidence for the presence of volatiles, not why the volatiles are there or where they came from.

In the Coors 602 area, rocks which have mineral grain sizes over the 5 mm are considered pegmatoids. Grain sizes range from approximately 5 mm to 150 mm. Pegmatoidal textures are found in both bronzitites and norites in the Coors 602 zone. Several pegmatoid patches of various sizes exist near the contact between the Ultramafic and Banded Series and elsewhere in the Lower Banded Series in the Coors 602 area. Contacts in the trenches between pegmatoids and adjacent rock units are presently difficult to find due to collapse and weathering in the trenches. Where it was somewhat exposed, the contact seemed gradational over several centimeters. One contact observed between norite pegmatoid and bronzitite, in the CG789T-2 trench, is gradational over 15 cm.

Pegmatoids associated with the JM Reef contain a significant amount of phlogopite and thus water at magmatic temperatures; whereas those along the contact between the Banded and Ultramafic Series in the Coors area do not. Only a few pegmatoids sampled in the Coors area contained phlogopite. Bronzitite pegmatoids in the Coors 602 area, however, are unusual because they occur within norites.

PGE Mineralization

Many of the bronzitites in the Coors 602 area contain PGE mineralization. Trenches dug by Johns-Manville help delineate the mineralized rocks. Both pegmatoids and nonpegmatoids contain mineralization. Sulfides appear to be randomly distributed throughout the bronzitites. Most of the mineralization is within the bronzitites in the lower Norite I. One bronzitite outcrop in the Fishscale fault zone contains significant proportions of sulfide mineralization. The large bronzitite at the top of the fault zone, does not contain appreciable sulfide mineralization. However, the rocks here are extremely sheared and altered, so any sulfides that were present may have been remobilized.

27

MINERALOGY AND PETROGRAPHY

Sample descriptions including rock type, grain size of cumulate bronzite, and approximate percent orthopyroxene and sulfides are located in table 3.

Bronzitite

The orthopyroxenites of the Bronzitite Zone are mineralogically and texturally similar to those elsewhere in the Stillwater. Euhedral to subhedral bronzite is the cumulate phase with augite and plagioclase as intercumulate phases. Augite is present as exsolution blebs and lamellae in bronzite crystals, as oikocrysts, and less commonly as intercumulus grains. Bronzite grains range from 2 to 5 mm in diameter. Augite oikocrysts range from 0.5 to 2 cm in diameter. Plagioclase grains, typically anhedral and interstitial, are not zoned. Modal proportions of minerals are 95 to 80% bronzite, 5 to 15% plagioclase, and 1 to 5% augite.

The bronzitite cumulates in the trenches and elsewhere in the Norite I Zone are quite different texturally from those in the Bronzitite Zone. Many bronzitites do not exhibit the normal cumulate texture and may be affected by recrystallization. Although bronzite must be the cumulate phase, it is often anhedral; it is difficult to discern whether it is actually cumulate. Similarly, it is difficult to tell if the plagioclase is intercumulus. Many samples seem to be marginally bronzitite and possibly could be norites. The plagioclase content in these bronzite cumulates ranges from 5% to 30%.

		_								_									
C		-	84			*	%	al eize famil				~				*	%	N eije	
Ceast				FUIT	(yp)	- panel		lan		C #0 77	1	- FT		<u>Pd/Pt</u>	type		eule	<u>{em}</u>	P+1
150	264	125	130	1.04	obC	35.45		3. 5		540	700	1 800	3 760			~~			- 1
232	272	75	115	1.53	obC	50		0.3		158	190	100	145	1.72	BC	20	Tr .	<1.5	p•q
257	265	65	85	1.31	pbC	30-60	tr-1	.35	1	89	130	50	85	1.43	ol:	40	(e-)	.30	
164	225	100	95	0.95	pbC	60-70	tr5	.35		173	232	75	225	3.00	pbC	40	tr	.1-10	
142	230	50	65	1.30	pbC	80-70	tr5	.35		130	168	50	75	1.50	obC	40	tr	.1-10	040
72	320	< 50	50		pbC	50	tı	.5-1.5	P	128	242	100	395	3.95	pbC	40	tr	.1-10	P *0
80	450	< 50	65		PC.	10-30	tr-1	.35		233	405	600	2,200	3.67	6C	20	tr5	1-1.5	peg
372	500	425	380	0.89	ьс	10-30	tr-1	.35		675	490	3,600	9,200	2.56	ъС	20	tr5	1-1.5	P+0
372	490	525	555	1.06	ьс	10-30	tr-1	.35		460	505	2,250	8,400	2.84	PC.	20	tr5		
435	580	425	1,250	2.94	ЬC	10-30	tr-1	.35		228	364	150	600	4.00	ъС	20	tr5		
600	550	700	515	0.74	ЬС	10-15	1	0.3		60	110	50	80	1.60	pbC	40-50		.3-1	peg
269	595	575	455	0.79	6C	10-15		.5/		156	100	50	80	1.00	pbC	40-50		.3.2	peg
370	1,0/5	450	410	0.91	6C	10.15	1	0.5		203	300	400	1,200	3.00	PBC	40-50		.3-3	P=0
240	400 870	900	800	0.65	60	10.20	1.5	5.1.5	Ì	480	375	1.050	4 000	3.30	POC NC	20.30	**-1	بە-ى. 1.15	peg
920	1 250	800	950	1.19	ьC	10-20	3.5	.5-1.5		344	350	550	1 200	3.09	bC	20-30	tr-1	1.1.6	
420	475	550	430	0.78	ьс	10-20	3.5	.5-1.5		392	400	325	1,700	5.23	ъC	20-30	11-1	1-1.7	Deg
910	1,095	925	800	0.86	ьс	10	1.3	.5-1.5		805	480	8,200	11,000	1.77	ЬC	20-30	tr-1	1-1.8	Peg
530	600	775	750	0.97	ьс	10-20	1.5	.5-1.5		855	620	6,800	13,000	1.91	ЪC	20-30	\$r- 1	1-1.9	P+0
255	360	150	130	0.87	ьс	10-20	1-5	.5-1.0	P	1,650	1,450	14,600	34,000	2.33	ЪÇ	5	tr-5	1-1.5	P+g
316	450	75	70	0.93	ЬC	10-20	1-5	.5-1.0	•	450	430	1,450	5,500	3.79	bС	20	tr	1	Peg
405	570	175	130	0.74	pbC	50-60		.5-1.0	Р	440	385	1,450	4,700	3.24	ЬС	20	tr	1-2	P*9
36	103	< 50	20		pbC	50-60		.5-1.0	Р	87	162	50	105	2.10	pbC	50-60		.35	1
17	65	< 50	20		pbC	50-60		0.5	1	50	136	50	85	1.30	pbC	50-60			1
14	70	< 50	25		pbC	50-60		0.5		72	116	300	620	2.07	pbC	50-60			1
14	54	< 50	25		pbC	50-60		0.5		26	60	50	40	0.60	pbC	50-60			- 1
10	80	50	25	0.50	POC	30-80		0.5		20	334	200	25	0.50	POL	30-00			
1/8	390	300	243	0.82	BC bC	20-30	4-2	.13		292	330	426	1 000	2.96	BC	20	er •-		bed
1 192	330	200	270	1 10	bC	20-35	4.7	1.5		2.32	403	423	1,000	2.30				•	
1 168	295	200	170	0.85	PC.	20-35	14-2	.1.5		C602T-	3								1
380	430	500	300	0.60	6C	20-35	11-2	.15	1	38	- 65	< 50	20		pbC	60			
352	485	500	325	0.65	ьс	20-50	1-2	.34		32	70	< 50	25		pbC	60		.34	
49	98	100	60	0.60	pbC	60-70		.34		160	390	<50	55		ьс	5.25	0-tr		
18	52	50	30	0.60	pbC	60-70		.34		249	570	100	210	2.10	ЬC	5-15	tr-5	<1	p+g
12	50	50	25	0.50	рЬС	60-70		.34		242	445	150	330	2.20	ьс	10	1	<1	₽ ≠Q
										336	750	200	435	2.18	ьс	<1		<1	p ∙g
C6021	2									144	340	50	90	1.60	6C	10-20	• .	.5-2	peg
289	325	850	1,700	2.62	PC	10	u o r	<3	Peg	300	440	200	275	1.30	BC NC	10-20	0-11	<3	Ped
1 110	168	150	180	1.20	pbC	30-80	05	U.4		460	3/3	323	400	1.23	0U 60	3 6	0-17		
374	300	1,400	J,/00	2.04	0U 60	10	U*.3		p+g	200	510	200	8 000	3.20 7 AR	90 80		0-11 0-11		
500	425	325	695	2.07 1.83	bC	10	tr.5	<3	040	1 200	1.150	10.000	28.000	2.60	bC	5	0-11	1	
53	200	< 50	45	1.00	abC	60		~~		1,350	1.550	5,550	22.000	3.96	ьС	5	5-10	•	
1 22	212	< 50	70		abC	80	0		- I	850	875	3.050	5.500	1.80	ЬC	5	u-2	<2	000
98	212	50	60	1.20	pbC	80	•			460	495	200	240	1.20	ьС	10-20	tu-2	.2-1.2	0.0
224	365	350	1,000	2.86	ьс	20	tr5	.5-1	peg	580	685	325	350	1.08	ьс	10-20	tr-2	.2.1.2	Peg
590	520	2,700	9,000	3.33	ьс	20	tr5	.5-1	peg	640	780	350	420	1.20	ьС	10-20	tı-2	0.5	1
435	440	800	2,500	3.13	ьC	20	tr	<2	peg	300	400	350	620	1.77	ьс	10-20	tı-2	.2-1.2	P+0
292	324	300	425	1.42	ьс	20	tr	<2											
104	220	100	120	1.20	ьC	<5	tr	.27		1		Pd/	Pt Avg +	1.77					
142	200	125	100	0.80	ЬC	<5	tr	.87	1	1								`	1
144	212	125	90	0.72	PC.	<5	U	.27	[1									
58	164	75	60	1.07	pbC	60		3.5		1									
	54	75	55	0.73	pbC	60		۵.5 ء د		1									
L <u>-20</u>	- 34	50	/>	1.50	DDC	00	<u> </u>	, J• . J											

Table 3. Sample description including rock type, grain size, percent orthopyroxene, and approximate
percent sulfide. Shorthand notations include: mm=Mouat Mine; cc=Coors Claim; T1, T2,
T3=trench 1,2,3 respectively; 8,9,11=drill core 8,9,11 respectively.

Norite

The Norite I Zone contains anhedral to subhedral cumulus plagioclase and bronzite, with interstitial augite. Augite, as in the Bronzitite Zone, forms lamellae and blebs in orthopyroxene, and oikocrysts. The exsolved blebs are more abundant in the Norite I Zone compared with the Bronzitite Zone. Augite also forms incomplete rims on some of the bronzite. Excluding the pegmatoidal samples, the bronzite ranges from 2 to 5 mm, the plagioclase from 1 to 5 mm. Where plagioclase is within an augite oikocryst, the grains tend to be small laths, 0.1 to 1 mm long. Rounded plagioclase grains can be found in bronzite, and bronzite grains in plagioclase. Some samples show slight to extreme embayment of both types of grains. The possibility that resorption caused the embayment is discussed below.

Sulfides

In the Coors area, sulfides are commonly found as discrete grains interstitial to or within cumulus orthopyroxenes. Sulfides are also found along cleavage fractures in bronzites. Sulfides are more abundant in bronzitites than norites, and they occur within both pegmatoidal and nonpegmatoidal rocks. The distribution of sulfide mineralization is podlike and highly irregular. Chalcopyrite, pyrrhotite, pentlandite, and pyrite are intergrown in blebs and disseminated grains and seem to have formed from an immiscible sulfide liquid. Sulfide blebs range in grain size from a fraction of a millimeter to a centimeter. Total sulfides range from 0.5% to 5%; the average is 2. Economic reserves of PGE mineralization in the Stillwater are confined to the JM Reef. The PGE mineralization is associated with sulfides, predominantly pyrrhotite, pentlandite, chalcopyrite, and various PGE minerals (Bow et al. 1982). There is a direct correlation with the amount of sulfides and the PGE value in all rocks assayed

Alteration

The most common alteration mineral is serpentine. Serpentine and chlorite occur as veinlets and replacement material within bronzites. Plagioclase alters to saussurite and clinozoisite. Actinolite often occurs as acicular crystals in and around sulfides.

Resorption

Many of the rocks studied, especially norites and plagioclase-rich bronzitites, show slight to intense embayments of bronzite. Orthopyroxenes in the plagioclase-rich bronzitites also show a texture that could be attributed to slight remelting of the cumulates. The bronzites contain irregularly shaped inclusions of plagioclase which seem to have formed in preexisting depressions or embayments. Several reasons why resorption might occur, include temperature increase, load-pressure decrease, and addition of lower-temperature constituents or volatiles (fig. 9).

Temperature increase may result from either a pulse of new magma injected at slightly higher temperatures, or settling of crystals into a hotter melt. Assuming the

Figure 9. a) Pressure - temperature diagrams for a dry magma and b) a water undersaturated magma. c) temperature-composition diagrams for a binary system (modified from Hyndman, 1985, p. 100). In most instances, shifts discussed are opposite to those shown. composition of the crystallizing magma in both cases was similar to that from which the bronzite formed, heating would cause melting of crystals (Fig. 9a). Textural evidence and microprobe analyses of resorbed grains do not indicate any adcumulus growth or further crystallization of bronzite with continued cooling. One possibility is that the Mg-Fe diffusion rate in bronzite was high. Alternatively, either the bronzite constituents which went into the melt during resorption were later separated from the interstitial melt before crystallization or the interstitial melt composition was changed with bronzite no longer on the liquidus.

