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Abstract

Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial bio-

sphere and plays a critical role in regulating atmospheric chemistry and global climate. The

Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used

remote sensing-based model that provides global estimates of spatiotemporal trends in

GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes,

input data from coarse resolution land cover and climate products may increase uncertainty

in GPP estimates, especially in high productivity tropical ecosystems. We examined the

influence of using locally specific land cover and high-resolution local climate input data on

MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropi-

cal landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-

specific land cover data reduced statewide GPP estimates by ~8%, primarily because the

Hawaii-specific land cover map had less vegetated land area compared to the global land

cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-

resolution climate data also reduced statewide GPP estimates by ~8% because of the

higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific

climate data. The combined use of both Hawaii-specific land cover and high-resolution

Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and indepen-

dent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous

tropical landscape suggest that refined global land cover and climate data sets may contrib-

ute to an enhanced MOD17 product at a variety of spatial scales.

Introduction

Gross primary production (GPP), the rate at which atmospheric carbon dioxide is fixed by

photosynthesis, is the largest carbon flux from the atmosphere to the terrestrial biosphere
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[1, 2]. Spatiotemporal variation in GPP directly influences atmospheric CO2 concentrations

and the global climate, making continuous monitoring of GPP an essential component of

international policy aimed at climate change mitigation [3–6]. A photosynthesis algorithm

(PSN) incorporating satellite observations from the Moderate Resolution Imaging Spectrome-

ter (MODIS) provided the first remote-sensing based global GPP data product at 1-km

resolution (MOD17) [7]. The MOD17 data product is a widely-used tool for monitoring spa-

tiotemporal trends in global GPP, but uncertainty likely increases at the regional scale due to

reliance on coarse resolution climate and land cover data inputs to the PSN algorithm [8–10].

Understanding the uncertainty in remote-sensing based GPP estimates is important to con-

sider when applying these estimates at different spatial scales [11–13]. Yet quantifying the

uncertainty in MOD17 GPP estimates remains challenging because the uncertainties in land

cover and climate input data are not themselves well quantified [14]. Here we examine how

local, high-resolution land cover and climate data products influence MOD17 GPP estimates

in the Hawaiian Islands, a tropical landscape that is spatially heterogeneous in both land cover

and climate [15].

The MOD17 PSN algorithm estimates GPP using remotely sensed surface reflectance com-

bined with a global land cover data product (MCD12Q1) [16,17] and coarse-resolution climate

data products from the NASA Global Monitoring and Assimilation Office (GMAO) [18]. Land

cover data is used to apply biome-specific radiation use efficiency (RUE) terms to convert

absorbed photosynthetically active radiation (PAR) to GPP. Climate data is used to estimate

incident PAR and to attenuate RUE based on temperature and moisture limitations. Therefore,

any uncertainty in the land cover and climate data input products will propagate through to

final MOD17 GPP estimates [10,14,19–21]. Globally, the accuracy of the MCD12Q1 land

cover product is 65–80%, with higher overall accuracy in more homogeneous landscapes [17].

Similarly, the coarse resolution GMAO climate input data products (~0.5 degree) are recog-

nized as major sources of uncertainty in the MOD17 GPP product [14] and likely reduce the

accuracy of GPP estimates in areas such as the Hawaiian Islands with steep climatic gradients

over short distances.

We evaluated the sensitivity of MOD17 GPP estimates to upstream data input from high-

resolution Hawaii-specific land cover and climate products. Specifically, we compared

MOD17 GPP estimates for the State of Hawaii based on four different combinations of land

cover and climate input data: 1) global land cover and climate data from the currently available

MOD17 product for Hawaii; 2) global land cover data paired with high-resolution Hawaii-spe-

cific climate data; 3) a Hawaii-specific land cover data product paired with global climate data;

and 4) the combination of Hawaii-specific land cover and Hawaii-specific high-resolution cli-

mate data products. The lack of published independent ground-level GPP measurements in

Hawaiian ecosystems means we cannot address whether employing local, high-resolution land

cover and climate data inputs improves the accuracy of MOD17 GPP estimates in Hawaii.

