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Rowell, Eric, PhD, Fall 2017                     Forest Management 
 

 

Virtualization of Fuelbeds:  Building the next generation of fuels data for multiple-scale fire 

modeling and ecological analysis 

Chairperson: Carl A. Seielstad 

  The primary goal of this research is to advance methods for deriving fine-grained, scalable, 

wildland fuels attributes in 3-dimensions using terrestrial and airborne laser scanning technology. 

It is fundamentally a remote sensing research endeavor applied to the problem of fuels 

characterization. Advancements in laser scanning are beginning to have significant impacts on a 

range of modeling frameworks in fire research, especially those utilizing 3-dimensional data and 

benefiting from efficient data scaling.  The pairing of laser scanning and fire modeling is enabling 

advances in understanding how fuels variability modulates fire behavior and effects. 

  

  This dissertation details the development of methods and techniques to characterize and quantify 

surface fuelbeds using both terrestrial and airborne laser scanning. The primary study site is Eglin 

Airforce Base, Florida, USA, which provides a range of fuel types and conditions in a fire-adapted 

landscape along with the multi-disciplinary expertise, logistical support, and prescribed fire 

necessary for detailed characterization of fire as a physical process. Chapter 1 provides a research 

overview and discusses the state of fuels science and the related needs for highly resolved fuels 

data in the southeastern United States.  Chapter 2, describes the use of terrestrial laser scanning for 

sampling fuels at multiple scales and provides analysis of the spatial accuracy of fuelbed models 

in 3-D. Chapter 3 describes the development of a voxel-based occupied volume method for 

predicting fuel mass. Results are used to inform prediction of landscape-scale fuel load using 

airborne laser scanning metrics as well as to predict post-fire fuel consumption.  Chapter 4 

introduces a novel fuel simulation approach which produces spatially explicit, statistically-

defensible estimates of fuel properties and demonstrates a pathway for resampling observed 

data.  This method also can be directly compared to terrestrial laser scanning data to assess how 

energy interception of the laser pulse affects characterization of the fuelbed.  Chapter 5 discusses 

the contribution of this work to fire science and describes ongoing and future research derived 

from this work.  Chapters 2 and 4 have been published in International Journal of Wildland Fire 

and Canadian Journal of Remote Sensing, respectively, and Chapter 3 is in preparation for 

publication.  
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  Chapter 1– Introduction 
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1.1  Overview 

This dissertation examines methods to characterize and quantify pre- and post-fire surface 

fuels using terrestrial laser scanning in combination with field measurements, airborne laser 

scanning, and fuelbed simulations. The research focuses on the Southeastern United States, where 

there is growing consensus amongst researchers that many ecological processes in the region’s fire 

adapted ecosystems are driven by fine scale variations in fuel type, amount, and arrangement.  As 

a result of this understanding, there is growing demand for richer fuels data to capture observed 

variability at fine grains. Advances in fire behavior modeling have also introduced the need for 

new fuels data to represent variability in 3-dimensions, to be used in tandem with optical and 

thermal remote sensing data to validate outputs from new fire models.  Deriving high-resolution 

surface fuels data to meet these needs is the focus of this dissertation, which is presented in the 

following five related chapters.   

Chapter one provides background information, terminology, and research context.  Chapter 

two describes the methods for collecting, integrating, and quantifying error in terrestrial laser scan 

data for the purposes of describing fuelbeds in non-forested ecosystems of the Southeast.  Chapter 

three examines multi-scale approaches for characterizing and quantifying fuelbed mass across non-

forested and longleaf pine dominated stands, quantifying fuel consumption, and deriving 

relationships with coincident fuels data imputed from airborne laser scanners.  Chapter four 

introduces a novel approach to simulate fuelbeds as a bridge between laser scanned and field-based 

data.  Simulated fuelbeds provide scalability and a framework to distribute highly resolved and 

robust fuels data across landscapes.  Chapter five summarizes overall findings of this research and 

provides a framework for integration of the analyses into a cohesive fuels characterization to meet 
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the needs of next generation fire behavior models and advance the understanding of ecological 

effects of fire at fine-scales. 