Resorption textures could also result from a decrease in load pressure to initiate remelting (Fig. 9b). This could be accomplished by mechanical means such as fracturing within the crystallized part of the complex. Lipin (1992), suggested that the Stillwater magma erupted many times during formation. Such an event would cause a pressure decrease over the entire complex, and the resorbed grains should be a common feature for that entire horizon in which they are found.

If low-temperature components were added, possibly by upward migration of more differentiated melt, and mixed with the interstitial fluid of the crystallizing magma, the composition would shift, causing instability of pyroxene crystals (Fig. 9c). Such new constituents could have been introduced by one or more pulses of magma.

Addition of water could also cause resorption. Carbon dioxide has a similar but much lesser effect. Such volatiles could have been added to the resorbed area, by movement of late-stage volatiles concentrated from another crystallizing area, or from country rocks being metamorphosed below the intrusion. The effect is similar to addition of other low-temperature constituents (Fig. 9d); it would lower the liquidus temperature. The lower liquidus places the orthopyroxene crystals out of equilibrium; thus resorption occurs.

Embayed grains may be explained by surface energies. Two minerals with different composition have different surface energies. When the two are touching, the mineral with the highest surface energy dominates the crystallization pattern (Spry, 1979). As a result, the mineral with the highest energy seems to be protruding into the other mineral, thus producing an embayed margin in the latter. This can account only for some of the embayed textures seen in the bronzitites from the Coors-602 area. Other embayed textures are difficult to explain by this model.

GEOCHEMISTRY

Silicate

Microprobe analyses for bronzites in the Coors area are given in table 4. The Bronzitite Zone in the Stillwater Complex shows little chemical variation vertically; the Mg numbers (Mg/Mg+Fe) for orthopyroxene vary by only a few percent (Raedeke and McCallum, 1985 and Lambert, 1982). Lambert's data (1982) contain a few Mg enrichment zones which may indicate reversals, but they are not as pronounced as in the Peridotite Zone below. Orthopyroxenes from two locations in the Bronzitite Zone, the Coors and the Mouat Mine area, were analyzed by electron microprobe for Si, Al, Ca,

										And the second
sample #	Si02	Ca0	A1203	FeO	MgO	ა	Ti02	ïŻ	MnO	Total
0-mm	55.72	1.73	1.37	10.35	31.09	NT	LN	NT	NT	101.51
mm-50	56.18	2.23	1.30	10.25	30.14	ΝT	IN	NT	NT	101.06
mm-510	55.97	1.54	1.41	11.12	30.05	0.44	0.16	0.05	0.21	100.48
mm-588	55.91	1.82	1.41	12.38	28.58	NT	NT	NT	NT	101.64
mm-C	55.85	0.90	1.28	10.52	31.02	0.45	0.15	0.07	0.24	100.47
cc-2	54.44	12.07	1.64	10.81	20.22	NT	NT	NT	Ł	98.19
cc-3	57.32	1.53	1.37	12.18	29.39	NT	L Z	IN	TN	102.31
cc-8A	55.55	1.39	1.33	11.67	30.20	NT	NT	NT	IN	100.37
cc-10	54.19	1.63	1.45	14.46	27.29	NT	NT	NT	TN	98.63
cc-12	55.02	1.08	1.32	14.91	27.67	0.27	0.11	0.07	0.29	100.72
cc-104	55.20	1.04	1.09	12.68	29.20	0.31	0.20	0.07	0.26	100.06
cc-110C	55.46	1.14	1.28	12.43	29.37	0.16	0.16	0.08	0.25	100.33
cc-112	54.64	1.38	1.28	15.06	27.16	0.28	0.26	0.10	0.25	100.40
cc-115	56.04	1.26	1.15	11.58	29.98	0.31	0.16	0.08	0.27	100.83
cc-117	54.82	1.77	1.33	10.58	29.93	0.42	0.22	0.04	0.27	99.37
cc-120	55.14	2.14	1.36	10.89	29.86	0.61	0.19	0.06	0.26	100.48
cc-123	55.36	0.89	0.92	12.80	29.30	0.21	0.16	0.05	0.27	99.95
cc-130	53.52	0.84	1.28	14.07	27.02	0.22	0.15	0.07	0.25	97.42
T1-15F	55.70	1.43	1.43	11.64	30.00	0.30	0.11	0.09	0.24	100.94
T1-70	55.46	1.69	1.09	13.35	28.52	0.21	0.11	0.07	0.27	100.77
T2-23	55.54	1.36	1.19	15.45	26.54	ΝT	NT	NT	TN	99.33
T3-20	55.16	1.37	1.18	16.59	25.58	NT	NT	NT	TN	99.65
T3-85	54.70	2.44	1.38	13.61	27.32	0.26	0.13	0.07	0.32	100.22

Mg and Fe. Figure 10 is a plot showing Mg number (Mg/Mg+Fe) trends. The data for this graph is listed in Table 5. The Mouat Mine samples begin roughly 200 meters below the contact between the Bronzitite Zone and the Lower Banded Series. A decrease in Mg number from 0.84 to 0.80 towards the upper contact indicates the magma was becoming progressively more iron-rich probably as a result of magma differentiation. Only the top 600 feet of the Coors area were sampled and analyzed. McCallum (1980), cites Mg/(Mg+Fe) values of 0.84 at Chrome Mountain and 0.85 at Mountain View. McCallum suggest that the variation in these two sites may mark a lateral change in composition of the Bronzitite Zone. However, the differences do not seem statistically significant.

A significant jump does occur, however, across the contact from the Ultramafic Series into the Banded Series at Coors. Mg numbers drop as much as thirteen percent, with all the lower values occurring in mineralized samples (group B in Fig. 10). Unmineralized bronzitites and norites have bronzites with higher Mg numbers relative to the mineralized samples, even in samples higher up-section (groups C and E in Fig. 10). An exception to this is group D1 in Figure 10, with high Mg numbers, which are mineralized samples from the JM reef. Group D2 in Figure 10, with low Mg numbers are mineralized samples from the bC "dike"

XRF whole rock analyses for the Coors area are given in table 6. Samples show a decrease in Mg/(Mg+Fe) up section, indicating an increase in iron, similar to the bronzite microprobe analyses (Fig. 11). The data for this graph are listed in table 7. Again, similar to the probe graph, the mineralized samples (group B and D2 on Fig. 11) have the lowest

Figure 10. Plot of stratigraphic height versus magnesium number (mol percent Mg) of bronzite using the Banded Series - Ultramafic Series contact as the datum. Data is based on electron microprobe analyses of orthopyroxene. ("min" preceeding rock type in legend box indicate mineralized samples.)

Sample #	Rock Type	mol% Mg	Height	Sample #	Rock Type	mol% Mg	Height
mm-0	UPC	84.25	-588	T1-15F	pbC	82.11	325
mm-50	с Р	83.97	-538	T1-70	Ş	79.19	345
mm-510	UbC U	82.80	-50	T2-23	Š	75.38	495
mm-588	UPC	80.45	0	T3-20	Å	73.31	330
mm-C	CPC CPC	84.01	-10	T3-85	ç	78.15	265
cc-2	pbC	76.92	1215				
c-3	Ŋ	81.13	1605	LM01	pbC	79.10	175
cc-8A	poC	82.17	870	LM02	pbC	79.05	50
cc-10	pbC	77.08	575	LM04	C A A	81.63	0
cc-12	ğ	76.78	635	LM05	CPC CPC	82.98	-142
cc-104	ð	80.40	510	LM06	CPC CPC	82.93	-285
cc-110C	pbC	80.81	1250	LM07	CPC CPC	81.97	-428
cc-112	р Д	76.26	520	LM08	DPC DPC	81.21	-571
cc-115	pbC	82.18	1210	LM09	CPC DPC	82.02	-714
cc-117	UbC U	83.45	-150	LM10	CPC CPC	83.60	-857
cc-120	CPC CPC	83.01	-200	CM04	npc	86.77	-1000
cc-123	Å	80.31	320	PP36	CPC PPC	83.25	-1750
cc-130	Š	77.38	560	PP35	CPC CPC	82.78	-2000

Constant at	-		TION		14-0	0.0	14.0	1140				
Sample #	SIUZ	ALZUJ	1102	FeO	MINU	Cito	MgU	K20	Nazo	P205	LOI	Total
mm-0	54,74	4.66	0.130	8.65	0.189	4.10	27.59	0.05	0.38	0.000	NA	100.69
mm-100	35.03	5.37	0.124	8.42	0.182	4.29	27.30	0.05	0.43	0.000	NA	101.23
mun-230	32.10	4.1/	0.107	6.68 0.66	0.194	9.34 -	27.39	0.05	0.46	0.000	NA	100.81
mm-50	JJ.13 44 70	3.34 A 67	0.174	9.33	1.177	3.04	28.13	0.05	0.41	0.000	NA	100.84
mm-510	39,77 63.07	4.07 5.94	0.191	7.44 10.79	0.203	4.79	20.4/	0.05	0.30	0.000	NA	101.16
mm_C	53.92	5.04	0.155	10.25	0.200	4.72	24.44	0.05	0.40	< 0.002	NA 0.72	100.52
mm-F	53.8	\$ 13	0.22	11 8	0.21	4.22 A 22	20.0	0.03	0.35		0.72	100.39
WF-BC	54.3	2.88	0.13	10.6	0.21	3.20	24.2	0.07	<0.52	<0.05	0.00	00 gg
cc-1	47.5	19.6	0.10	5.05	0.09	11.5	10.9	0.25	0.80	<0.05	3 45	99.24
cc-2	50.7	11.2	1.02	12.2	0.13	7.85	11.2	0.10	0.52	<0.05	3.82	98.74
cc-3	52.3	5.97	0.21	10.5	0.27	6.06	19.7	0.02	<0.15	<0.05	4 39	99.42
cc-4	43.6	15.8	0.17	10.0	0.14	10.1	14.8	0.08	0.57	<0.05	3.93	99.19
cc-8	50.7	13.2	0.16	9.74	0.17	8.98	15.3	0.07	0.82	<0.05	0.98	100.12
cc-9	50.4	8.10	0.23	15.0	0.23	5.45	17.9	0.10	0.32	<0.05	2.44	100.17
cc-10	51.7	7.01	0.19	13.0	0.22	7.07	20.1	0.04	0.46	< 0.05	0.83	100.62
cc-10	46.0	26.1	0.08	4.62	0.07	13.0	6.59	0.13	1.51	<0.05	1.62	99.72
cc-11	51.9	7.33	0.19	11.8	0.19	6.85	19.8	0.04	0.46	<0.05	1.19	99.75
cc-12	52.0	7.04	0.21	12.5	0.23	6.87	20.3	0.07	0.53	< 0.05	1.06	100.81
cc-13	52.5	8.86	0.16	9.02	0.18	7.64	20.8	0.06	0.45	<0.05	0.48	100.15
cc-14	51.4	10.5	0.11	9.10	0.17	6.65	19.8	0.05	0.48	<0.05	1.29	99.55
cc-15	54.0	3.73	0.14	10.2	0.21	4.64	26.3	0.02	0.22	<0.05	0.27	99.73
cc-101	48.4	24.4	0.08	4.02	0.07	13.5	7.53	0.06	1.19	<0.05	0.70	99.95
cc-102	47.0	25.4	0.09	3.64	0.06	14.9	5.66	0.12	1.44	<0.05	1.18	99.49
cc-103	49.5	16.4	0.13	5.23	0.12	14.4	11.5	0.07	0.86	<0.05	1.10	99.31
cc-104	49.6	20.6	0.01	5,40	0.10	12.5	10.6	0.05	0.93	<0.05	0.22	100.01
cc-105	46.7	28.0	0.10	3.01	0.05	14.8	3.91	0.15	1.76	<0.05	1.32	99.80
cc-107	48.4	11.1	0.16	10.4	0.20	4.81	16.6	0.02	<0.15	<0.05	7.86	99.55
cc-108	48.3	4.85	0.22	10.9	0.21	4.81	19.2	0.02	<0.15	<0.05	4.8/	99.38
cc-109	47.1	0.20	0.20	18.9	0.25	4.70	18.1	0.03	<0.15	<0.05	4.03	99.03
cc-110	47.4	20.7	0.06	J.06	0.10	< 99 11.1	11.0	0.10	0.71	<0.03	1.74	99.01
cc-112	JI.I 46 7	0.00	0.20	7 19	0.23	0.00 0.57	20.J 7 83	0.05	1 70	<0.05	4 90	99.00
cc-114	46.9	21.5	0.11	5 84	0.17	17.0	01.05 2 20	0.02	1.70	<0.05	1 25	99.93
cc-115	51 A	10.6	0.13	975	0.07	671	19 8	0.03	0 44	<0.05	0.40	99.55
cc-116	45.9	20.5	0.09	6.37	0.10	11.1	11.1	0.09	1.09	<0.05	3.16	99.50
cc-117	53.6	4.78	0.14	9.99	0.19	4.09	26.0	0.05	0.30	<0.05	0.84	99.98
cc-118	53.9	2.16	0.19	10.3	0.19	2.67	28.1	0.05	< 0.15	<0.05	1.74	99.30
cc-119	52.3	10.8	0.51	11.4	0.13	8.33	11.4	0.14	0.61	<0.05	3.11	98.73
cc-120	53.3	5.57	0.17	10.1	0.20	5.50	24.2	0.04	0.33	<0.05	0.61	100.02
cc-121	52.0	6.12	0.17	11.9	0.21	5.15	22.8	0.03	0.31	<0.05	0.79	99.48
cc-122	40.1	6.14	0.09	12.8	0.13	3.05	29.3	0.02	<0.15	<0.05	8.05	99.68
cc-123	52.2	7.98	0.16	11.6	0.22	5.27	21.3	0.08	0.45	<0.05	0.85	100.11
cc-124	49.5	9.89	0.19	11.3	0.20	5.26	17.8	0.02	<0.15	<0.05	4.85	99.01
cc-126	46.9	21.5	0.11	4.77	0.12	9.62	9.60	0.98	2.21	<0.05	3.57	99.38
cc-127	49.9	8.85	0.17	11.9	0.20	5.82	18.8	0.05	0.46	<0.05	3.05	99.20
cc-128	49.5	10.2	0.19	10.9	0.24	5.38	17.6	0.05	0.29	<0.05	5.16	99.51
cc-130	51.3	6.74	0.19	14.1	0.23	5.41	20.8	0.05	0.42	<0.05	0.49	99.73
cc-131	46.1	25.0	0.10	5.69	0.09	9.14	5.19	1.29	1.88	<0.05	4.07	98.55
cc-200	52.4	4.60	0.21	17.5	0.28	2.96	22.4	0.07	0.19	<0.05	0.10	100.71
cc-AP	51.1	7.85	0.18	12.9	0.21	5.63	19.8	0.06	0.46	<0.05	1.29	99.48
cc-T1-5f	51.5	11.3	0.13	8.91	0.10	1.43	18.9	0.07	0.62	<0.03	0.91	99.93
cc-T1-20f	52.6	7.91	0.12	10.1	0.19	3.80	22.3	0.04	0.41	<0.05	0.30	100.09
cc-11-25f	52.Z	1.00	U.13	1U./	0.17	0.14	41.9 14 P	V.04	0.42	~0.03	V.37 0 22	100 21
CC-11-10	51.1	10.0	U.10	0.48 6 61	0.15	7.43	14.5	0.00	0.90	<0.03	0.33	00 40
CC-11-22	47.1 67 1	17.2	V.11 A 14	9 11	0.12	6 A 1	70 7	0.07	0.93	<0.05 <0 A4	0.64	99 80
CC-11-25	24.1 67 A	7.70 8 77	0.17	11 8	0.17	0.41	10.0	0.05	0.50	<0.05 <0.05	0.34	93.40
CC-11-23	52.U 61 4	0.// Q 22	0.17	13.1	0.27	5.75	19.0	0.04	0.03	<0.05	0.30	99.92
CC-11-35	AQ 1	18.8	0.10	5.85	0.11	12.7	10.9	0.00	0.96	<0.05	0.93	99.71
T1-45	49.5	20.2	0.08	5.2B	0.10	0.10	10.9	0.05	0.94	<0.05	1.60	87.85
cc-T1-44	51.3	11.2	0.15	9.96	0.18	8.69	17.3	0.05	0.60	<0.05	0.43	99.86
cc-T1-80	\$2.8	5.92	0.17	13.0	0.23	4.94	22.7	0.04	0.29	<0.05	0.15	100.24
cc-T1-90	52.3	5.87	0.17	12.4	0.19	4.38	22.7	0.04	0.27	<0.05	1.48	99.80

