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Location and Scale Estimation with
Correlation Coefficients

RUDY GIDEON1 AND ADELE MARIE ROTHAN2

1Emeritus, Department of Mathematical Sciences, University of Montana,
Missoula, Montana, USA
2Department of Mathematical Sciences and Physics,
St. Catherine University, St. Paul, Minnesota, USA

This article shows how to use any correlation coefficient to produce an estimate of
location and scale. It is part of a broader system, called a correlation estimation
system (CES), that uses correlation coefficients as the starting point for estimations.
The method is illustrated using the well-known normal distribution. This article
shows that any correlation coefficient can be used to fit a simple linear regression
line to bivariate data and then the slope and intercept are estimates of standard
deviation and location. Because a robust correlation will produce robust estimates,
this CES can be recommended as a tool for everyday data analysis. Simulations
indicate that the median with this method using a robust correlation coefficient
appears to be nearly as efficient as the mean with good data and much better
if there are a few errant data points. Hypothesis testing and confidence intervals
are discussed for the scale parameter; both normal and Cauchy distributions
are covered.

Keywords Confidence intervals; Hypothesis testing; Robust estimates; Simple
linear regression.

Mathematics Subject Classification Primary 62G05, 62G08; Secondary 62G10,
62G30, 62G35.

1. Introduction

This article uses three correlation coefficients (CC): Pearson’s rp, Kendall’s �rk, and
Greatest Deviation Correlation Coefficient (GDCC or rgd), as defined in Gideon
and Hollister (1987). The starting point for each estimation technique is exactly the
same. The CCs chosen illustrate existing techniques: Pearson’s, classical statistics;
GDCC, robust methods; and Kendall’s �, a well-known nonparametric correlation
coefficient (NPCC). A problem in Randles and Wolfe (1979, p. 12, problem 1.2.14),
indicates how to estimate location and scale from order statistics. This method is

Received October 1, 2006; Accepted December 23, 2009
Address correspondence to Rudy Gideon, Emeritus, Department of Mathematical

Sciences, University of Montana, Missoula, MT 59812, USA; E-mail: GideonR@mso.umt.edu

1561



1562 Gideon and Rothan

reviewed and then its connection to Pearson’s rp is made for data from a normal
distribution. Note, however, that the method is general for any distribution that can
be standardized.

Let Y = � + �Z, where Z is normal with mean 0 and standard deviation 1,
so Y ∼ N��� ��. Then for the order statistics Y�1� < Y�2� < · · · < Y�n�, Y�i� = � + �Z�i�

and E�Y�i�� = � + �E�Z�i��. Let ki = E�Z�i��, i = 1� 2� � � � � n. From the symmetry of
the standard normal, note that

∑
ki = 0. Randles and Wolfe (1979) next defined

D��� �� = ∑n
i=1 �Y�i� − �� + �ki��

2 The estimators �̂ and �̂ that are found to minimize
D are unbiased for � and �, respectively.

This solution is next related to Pearson’s rp. Again, let k be the vector of the
expected values of the order statistics of Z, and let yo be the order statistics of
a sample from Y , i.e., yo represents the sample order statistics y�1� < y�2� < · · · <
y�n�. The measure of variability is now defined via simple linear regression, but on
ordered data. The slope of the regression is a measure of the variability and in
particular estimates standard deviation directly. If the following equation is solved
for s using any r, then s estimates �:

r�k� yo − sk� = 0� (1)

Using Pearson’s rp for the r let the uncentered residuals yo − sk be denoted
by res and compute the mean of res after s has been determined. This mean
estimates �; in fact, these latter two estimates are identical to the ones coming from
D��� ��. From Publication 2, Correlation in Simple Linear Regression, on the website
(www.umt.edu/math/People/Gideon.html), with x = k and y = yo, the regression
Eq. (1) of that article becomes the above (1), called the scale form of the regression
equation. The solution is s =