1.2 Research Context 

The impetus for this research can be traced to discussions within the Core Fire Science 

Caucus (referred to from here on as the CFSC) regarding a lack of integrated, co-located, multi-

scale measurements of pre-fire fuels, active fire, and post-fire effects for studying fundamental fire 

processes and integrating them into the myriad of fire behavior, smoke, and fire effects models 

(Ottmar et al.  2016a).  The CFSC is an ad hoc group of ~30 scientists whom meet periodically to 

discuss fire research state of knowledge and to identify research gaps.  This self-directed fire 

science team is open to all fire scientists and managers, with a stated mission of improving core 

fire science for the benefit of managers (Sandberg et al.  2003).   

In 2005, the CFSC identified two primary research threads requiring further elucidation 

that are expected to influence fire research for the next 20 years.  These two threads included 

enhancing the capabilities of fire behavior modeling and addressing the knowledge gaps that 

inhibit the ability to model all types of fire in all types of fuelbeds under all fire environments 

(Sandberg et al. 2003). The underpinnings of the CFSC’s perspective were later expressed 

institutionally in the United States Forest Service (USFS) Wildland Fire and Fuels Research and 

Development Strategic Plan (USDA Forest Service 2006), which calls for research focusing on 

the physical fire processes, fire characteristics at multiple scales, and fire danger assessment.  

Specifically, under the physical fire processes (Element A1) there is a call for improved 

understanding of the fundamental, multi-scale, physical processes that govern fire behavior; sorted 

into four primary concentrations including fire transitions, heat transfer, fire emissions, and 
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complex fuels (USDA Forest Service 2006).  A natural integrator to fill these gaps in understanding 

are physics-based fire behavior models (Linn et al. 2002; Mell et al. 2009). 

My research investigates the role of three-dimensional imaging in initiating high resolution 

and accurate accounting of fuels to inform these physics-based fire behavior models.  Specifically, 

my work seeks to enumerate spatial datasets regarding surface fuel loading in grasslands, 

shrublands, and longleaf pine forests. Characterization and quantification of fuelbeds is a 

fundamental pre-requisite for understanding the primary processes governing fire behavior.  

To date, three-dimensional data collection such as Light Detection and Ranging (lidar) 

have been applied mostly at shrub scale- for example to individual palmetto, sagebrush and arctic 

willow shrubs (Loudermilk et al.  2009; Olsoy et al.  2014; Greeves et al.  2015, 2017).  However, 

fuels are seldom homogenous in spatial distribution and producing robust estimates of fuel mass 

for mixed heterogeneous fuelbeds has until recently been virtually intractable. The primary focus 

of my research, then, is to develop and validate methods to generate laser-based fuel metrics and 

to develop virtual fuelbeds in mixed fuels for utilization in emerging fire behavior and smoke 

models.  The specific objectives of this research are: 

1. To evaluate the ability to collect and integrate multi-scale terrestrial laser scanning data 

over large areas (circa 2ha) and local scales (circa 400 m2) for the purpose of producing a 

cohesive fuels height model to serve as the foundation for understanding additional fuels 

products (Chapter 2); 

2. To produce scientifically defensible estimates of fuel mass and consumption resulting from 

prescribed fire at multiple scales and compare these data against independent airborne laser 

scanning data for the same area (Chapter 3); and,  
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3. To develop alternative methods to bridge field and laser data through fuelbed simulation, 

to improve understanding of spatial distributions of fuel type and mass and increase 

efficacy of laser scanning for fuels characterization. 

It is important to acknowledge that these objectives are part of a larger, longer-term 

evolution of fuels science and fire modeling. Thus, this dissertation can be thought of as the 

beginning of a new line of inquiry with 5-10 years of investigation ahead. Ongoing and future 

work is discussed in Chapter 5. 