Table 6.Whole rock analyses (XRF) of Coors area and Mouat Mine road
Samples given in weight percent. (contin. on next page)

Sample #	SIO2	A12O3	TiO2	FeO	MnQ	CeO	MσΩ	K20	Na2O	P205	101	Total
ccaT1-95	<u>(1)</u>	8.00	0.17	12.3	0.20	0.70	10.0	0.05	0.30	<0.05	2.04	04.44
cc-T1-105	49.0	0.09 21 ∡	0.08	4 79	0.20	13.0	9 80	0.05	0.97	<0.05	0.63	00.81
cc-T1-110	49.5	20.1	0.08	5.41	0.11	11.3	11.7	0.05	0.89	<0.05	0.59	99 73
cc-T1-130	48.3	21.7	0.07	4.65	0.09	13.1	9.33	0.05	0.99	<0.05	1.06	99.34
cc-T1-135	51.2	11.0	0.16	12.1	0.20	6.35	18.2	0.06	0.57	<0.05	0.24	100.08
cc-T2-5	52.1	3.74	0.25	17.0	0.27	2.89	22.8	0.05	0.20	<0.05	0.80	100.10
cc-T2-10	50.1	16.1	0.10	6.88	0.13	9.64	14.8	0.06	0.74	<0.05	1.44	99.99
cc-T2-15	52.3	1.69	0.29	18.6	0.29	1.77	23.8	0.04	<0.15	<0.05	1.21	99.99
cc-T2-20	50.0	11.4	0.21	12.8	0.21	6.42	16.6	0.09	0.58	<0.05	1.26	99.57
cc-T2-23	51.6	6.47	0.20	14.7	0.24	4.18	21.1	0.06	0.32	<0.05	1.00	99.87
cc-T2-25	47.4	23.7	0.07	3.79	0.09	13.1	7.29	0.23	1.27	<0.05	2.40	99.34
cc-T2-33	52.5	4.99	0.20	15.3	0.25	3.89	22.2	0.04	0.31	<0.05	0.50	100.18
cc-T2-35	51.1	12.7	0.11	7.60	0.15	9.56	17.2	0.05	· 0.57	<0.05	0.67	99.71
cc-T2-55	47.4	21.3	0.12	4.67	0.11	12.4	9.13	0.20	1.19	<0.05	2.53	99.05
cc-T2-60	49.1	18.7	0.07	5.55	0.11	11.8	11.7	0.08	0.90	<0.05	1.40	99.41
cc-12-65	48.8	22.0	0.09	4.40	0.09	13.0	9.36	0.08	1.03	<0.05	0.79	99.70
cc-12-75	49.5	19.1	0.09	2.03	0.11	11.4	12.1	0.09	0.89	<0.05	0.80	99.71
CC-13-10	50.5	9.58	0.22	14.1	0.24	2.00	1/.8	0.12	0.33	<0.05	1.05	101.07
13-13 cc-T3-20	53.U 53.U	1.44	0.33	17.4	0.30	1 74	72 9	0.04	< 0.15	< 0.05	1.00	100.32
CC-T3-25	52.U 52.K	1 01	0.12	10.4	0.27	3 94	ه. د. ۲ ۲ ۲	0.10	0.14	<0.05	0.79	99.01
CC-T3-30a	\$1.3	5 87	0.12	16.6	0.20	3.75	20.7	0.10	0.12	<0.05	1.03	100.20
cc-T3-30h	51.1	6.17	0.27	16.4	0.27	3.83	20.4	0.12	0.36	<0.05	0.95	99.87
cc-T3-35	52.1	2.73	0.30	18.2	0.29	2.21	23.0	0.06	<0.15	<0.05	0.82	99.71
cc-T3-40	51.2	5.02	0.26	16.9	0.28	3.37	21.2	0.11	0.27	<0.05	1.24	99.85
cc-T3-45	50.7	6.81	0.27	15.9	0.26	4.11	19.6	0.11	0.39	<0.05	1.53	99.68
cc-T3-5	49.7	19.1	0.09	5.88	0.11	0.11	12.1	0.05	0.87	<0.05	0.57	88.58
cc-T3-60	52.4	6.40	0.24	14.2	0.25	0.25	20.3	0.05	0.44	<0.05	0.07	94.60
cc-T3-70	50.1	9.61	0.12	10.6	0.18	0.18	19.3	0.05	0.45	<0.05	1.89	92.48
cc-T3-70a	49.5	7.13	0.14	12.7	0.20	0.20	20.0	0.05	0.34	<0.05	2.54	92.80
cc-T3-75	52.3	7.65	0.13	11.3	0.20	0.20	22.1	0.04	0.37	<0.05	0.54	94.83
cc-T3-80	52.5	5.97	0.15	12.4	0.22	4.82	22.8	0.04	0.32	<0.05	0.71	99.93
cc-T3-85	52.7	4.61	0.16	13.2	0.24	3.75	24.5	0.04	0.21	<0.05	0.45	99.86
cc-T3-90	51.9	7.70	0.13	11.8	0.20	5.41	21.6	0.04	0.39	<0.05	0.73	99.90
8-414-25	47.4	3.57	0.09	10.1	0.13	3.08	28.2	0.04	<0.15	<0.05	0.41	99.02
8-423-33	40./ 40.9	2.31	0.08	11.5	0.17	2.11	27.0	0.03	<0.15	<0.03	0.75	97.63
8-487-99	30.8 53.6	1.04	0.25	14.4	0.21	100	27.0	0.04	<0.15		0.99	99.37
8-565-74	53.0	1.55	0.15	10.0	0.19	3.97	27.5	0.05	<0.15	<0.05	2.09	99.83
8-573-04	57.8	2.74	0.12	10.8	0.20	3.07	28.7	0.09	<0.15	<0.05	1.47	99.99
8-574-84	50.5	3.54	0.11	10.5	0.19	3.64	28.2	0.12	⊲0.15	<0.05	3.19	99.99
8-584-93	53.4	1.73	0.15	11.2	0.20	2.82	28.5	0.03	<0.15	<0.05	1.57	99.60
9-229-38	51.0	13.5	0.10	8.11	0.15	9.02	16.9	0.03	0.61	<0.05	0.53	99.95
9-233-48	51.5	11.4	0.11	8.90	0.16	7.89	18.9	0.04	0.52	<0.05	0.76	100.18
9-24-32	50.0	16.8	0.15	7.28	0.13	11.5	12.2	0.09	0.98	<0.05	0.60	99.73
9-32-41	51.4	11.7	0.17	9.92	0.18	8.21	17.0	0.08	0.73	<0.05	0.63	100.02
9-334-43	52.3	7.51	0.20	11.1	0.20	5.93	21.0	0.10	0.45	<0.05	0.70	99.49
9-562-72	52.3	5.55	0.22	14.4	0.25	5.37	21.6	0.05	0.31	<0.05	0.31	100.36
9-601-10	52.1	5.14	0.22	16.3	0.27	3.64	22.1	0.06	0.24	<0.05	0.16	100.23
9-62-71	49.3	19.6	0.09	5.71	0.11	11.9	11.3	0.05	0.92	<0.05	1.04	100.02
9-638-47	51.9	9.20	0.18	12.0	0.22	6.36	19.3	0.08	0.54	<0.05	0.40	100.24
9-647-56	52.2	6.95	0.19	13.1	0.23	5.79	21.0	0.05	0.41	<0.05	0.33	100.27
9-71-80	49.5	19.5	0.09	5.81	0.11	2 49	11.0	0.06	0.92	<0.03	V.81 1 21	100.03
11-172-82	52.0	4.38	0.20	14.7 1 <i>4 -</i>	0.23	7.48 3 21	20.0 72 7	0.07	0.24	<0.05	1.51	100.33
11-184-92	52.5	4.44 7 22	0.21	14.0	0.45	J.81 17	40.4 74 A	0.00	<0.44	<0.05	1.04 N 92	100.35
11-192-01	34.4 \$1.7	6 70	0.24	13.7	0.20	5 32	20.9	0.02	0 48	<0.05	1.56	99.92
11-247-38	51.7 57 A	5 72	0.21	13.9	0.24	4,90	21.9	0.06	0.40	<0.05	0.60	100.39
11-314-74	49 1	20.6	0.08	5.23	0.10	12.1	10.6	0.06	0.95	<0.05	0.80	99.62
11-324-337	48.9	21.2	0.09	4.83	0.09	12.8	9.97	0.07	0.99	<0.05	1.07	100.01
11-341-50	48.6	22.6	0.09	4.43	0.08	12.7	8.96	0.14	1.05	<0.05	1.26	99.91
11-359-72	46.1	25.7	0.06	3.24	0.06	13.9	5.63	0.19	1.34	<0.05	3.39	99.61
11-372-82	46.4	26.7	0.06	2.75	0.05	14.2	4.95	0.18	1.32	<0.05	3.08	99.69

Continued from previous page

40

Figure 11. Plot of stratigraphic height verses magnesium number (mol percent Mg) of whole rocks using the Banded Series - Ultramafic Series contact as the datum. Data is based on Coors area whole rock analyses (XRF).