∑
kiy�i�∑
k2i

and mean�res� = ȳ − s
∑

ki
n

= ȳ. Note that the
usual estimate of the mean is obtained. The estimate of � for the random variable
S is unbiased because

E�s� =
∑

kiE�Y�i��∑
k2i

=
∑

ki�� + �ki�∑
k2i

= �
∑

ki + �
∑

k2i∑
k2i

= ��

The use of Eq. (1) with Pearson’s rp as a scale estimation technique is now related
to two existing scale estimators. Motivated from Downton (1966), let

k = 6

�n+ 1�
√
�






1
2
���
n


− n+ 1

2



1
1
���
1






� (2)

The solution for s in Eq. (1) with this k is related to both Gini’s mean difference
(Randles and Wolfe, 1979; Hettmansperger, 1984) and a method of Downton
(1966).

Gini’s mean difference estimate of scale (David, 1968) is

G�y� = 1
� n
2 �

∑
i<j

�y�i� − �y�j����
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and Downton’s estimate of scale for the normal distribution is

sdt =
√
�

� n
2 �

n∑
i=1

(
i− n+ 1

2

)
�yi��

It can be shown that sdt =
√
�

2 D�y� so that Gini and Downton are essentially the
same, and both can be obtained from Eq. (1) with the k given in (2). Thus,
with today’s computers and statistical packages, all of the above estimates of scale
can be obtained easily from the regression setting, i.e., using Eq. (1), with the
ordered data y and an appropriate k.

D’Agostino (1971, 1973) used Downton’s estimate of scale divided by the
classical least squares estimate of � to perform a test of normality. The estimate of �
from Eq. (1) with ki = E�Z�i��� i = 1� 2� � � � � n could also be used in the D’Agostino
normal test of fit with this s replacing the classical estimate. Another test of the
normality assumption using Pearson’s rp is given in Looney and Gulledge (1985).

An interpretation of the usual SD =
√∑

�yi−ȳ�2

�n−1� as the slope of a straight
line is next used as a transition to a more geometrical view of scale estimates.
Again consider the ordered data y�1� < y�2� < · · · < y�n� and let constant c =√
12/�n�n+ 1��. The choice of this c becomes apparent in the development.

Think of the horizontal axis points as the vector h transpose, that is, h′ =(− n−1
2 �− n−3

2 �− n−5
2 · · · 0� 1� · · · n−5

2 � n−3
2 � n−1

2

)
. For simplification only the case n odd

is used so that h consists of n integers centered at zero (the even case only requires
a change in notation). Now consider the set of points �ch� yo� where the superscript
indicates the ordered vector of data points. The multiplication by c is merely a
change of scale to keep the range of the plot on the horizontal axis, regardless of
the data set, roughly between ±√

3 for all n, while keeping points equidistant.
Let a horizontal line be drawn at the mean of the data, ȳ, on the vertical axis. The

distance of each order statistic from the horizontal line at ȳ measures its departure
from that line, while the SD is an overall measure of departure from the horizontal.

With this motivation, a straight line with slope b and intercept ȳ is now
constructed through the points �ch� yo�. To achieve the goal, the rescaled vector bch
must have components whose cumulative squared distance from the ȳ line are the
same. In other words, b is chosen so that

∑
�yi − ȳ�2 = ∑n

i=1 �bchi�
2. The line with

slope b defines an angle 	 with the horizontal having tan 	 = b. Because
∑n

i=1 h
2
i =

2
∑ n−1

2
j=1 j

2 = n�n−1��n+1�
12 and using the definition of c, the b that satisfies the above

equation is b = SD. Figure 1 shows this line for a normal random sample, n = 25,
with mean 10 and theoretical standard deviation 7. For this data, ȳ = 10�56 and
SD = 7�39 and so the vector of vertical values is 10�56+ 7�39 ∗ �ch�. The slope b,
which is the SD, represents the variation in the data. A steeper slope (or a larger 	)
implies more variation and a 0 slope (or 	 = 0) indicates no variation.