Nevertheless, our quantitative analysis of the errors associated with the coarse resolution global

land cover and climate input data to the MOD17 algorithm provides insight into two sources

of uncertainty for regional GPP estimates of heterogeneous landscapes.

Methods

Study area

We assessed the sensitivity of MOD17 GPP estimates to upstream land cover and climate data

inputs by comparing GPP estimates based on global coarse resolution land cover and climate

input data to GPP estimates based on Hawaii-specific, high-resolution land cover and climate

input data. We conducted these analyses for the seven main Hawaiian Islands, listed here in
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descending order by percentage of total land area: Hawaii Island (63%), Maui (11%), Oahu

(9%), Kauai (9%), Molokai (4%), Lanai (2%) and Kahoolawe (1%). The Hawaiian Islands are

characterized by steep topographic relief, leading to large changes in climate over short dis-

tances. The eastern sides of islands receive abundant rainfall (2000–10,000 mm y-1) caused by

exposure to moisture-laden trade winds and an inversion layer that caps orographic uplift,

while the western, leeward sides of islands tend to be much drier (200–2000 mm y-1) [22]. The

smaller islands of Kahoolawe and Lanai are located in the leeward rain shadow of Maui and

tend to be drier. Mean annual temperatures range from 24˚C at sea level to 4˚C at 4200 m,

yet seasonal variation in temperature at all points along this elevation gradient is minimal

(± 1.5˚C) [23]. The combination of steep climatic gradients and complex historical patterns of

human land use and plant invasions have led to highly heterogeneous land cover within a very

small geographic area [15].

GPP models

The MOD17 PSN algorithm [7] for estimating GPP is based on the fraction of absorbed photo-

synthetically active radiation (fAPAR) calculated using the remotely-sensed fraction of inci-

dent photosynthetically active radiation (400–700 nm) absorbed by the canopy, which is

collected by MODIS onboard the NASA Earth Observing System Aqua and Terra satellites

[24,25]. Here we used version 6 of the fAPAR product calculated globally at a 500-m spatial

resolution over an 8-day time step [7], along with a local linear regression gap filling model to

reduce cloud contamination [26]. To calculate absorbed photosynthetically active radiation

(APAR), the MOD17 PSN algorithm multiplies fAPAR by estimates of incident photosyntheti-

cally active radiation (PAR) from NASA GMAO (version 5.9.1) [27] produced at a spatial reso-

lution of 0.5 Latitude degree by 0.67 Longitude degree. The MOD17 PSN algorithm resolves

this inconsistency in spatial resolution between GMAO PAR and MODIS fAPAR input data

by applying computationally efficient non-linear smoothing of the coarse resolution GMAO

meteorological data to the 500-m MODIS pixel resolution [7]. To calculate GPP, APAR is mul-

tiplied by radiation use efficiency (RUE) terms specific to land cover classes designated in the

global land cover product, MCD12Q1 [16,17,28,29]. These land cover specific RUE terms are

attenuated during periods of low temperature or high vapor pressure deficit (VPD) by apply-

ing attenuation scalars that are simple linear ramp functions of daily minimum temperature

and VPD (S1 Table) [7]. We compared GPP estimates from four models: 1) a global land cover

and global climate model (GLGC) using the standard version 6 MOD17 product with global

land cover (MCD12Q1) and global climate (GMAO) data products; 2) a global land cover and

Hawaii climate model (GLHC); 3) a Hawaii land cover and global climate model (HLGC); and

4) a Hawaii land cover and Hawaii climate model (HLHC). All four GPP models were trans-

formed to the WGS-84 geographic coordinate system using a custom Interactive Data Lan-

guage (IDL) script (Harris Geospatial, Broomfield, CO).