Sample #	Rock Type	mol% Mg	Height	Sample #	Rock Type	mol% Mg	Height	Sample #	Rock Type	mol% Mg	Heigh
nm-0	UPC	84.75	-588	cc-116	pC	75.65	860	cc-T1-130	pbC	78.15	405
nm-50	UPC	84 .00	-538	cc-117	UPC	82.27	-150	cc-T1-135	pbC	72.83	410
nm-100	UрС	85.20	-488	cc-118	υъс	82.94	-100	cc-T2-5	ЪС	70.51	505
mm-250	UPC	84.61	-338	cc-119	pbC	64.06	1240	cc-T2-10	pbC	79.31	501
mm-510	UPC	83,33	-50	cc-120	ÜЪС	81.03	-200	cc-T2-15	bC	69.52	499
mm-588	UрС	81.14	0	cc-121	UрС	77.35	-75	cc-T2-20	ьС	69.80	497
mm-C	UPC	82.11	-10	cc-122	ьс	80.32	510	cc-T2-23	ьС	71.90	495
mm-F	UPC	78.52	-20	cc-123	ьС	76.60	320	cc-T2-25	pbaC	77.42	494
cc-l	pbC	79.37	475	cc-124	pbC	73.74	1520	cc-T2-33	ъС	72.12	492
cc-2	pbC	62.07	1215	cc-126	UPC	78.20	25	cc-T2-35	ьС	80.13	491
cc-3	ьС	76.98	1605	cc-127	pbC	73.79	1310	cc-T2-55	pbC	77.70	486
cc-4	poC	72.51	930	cc-128	pC	74.21	1500	cc-T2-60	ЬС	78.98	484
cc-8	роС	73.68	87 0	cc-130	ьС	72.45	560 /	cc-T2-65	pbC	78.91	482
cc-9	pbC	68.02	985	cc-131	pbC	61.92	1555 /	cc-T2-75	pbC	79.30	480
cc-10	bC	73.38	575	cc-AP	ьС	73.23	670 /	cc-T3-5	pbC	78.58	345
cc-10	рьС	71.77	575	cc-T1-5f	pbC	79.08	325	cc-T3-10	bpC	69.23	340
cc-11	bpC	74.94	560	cc-T1-20f	ЬС	79.74	325	cc-T3-15	bC	68.71	335
cc-12	bC	74.32	635	cc-T1-25f	ьс	78.49	325	cc-T3-20	ЪС	68.95	330
cc-13	ъС	80.43	915	cc-T1-10	рьС	75.67	295	cc-T3-25	ЬС	82.07	325
cc-14	рьС	79.50	440	cc-T1-22	pbC	75.04	297	cc-T3-30a	ЪС	68.97	315
cc-101	pC	76.95	710	cc-T1-25a	ьС	79.82	300	cc-T3-30b	ьС	68.92	315
cc-102	pbC	73.49	1170	cc-T1-25b	ьС	74.94	300	cc-T3-35	ьс	69.25	300
cc-103	pbC	79.67	865	cc-T1-35	bpC	72.11	310	cc-T3-40	ьс	69.10	295
cc-104	pС	77.77	510	cc-T1-45	рьС	76.86	320	cc-T3-45	ьС	68.72	290
cc-105	pbC	69.84	1050	cc-T1-55	pbC	78.63	330 /	cc-T3-60	ЬС	71.82	28 5
cc-108	bC	66.94	1350	cc-T1-65	pbC	75.59	340	cc-T3-70	ьС	76.44	280
cc-110	pbC	78.45	1250	cc-T1-80	ьс	75.68	355 /	cc-T3-70a	ЬС	73.73	280
cc-112	ьс	72.16	520	cc-T1-90	ьС	76.54	365	cc-T3-75	ъС	77.71	275
cc-113	pC	66.03	1680	cc-T1-95	ьС	74.25	370 /	cc-T3-80	ЬС	76.62	270
/cc-114	роС	73.07	825	cc-T1-105	pbC	78.48	380	cc-T3-85	ЬС	76.79	265
(cc-115	pbC	78.35	1210	cc-T1-110	pbC	79.40	385 /	cc-T3-90	ьС	76.54	260

Table 7. Data for figure 11, including rock type, mol percent magnesium, and height in feet.

Mg number's. The JM Reef mineralized samples (D1 on Fig. 11) and the unmineralized samples (groups C and E in Fig. 11) have the highest Mg numbers.

PGE Sulfides

The trench samples were assayed by Stillwater PGM labs for nickel, copper, platinum, and palladium (Table 8). Values range from <50 to 1550 ppm nickel, <20 to 1650 ppm copper, <50 to 14600 ppb platinum, and <20 to 34000 ppb palladium. As seen in table 8, the ratio of Pd to Pt averages 1.77 for trench samples. Coors and Mouat Mine samples where also analyzed for PGE's Cu and Ni.. These analyses are listed in table 9. The average Pd to Pt ratio in these samples is 1.2. The JM reef has an average Pd:Pt ratio of 3.5 to 1. Figures 12a and 12b show a positive correlation between Pd and Pt. Note that samples 102, 110, 115 have ratios above 3.0. These three samples are from the JM reef. Positive correlations also exist between copper and nickel versus palladium and copper and nickel verses platinum in both sets of analyses (Figs. 13 and 14).

						*	%	al eize								%	*	N Size	
Cu	NI	Pt	N	Pd/Pt	type	plag	eule	(om)	p+q_	Çų	NE	Pt	Pd	Pd/Pt	type	plag	oulo	(om)	2+2
C635T-	1									Ceozr.	1								
150	264	125	130	1.04	pbC	35-45		.35		560	700	1,600	2,750	1.72	ьс	20	tr	<1.5	P=0
232	272	75	115	1.53	рЬĊ	50		0.3		158	190	100	145	1.45	ЪC	20	tr-1	.36	
257	285	65	65	1.31	pbC	30-60	tr-1	.35		68	130	50	85	1.70	pbC	40	tr	.1-10	Peg
164	225	100	95	0.95	pbC	60-70	tr5	.35		173	232	75	225	3.00	pbC	40	tr	.1-10	P+0
142	230	50	65	1.30	pbC	60-70	tr5	.35		130	168	50	75	1.50	pbC	40	tı	.1-10	P+2
72	320	< 50	50		pbC	\$ 0	tr	.5-1.5	P	128	242	100	395	3.95	pbC	40	tr	.1-10	P*9
80	450	<50	65		ьс	10-30	tr-1	.35		233	405	800	2,200	3.67	ьС	20	tr5	1-1.5	949
372	\$00	425	380	0.89	ьC	10-30	ta-1	.35		875	490	3,600	9,200	2.56	ЬC	20	tr5	1-1.5	940
372	490	525	555	1.08	ьс	10-30	tr-1	.35		460	505	2,250	6,400	2.84	ьс	20	tr5		E
435	580	425	1,250	2.94	ЬC	10-30	tr-1	.35	1	228	364	150	600	4.00	ьс	20	te5		
600	\$50	700	515	0.74	6C	10-15	1	0.3		60	110	50	60	1.60	pbC	40-50		.3-1	peg
289	595	575	455	0.79	PC.	10-15	1	.57		156	160	50	60	1.60	pbC	40-50		.3-2	peg
660	1,075	450	410	0.91	ьС	< 5	1	0.5		285	360	400	1,200	3.00	pbC	40-50		.3-3	P+0
370	480	650	\$ 50	0.85	ЪC	10-15	1	0.5		280	338	400	1,400	Э.50	pbC	40-50		.3-4	P+0
740	870	900	600	0.67	ьс	10-20	tr-5	.5-1.5	•	460	375	t,050	4,000	3.01	ьс	20-30	tr-1	1-1.5	P+0
920	1,250	800	950	1.19	ьс	10-20	3-5	.5-1.5	è	344	350	550	1,700	3.09	ьС	20-30	te-1	1-1.6	040
420	475	550	430	0.78	ьс	10-20	3-5	.5-1.5	e l	392	400	325	1,700	5.23	ЬС	20-30	te-1	1-1.7	p+0
910	1,095	925	800	0.86	PC.	10	1-3	.5-1.5		805	480	6,200	11,000	1.77	ьс	20-30	tr-1	1-1.8	peg
530	600	775	750	0.97	6C	10-20	1-5	.5-1.5		855	820	6,600	13,000	1.91	ьс	20-30	tr-1	1-1.9	p=0
255	360	150	130	0.87	ЬC	10-20	1.5	.5-1.0		1,650	1,450	14,600	34,000	2.33	ьс	5	tr-5	1-1.5	200
318	450	75	70	0.93	ьс	10-20	1-5	.5-1.0	ام	450	430	1,450	5,500	3.79	ЪĊ	20	te	1	040
405	570	175	130	0.74	pbC	50-80		.5-1.0		440	385	1,450	4,700	3.24	ьс	20	tr	1-2	0+0
36	103	< 50	20		pbC	50-60		.5-1.0	, i	67	162	50	105	2.10	obC	50-60		.35	· • [
17	65	< 50	20		obC	50-00		0.5		50	136	50	65	1.30	øbC	50-00			I
14	70	< 50	25		pbC	50-60		0.5		72	118	300	620	2.07	pbC	50-60			
14	54	< 50	25		obC	50-60		0.5	- 1	29	60	50	40	0.80	obC	50-00			
18	60	50	25	0.50	pbC	50-00		0.5		28	68	50	25	0.50	obC	50-60			
178	390	300	245	0.82	ЪC	20-35	tr-2	.15		252	336	200	280	1.40	ЬC	20	tr	1	
190	340	200	245	1.23	bC	20-35	11-2	.1.5		292	365	425	1.000	2.35	ЬC	20		,	000
192	330	200	220	1.10	bC	20-35	11-2	.1.5					.,						
146	295	200	170	0.85	bC	20-35	41-2	.1.5		Caozt.	3								
380	430	500	300	0.60	bC	20-35	11-2	1.5		36	- 65	< 50	20		obC	80			
352	485	500	325	0.65	hC	20-50	1.2	3.4	- 1	32	70	< 50	25		obC	80		3.4	
49	90	100	A0	0.00	obC	60.70	•••	3.4		140	390	< 50	55		hC	5.25	0.41		
10	50 62	50	30	0.00	pbC pbC	80.70		3.4		249	570	100	210	2 10	bC	5.15	n.5	~1	-
	54	50	25	0.00	pbC	60.70		3.4		243	445	150	230	2.10	6C	10	1	21	
I ' ²	90	30	29	0.30	poc	00-70			- 1	272	750	200	435	2.20	- C	~ ~ ~	•		
	-								- 1	3.30	750	200	435	2.10	- DC	10.20		6.2	
C0021	-2 			2.62		10		- 2		200	340	300	276	1.30	60 60	10.20	0	.5.2	peg
200	323	150	1,700	1.02		60.60	بر م. 5	< J 0.4	ped	100	44U 676	200	400	1.30	50	5	0.0	- 3	Pag
	100	130	100	1.20		10	U9	0.4		200	3/3	923 260	900	3 20	5C	5	0.4		1
324	300	1,400	3,700	2.04	50	10	(r3		bed	200	510	2 200	8 000	3.20 7▲R	PC	5	0.4		
1 505	300	273	1,000	1.07	PC	10	u. 5	13	-	1 200	1 160	10.000	28 000	2.40	5C	š	0.44		
1 500	920	320	993 46	1.03		-	05	~ 3	P•0	1 260	1 660	5 550	22,000	3 68	bC	5	5.10	•	
1 33	200	< 30	40		- bC		•			000	1,330	3,550	6 600	1 80	- C	5	44.2	12	
	212	< 30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.30	pou abC		v			440	405	3,030	3,300	1.00	50	10.20	w.2	2.1 2	
1 39	212	50	90	1.20	POU	20	. E			500	433	200	240	1.20	50	10.20	44.7	3.1.2	ped
224	305	350	1,000	2.00	90	20	110 4. 6	.3-1	ped	300	280	323	420	1.00	6C	10.20	u.2	05	PAA
590	520	2,700	9,000	3.33	50	20	tr3	.3·1	Ded	200	400	350	=2U #20	1 77	5C	10.20	u-4	2.1 2	
435	440	800	2,500	3.13	90	20	u k	<2	P+0	1 300	400	330	920			10-20	u.s		hed
292	324	300	420	1,94	50	20 26	u 4.	2.7	5	1	1	،دم		1.77	1				
104	220	100	120	1.20			u	.2		1		-0/							
142	200	125	100	0.00	BC .	< 5	π	.0/		1									
144	212	125	90	0.72	ЬC	<5	tr	.2.7		1									
50	164	75	90	1.07	pbC	60		.35		1									
18	54	75	55	0.73	pbC	60		3.5	1										
20	54	50	75	1,50	pbC	60		.35		L									

Table 8.Assay data including PGE analyses from trenches T1,T2, T3, and T635 from the Coors area.Data is expressed in ppm for copper and nickel and ppb for platinum and palladium.Assay data were provided by the Stillwater Mining Company