The points �ch� yo� can be used to illustrate the CES way of estimating �.
The scale regression Eq. (1) is solved for s using k = ch. Because Pearson’s rp
is still being used the solution is labeled sp. The equation is rp�ch� yo − spch� =
0. It is straightforward to obtain sp =

√
12

n�n+1�
1

n−1

∑n
i=1 hiy�i�. For the data used in

the figure, sp = 7�24. Now solving Eq. (1) with rgd gives the scale estimate 6.80.
After a few computer runs it was clear that the estimations coming from sp and
SD or b have about a 99% Pearson correlation. However, sp is slightly biased. An
adjustment to the constant c would make sp unbiased, which is what Downton’s
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Figure 1. SD as a slope.

estimate does. His constant is 6
�n+1�

√
�
as compared to c. The ratio of Downton’s

constant to c is
√
3�n+ 1�/��n�, which is about 0.9772, assuming �n+ 1�/n �

1. Downton constructed his constant so that the rp scale regression solution is
unbiased. Downton used linear combinations of order statistics as his approach
rather than using correlation as is done here.

In addition to using CCs in tests of fit (distribution), the correlation coefficient
can be used to estimate location and scale as in the example above. Equation (1)
can be solved with any correlation coefficient, r, each giving an estimate of �. The
next section continues the demonstration of the method using GDCC and Kendall’s
�. After obtaining s, either the mean or median of the uncentered residuals is used
to obtain a location estimate of the data.

2. Interpreting Equation (1)

When rgd is used for r in Eq. (1), the solution s must be found numerically as
no closed form solution is known, but for Kendall’s �, the equation rk�k� y

o −
sk� = 0 is satisfied by s = median

( y�j�−y�i�
kj−ki

)
(see website Publication 2 for Tau and

R program for GDCC). Because both of these NPCCs are discrete, a range of
solutions is possible, so a unique s is defined by letting s = �sl + su�/2, where sl =
sup
s � r�k� yo − sk�> 0� and su = inf
s � r�k� yo − sk� < 0�. This averaging obtains a
unique solution for either r = rgd or r = � or for any nonparametric r.

Note that the left-hand side of Eq. (1) is a function of y, s = s�y�. The function
s�y� has the following form for each of the three CCs considered:

• for Pearson’s rp, s�y� is a continuous function and (1) has a closed form
solution;

• for GDCC, s�y� is a nonincreasing step function based on a NPCC and (1)
has only a numerical solution;

• for Kendall’s �, s�y� is a nonincreasing step function based on a NPCC and
(1) has closed form solution.
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3. Standard Properties of the Scale Estimator, s�Y�

The function s�Y� is next shown to be location invariant, scale equivariant, and for
symmetric distributions, s�Y� = s�−Y�, i.e., it is even. Because CCs are location
invariant, s�Y + d ∗ 1� = s�Y�, where d is any constant and 1 is a n-vector of all
1s and so s�Y� is location invariant. Keep in mind that all data are ordered even
though the “superscript 0” notation is not always used. Rousseeuw and Leroy (1987)
used the term “equivariant” for statistics that transform properly. Note that s�Y�
is scale equivariant, i.e., if d > 0 is a constant and X = dY is a scale change, then
s�dY� = ds�Y�, as is now easily shown. Because r�k� X − s�X�k� = 0 for any vector
k of equidistant points and CCs are scale invariant, seeing that r�k� X − ds�Y�k� =
r�k� dY − ds�Y�k� = r�k� Y − s�Y�k� = 0, verifies that ds�Y� is s�X�, that is, s�dY� =
ds�Y�. The evenness argument is set out in a proposition.

Proposition 3.1. Given data from a symmetric distribution about 0 and a solution s of
Eq. (1) using any NPCC r, s�Y� = s�−Y�.