The HLGC GPP model incorporates a high-resolution, Hawaii-specific land cover data

product but uses the global GMAO product for PAR, VPD and temperature. The Hawaii land

cover product, produced as part of the USGS Carbon Assessment of Hawaii [30], was devel-

oped at 30-m resolution incorporating HI-GAP [31], NOAA C-CAP [32], and LANDFIRE

[33,34] land cover data products that were edited and validated using high-resolution imagery

from World-View 2 [35] and Pictometry Online [36]. The Hawaii-specific land cover product

identifies 48 land cover classes for Hawaii. We converted these land cover classes to the more

general MCD12Q1 classes (S2 Table) and then performed a majority resampling of the Hawaii

land cover product using ArcGIS v. 10.2.2 (ESRI, Redlands, CA) to produce a 500-m resolu-

tion product.

Evaluating the role of input data product uncertainties in estimating gross primary production in Hawaii
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The GLHC model uses the global MCD12Q1 land cover data product but includes Hawaii-

specific climate data products to compare the influence of global vs. local climate products on

MOD17 estimates of GPP. Specifically, we incorporated Hawaii-specific estimates of incident

PAR, mean annual temperature (MAT) and mean annual VPD from the Climate Atlas of

Hawaii, a spatial interpolation of in situ meteorological measurements from over 1,000 climate

stations in the State of Hawaii [23]. Data products from the Climate Atlas of Hawaii were

resampled from 250-m to 500-m resolution. The GLGC model used the standard version 6

MOD17 product with global land cover (MCD12Q1) and global climate (GMAO) products,

and the HLHC model incorporated both the Hawaii-specific land cover and Hawaii-specific

climate data products as described above.

Data analysis

To assess agreement between the Hawaii land cover data product and MCD12Q1, we first

extracted pixel values from the two land cover products to a statewide 500-m point grid cre-

ated in ArcGIS 10.2.2, resulting in approximately 70,000 records for the entire study area. We

then calculated percent agreement and kappa coefficient [37] between the Hawaii land cover

product and the MCD12Q1 land cover product using a confusion matrix generated from this

point vector file (S3 Table). To compare the global and Hawaii-specific climate data products,

we calculated summary statistics including the mean, standard deviation, range, and maxi-

mum and minimum values for PAR, VPD and MAT from both climate datasets. GPP values

from each of the four GPP models were extracted to the 500-m point grid and compared by

land cover class, by island, and statewide. We used one sample t-tests (α = 0.05) to evaluate

whether GPP estimates from the GLGC model were significantly different from each of the

three models incorporating Hawaii-specific data products (HLGC, GLHC, and HLHC) and

we used Cohen’s D to calculate the individual effect sizes of using Hawaii-specific land cover

and climate products on estimates of GPP, as well as the effect size of using the combination of

both Hawaii-specific land cover and climate products on estimates of GPP. All statistical tests

were conducted in R version 3.1.2 (2014).

Results

The overall percent agreement between the Hawaii land cover data product and MCD12Q1

was 51.6%, kappa = 0.44 (Fig 1; S3 Table). The evergreen broad leaf forest land cover class had

the highest percentage agreement (80%) between the Hawaii and global land cover products

(Table 1), yet there were one-third fewer pixels classified as evergreen broad leaf forest in the

Hawaii land cover product than in MCD12Q1 (Fig 2A). Closed shrubland and woody savanna

had the fewest pixels in agreement between the two land cover products (10%; Table 1). The

sparse or barren classification in the Hawaii land cover product had a 68% agreement with

MCD12Q1 (Table 1) but the Hawaii-specific land cover product included 25% more pixels in

this classification than the MCD12Q1 product (Fig 2A).

There was greater spatial variability in both PAR (Fig 3) and MAT (Table 2) in the high-res-

olution Hawaii-specific climate products than in the global GMAO products, and statewide

mean values of both PAR and annual temperature were higher in the GMAO data than the

Hawaii-specific climate data. For both data products, MAT in all vegetated pixels was above

the threshold where RUE is subjected to attenuation (S1 Table). The range and standard devia-

tion of VPD values were similar between the Hawaii-specific and GMAO climate data prod-

ucts, but mean VPD was 80% higher in the global GMAO product, and the maximum VPD

value was ~45% higher (Table 2). For the Hawaii climate data input product, 75% of the study

area had VPD below the minimum value for attenuation of RUE. In areas within the VPD

Evaluating the role of input data product uncertainties in estimating gross primary production in Hawaii
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scalar attenuation range (25% of study area), RUE was adjusted downward by 5% or less

depending on land cover type. For the GMAO climate data input product, 80% of the study

area had VPD values within the scalar attenuation range, where RUE was adjusted downward

by 20% or less depending on land cover type. The GLGC model produced higher estimates of

GPP in high productivity areas than the GLHC model, but in low productivity areas discrepan-

cies between the two models were smaller (Fig 4).