Cu N Pi Pi<		_					_							_					_	
arref arref <th< th=""><th></th><th>Cu</th><th>NI</th><th>Pt</th><th>Pd</th><th>Rh</th><th>Ru</th><th>r</th><th></th><th></th><th></th><th>Cu</th><th>NI</th><th>Pt</th><th>Pd</th><th>Rh</th><th>Ru</th><th>le .</th><th></th><th></th></th<>		Cu	NI	Pt	Pd	Rh	Ru	r				Cu	NI	Pt	Pd	Rh	Ru	le .		
	Neiqmaa	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Pt/Pd	Pd/Pt	sample#	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	PVPd	Pd/F
mp-F ar ar br/F ar br/F br/F<	mm-C	20	907	6.5	5.7	3.2	<1	<1	1,1	0.9	cc-T1-130	14	205	10.0	13.0	1.4	<0.5	<0.5	0.8	1.3
MP-40C zi me 3.4 6.4 0.5 <th0.5< th=""> <th0.5< th=""></th0.5<></th0.5<>	nm-F	47	507	29.0	11.0	6.9	1.0	<1	2.6	0.4	ec-T1-135	225	580	92.0	100.0	9.0	1.2	0.7	0.9	1.1
bit bit< bit< <td>WF-BC</td> <td>22</td> <td>706</td> <td>3.4</td> <td>6.4</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>0.5</td> <td>1.9</td> <td>cc-T2-5</td> <td>340</td> <td>718</td> <td>160.0</td> <td>480.0</td> <td>4.7</td> <td>1.3</td> <td>0.6</td> <td>0.3</td> <td>3.0</td>	WF-BC	22	706	3.4	6.4	<0.5	<0.5	<0.5	0.5	1.9	cc-T2-5	340	718	160.0	480.0	4.7	1.3	0.6	0.3	3.0
C-1 TH TH COLUMN COLUMN COLUMN	CC-1 (14	245	17.9	14.0	25	<0.5	<0.5	1.2	0.8	cc-T2-10	51	360	15.0	13.0	2.5	<0.5	<0.5	1.2	0.9
c-1 m	66-2 66-3	160	444	300.0	440.0	14.0	10.0	4.0	1.1	0.9	00-12-15	154	768	63.0	95.0	4.4	1.0	0.6	0.7	1.
c-d is ref 120 110 0.5		192	146	9.6	5.0	20.5	<0.5 <0.5	×0.0	1.0	0.0	12-20	245	500	20.0	140.0	1.2	0.5	<0.5	0.1	- 7.9
c=0 ss ss ts	B-32		470	82.0	810	0.5	<0.5	<05	10	10	cc-T2-25	315	474	18.0	21.0	2.1	10.5	<0.5	0.4	- Z
c-10 iss iss <td>cc-9</td> <td></td> <td>486</td> <td>13.0</td> <td>11.0</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>12</td> <td>0 A</td> <td>CC-T2-33</td> <td>224</td> <td>778</td> <td>87.0</td> <td>200.0</td> <td>1.0</td> <td>0.3</td> <td>20.5</td> <td>0.9</td> <td>1.</td>	cc-9		486	13.0	11.0	<0.5	<0.5	<0.5	12	0 A	CC-T2-33	224	778	87.0	200.0	1.0	0.3	20.5	0.9	1.
c-10 esse see 520 54 0.5 0.5 1.0	cc-10	25	385	650.0	1100.0	6.8	4.2	2.0	0.6	1.7	cc-T2-35	18	395	50	1.0	3.4	<0.5	<0.5	50	- Â
c-12 rs set set 500 5900 2.9 2.1 1.0 1.0 co-T240 rs rs 1.0 2.0 0.5 -0.5 -0.5 0.6 1.0 c-13 as set set 500 5000 6.0 0.8 0.5 1.0 0.5 rs rs 500 2.4 0.5 0.5 0.6 0.5 1.0 0.5 rs rs 500 2.4 0.5 0.5 0.5 0.5 0.5 1.0 0.5 <t< td=""><td>oc-10</td><td>585</td><td>960</td><td>7.2</td><td>5.4</td><td><0.5</td><td><0.5</td><td><0.5</td><td>1.3</td><td>0.8</td><td>cc-12-55</td><td>12</td><td>236</td><td>16.0</td><td>16.0</td><td>2.4</td><td><0.5</td><td><0.5</td><td>1.0</td><td>1</td></t<>	oc-10	585	960	7.2	5.4	<0.5	<0.5	<0.5	1.3	0.8	cc-12-55	12	236	16.0	16.0	2.4	<0.5	<0.5	1.0	1
z-12 me are 28.0 23.0 24.1 1 1 0 5 cc12-65 rs me 120 24.0 0.5 <th0.5< th=""> <th0.5< th=""> <th0.5< t<="" td=""><td>cc-11</td><td>170</td><td>640</td><td>590.0</td><td>590.0</td><td>2.9</td><td>2.1</td><td>1.0</td><td>1.0</td><td>1.0</td><td>cc-12-60</td><td>19</td><td>265</td><td>11.0</td><td>20.0</td><td>0.5</td><td><0.5</td><td><0.5</td><td>0.6</td><td>1.</td></th0.5<></th0.5<></th0.5<>	cc-11	170	640	590.0	590.0	2.9	2.1	1.0	1.0	1.0	cc-12-60	19	265	11.0	20.0	0.5	<0.5	<0.5	0.6	1.
c-13 24 et et 5700 600 6.0 0.5 1.3 0.8 ccrT3-5 21 220 1.0 0.2 0.5 0.5 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.6 0.5 <td< td=""><td>cc-12</td><td>106</td><td>460</td><td>53.0</td><td>28.0</td><td><1</td><td><1</td><td><1</td><td>1.9</td><td>0.5</td><td>cc-T2-65</td><td>14</td><td>218</td><td>26.0</td><td>32.0</td><td>2.4</td><td><0.5</td><td><0.5</td><td>0.8</td><td>1.</td></td<>	cc-12	106	460	53.0	28.0	<1	<1	<1	1.9	0.5	cc-T2-65	14	218	26.0	32.0	2.4	<0.5	<0.5	0.8	1.
c-14 ete 570.0 560.0 6.6 6.3 11 13 22 0.5 ctr 11 13 22 0.5 ctr 11 13 22 0.5 0.6 100 27 0.5 0.5 0.4 11 0.5 <td>cc-13</td> <td>24</td> <td>610</td> <td>180.0</td> <td>140.0</td> <td>6.0</td> <td>0.8</td> <td>0.5</td> <td>1.3</td> <td>0.8</td> <td>cc-T2-75</td> <td>21</td> <td>296</td> <td>27.0</td> <td>46.0</td> <td>2.6</td> <td><0.5</td> <td><0.5</td> <td>0.6</td> <td>1.</td>	cc-13	24	610	180.0	140.0	6.0	0.8	0.5	1.3	0.8	cc-T2-75	21	296	27.0	46.0	2.6	<0.5	<0.5	0.6	1.
c-15 eff	cc-14	69	689	570.0	560.0	6.6	0.9	0.5	1.0	1.0	cc-T3-5	38	276	50.0	140.0	2.7	<0.5	<0.5	0.4	2.
C-10 H	CC-15	6 1	620	14.0	5.4	5.3	1.1	1.3	2.2	0.5	cc-T3-10	57	400	22.0	19.0	27	<0.5	<0.5	1.2	0.
citc a if citc a if citc a <t< td=""><td> 107</td><td>13</td><td>148</td><td>35.0</td><td>19.0</td><td>3.2</td><td><0.5</td><td><0.0</td><td>1.8</td><td>0.5</td><td>CC-13-13</td><td>196</td><td>630</td><td>43.0</td><td>54.0</td><td>4.4</td><td>1.4</td><td>0.5</td><td>0.8</td><td><u>.</u></td></t<>	107	13	148	35.0	19.0	3.2	<0.5	<0.0	1.8	0.5	CC-13-13	196	630	43.0	54.0	4.4	1.4	0.5	0.8	<u>.</u>
c:105 t:105 t:105 t:105 c:105 t:105 c:105 t:105 t:105 <th< td=""><td>cc-102</td><td>34</td><td>110</td><td>72.0</td><td>11.0</td><td>20</td><td><0.5</td><td><0.5</td><td>20</td><td>0.5</td><td>ar-13-20</td><td>192</td><td>807</td><td>23.0</td><td>25.0</td><td>20</td><td>11</td><td>0.7</td><td>U.6</td><td>1.</td></th<>	cc-102	34	110	72.0	11.0	20	<0.5	<0.5	20	0.5	ar-13-20	192	807	23.0	25.0	20	11	0.7	U.6	1.
c-105 ss rs 7.5 5.6 0.5 0.5 0.5 1.2 0.9 c-107 ss ss 0.00 1.3 0.5	cc-104	42	236	42.0	46.0	2.3	<0.5	<0.5	0.9	1.1	CC-T3-304	<u> </u>	810	20.0	36.0	10	06	<0.5	0.5	- f.
c-107 us see 0.7 0.6 0.5 0.5 0.5 0.5 1.2 0.9 c-108 see see 0.6 0.1 2.6 0.5 <th0.5< th=""> <th0.5< th=""></th0.5<></th0.5<>	cc-105	39	176	7.5	5.8	0.5	<0.5	<0.5	1.3	0.8	cc-T3-300	12	530	20.0	32.0	0.5	0.6	<0.5	0.6	1
c-108 sse ee 690.0 160.0 1.7 2.6 1.3 4.3 0.2 c-109 sse ere 300.0 280.0 1.8 1.6 0.9 1.5 0.7 c-13.40 res sse 22.0 23.0 1.2 c.5 c.0.5 0.5 1.0 1.0 c-73.40 res sse 52.0 61.0 1.4 0.8 c.5 0.5	cc-107	63	580	0.7	0.6	<0.5	<0.5	<0.5	1.2	0.9	CC-T3-35	57	540	25.0	59.0	1.3	<0.5	<0.5	0.4	2
x-109 see ere 730.0 2600 1.8 1.6 0.9 1.5 0.7 cc-73.45 tre ere 40.0 81.0 1.4 0.8 0.5 0.5 0.5 1.0 1.0 cc-73.45 tre ere 40.0 81.0 1.4 0.8 0.5 0.5 0.5 1.0 1.0 cc-73.70 tree ere 40.0 12000.0 1000 70 410 0.3 3 0.5 1.1 1.2 1.1 1.2 1.0 0.0 0	cc-108	530	840	690.0	160.0	1.7	2.6	1.3	4.3	0.2	cc-T3-40	108	540	22.0	23.0	1.2	<0.5	<0.5	1.0	1.
c>-110 see eee 730.0 310.0 280 740.0 730.0 2300 220 160.8 10 10 cc-73.460 182 520.0 12000 100.0 100.0 140.0 140.0 250.0 12000 1300.0 100.0 140.0 2300.0 1200.0 1300.0 100.0 140.0 210.0 1300.0 100.0<	cc-109	300	670	390.0	260.0	1.8	1.6	0.9	1.5	0.7	cc-T3-45	190	660	40.0	81.0	1.4	0.8	<0.5	0.5	2
cx-113 tes 2400.0 2300.0 290 18.0 8.0 1.0 1.0 cc-13-70 tes 480 500.0 12000.0 40.0 40.0 40.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 40.0 40.0 40.0 40.0 40.0 40.0 30.0	cc-110	390	890	730.0	3100.0	28.0	7.6	3.1	0.2	4.2	cc-T3-60	118	529	52.0	69.0	0.7	<0.5	<0.5	0.8	1.
bc-113 bc bc <th< td=""><td>cc-112</td><td>1008</td><td>2000</td><td>2400.0</td><td>2300.0</td><td>29.0</td><td>18.0</td><td>8.0</td><td>1.0</td><td>1.0</td><td>cc-T3-70</td><td>1000</td><td>1460</td><td>5200.0</td><td>12000.0</td><td>100.0</td><td>40.0</td><td>14.0</td><td>0.4</td><td>_ Z.</td></th<>	cc-112	1008	2000	2400.0	2300.0	29.0	18.0	8.0	1.0	1.0	cc-T3-70	1000	1460	5200.0	12000.0	100.0	40.0	14.0	0.4	_ Z.
12-11 12-12 12-12 <th< td=""><td>CC-113</td><td>62</td><td>200</td><td>2.0</td><td>2.0</td><td><u.5< td=""><td><0.5</td><td><0.5</td><td>1.0</td><td>1.0</td><td>CC-T3-708</td><td>1000</td><td>2900</td><td>10000.0</td><td>35000.0</td><td>310.0</td><td>97.0</td><td>41.0</td><td>0.3</td><td>3</td></u.5<></td></th<>	CC-113	62	200	2.0	2.0	<u.5< td=""><td><0.5</td><td><0.5</td><td>1.0</td><td>1.0</td><td>CC-T3-708</td><td>1000</td><td>2900</td><td>10000.0</td><td>35000.0</td><td>310.0</td><td>97.0</td><td>41.0</td><td>0.3</td><td>3</td></u.5<>	<0.5	<0.5	1.0	1.0	CC-T3-708	1000	2900	10000.0	35000.0	310.0	97.0	41.0	0.3	3
Chi 10 Here Disc Disc <thdisc< th=""> Disc Disc <t< td=""><td>CC-114</td><td>32</td><td>360</td><td>6040 0</td><td>23300.0</td><td>170.0</td><td>67.0</td><td>26.0</td><td>0.3</td><td>24</td><td>C-13-75</td><td>336</td><td>/39</td><td></td><td>160.0</td><td>27</td><td>1.0</td><td><0.5</td><td>0.7</td><td>4</td></t<></thdisc<>	CC-114	32	360	6040 0	23300.0	170.0	67.0	26.0	0.3	24	C-13-75	336	/39		160.0	27	1.0	<0.5	0.7	4
c-117 23 628 31.0 17.0 9.4 1.2 0.9 1.8 0.5 cc-T3-90 see 1600 2200.0 38.0 11.0 5.3 0.4 2.2 c-118 33 ere 17.0 13.0 7.8 1.4 1.1 1.3 0.8 6414-25 18 ese 1100.0 2200.0 38.0 11.0 5.3 0.4 2.0 x-120 et ete 17.0 7.9 5.3 0.6 <0.5	cc-116	31	444	95	53	<0.5	<0.5	<0.0	1.8	06	CC-T3-85	322	734	140.0	210.0	49	1.0	<1	0.7	1
x-118 x3 sr 17.0 13.0 7.8 1.4 1.1 1.3 0.8 x-119 x1 es 17.0 13.0 7.8 1.4 1.1 1.3 0.8 x-119 x1 es 17.0 5.3 0.6 0.5 2.2 0.5 1.6 1.4 1.0 0.5 0.5 1.3 x-120 et ets 210.0 18.0 19.0 1.4 1.2 11.7 0.1 8-555-55 x1 x6.0 10.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	cc-117	20	628	31.0	17.0	9.4	1.2	0.9	1.8	0.5	cc-T3-90	346	1600	1100.0	2900.0	38.0	11.0	5.3	0.4	2
xx-119 3it site 860.0 480.0 26.0 17.0 5.7 1.7 0.6 6-425-35 3t 1000 15.0 16.0 1.4 1.0 0.5 0.9 1.1 xx-120 st stee 17.0 7.9 5.3 0.6 <0.5	cc-118	33	470	17.0	13.0	7.8	1.4	1.1	1.3	0.8	8-414-25	10	908	23.0	23.0	1.6	1.1	<0.5	1.0	1.
x-120 e1 eee 17.0 7.9 5.3 0.6 <0.5	cc-119	310	418	800.0	480.0	26.0	17.0	5.7	1.7	0.6	8-425-35	38	1100	15.0	16.0	1.4	1.0	<0.5	0.9	1.
xc-121 er 47 47 210.0 18.0 19.0 1.4 1.2 11.7 0.1 8-555-65 xe ee 19.0 21.0 2.3 1.0 <0.5	cc-120	41	600	17.0	7.9	5.3	0.6	<0.5	2.2	0.5	8-489-99	296	1000	580.0	440.0	100.0	40.0	26.0	1.3	Q.
xc-122 te tree 290.0 280.0 4.9 2.2 1.4 0.7 5656.74 zi tree 2.20 37.0 3.4 1.8 0.7 0.6 1.1 xc-123 te sas 300.0 360.0 2.4 0.6 4.6 6.05 0.8 1.3 3.573.04 2.8 11.0 1.8 1.7 4.5 1.1 1.8 1.7 4.5 1.1 1.8 1.7 4.5 1.1 1.8 1.7 4.5 1.1 1.8 1.7 4.5 1.1 1.8 1.7 4.5 1.1 1.8 1.7 4.5 5.5 1.0 1.1 4.5 1.1 1.8 5.7 4.5 1.1 4.5 1.1 1.8 5.7 4.5 1.5 1.1 4.5 4.5 1.5 1.1 4.5 4.5 1.5 1.1 4.5 4.5 4.20 4.30 1.6 4.5 4.5 5.0 5.0 5.1 0.5 2.2 4.6 1.0 1.5 1.1 4.5 4.20 4.30 1.6	cc-121	67	476	210.0	18.0	19.0	1.4	1.2	11.7	0.1	8-555-65	34	\$60	19.0	21.0	2.3	1.0	<0.5	0.9	1.
xc-123 e4 asa 300.0 380.0 2.4 0.6 <0.5	cc-122	18	1700	290.0	210.0	28.0	4.9	2.2	1.4	0.7	8-565-74	21	670	22.0	37.0	3.4	1.8	0.7	0.6	1.
xx-124 17 xx-12 10 xx-12 10 xx-12 10 10 xx-12 10 10 0.5 <	cc-123	64	\$36	300.0	380.0	2.4	0.6	<0.5	8.0	1.3	8-573-04	25	710	8.5	11.0	5.7	1.7	<0.5	0.8	1.
bc:120 13 130 3.1 130 1.1 1.0 3.1 3.1 1.0 3.1 1.0 3.1 1.0 1.0 1.0 3.1 1.0 1.0 1.0 3.1 1.0 <td< td=""><td>CC-124</td><td>70</td><td>490</td><td>1.2</td><td>120</td><td><u.5< td=""><td><0.5</td><td><u.0< td=""><td>0.0</td><td>1.7</td><td>8-5/4-84</td><td>14</td><td>799</td><td>10.0</td><td>20.0</td><td>1.9</td><td>1.0</td><td>20.5</td><td>0.6</td><td>1.</td></u.0<></td></u.5<></td></td<>	CC-124	70	490	1.2	120	<u.5< td=""><td><0.5</td><td><u.0< td=""><td>0.0</td><td>1.7</td><td>8-5/4-84</td><td>14</td><td>799</td><td>10.0</td><td>20.0</td><td>1.9</td><td>1.0</td><td>20.5</td><td>0.6</td><td>1.</td></u.0<></td></u.5<>	<0.5	<u.0< td=""><td>0.0</td><td>1.7</td><td>8-5/4-84</td><td>14</td><td>799</td><td>10.0</td><td>20.0</td><td>1.9</td><td>1.0</td><td>20.5</td><td>0.6</td><td>1.</td></u.0<>	0.0	1.7	8-5/4-84	14	799	10.0	20.0	1.9	1.0	20.5	0.6	1.
x:128 Te 448 1.6 0.7 <0.5	00-120	13	210	390.0	370.0	3.2	28	11	11	0.2	0.220.38	41	405	7.6	15	1.3	<0.5	<0.5	51	Ö
xc-130 Twe 100 2800.0 31.0 22.0 93 1.2 0.8 xc-131 182 386 15.0 17.0 <0.5	cc-128	78	444	1.6	0.7	<0.5	<0.5	<0.5	2.3	0.4	9-233-48	19	440	9.4	4.2	1.3	<0.5	<0.5	2.2	Ō.
xx-131 182 386 15.0 17.0 <0.5	cc-130	700	1608	3400.0	2800.0	31.0	22.0	9.3	1.2	0.8	9-24-32	184	436	42.0	43.0	1.6	<0.5	<0.5	1.0	1
xx-200 546 680 160.0 4.6 0.8 0.6 0.8 1.2 xx-AP 320 860 680.0 610.0 7.6 4.8 2.0 1.1 0.9 xx-T1-57 186 680.0 650.0 7.6 4.8 2.0 1.1 0.9 xx-T1-57 186 680.0 650.0 4.8 1.8 0.7 0.5 1.9 xx-T1-201 182 728 350.0 650.0 4.8 1.8 0.7 0.5 1.9 xx-T1-21 116 400 38.0 64.0 -0.5 4.0 50.0 10.0 4.1 0.7 -0.5 1.8 0.7 0.5 1.9 9-62-71 12 340 22.0 17.0 2.2 <0.5	cc-131	182	305	15.0	17.0	<0.5	<0.5	<0.5	0.9	1.1	9-32-41	104	436	62.0	100.0	2.2	<0.5	<0.5	0.6	1
\$\phi_2\$ \$\phi_2\$ <th< td=""><td>cc-200</td><td>540</td><td>690</td><td>130.0</td><td>160.0</td><td>4.6</td><td>0.8</td><td>0.6</td><td>0.8</td><td>1.2</td><td>9-334-43</td><td>77</td><td>446</td><td>59.0</td><td>120.0</td><td>10.0</td><td>0.9</td><td><0.5</td><td>0.5</td><td>2</td></th<>	cc-200	540	690	130.0	160.0	4.6	0.8	0.6	0.8	1.2	9-334-43	77	446	59.0	120.0	10.0	0.9	<0.5	0.5	2
xc-T1-57 346 ese 980.0 7200.0 720.0 91.1 33.0 0.4 22 9401-10 446 1040 720.0 220.0 11.0 1.3 0.5 0.9 1 xc-T1-201 112 720 350.0 650.0 4.8 1.8 0.7 0.5 1.9 9-62.71 12 340 22.0 17.0 2.2 c0.5 c0.5 1.3 0.9 xc-T1-251 110 400 38.0 64.0 <0.5	CC-AP	320	966	680.0	610.0	7.6	4.8	2.0	1.1	0.9	9-562-72	290	700	180.0	110.0	4.1	0.7	<0.5	1.6	Ő.
xz-11-207 trg 3500 0500 0500 0500 1.5 0.7 0.5 1.5 9-62-11 12 240 2.0 1.0 2.2 005 0.05 <td< td=""><td>cc-T1-5/</td><td>266</td><td>636</td><td>960.0</td><td>2200.0</td><td>22.0</td><td>9.1</td><td>3.5</td><td>0.4</td><td>22</td><td>9-601-10</td><td>450</td><td>1000</td><td>230.0</td><td>260.0</td><td>11.0</td><td>1.3</td><td>0.0</td><td>0.9</td><td>1.</td></td<>	cc-T1-5/	266	636	960.0	2200.0	22.0	9.1	3.5	0.4	22	9-601-10	450	1000	230.0	260.0	11.0	1.3	0.0	0.9	1.
xc-T1-10 tie	CC-11-207	182	720	350.0	0.000	4.0 80.0	1.5	12 0	U.5	1.9	3-04-/1	12	740 6	110	17.0	<0.4 <0.4	~V.0 <0.5	<0.9 <0.4	1.3	- 0
xz-T1-25 xe xe 18.0 17.0 1.8 <0.5	cc-11-20	940	1300	38.0	64 A	<0.0	<0.0 ∢0.5	<0.5	0.4	17	9.647.46	344	TEA	35.0	36.0	1.4	0.6	<0.5	1.0	1
xx-T1-25 110 1100.0 1/2.0 4.8 1.8 0.5 1.9 xx-T1-25 110 618 73.0 160.0 1.2 <0.5	cc-T1-72	110	204	14.0	17.0	1.8	<0.5	<0.5	1.1	0.9	9-71-80	12	246	28.0	20.0	2.5	<0.5	<0.5	1.4	Ö
xc-T1-25 110 610 1.2 <0.5	cc-T1-25	345	170	590.0	1100.0	12.0	4.8	1.8	0.5	1.9	11-172-82	644	1100	290.0	380.0	23	1.5	0.6	0.8	1
xx-T1-35 290 680 97.0 140.0 1.4 0.9 <0.5	cc-T1-25	190	610	73.0	160.0	1.2	<0.5	<0.5	0.5	2.2	11-184-92	305	778	210.0	730.0	5.3	1.7	0.6	0.3	3.
xc-T1-45 38 285 9.8 15.0 1.1 <0.5	cc-T1-35	290	654	97.0	140.0	1,4	0.9	<0.5	0,7	1.4	11-192-01	600	1808	580.0	1300.0	6.2	2.7	1.0	0.4	2
xx-T1-55 32 286 4.4 3.3 1.5 <0.5	cc-T1-45	30	265	9.6	15.0	1.1	<0.5	<0.5	0.7	1.5	11-249-58	236	748	120.0	100.0	0.7	0.5	<0.5	1.2	0
xx-T1-55 140 446 45.0 39.0 3.2 0.5 <0.5	cc-T1-55	32	269	4.4	3.3	1.5	<0.5	<0.5	1.3	8.0	11-277-87	126	548	30.0	13.0	<0.5	<0.5	<0.5	2.3	0.
xx-11-80 270 e10 150.0 230.0 3.0 1.0 40.5 0.7 1.5 xx-T1-90 154 640 75.0 290.0 2.1 <0.5	cc-T1-65	160	496	45.0	39.0	3.2	0.5	< 0.5	1.2	0.9	11-314-24	34	265	21.0	14.0	2.2	<0.5	SO.5	1.0	0
xc-11-90 144 776 100.0 140.0 2.1 0.5 0.5 0.5 1.4 11-359-72 14 22.0 16.0 2.3 0.5 0.5 1.2 0 xc-T1-95 144 776 100.0 140.0 2.1 0.7 0.5 0.7 1.4 27.0 22.0 3.7 <0.5	CC-T1-80	270	610	150.0	230.0	3.U	1.0	<u.5< td=""><td>0.7</td><td>1.5</td><td>11-324-33</td><td>16</td><td>230</td><td>10.0</td><td>14.0</td><td>2.3</td><td>40.5</td><td><0.5</td><td>1.3</td><td>0</td></u.5<>	0.7	1.5	11-324-33	16	230	10.0	14.0	2.3	40.5	<0.5	1.3	0
xx-T1-105 za 230 54.0 2.1 <0.5	CC-11-90	754	640 	100.0	140.0	2.1	NU.0		0.3 0.7	0.9 14	11.360.70	14 94	444	27.0	72.0	37	<0.0	<0.5	12	0
ze-T1-110 22 280 22.0 14.0 2.7 <0.5 <0.5 1.6 0.8	00-11-50 m-14-4/4	140) (776	20.0	54.0	21	40.F	~v.≎ ≪0.6	0.7	1.9	11-372-82		1.20	28.0	18.0	4.0	0.5	<0.5	1.6	0
PdiPt Avg e 1	ac-T1-110	27	260	22.0	14.0	2.7	<0.5	<0.5	1.6	0.6										
											1							Pd/Pt	Avg =	1.
											L									