Proof. Since the distribution is symmetric about 0, kn+1−i = −ki, i = 1� 2� � � � � n and
for the vector k, �−k�o = ko = k. It is also true that

�−Y�o =




−y�1�
−y�2�
���

−y�n−1�

−y�n�




o

=




−y�n�
−y�n−1�

���
−y�2�
−y�1�



�

Substituting −y for y in Eq. (1) gives

0 = r�k� �−y�0 − s�−y� ∗ k� = r��−k�0� �−y�0 − s�−y� ∗ �−k�0��

and �−k�o and �−y�o are ordered min to max. Without the superscript 0, they still
correspond but are now ordered max to min. So in Eq. (1),

0 = r ��−k� � �−y�− s�−y� ∗ �−k��

= r �−k� − �y − s �−y� ∗ k�� = r �k� y − s �−y� ∗ k� 


the right-most term being equal to zero shows that s�Y� = s�−Y�.
The scale estimate is obtained with the same k even if the data are not centered

at 0 but are symmetric.

4. Motivation and Standard Properties of the
CES Location Estimator of Y

Because CCs are the estimation tools in CES, the location estimator of Y , say l�Y�,
is motivated through regression; the result for Pearson’s rp is the classical mean
of the data, whereas for Kendall’s � and GDCC it is the median. To motivate
these results, first consider data from two independent random variables X and Y
with sample sizes m and n, respectively. The location difference between the two
samples is studied via regression. On a coordinate plane, let the x-data be plotted as
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�0� xi� for 1 ≤ i ≤ m and the y-data as �1� yi� for 1 ≤ i ≤ n. If there is no difference
in the X and Y locations, then a line connecting the center of the x-data to the
center of the y-data should be nearly parallel to the horizontal axis. To estimate
any possible location difference, a regression line is fit with a coded variable and the
(x, y) data. Let the column vector c of dimension m+ n be given by m 0s followed
by n 1s and let the m+ n dimension vector v be �x1� x2� � � � � xm� y1� y2� � � � � yn�

′.
Treat c as the regressor variable and v as the response variable. Then the correlation
coefficient regression equation is r�c� v− lc� = 0, where l is a location statistic. It is
straightforward to solve this equation with Pearson’s rp to obtain l = ȳ − x̄. Thus,
the slope is ȳ − x̄ or x̄ + slope = ȳ. For the one-sample problem, let all of the x-data
be zero; then the estimate of the location of the y-data is the slope ȳ since x̄ is zero.

To solve rk�c� v− lc� = 0 it is necessary to work with the elementary slopes
of c and v, vj−vi

cj−ci
, where they are finite, that is, where cj − ci = ±1. This results in

l being the median of the mn elementary differences yj − xi. For the one-sample
case, all the xi are zero, so l = median�yj�. As discussed in Gideon and Rummel
(1992), if the x-data are all zero and have the same dimension as y, namely n,
and in addition if the tied value method (Gideon and Hollister, 1987) is used in the
calculation of the NPCCs, then for both � and GDCC the median is obtained as the
solution to the regression equation, r�c� v− lc� = 0. This has not been proven for
GDCC, but only demonstrated via extensive computer simulations. This computer
work and analysis shows that both the one- and two-sample problems posed in
a regression setting can be performed for NPCCs as has been done for the least
squares (Pearson’s rp) regression method. The implication is that a fertile field of
research awaits generalization to analysis of variance via regression with NPCCs.

Because the location estimator for Pearson’s rp is the usual ȳ, it is obviously
an odd translation statistic, i.e., a location statistic. For the other two CCs, l�y� =
median�yo − sk� where s = s� or s = sgd, the solution of r�k� y − sk� = 0 when r is
� or GDCC, respectively.

Proposition 4.1. For NPCCs � and GDCC and for a symmetric distribution, l�y� =
median�yo − sk� is an odd translation statistic.