Annual GPP estimated for the state of Hawaii using the combination of global MCD12Q1

land cover and global GMAO climate data products (GLGC) was 28.07 TgC y-1 with an

Fig 1. The global and Hawaii-specific land cover data products. (A) MCD12Q1 and (B) the Hawaii-specific land cover data product

shown for Hawaii Island, the largest of the seven main islands of Hawaii. Land cover classes include evergreen broadleaf forest (EF), open

shrubland (OS), closed shrubland (CS), woody savanna (WS), grassland (GL) and agriculture (AG). Remaining areas are sparse, barren or

developed and are not used to estimate GPP.

https://doi.org/10.1371/journal.pone.0184466.g001

Table 1. Alignment matrix between the Hawaii-specific and MCD12Q1 land cover products.

MCD12Q1 Land Cover Designation

Hawaii-specific Land Cover

Designation

Evergreen Broad Leaf

Forest

Closed

Shrubland

Open

Shrubland

Woody

Savanna

Grassland Agriculture Sparse or

Barren

Evergreen Broad Leaf Forest 80 5 3 2 4 1 1

Closed Shrubland 46 10 12 6 12 5 2

Open Shrubland 15 21 43 1 16 0 2

Woody Savanna 27 11 15 10 21 5 0

Grassland 19 7 15 4 40 9 0

Agriculture 34 3 1 6 12 33 0

Sparse or Barren 6 3 6 2 4 4 68

The percentage of pixels for each land cover class as classified in the Hawaii-specific land cover product that were classified in each corresponding class of

the MCD12Q1 product. The values highlighted in grey represent the percentage of pixels in agreement between models for each class. Row values do not

sum to 100% because some MCD12Q1 land cover classes were not represented in the Hawaii-specific land cover data product.

https://doi.org/10.1371/journal.pone.0184466.t001
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average flux density of 2.02 kgC m-2 y-1 across the archipelago. Replacing MCD12Q1 with the

Hawaii land cover product (HLGC) reduced the statewide GPP estimate by 2.14 TgC y-1 or

7.6%. The mean difference in GPP between GLGC and HLGC was 0.119 ± 0.005 kgC m-2 y-1

(Fig 5A) with a Cohen’s D effect size of 0.096 (Fig 5B). Over 95% of the difference in statewide

estimated annual GPP based on the two land cover products was driven by pixels classified as

sparse or barren in the Hawaii-specific land cover product but designated as having some

other vegetation cover in MCD12Q1 (Fig 2A). Using Hawaii-specific climate data products

reduced statewide annual GPP by 2.27 TgC y-1 (8.1%) compared to estimates derived from the

global GMAO climate products. The mean difference in GPP estimated using global GMAO

climate products and Hawaii-specific climate products was 0.127 ± 0.003 kgC m-2 y-1 (Fig 5A),

with a Cohen’s D effect size of 0.11 (Fig 5B).