Table 9. PGE, Cu and Ni analyses for Coors area and Mouat Mine Road samples.

Figure 12a. Plot of palladium versus platinum for trench samples in the Coors area (Stillwater Mining Co. analyses).

Figure 12b. Plot of palladium verses platinum for Coors area and Mouat mine road samples (USGS analyses this report).

Figure 13a. Plot of copper and nickel versus palladium for trench samples in the Coors area (SMC).

Figure 13b. Plot of copper and nickel versus palladium for Coors area and Mouat mine road samples.

Figure 14a. Plot of copper and nickel versus platinum for trench samples in the Coors area (SMC).

Figure 14b. Plot of copper and nickel versus platinum for trench samples in the Coors area (SMC).

INTERPRETATIONS

JM REEF

Numerous models have been proposed to explain the PGE-rich JM Reef. Because some of these ideas could relate to the Coors mineralization, several of the more accepted ones are discussed. Two general approaches exist, one involving a magmatic origin, the other involving a hydrothermal origin. Trace-element and isotopic studies of the parental magmas of the Stillwater Complex suggest that at least two different magmas were involved (Irvine et al., 1983, Lambert, 1982). The JM reef is thought to have formed as a result of mixing of these magmas; one of anorthositic lineage, A-type, and the other of ultramafic lineage, U-type (Todd et al., 1982; Irvine et al, 1983). Sulfur is thought to come from the anorthositic magma and PGE from the ultramafic magma. Other workers argue that the mixing was between the resident, sulfide-saturated magma with plagioclase on its liquidus and a less fractionated magma from the same parent (Naldrett et al., 1990; Campbell et al, 1983). Sulfide saturation in this latter theory is attained by crystallization of silicates to concentrate sulfur (Fig. 15, Naldrett et al, 1990).

Both theories state the need to have the sulfides exchange with a large amount of silicate magma. Campbell et al. (1983), derive the equation Y=XD(R+1)/(R=D) where R is the silicate- to sulfide-liquid mass ratio, Y is Pd/Pt, X is the initial concentration of Pd/Pt in the magma, and D is the Nernst distribution coefficient. This equation determines the PGE content of a magmatic sulfide liquid, and is illustrated in Figure 16. The R factor,

Figure 15. Schematic diagram illustrating the variation in the solubility of iron sulfide with the fractionation of a sample of chilled marginal material from the Bushveld Complex. (Naldrett, 1990)

Figure 16. The effect of variations in the silicate:sulfide ratio (R) on the precious metal content of a sulfide liquid for different values of D. The concentration of the precious metal in the silicate melt (X1) is assumed to be 10 p.p.b.. Note that if R is less than a tenth of D, Y is virtually independent of D. (Naldrett, 1990)

the mass ratio of silicate to sulfide liquid, must be high in order for platinum to precipitate (Mathez et al., 1989; Naldrett et al., 1990). These authors suggest that turbulent mixing of the two magmas raised the R factor sufficient to allow the sulfides to scavenge PGE from the magma and precipitate (Naldrett et al., 1990).