Proof.

l�−y� = median ��−y�o − sk� = median ��−y�o − s �−k�o�

= median ��−y�− s �−k�� = −median �y − sk� = −l�y�

For translation, with constant h,

l�y + h� = median��y + h�o − sk� = h+median�yo − sk� = h+ l�y��

Therefore, the location estimator with NPCCs also has the properties of a location
statistic.

Because there is a closed form solution of the scale regression Eq. (1) using
Kendall’s �, it is possible to make a closer examination of its scale and location
estimates.

Let the elementary slopes be lji = Y�j�−Y�i�
kj−ki

, for 1 ≤ i < j ≤ n where ki = E�Z�i��.

Now E�lji� = E�Y�j��−E�Y�i��

kj−ki
= ��+�kj�−��+�ki�

kj−ki
= �. Each lji can be considered a random
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observation from a population with mean �, therefore, E�mean�lji�� = �. However,
to be unbiased, the scale estimator, s��Y� = median�lji�, depends on the symmetry
of the distribution of the correlated lji. The quantity s� is either the mean of the
two central order statistics or the middle order statistic of the lji whose expectation
is, in any case, �. Simulations show that s� appears to have a slight positive bias
in estimating SD. If resi = Y�i� − s�ki, i = 1� 2� � � � � n and E�s��Y�� = �+ > �, then
E�resi� = E�Y�i� − s�ki� = �� + �ki�− �+ki = � + �� − �+�ki. Because each residual,
resi, has expectation possibly slightly less than � for ki > 0, but slightly greater for
ki < 0, the expectation of the median of the residuals is approximately �. In the
simulation results, the positive bias in the estimation of scale is apparent; but no
bias seems to appear in the estimation of location.

The “equal in distribution” technique described in (Randles and Wolfe, 1979,
Sec. 1.3) can be used to show that s��y� and l��y� are uncorrelated statistics. Of
course, for the normal distribution, the classical estimate of � and the sample mean
are independent. Whether or not this independence result is true for the estimators
based on other CCs is unknown.

This section concludes with a proof that the location estimator, l��y�,
is symmetrically unbiased. In the CES, it is necessary to first estimate the scale and
then the location.

Assume Y ∗ − �
d= � − Y ∗, i.e., Y ∗ is symmetric about �; the usual “equal in

distribution” notation has been used. Then without loss of generality, Y = Y ∗ − � is
symmetric about zero. The distribution function F�y� is

F�y� = P�Y ≤ y� = P

(
Z ≤ y − �

�

)
�

Because � = 0, Y�i� = �Z�i�, i = 1� 2� � � � � n. The estimate of the standard deviation
with Kendall’s �� s�, is

s� = median
i<j

(
y�j� − y�i�

kj − ki

)
where ki = E�Z�i���

Because E
( Y�j�−Y�i�

kj−ki

) = �
(E�Z�j��−E�Z�i��

kj−ki

) = �, it is expected that s� would be a reasonably
good estimate of the standard deviation �.

Earlier it was shown in Proposition 3.1 that s�Y� = s�−Y�, but it is constructive
to show this again specifically for Kendall’s �; that is, that s��y� = s��−y�. Let
X = −Y or for a random sample xi = −yi. Then for order statistics, x�i� = −y�n+1−i�,
i = 1� 2� � � � � n and

s��x� = median
i<j

(
x�j� − x�i�

kj − ki

)
= median

(−y�n+1−j� + y�n+1−i�

kj − ki

)
�

Now kj = −kn+1−j by the symmetry assumption, so

s��x� = median

(
y�n+1−i� − y�n+1−j�

kn+1−i − kn+1−j

)
= median

(
y�j� − y�i�

kj − ki

)
= s��y��

Proposition 4.2. Kendall’s � estimate of the median of a symmetric distribution has a
symmetric distribution about the true population median; that is, l��−y� = −l��y�. In
this case the mean and median are equal.
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Proof. The estimate of the population median based on the residuals of the scale
estimate is l��y� = median�y�j� − s��y�kj�. As above, let X = −Y . Then:

l��−y� = l��x� = median
(
x�j� − s��x� kj

)
= median

(−y�n+1−j� − s��x�
(−kn+1−j

))
= −median

(
y�n+1−j� − s��x�

(
kn+1−j

))
= −median

(
y�n+1−j� − s��−y�

(
kn+1−j

))
= −median

(
y�n+1−j� − s��y�

(
kn+1−j

))
because s��y� = s��−y�

= −median
(
y�j� − s��y�

(
kj
))

= −l��y��

By Theorem 1.3.16 in Randles and Wolfe (1979, p. 20), since Y
d= −Y and

l��−y� = −l��y�, the distribution of l��y� is symmetric about zero. Thus, we can say
that l��y� is symmetrically unbiased.

5. Scale and Location Estimates using GDCC and Kendall’s Tau

A comparison was made of estimates of the location and scale from simulations of
the normal distribution with and without outliers. The classical mean, median, and
standard deviation were compared to the comparable estimates via GDCC and Tau.
Bias was assessed by comparing the means of the estimates for both location and
scale parameters. Mean square error was computed to measure the variation of the
estimates.

For the case of no outliers the classical standard deviation is very slightly
better than the GDCC and Tau methods. Tau and GDCC scale estimates were
biased slightly upwards by about 4%. However, when a few outliers were randomly
added to the data, both GDCC and Tau were far better than the classical standard
deviation. This was true both for average values and in the variation of the
estimates. For good data, the variation of the standard deviation estimate was
about 30% higher for GDCC and 15% higher for Tau than the classical standard
deviation. However, with a few outliers, the classical standard deviation was
three times more variable than the nonparametric correlation coefficient approach.
GDCC had the least variable SD estimate with the least bias.

Recall that to estimate location for both GDCC and Tau, the median is
computed using the residuals after the estimate of the SD. Surprisingly, this new
method was superior to the standard median method. It appears to be unbiased
and had a variation comparable to the variation in the mean rather than the larger
variation of the usual median. With outliers randomly added, the CES median
method and the standard median were far more robust, of course, than the mean.
The variation of the median and CES median methods were about the same. Details
are omitted here due to space constraints. The interested reader may consult Gideon
and Hollister (1987) for background material on GDCC and website Publication 5
for information on the use of Tau.
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6. Hypothesis Testing and Confidence Intervals for �

There is an acute need for a better scale analysis because most scale tests under the
normality assumption lead to unreliable results. Limited resources have not allowed
a full study of the ideas and the sorting out of which CCs might be most useful in
hypothesis testing and confidence intervals.

Without loss of generality, we let � = 0 and then Y = �Z with E�Y� = 0,
Var�Z� = 1, and, as before, the vector k = E�Zo� has entries which are the
expectations of the standardized order statistics. Assume it is desired to test H0 � � =
�o vs. Ha � � > �o. If H0 is true, the random variable r�k� �Y o − �ok�� = r

(
k�

(
Y o

�o
−

k
)) = r�k� �Zo − k�� will have a null distribution. If �o is too small (i.e., Ha is true), a

plot of k and the order statistics from a random sample divided by the hypothesized
standard deviation, yo/�o, will produce a line that is too steep; or, equivalently,
the vector �Y o/�o�− k will not be centered at zero but, in general, will have more
positive values. In any case, r

(
k�

(
Y o

�o
− k

))
will tend to be closer to positive one.

Equivalently, if zo = Y o/�o and r�k� zo − s k� = 0 is solved for s with solution s�zo�,
then s�zo� will also tend to be large. Thus, large positive values will lead to rejection
of the null hypothesis.