When both global land cover and climate data products were substituted with Hawaii-spe-

cific data products (HLHC; Fig 6), we found the statewide MOD17 GPP estimate was 23.47

Fig 2. The area and contribution to statewide GPP of each land cover class by data product. (A) The area of each land cover class in

the Hawaii-specific land cover data product and in MCD12Q1 for the main Hawaiian Islands. (B) The annual GPP for each land cover class

in the GLGC model that used the global land cover data product, MCD12Q1 vs. the HLGC model, which uses the Hawaii-specific land cover

data product. GPP values were not calculated for pixels classified as sparse or barren.

https://doi.org/10.1371/journal.pone.0184466.g002
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TgC y-1, a reduction of 4.6 TgC y-1 (16.4%) compared to the GLGC model. The mean differ-

ence in GPP between GLGC and HLHC was 0.256 ± 0.005 kgC m-2 y-1 with a Cohen’s D effect

size of 0.22 (Fig 5A and 5B), roughly double the individual effect sizes of substituting land

cover or climate data products individually. These statewide findings were driven by consistent

changes in GPP estimates on the four largest islands, which accounted for 92% of the study

area. Island-wide GPP for Hawaii Island was affected more by substituting climate products,

while GPP estimates for Maui, Oahu and Kauai were influenced more by substitution of the

land cover data product (S4 Table).

Discussion

We evaluated two sources of potential error contributing to uncertainty of MOD17 GPP esti-

mates: land cover and climate data input products. Tropical ecosystems are among the most

productive on the planet [13,38], and are also hot spots for land conversion of forest to agricul-

ture or development [39,40]. We focused our analyses on the highly heterogeneous but thor-

oughly mapped Hawaiian archipelago. Insight into the sources of error contributing to

uncertainty of MOD17 GPP estimates for the main Hawaiian Islands should help to clarify

future refinement needs for interpretation of MOD17 estimates in other heterogeneous

regions, especially those undergoing rapid change in land cover or climate. Resulting

Fig 3. GMAO and Hawaii-specific data products for photosynthetically active radiation (PAR). (A) GMAO PAR used in

the GLGC and HLGC GPP models and (B) Hawaii-specific PAR from the Climate Atlas of Hawaii used in GLHC and HLHC

GPP models, both shown at the 130–300 W m-2 range scale.

https://doi.org/10.1371/journal.pone.0184466.g003

Table 2. Summary statistics from climate data products.

Min Max Range Mean Std. Dev.

Hawaii PAR (Wm-2) 130 296 167 209 31

GMAO PAR (Wm-2) 217 262 45 241 12

Hawaii VPD (kPa) 0.2 0.9 0.7 0.5 0.2

GMAO VPD (kPa) 0.5 1.3 0.8 0.9 0.2

Hawaii MAT (˚C) 4 24 20 18 5

GMAO MAT (˚C) 18 24 6 22 2

Photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and mean annual air temperature (MAT) for the high-resolution Hawaii and the

global GMAO climate input data products.

https://doi.org/10.1371/journal.pone.0184466.t002
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Fig 4. Relationship between GPP estimates using global GMAO climate data (GLGC) and Hawaii-

specific climate data (GLHC). This density plot shows the distribution of MOD17 GPP estimates at 500-m

resolution using global land cover and climate data products (GLGC) compared to MOD17 GPP estimates

produced from the global land cover and high-resolution Hawaii-specific climate data products (GLHC), also

at 500-m resolution. Pixel density values are two-dimensional kernel density estimates based on bivariate

normal distributions, with higher values corresponding to higher pixel density. The line represents a 1:1

relationship. In high productivity areas, the global climate data products yield higher estimates of GPP than

the Hawaii-specific climate products.

https://doi.org/10.1371/journal.pone.0184466.g004

Fig 5. Statewide difference in GPP estimates and effect size of the MOD17 models. (A) The mean per pixel difference in estimated

GPP and 95% confidence interval between the global land cover and climate model (GLGC), and the models with Hawaii land cover and

global climate (HLGC), global land cover and Hawaii climate (GLHC), and both Hawaii land cover and climate. In each case means were

found to be significantly different from zero (p < 0.001, df = 71675, t-values; GLGC/HLGC t = -51.6385, GLGC/GLHC t = -96.5017, and

GLGC/HLHC t = -103.0899). (B) The Cohen’s D effect size based the substitution of Hawaii land cover and high-resolution climate data

products on MOD17 GPP estimates.

https://doi.org/10.1371/journal.pone.0184466.g005
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improvements may enhance global efforts to reduce greenhouse gases by informing where

incentives are best applied to protect and restore forested areas [6].