Boudreau and McCallum, (1992), and Boudreau, (1988), present arguments for hydrothermal, in situ formation of the JM Reef. Boudreau (1988) suggested that a volatile-enriched melt was high in chlorine, or a chlorine-rich volatile fluid became locally concentrated, to produce the textures and mineralogy present in the reef package. A chlorine-rich volatile fluid enriched in PGE may have evolved during crystallization of intercumulus liquid below, migrated up through the cumulate pile, and may have redissolved in a vapor-undersaturated intercumulus melt to cause partial melting of the cumulates. This horizon, within which the fluid is redissolved, marks a chemical or physical discontinuity in the pile. Evidence supporting the presence of a chlorine-rich volatile fluid includes the presence of chlorine-rich hydrous phases, pegmatoidal textures, resorbed plagioclase, and hydrous and anhydrous mineral inclusions in chromite and apatite (Boudreau, 1988). Other indications of in-situ formation of the reef are the presence of anorthosites separating the olivine-bearing units from norites and gabbronorites. These anorthosite layers, with rather sharp contacts, are monomineralic and may represent metasomatic zones (Boudreau, 1988).

52

The association with pegmatoids argues in favor of a deuteric or hydrothermal origin for the platinum mineralization. However, the fact that the PGE reef in most of these intrusions is laterally continuous and lies stratigraphically in a similar position with respect the first appearance of cumulus plagioclase and the reappearance of olivine, is difficult to account for by a hydrothermal process alone. However, this theory could be applied to the Coors anomaly.

PHYSICAL DISTURBANCES

The Lower Banded Series of the Stillwater Complex shows many unusual features which are caused by physical disturbances at the time of formation. Since the Stillwater Complex is a sequence of layered cumulates, magmatic conditions are analogous in this respect to sedimentary environments. Slumping, scouring, cross-bedding, and other sedimentary structures are documented throughout the complex (Foose, 1985). Many of the irregular anomalous features described above for the Coors 602 can be explained by sedimentary processes.

Strong Currents, Turbulent Mixing Of Magma, And Magmatic Erosion

Both the JM and Merensky reef packages show ultramafic xenoliths, slump structures, and disturbed layering suggesting turbulence during mixing (Naldrett et al., 1990). Pulses of magma likely entered the magma chamber numerous times during formation of the layered complex. Many workers use this idea to explain reversals in fractionation trends upsection in the Stillwater Complex. Turbulent mixing is also needed in models of the JM Reef formation (Campbell et al, 1983; Naldrett et al, 1990). Bow et al. (1982) argue that the ellipsoidal bronzitites directly beneath the JM Reef in the Stillwater Mine area, are xenoliths from the Ultramafic Series. They suggest that the xenoliths are similar to rip-up clasts acquired during times of turbulent mixing. Strong currents could produce scouring in the cumulate pile into which they intrude. The layers through which the JM Reef downcuts in the Coors 602, could have been scoured by strong currents prior to or during Reef formation. The Reef would then form in the trough created .

Bow (1982), Irvine et al. (1983) and Turner et al. (1985), argue that the downcutting features described in the Stillwater mine may represent a pothole. Potholes are believed to be formed from scouring or thermal erosion from a new pulse of magma (Bow, 1982). Buntin et al. (1985) argue that the potholes are scars of the sit of C-H-O-S rich fluids in the new magma are being injected.

Layers in potholes can dip smoothly or drop abruptly into the pothole, or even terminate against the pothole margin. PGE mineralization occurs in the bottom of the potholes, presumably because the reef dips into them. Layers in the Coors area also dip and terminate and mineralization takes an unusual dip in the stratigraphic section (Fig. 5a). Stratigraphic units are missing or thinned due to erosion in forming potholes. This could explain the virtual absence of Gabbronorite I in the Coors 602 area. The reef dips in these

areas and crosscuts stratigraphy along the upper edges of the potholes. Many contacts in the Coors are show the units truncating norite layers, and could mark the upper edge of a pothole (Fig. 17). Faulting and lack of exposure may obscure such an occurrence in the Coors area.

Buntin et al. (1985) describe discordant, pegmatoidal gabbroic dikes, within the potholes, that pinch out a few meters above and below the layers they cut. Some of these rare dikes contain fragments of the pothole margin. Based on these dikes, they proposed a plutonic fumarole model. The bronzitite body along the Fishscale fault, as well as the pods at the base of the Coors-602 area, could be similar to these dikes, in that it crosscuts layering and pinches out in both directions.

One inconsistancy in the idea of the Coors area representing one of these potholes is the presence of the JM reef above the lower, anomalous, Coors mineralization. However, without three-dimensional control, the presence of potholes cannot be ruled out. A pothole in the Coors area could extend approximately perpendicular to the strike of the layers and into the rocks, and could have an irregular shape.

Topography In The Magma Chamber

The absence or thinning of units in the Coors area, as mentioned above, could form in other ways besides potholes. Turner et al. (1985), Raedeke and McCallum (1985), and Naldrett (1990) describe variations in thickness in the Ultramafic Zone (Figs. 18 & 19). The Peridotite Zone at Chrome Mountain is about half as thick as that at

Figure 17. Schematic model of disturbed layering in Coors area caused by an influx of new magma. JM Reef shown in present position after influx of new magma.

Figure 18. Reconstruction of the base of the Stillwater Complex showing idealized basins and topographic highs at the time of JM Reef deposition (Turner, et al., 1985)

Figure 19. Conceptual view of basin and ridge development before Laramide deformation in the eastern part of the Stillwater Complex (from Turner et al., 1985)

Mountain View (Raedeke and McCallum, 1985). These authors explain the differences as platform versus basinal features formed from magma crystallizing dense, ultramafic cumulates causing the floor of the magma chamber to subside. The thicker Mountain View section forms in the basin, and the Chrome Mountain section forms on a stable platform (Raedeke and McCallum, 1984).

Slumping, Compaction, And Faulting During Formation

Based on field observations and drill core examination, models other than faulting must be used to explain the irregular contacts in the Coors area. Various magmatic processes seem most plausible. A crystals and melt combination creates a layered crystalline mush, which eventually crystallizes to produce the sedimentary-style layering. Crystals forming on a slope, along the crystallizing front or on a topographic high in the chamber, could slump causing compaction (Fig. 20). A load of crystals settled on top of the crystalline mush could also cause compaction in the layers below.

The bronzitite masses in the Coors area can also be attributed to sedimentary processes during formation. A disturbance such as compaction, faulting, or slumping during crystallization could not only bring xenoliths up from below, but could also force a bronzite crystal mush up through fractures in the manner of a clastic dike.

The origin of the pegmatoids in the Coors area could possibly be related to the same processes that disrupted the stratigraphy below the reef. Any late-stage movement within the solidifying pile of cumulates could have created channelways to facilitate

Figure 20. Schematic diagram showing layering disrupted by a crystallized block slumping off a topographic high in the magma chamber.

streaming of volatiles separated during late-stage, differentiation. Concentration of volatiles could have inhibited nucleation of late-stage phases thereby forming pegmatoids.

CHEMICAL DISTURBANCES

Not all of the anomalous features in the Coors-602 area can be explained strictly by physical events. Some chemical disturbances are present which may or may not be related to the physical disruptions discussed above.

Mg Number

Naldrett et al. (1987) and Raedeke et al.(1985) give representative Mg numbers for the Stillwater complex. As stated earlier, McCallum suggests an increase in Fe in the Chrome Mountain area (McCallum, 1980). The Mg/(Mg+Fe) content of bronzites of the Bronzitite Zone from the Coors and Lost Mountain areas, both relatively close to Chrome Mountain, average 0.83. Although the data from Coors and Lost Mountain may support the suggested increase in Fe in the Chrome Mountain area, the difference in the data does not seem statistically significant enough to use as evidence for Fe increase. However, the bronzite analyses from the Lower Banded Zone do show a significant Fe increase.

The Mg/(Mg+Fe) values of samples from the Coors area show some interesting relationships. An upward decrease, as seen in groups A and E in Figure 10, in Mg numbers in bronzites is what one would expect through differentiation. Bronzites from the unmineralized samples have a slightly higher Mg number. Mineralized samples from
the lower Banded Series and along the bC "dike" have low Mg numbers as compared with reef samples (group D1) which have high magnesium numbers. If mineralization of PGEbearing sulfides caused the iron increase in the bronzitite samples from the Banded-Ultramafic contact, one would expect PGE-bearing sulfides to cause a similar iron increase in reef samples. The reef samples do not show an iron increase and they are not far off the fractionation trend (groups E and C in Fig.10). These results are evidence that the iron increase in the anomalous bronzitites in the Norite I Zone is due to some other event, not the presence of sulfides.

One explanation for the presence of bronzitites in the lower Banded Series is the possibility that they are xenoliths from the Bronzitite Zone. Assuming the bronzitite masses in the Norite I Zone of the Coors-602 area are xenoliths detached from the Bronzitite Zone, the chemical signatures should be similar and an upward decrease in Mg number should not occur. In Coors, the Mg numbers of orthopyroxenes from unmineralized bronzitites in the lower Banded Series is similar to Mg numbers of samples analyzed from the Bronzitite Zone. These unmineralized samples may represent xenoliths from the Bronzitite zone. The mineralized bronzitites, however, have low Mg numbers. The possibility that these mineralized bronzitites are xenoliths from the Bronzitite Zone can therefore be ruled out.

Resorption

An injection of a new batch of magma, as proposed for the formation of potholes (Bow et al., 1982; Buntin et al., 1985; Vermaak and Von Gruenewalt, 1981), as well as the formation of the reef (Naldrett et al., 1990; McCallum et al., 1980, and others) and cyclic units, is consistent with the textures observed in the Coors samples. Many of the bronzites exhibit a resorbed or remelting texture. The grains not only have rounded boundaries, but they contain numerous embayments as if they have come in contact with a melt with which they were not in equilibrium. If the intercumulus melt around the bronzites mixed with a more fractionated melt from above, the bronzite would become unstable. Volatile influx could also cause instability of bronzite grains.

Increase in fH₂O

Raedeke and McCallum (1984), suggest an increased water fugacity during crystallization in the Chrome Mountain vicinity could cause an increase in Fe in orthopyroxene relative to those from Mountain View. The presence of numerous pegmatoids, some of which contain phlogopite, along the Ultramafic-Banded Series contact in the Coors area, and the presence of secondary dunite lower in the section, support the idea of increased fH_2O . Stumpfl and Rucklidge (1982) suggest that Fe-rich hydrous fluids rising through the cumulate pile form similar dunite pipes in the Bushveld Complex by a metasomatic origin. Pegmatoidal pyroxenite near the pipes in the Bushveld

63

shows an increase in Fe content compared to nearby pyroxenites (Stumpfl and Rucklidge, 1982). Schiffries (1982) suggests that the plagioclase in the dunites was removed by hydrolysis and olivine was produced by removal of silica from pyroxene. He argues that the pipes represent conduits for intercumulus flow of Fe-rich hydrous fluid.

Assuming the discordant dunites in the Stillwater formed the same way as those in the Bushveld, the Fe-rich hydrous fluid responsible for the formation of dunite could have migrated upwards through fractures, equilibrating with interstitial melt, thereby becoming silica saturated. Instead of Fe-rich, Si-undersaturated hydrous fluids, the hydrous fluid, once in the Banded Series, was probably Fe-rich and Si-saturated, thus forming bronzitites rather than dunites. The infiltrating fluids also would have provided the necessary mixing needed for PGE to collect in the sulfides (Naldrett et al, 1990). The disrupted stratigraphy in the Coors area could have been caused by volume change due to dissolution of plagioclase (Schiffries, 1982).

Schiffries (1982) suggests that the location of the pipes is structurally controlled, the metasomatizing fluids flowing through irregular channelways along structural weaknesses. Naldrett et al. (1987) mention the possibility of growth faults forming along the margins of basins in the magma chamber. Such faults could have been the structural weaknesses in which these pipes formed. He suggests pegmatoids could have formed as open-space filling when fluids crossed over fractures and crystallized rapidly. The large Fishscale fault zone in which some of bronzitite occurs could be a reactivated growth fault.

PGE Mineralization Below the JM Reef

Irvine et al. (1983) argues that a dissolved volatile component, especially water, diffuses faster than other components and could be the dominant component in mixing by double-diffusive convection. If this is the case, and water is present in the melt, mixing could be triggered earlier or more extensively than in areas with less water. Evidence is presented above for elevated amounts of water in the Coors area; thus the onset of mixing could have been earlier, that is lower in the stratigraphic section. If mixing did not begin until the Olivine-bearing Zone I had formed, as elsewhere in the Stillwater, the presence of water could have brought the mixing horizon down to the present position in the Norite I Zone seen in the Coors-602 area.

Naldrett et al. (1990) show that the R factor, the ratio of silicate to sulfide in the melt, must be sufficiently high for PGE sulfides to form. Mixing with large volumes of new magma would have accomplished this to form the JM reef. Considering the Coors mineralization, mixing must have occurred in the lower Norite I Zone prior to deposition of the JM reef. Alternatively, some of the hybrid melt from the mixing horizon, where the reef subsequently formed, could have migrated to the Coors area and deposited the PGE sulfides.

The fact that the Pd/Pt values are lower in the Coors-602 area than in the reef, and that the overall PGE content of the Coors 602 zone is less than the Reef, and that the mineralized bronzitites have higher Mg numbers than mineralized reef rock may suggest that the Coors mineralization had a different origin from the reef.

SUMMARY AND CONCLUSION

The Coors-602 area contains numerous irregular features including disturbed stratigraphy, PGE mineralization below the reef, absence of the Gabbronorite I, discordant pegmatoidal bronzitites, and low Pd/Pt ratios. Because the sulfides in the Coors area contain significant PGE values, although presently uneconomic, it is important to determine whether the area is just a random anomaly, or this stratigraphic location represent another possible ore horizon. The irregular features in the Coors area are likely genetically associated with the PGE-bearing sulfides. A viable model needs to encompass all such features. Two models, based on data from this work, are proposed below.