To perform tests of significance and construct confidence intervals, first draw
random samples (1,000 or so) from the standardized distribution being considered
(normal and Cauchy are used here) and then tabulate the distribution of �,
the solutions of r�k� zo − �k� = 0 to closely estimate the null distribution. This can
be done for many rs; in these examples rgd was used with a sample size of n = 25.
For a desired �, determine w�/2 and w1−�/2 from the distribution constructed from
the simulations. For � = 0�05, the following was obtained:

• for N(0, 1): w�025 = 0�672 and w�975 = 1�401;
• for Cauchy with median 0 and scale factor 1: w�025 = 0�604 and w�975 = 2�066.

The construction of the confidence interval is explained first. Once a confidence
interval has been obtained the usual analogy with hypothesis testing can then be
used for a hypothesis test.

The point estimate of �, the scale factor, is �̂ where rgd�k� y
o − �̂k� = 0. Now, let

�l and �u denote the lower and upper points of the confidence interval, respectively.
These are found by solving the equations rgd�k� y

o − �lw1−�/2k� = 0 and rgd�k� y
o −

�uw�/2k� = 0. It might help to write, say the first equation, as rgd�k� y
o/�l −

w1−�/2k� = 0. In other words, the data is being standardized to correspond to the
upper point w1−�/2 of the standardized distribution. This approach is analogous
to the classical chi-square methods to obtain the confidence interval but now
uses an implicit function. Note that the Cauchy is viable when a rank based
correlation coefficient is used, but not Pearson’s rp where moments must exist.
The interval ��l� �u� is a 1− �/2 confidence interval for scale factor �. The k used
was an approximation for the expected values of the order statistics (Gibbons and
Chakraborti, 1992). Specifically, let F be the cumulative distribution function of the
selected standardized (0, 1) random variable and let v = (

1
n+1 �

2
n+1 � � � � �

n
n+1

)
. F−1�v�,

an ordered n dimensional vector, was used as k. This is easy to implement in R or
Splus. These ideas were checked out for both the normal and Cauchy distributions
with different �s. The confidence intervals performed exactly as required.

To test Ho � � = �o vs. some alternative, the rejection regions are one
or both of � < �l, � > �u. The R instruction to run the above is �̂ =
uniroot�GDslp� c�−20� 20�� x = k� y = yo�$root, where yo is the sorted data, GDslp
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is an R program for the slope of a simple linear regression line using GDCC. Note
that for �l, x = �w1−�/2k� and for �u, x = �w�/2k�.

7. A Numerical Example

An example, including a modified table from Nemenyi et al. (1977, p. 240) and
Iglewicz (1983, pp. 408–410), is used in order to compare the performance of GDCC
and Kendall’s � to the robust estimators of scale that appear in these books. It
is readily apparent that these two NPCCs used as scale estimators are among the
best of the robust estimators. Two samples of SAT scores are used: one sample
from a rural population with one outlier and a second sample from an urban
population. The primary interest is in the comparison of the dispersions between
the samples. Iglewicz (1983, p. 410) showed that the ratio of the lengths of the
boxplots of the urban SAT scores to the rural SAT scores is 2.01 and the author
indicates that this ratio is best. With the outlier the classical least squares estimates
of standard deviation for the rural SAT scores is s = 120�37, and without the
outlier it is s′ = 82�20. Without the outlier deletion, s gives a poor estimate of the
dispersion ratio. The NPCCs are sgd = 104�76 and without the outlier 87.24; for
Kendall’s �� s� = 110�04 and without the outlier changes to 94.70. Both have much
smaller changes than the classical estimates of standard deviation. As is seen from
Table 1, the ratios of the scales of the original urban to rural data for GDCC is
2.06 and for Kendall’s �, it is 1.82. Note that GDCC gives a good result without
examining the outliers. This robustness feature is one of the main reasons for using
NPCCs as location and scale estimators. The other entries in Table 1 are taken
from Iglewicz (1983).