Our results indicate that the effects of incorporating Hawaii-specific land cover and climate

data inputs on MOD17 GPP estimates were additive and independent of each other, with

statewide GPP estimates reduced by ~ 8% when either Hawaii-specific land cover or climate

data inputs were incorporated, and by ~16% when Hawaii-specific land cover and climate data

inputs were used in combination. Although our results suggest that using local land cover and

climate data input products may increase the accuracy of MOD17 GPP estimates, we discuss

our results only in terms of uncertainty because there are no independent GPP estimates of

known accuracy to validate our GPP estimates at individual sites in Hawaii, let alone across

the entire study area. The only published ground based eddy covariance data from Hawaii are

from two irrigated and fertilized sugar cane fields on Maui during peak growth [41]. These are

of limited utility for validation because our GPP estimates are averaged across multiple years

and so integrate both fallow and cultivated periods in these pixels. The Hawaiian Islands are

not included in the global Max Planck Institute (MPI) GPP dataset, which is based on empiri-

cal up-scaling of eddy covariance data from the FLUXNET network [13, 42]. If Hawaii were

included, validating our GPP estimates with the MPI dataset would still be problematic

because of its coarse 0.5-degree spatial resolution and the lack of any input eddy covariance

data from Hawaii. Using solar-induced fluorescence (SIF) data from either the GOME-2 or

OCO-2 satellites as a validation dataset is not optimal because SIF-based GPP estimates should

be inferred from biome-specific regressions [14], which have not been calculated for any

Fig 6. Spatial distribution of GPP estimates for the seven main Hawaiian Islands using Hawaii-specific land cover and climate

data products (HLHC GPP Model).

https://doi.org/10.1371/journal.pone.0184466.g006
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ecosystem in Hawaii. The ideal dataset to validate our GPP estimates and compare the accu-

racy of our four models would be from a network of eddy covariance towers located across sev-

eral of the main Hawaiian Islands in all major biomes (forest, grassland, shrubland). Because

this network does not yet exist, we are limited to discussing our results only in terms of uncer-

tainty rather than accuracy.

In our comparison of land cover data products, we found only 51.6% agreement between

MCD12Q1 and the Hawaii-specific land cover product. Most of this disagreement stems from

the scale at which each product was produced. The MCD12Q1 product was produced using a

global supervised classification algorithm [17,43], whereas the Hawaii product used a combi-

nation of several Hawaii-specific classification processes and data sets, and was developed at a

much finer spatial resolution [30]. The lower statewide GPP estimate from the HLGC model

was primarily due to the difference in land area designated as unvegetated, which was most

pronounced on the larger islands. The Hawaii-specific land cover product had ~1300 km2

more area classified as unvegetated than the MCD12Q1 product, manifested as expansions

along the edges of unvegetated areas in MCD12Q1 (S1 Fig). If this additional 1300 km2 area

was truly unvegetated, then we would expect it to have a total GPP value near zero in the

GLGC model. However, the same pixels in the additional 1300 km2 area classified as unvege-

tated (GPP = 0) in the HLGC model had GPP values averaging 1.57 ±0.99 kgC m-2 y-1 in the

GLGC model, leading to the higher statewide estimate. We suggest this is because fAPAR and

land cover are not completely independent products in the GLGC. In MOD17 collection 6

(GLGC), fAPAR is produced using the global MCD12Q1 land cover product as an input,

which explains why fAPAR and GPP values were generated by the GLGC model even in areas

classified as unvegetated by the Hawaii land cover data product [44,45].