Model 1

The Coors-602 area is the first recognized outcrop exposure of a pothole in the Stillwater Complex. Because the region was on a topographic high in the magma chamber and in an overall thinner portion of the complex, crystallization occurred slightly earlier than other areas. Crystallized blocks slumped to cause disruption of the layers below. Bronzitite masses from the Ultramafic Series were ripped up during this process. An influx of a new magma caused further disruption in the layers. Layering disturbed just prior to Reef deposition, provided the necessary surface irregularity needed for the onset of pothole formation. Scouring or thermal erosion caused the downcutting to form the pothole. When the new magma came in contact with the bronzitite masses, the bronzites became unstable and resorbed. Volatiles fostered formation of pegmatoids in the

66

bronzitites as well as the reef. The fH_2O of the volatiles thus increased the iron content in the bronzitites. When the layering was disrupted, conduits were created through which mixed magma (high R value), which ultimately formed the JM reef, flowed down into bronzitite masses precipitating PGE-bearing sulfides. The highly mixed magma, which later precipitated the sulfides with the greater amounts of PGE in the reef, did not mix with the bronzitites below.

Model 2

Syndepostional "growth" faulting occurred during formation of the Stillwater complex. These faults created conduits through which Cl-rich volatiles, produced by metamorphosing the country rocks below, could flow. The location of the dunite "pipes", at Chrome Mountain represents one such fault. Volatiles rose through this fault, caused recrystallization of bronzitites in the Peridotite Zone to form the dunite "pipes" and continued up to the Coors area. These volatiles created pegmatoids, resorbed bronzites, and increased the *f*H₂O which increased the iron content in upper Bronzitite Zone. The Cl- rich volatiles scavenged PGE along the way upsection. The PGE' mixed with the sulfide-saturated bronzites, and occasionally norites, to form the anomalous mineralization in the Coors area. The PGE in the volatiles had a low Pd/Pt ratio. A new magma injection, just above the Coor level, along with continued movement along the syndepostional fault, disrupted the stratigraphy in the Coors area. The disturbed layering provided the necessary surface irregularity needed for the onset of pothole formation. Scouring or thermal erosion caused downcutting to form the pothole in which the JM reef formed.

Both of these models account for the disrupted stratigraphy, the pegmatoidal bronzitites, the PGE-bearing sulfides, and the absence of Gabbronorite I in the Coors 602 zone. Some combination of these two models may represent the best viable genetic process to explain this anomalous zone. In both models, the possibility exists that enough PGE could concentrate to form an economic ore zone. The concentrating process did not go far enough in the Coors area to make it economic. The process did, however, go far enough to provide insight as to how such an anomaly could form and where one would look for other anomalies of this sort elsewhere in the Stillwater and other layered mafic intrusions.

68

REFERENCES

- Boudreau, A.E., and McCallum, I.S., 1992, Concentration of platinum-group elements by magmatic fluids of layered intrusions, Economic Geology, v.87, P. 1830-1848.
- Boudreau, A. E., 1988, Investigations of the Stillwater Complex. IV. The Role of Volatiles in the Petrogenesis of the JM Reef, Minneapolis Adit Section: Canadian Mineralogist, v. 26, p. 193-208.
- Bow, C., Wolfgram, D., Turner, A., Barnes, S., Evans, J., Zdepski, M., and Boudreau, A., 1982, Investigations of the Howland Reef of the Stillwater Complex, Minneapolis Adit Area: Stratigraphy, Structure, and Mineralization: Economic Geology, v. 77, p. 1481-1492.
- Buntin, T.J., Grandstaff, D.E., Ulmer, G.C., and Gold, D. P., 1985, A pilot study of geochemical and redox relationships between potholes and adjacent normal Merensky reef of the Bushveld Complex: Economic Geology, v. 80, p. 975-987.
- Browdowski, R.A.. Ulmer, G.C., Bonini, W.E., and Gold, D.P., 1982, The Stillwater stratiform complex: New evidence for its northern extent: Geological Society of America Abstracts with Programs, v. 14, p.453.
- Campbell, I.H., 1978, Some problems with the cumulus theory: Lithos, V. 11, p.311-323.
- Campbell, I. H., Naldrett, A. J., and Barnes, S. J., 1983, A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes: Journal of Petrology, v. 24, p. 133-165.
- Conn, H.K., 1979, Discovery and evaluation of the Johns-Manville platinum-palladium prospects, Stillwater Complex, Montana, USA: Canadian Mineralogist, v. 17, p. 463-469.
- Foose, M.P., 1985, Primary structural and stratigraphic relations in Banded-series cumulates exposed in the East Boulder Plateau-Contact Mountain area, in Czamanske, G.K. and Zeintek, M.L., The Stillwater Complex, Montana Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p.305-324.
- Hess, H.H., 1960, Stillwater igneous complex, Montana a quantitative mineralogical study: Geological Society of America Memoir 80, 230p.

- Howland, A.L., 1955, Chromite deposits in the central part of the Stillwater Complex, Sweet Grass County, Montana: U.S. Geological Survey Bulletin 1015-D, p.99-121.
- Hyndman, D.W., 1985, Petrology of Igneous and Metamorphic Rocks, McGraw Hill Inc., New York, p.61.
- Irvine, T.N., 1980, Magmatic Density Currents and cumulus processes: American Journal of Science, vol.280-A, part 1, p.1-58.

1980, Magmatic infiltration metasomatism, double-diffusive fractional intrusions: *in* Hargraves, R.B.,(ed.), Physics of Magmatic Processes, Princeton University Press, New Jersey, p.325-383.

- Irvine, T.N., Todd, S.G., and Keith, D.W., 1983, The J-M platinum-palladium reef of the Stillwater Complex, Montana:II. Origin by double-diffusive convective magma mixing and implications for the Bushveld Complex: Economic Geology, v. p.1287-1348.
- Jackson, E. D., 1961, Primary Textures and Mineral Associations in the Ultramafic Zone of the Stillwater Complex, Montana: Geological Survey Professional Paper 358, 106 p.
- Jones, W.R., Peoples, J.W., and Howland, A.L., 1960, Igneous and tectonic structures of the Stillwater Complex, Montana: Geological Survey Bulletin 1071-H, P.281-340.
- Kinloch, E., and Peyerl, W., 1986, The Union Section of Rustenburg Platinum Mines Limited with reference to the Merensky Reef: *in* Mineral Deposits of Southern Africa, Anhaeusser, C. R. and Maske, S. (eds), Vol. I and II, Geological Society of South Africa, Johannesburg, p. 1061-1090.
- Kleinkopf, M.D., 1985, Regional gravity and magnetic anomalies of the Stillwater Complex area: in Czamanske, G.K. and Zeintek, M.L., The Stillwater Complex, Montana Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p.33-38.
- Lambert, D.D., 1982, Geochemical evolution of the Stillwater Complex, Montana: Evidence for the formation of platinum-group element deposits in mafic layered intrusions [Ph.D thesis]: Colorado School of Mines, Golden, Colorado, 274 p.
- Lipin, B.R., 1993, Pressure increases the formation of chromite seams and the developments of the ultramafic series in the Stillwater Complex, Montana: Journal of Petrology, V. 34, no.5, p.955-976.

- Mathez, E. A., Dietrich, V. J., Holloway, J. R., and Boudreau, A. E., 1989, Carbon distribution in the Stillwater Complex and evolution of vapor during crystallation of Stillwater and Bushveld magmas: Journal of Petrology, v. 30, p. 153-173.
- McCallum, I.S., Raedeke, L. D., and Mathez, E.A., 1980, Investigations of the Stillwater Complex: Part I. stratigraphy and structure of the banded zone: American Journal of Science, vol. 280-A, part 1, p.59-87.
- McCallum, I.S., Raedeke, L.D., Mathez, E.A., and Criscenti, L.J., A traverse through the Banded series in the Contact Mountain area: *in* Czamanske, G.K. and Zeintek, M.L., The Stillwater Complex, Montana, Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p. 293-304.
- Naldrett, A.J., Cameron G., von Gruenewaldt G., and Sharpe M.R., 1987, The formation of stratiform PGE deposits in layered intrusions, *in* Origins of Igneous Layering, Parsons, I. (ed): D.Reidel Publishing Company, p.313-397.
- Naldrett, A. J., Brugmann, G. E., and Wilson, A. H., 1990, Models for the concentration of PGE in layered intrusions: Canadian Mineralogist, v. 28, p. 389-408.
- Page, N. J, Stillwater Complex, Montana;Rock succession, metamorphism and structure of the complex and adjacent rocks: U.S. Geological Survey Professional Paper 999, 79 p.
- Page, N. J., and Moring, B.C., 1990, Pertology of the noritic and gabbronoritic rocks below the J-M reef in the mountain view area, Stillwater Complex, Montana: U.S. Geological Survey Bulletin 1674-C, 47p.
- Page, N.J., and Nokleberg, W.J., 1974, Geologic map of the Stillwater Complex, Montana: U.S. Geological Survey Miscellaneous Investigation Series I-797.
- Page, N.J., and Zientek, M.L., 1985, Geologic and structural setting of the Stillwater Complex: *in* Czamanske, G.K. and Zeintek, M.L., The Stillwater Complex, Montana, Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p.1-8.
- Page, N.J., Zientek, M.L., Czamanske, G.K., and Foose, M.P., 1985, Sulfide mineralization in the Stillwater Complex and underlying rocks: *in* Czamanske, G.K. and Zientek, M.L., The Stillwater Complex, Montana, Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p. 93-96.
- Raedeke, L.D., 1986, A three dimensional view of mineralization in the Stillwater J-M reef: Economic Geology, vol. 81, part 5, p. 1187-1195.

- Raedeke, L.D. and McCallum, I.S., 1982, Modal and chemical variations in the Ultramafic zone of the Stillwater Complex, *in* Workshop on magmatic processes of early planetary crusts: Magma oceans and stratiform layered intrusions, Walker, D., and McCallum, I.S., (eds.): Lunar and Planetary Institute, Houston, Texas, LPI Technical Report 82-01, p. 135-137.
 - 1984, Investigations in the Stillwater Complex: part II. Petrology and petrogenesis of the UltramaficSeries: Journal of Petrology, v. 25, p. 395-420.
- _____1985, A guide to the Chrome Mountain area, *in* Czamanske, G.K. and Zientek, M.L., The Stillwater Complex, Montana, Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p. 277-285.
- Raedeke, L.D., McCallum, I.S., Mathex, E.A., and Criscenti, L.J., 1985, The Contact Mountain section of the Stillwater Complex, *in* Czamanske, G.K. and Zientek, M.L., The äStillwater Complex, Montana, Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p.286-292.
- Schiffries, C. M., 1982, The petrogenesis of a platiniferous dunite pipes in the Bushveld Complex: Infiltration metasomatism by a chloride solution: Economic Geology, v. 77, p.1439-1453.
- Segerstrom, K., and Carlson, R.R., 1982, Geologic map of the banded upper zone of the Stillwater Complex and adjacent rocks, Stillwater, Sweet Grass, and Park Counties, Montana: U.S. Geological Survey Map I-1383.
- Spry, A., 1979, Metamorphic Textures, Pergamon Press, Oxford.
- Stumpfl, E. F., and Rucklidge, J. C., 1982, The platiniferous dunite pipes of the Eastern Bushveld: Economic Geology v.77, p. 1419-1431.
- Todd, S.G., Keith, D.W., Leroy, L.W., Schissel, D.J., Mann, E.L., and Irvine, T.N., 1982, The J-M platinum-palladium reef of the Stillwater Complex, Montana: I. Stratigraphy and petrology: Economic Geology. vol. 77, p.1454-80.
- Turner, A.R., Wolfram, D., and Barnes, S.J., 1985, Geology of the Stillwater County sector of the J-M reef, including the Minneapolis adit: *in* Czamanske, G.K. and
- Zientek, M.L., The Stillwater Complex, Montana, Geology and Guide, Montana Bureau Mining and Geology Special Publication, 92, p.210-230.
- Vermaak, C. F., 1976, The nickel pipes of Vlakfontein and vicinity, Western Transvaal: Economic Geology, v. 71, p.261-286.

- Vermaak, C.F., and von Gruenewaldt, G., 1981, Third International Platinum Symposium: Johannesburg, Geological Society of South Africa, 62 p.
- Viljoen, M. J. and Hieber, R., 1986, The Rustenburg Section of Rustenburg Platinum Mines Limited, with reference to the Merensky Reef: *in* Mineral Deposits of Southern Africa, Anhaeusser, C. R., and Maske, S.(eds.), Vols I and II, Geological Society of South Africa, Johannesburg, p.1107-1134.
- Viljoen, M. J., and Scoon, R. N., 1985, The distribution and main geologic features of discordant bodies of iron-rich ultramafic pegmatite in the Bushveld Complex: Economic Geology, v. 80, p.1109-1128.
- Volborth, A., 1985, Sulfide and associated platinoid mineralization in the Stillwater "reef" and underlying graphite-pyroxenite pegmatoids: Montana Bureau of Mines and Geology Open File Report No. 161, 105 pp.
- Volborth, A., and Housley, R.M., 1984, A preliminary description of complex graphite, sulphide, arsenide, and platinum group element mineralization in a pegmatoid pyroxenite of the Stillwater Complex, Montana, U.S.A.: TMPM Tschermaks Mineralogische und Petrographische Mitteilungen, v.33, p.213-230.
- Zientek, M.L., Czamanske, G.K., and Irvine, T.N., 1985, Stratigraphy and nomenclature for the Stillwater Complex: *in* Czamanske, G.K. and Zientek, M.L., The Stillwater Complex, Montana, Geology and Guide Montana Bureau Mining and Geology Special Publication, 92, p. 21-32.

APPENDICES

,

- Appendix A: Outcrop map (1"=100') prepared by geologists at the Stillwater Mining Co. and Johns-Manville (in pocket)
- Appendix B: USGS Geochemical Analyses (3.5 floppy disk - IBM format) (in pocket)