The technique of Eq. (1) can be extended to the estimate of the ratios of any
two standard deviations where the sample sizes are equal. For example, for the SAT
data let xo be the sorted SAT rural data and yo be the sorted SAT urban data. Then
the ratio �x/�y can be estimated directly by solving r�xo� yo − sxo� = 0 for s. When
this was done using rgd the result was 1.98, close to the 2.06 in Table 1. This estimate
requires no intermediate steps. The idea is also useful in multiple linear regression
to directly estimate �res/�y which is a key term in the analysis.

Table 1
Comparisons of different scale estimates for the two samples of

SAT scores

Estimator Rural students (1) Urban students (2) Ratio (2)/(1)

s 120.37 176.58 1.47
s′ 82.20 176.58 2.15
AD 81.62 144.54 1.77
MAD 47.00 149.00 3.17
dF 85.00 277.00 3.26
sbi 98.14 178.99 1.82
sgd 104.76 215.48 2.06
s� 110.04 200.06 1.82

Entries for s, s′, AD, MAD, dF , sbi are from Iglewicz (1983, pp. 410, 424).
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8. Summary and Comments

This article is part of a series of articles (Gideon, 2007; Gideon and Hollister,
1987) promoting the use of CCs as a general estimating tool. In implementing these
procedures, it was found that Pearson’s rp, using CES ideas, parallels least squares
procedures. For NPCCs GDCC and Kendall’s �, a computer component is needed
with the maximum-minimum tie breaking method first suggested in Gideon and
Hollister (1987). A short and easy to use R program to compute GDCC and its
slope for use in Eq. (1) is given on the website. Computer programs can be written
fairly easily for Kendall’s � since a closed form regression estimation formula exists.
An applied user would need a statistical software package to implement these ideas
for general use. For this to happen, it needs to be ascertained how the “system of
estimation” provided by a particular correlation coefficient compares, say, to least
squares. The authors are convinced that since GDCC is an “area equalizer” type
estimator, it has the properties needed in real data analysis. However, the research
effort needed to compare systems is beyond the means of the authors; the authors
are thankful for Splus or R that makes available efficient research languages that
have allowed for the progress thus far. Master’s students and a few Ph.D. students
have provided inspiration and technical help.

One example is given so that the max-min tie-breaking algorithm can be seen
on data with ties. It is important because without it, ties would make the CES
untenable.

As an example, let x = �1� 5� 6� 6� 3, 6� 1� 5� 4� 5� 6� 3� 3� and y = �7� 2� 6� 5� 6,
6� 2� 7� 6� 2� 6� 1� 4�. To implement the max-min method, the x data is ordered and
replaced by ranks and paired with y data in which first ranks, both for x and
y, are chosen to maximize the correlation and then second ranks are chosen to
minimize the correlation. This is done within the restrictions of the tied data. The x
data is then the unique ranks 1 to n and for y the max algorithm gives (2, 12, 1, 5,
7, 8, 3, 4, 13, 6, 9, 10, 11) and the min algorithm gives (13, 4, 11, 5, 1, 10, 12, 3, 2,
9, 8, 7, 6). Kendall’s � on the first is 0.4102564 and on the latter is −0.1794872 and
the value of � is the average of these two values, which is 0.115385. One can check
the logic by hand on the x − y data by sorting and breaking tied ranks to either
maximize or minimize the final result. GDCC= 1/3 for the max and 0 for the min
so the average is 1/6. For Pearson’s, rp = 0�2089.

There is one last observation for Kendall’s �. Let the usual location two-
sample problem be set up through regression, i.e., 0 and 1 are the x-values and
the y-values are the two sets of data plotted in the vertical directions. Then
the slope of the scale regression line from Eq. (1) with Kendall’s � is the usual
Hodges-Lehmann nonparametric location estimate, mediani�j
xi − yj�. This may
also be true, in general, for GDCC, but, at this time, what is known is that it was
always true for all the examples examined.
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