The reduction in statewide GPP from incorporating high-resolution local climate data was

primarily due to differences in the spatial resolution of PAR, which is the dominant climatic

factor in the PSN algorithm [46]. Differences in MAT between local and global climate data

products did not influence GPP estimates because temperature ranges in vegetated areas were

not below the range for scalar attenuation of RUE in either the global or Hawaii-specific data-

sets. Minimum and optimal temperatures are sensitive parameters for estimating GPP, while

maximum temperatures do not have a significant influence on estimates of GPP [47]. For the

global climate data, VPD values were within the scalar attenuation range for all the north-west-

ern islands and the north-west portions of Hawaii Island, where RUE was reduced by up to

20%, while VPD in the local climate data was below the minimum threshold for scalar attenua-

tion in the majority of the study area (~80%). If this discrepancy in RUE attenuation between

the local and global climate data inputs had a large influence on GPP, we would have expected

higher statewide GPP estimates using the Hawaii climate product. However, there was an

overall reduction in statewide GPP using the Hawaii climate data because PAR is a much more

influential variable [47]. Moreover, the higher spatial variability in GPP estimates using Hawaii

climate data reflect the spatial distribution of PAR and not VPD (S2 Fig). This was also appar-

ent in the discrepancy between GPP estimates in high productivity areas with high incidence

of cloud cover on the wet, windward sides of islands, where the global climate data inputs

resulted in higher GPP estimates. Differences in PAR between the Hawaii-specific and global

climate data inputs had the largest impact on estimates of GPP for Hawaii Island, the largest of

the Hawaiian Islands with the greatest elevation range (sea level to ~4,200 m). The two smallest

islands (Lanai, Kahoolawe) have a small elevation ranges, are in the rain shadow of Maui and

do not exhibit the same pronounced windward/leeward pattern of PAR, and were thus not as

influenced by the differences in PAR input models. Our results suggest the high-resolution

Hawaii-specific climate data were better able to capture the spatial variability in PAR in wet,
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cloud-prone areas of high productivity, ultimately leading to more spatially variable estimates

of GPP and lower overall statewide estimates.

We found that the effects of incorporating local high-resolution land cover and climate

data on MOD17 GPP estimates for the Hawaiian Islands were roughly equivalent and inde-

pendent of each other, but we caution that this result may not be generalizable to other hetero-

geneous tropical landscapes [20,48,49]. For example, the land cover effect on statewide GPP

estimates for Hawaii was primarily driven by a difference in the designation of vegetated and

unvegetated areas, while misalignment among vegetated land cover classes had little overall

impact. However, this should not discount the importance of accurately identifying the spatial

distribution and area of different vegetated land cover classes. For analyses specifically focused

on land cover conversions between classes with large differences in RUE terms, as between

grassland and forest, capturing the area of each land cover class is still critical to estimating

GPP [10,19,49]. Similarly, we found that incorporating Hawaii-specific, high-resolution PAR

data led to increased spatial variability in GPP estimates and reduced the statewide estimate of

total GPP, but that incorporating local MAT and VPD data had little to no impact on GPP

estimates. Other areas with higher seasonal and inter-annual variability in temperature and

VPD may not yield the same results [19,50,51]. Overall, this study demonstrates a process for

quantifying the uncertainty in GPP estimates in heterogeneous tropical landscapes and adds

to the body of work that can be used to further refine the MOD17 GPP algorithm. Our find-

ings support previous calls for improved land cover and high-resolution climate input prod-

ucts for the tropics, and identify a need for similar analyses in other regions to enhance our

understanding of uncertainty in MODIS based GPP estimates in tropical, heterogeneous

landscapes.

Supporting information

S1 Fig. Spatial distribution of the difference in MOD17 GPP estimates between land cover

data products. Positive values indicate areas where the Hawaii-specific land cover data prod-

uct produced higher estimates than the global land cover data product MCD12Q1. Negative

values indicate areas where MCD12Q1 produced higher estimates than the Hawaii-specific

land cover data product.

(TIF)

S2 Fig. Spatial distribution of the difference in MOD17 GPP estimates between climate

data products. Positive values indicate areas where the high-resolution Hawaii-specific cli-

mate data products produced higher estimates than the global climate data products. Negative

values indicate areas where the global climate data products produced higher estimates than

the high-resolution Hawaii-specific climate data products.

(TIF)

S1 Table. Radiation use efficiency and minimum and maximum attenuation values for

land cover classes in Hawaii.

(XLSX)

S2 Table. Hawaii-specific land cover class designations and corresponding MCD12Q1 des-

ignation.

(XLSX)

S3 Table. Hawaii-specific and MCD12Q1 confusion matrix.

(XLSX)
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S4 Table. Summary statistics for GPP estimates in kgC m-2 y-1 and total TgC y-1 between

models by island.

(XLSX)
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26. Moreno Á, Garcı́a-Haro FJ, Martı́nez B, Gilabert MA. Noise reduction and gap filling of fapar time series

using an adapted local regression filter. Remote Sensing. 2014 Aug 29; 6(9):8238–60.

27. Global Modeling and Assimilation Office. GEOS Near-Real Time Data Products (version 5.9.1). https://

gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php

28. Running SW, Loveland TR, Pierce LE. A vegetation classification logic based on remote sensing for

use in global biogeochemical models. Ambio: A Journal of the Human Environment. 1994: 23:77.

29. Belward AS, Estes JE, Kline KD. The IGBP-DIS global 1-km land-cover data set DISCover: A project

overview. Photogrammetric Engineering and Remote Sensing. 1999; 65(9):1013–20.

30. Jacobi JD, Price JP, Fortini LB, Gon SM III, Berkowitz P. Baseline Land Cover. Ch. 2 in: Selmants PC,

Giardina CP, Jacobi JD, Zhu Z (eds): Baseline and Projected Future Carbon Storage and Carbon

Fluxes in Ecosystems of Hawaii. U.S. Geological Survey Professional Paper 1834. 2017.

31. Gon SM III. The Hawaii Gap Analysis Project final report: Honolulu, University of Hawaii, Research Cor-

poration of the University of Hawaii; 2006.

Evaluating the role of input data product uncertainties in estimating gross primary production in Hawaii

PLOS ONE | https://doi.org/10.1371/journal.pone.0184466 September 8, 2017 13 / 14

https://doi.org/10.1126/science.1184984
http://www.ncbi.nlm.nih.gov/pubmed/20603496
https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php
https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php
https://doi.org/10.1371/journal.pone.0184466


32. NOAA National Ocean Service Coastal Services Center. C-CAP Hawaii 2005 Land Cover Map.

NOAA’s Ocean Service, Coastal Services Center, Charleston, SC USA. 2012. http://www.csc.noaa.

gov/digitalcoast/data/ccapregional.

33. Rollins MG. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Interna-

tional Journal of Wildland Fire. 2009 Jun 18; 18(3):235–49.

34. U.S. Geological Survey. LANDFIRE.HI_100EVC: Hawaii Existing Vegetation Type Layer. U.S. Geologi-

cal Survey. 2009. https://landfire.cr.usgs.gov/viewer/viewer.html?bbox=-164,15.79,-151.67,25.48

35. Digital Globe. Unpublished Quickbird and WorldView-2 satellite imagery. Longmont, Colorado. 2010

36. Pictometery International. Pictometry Online. Pictometry International Corp., Rochester NY. 2014.

http://www.eagleview.com/Products/ImageSolutionsAnalytics/PictometryAnalyticsDeployment.aspx

37. Stehman SV. Selecting and interpreting measures of thematic classification accuracy. Remote sensing

of Environment. 1997 Oct 1; 62(1):77–89.

38. Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. Global climate change

and terrestrial net primary production. Nature. 1993 May 20; 363(6426):234–240.

39. Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, et al. Determination of deforestation

rates of the world’s humid tropical forests. Science. 2002 Aug 9; 297(5583):999–1002. PMID:

12169731

40. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, et al. Tropical forests were

the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Acad-

emy of Sciences. 2010 Sep 21; 107(38):16732–7.

41. Anderson RG, Tirado-Corbalá R, Wang D, Ayars JE. Long-rotation sugarcane in Hawaii sustains high

carbon accumulation and radiation use efficiency in 2nd year of growth. Agriculture, Ecosystems &

Environment. 2015 Jan 1; 199:216–24.

42. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, et al. Global patterns of

land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,

satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences. 2011

Sep 1; 116(G3).
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