1.3 Background 

Relationships between spatial disturbances and their temporal frequencies are fundamental 

to ecosystem processes and resultant landscape patterns.  Specifically, the role of fire is a common 

fixture in many/most terrestrial ecosystems (McKenzie et al. 2011).  Fire is a complex spatio-

temporal process on a landscape, driven and regulated by abiotic and biotic features (Johnson 

1992; Johnson and Miyanishi 2001; van Wagtendonk 2006). Of the three primary contributors to 

fire behavior, regime, and effects as outlined by Falk et al. (2007), vegetation\fuels is the most 

difficult to quantify spatially due to limits on intensive ground sampling and traditional remote 

sensing technology and techniques (Brown and Bevins 1986).  Temporally, fire, and by association 

vegetation \fuels are distributed in five broad categories (McKenzie et al. 2011).  These categories 

include frequency\fire interval, duration, seasonality, spatial distribution, pattern, and 

severity\intensity.   

Within the domain of fuels and vegetation, each temporal category has key elements 

defining how fuels are arranged, spatially interact, and ultimately combust to produce an array of 

feedbacks and outcomes (Falk et al.2007).  Furthermore, vegetation\fuels are elements of the fire 

triangle, tied with weather\climate and topographic drivers, which control and are controlled by 
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energy sources and energy conversion regulators.  Solar inputs are converted to potential energy 

via photosynthesis and stored in pools until specific fire conditions arise for conversion to kinetic 

energy (McKenzie et al. 2011).  Primary factors contributing to how and when fuels burn are 

abundance, arrangement, and compactness of fuels.  These factors, along with moisture and 

attendant weather, ultimately drive how ignition is transformed into heat, heat-transfer and fire 

spread.   

A primary regulator of fire spread is the overstory plant community (tree density and 

canopy cover), where solar insolation and wind are regulated by interception within the canopy, 

controlling variables as soil and fuel moisture, and light competition, and affecting mid-story 

regeneration type and function (Battaglia et al. 2003; Mitchell et al. 2009a). In Southeastern long-

leaf pine forests Battaglia et al.(2003) showed that open canopy conifer forests allowed for light 

levels ranging from 30-90% of incoming radiation and produced conditions allowing for a diverse 

and vigorous understory with sufficient fine needle cast from the canopy to maintain frequent fire 

intervals (Kirkman et al. 2001).  Similarly, soil moisture, temperature, and water storage were 

found to be more regulated in unburned (high canopy density) sites in Northern Arizona as 

compared to a high severity burn site that had shifted to a grass type resulting from fire in a 

Ponderosa pine forest (Montes-Helu et al. 2009).  In areas where portions of overstory canopy is 

retained following fire, a diverse mosaic of surface fuels is expected due to preferential gains or  

losses in solar insolation along with the effective redistribution of biomass resulting from 

competition (Pecot 2005; Mitchell et al. 2006; O’Brien et al. 2008). 

In pine forests of the southeastern United States, frequent and low intensity fires are critical 

components to successful regeneration of longleaf pine (Wahlenburg 1946).  The primary carrier 

of fires in these systems is fine fuels (grasses, shrubs, pine needles); specifically, longleaf needle 
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cast is the integral pyrogenic fuel due to its resin content and physical traits that allow for 

combustion across a broad range of fuel moistures (Hendricks et al.  2002; Ottmar et al.  2003; 

Bartlette et al.  2005).  Perturbations in fire return intervals and fire intensity in these systems can 

lead to rapid changes in hardwood species allowing woody mid-stories to develop that alter the 

ability for the system to maintain conditions that support continued frequent fire (Glitzenstein et 

al.  1995). Additionally, previous studies have shown the dependence of high understory plant on 

fine scale variations in fire behavior, which ultimately is controlled by fire-maintained variations 

in canopy cover and surface fuels (Walker and Peet 1984; Kirkman et al.  2004).  Hiers et al.  

(2009) suggested that fire effects in frequently burned longleaf forests are governed by fine-

grained (~0.5 m spatial scale) fuels variability (the so-called Fuel Cell Concept).  This finding, 

although not yet fully validated, identifies a need for improved spatial characterization of fuels 

corresponding with high resolution thermal and multi-spectral imagery, in order to quantify fuel 

and fire heterogeneity simultaneously at fine grains.   

1.3.1 Application to broader fire research and fire behavior modelling 

Organization and distribution of fuels also plays an important role in determining the 

growth and behavior of fires on a landscape (Finney 2001a, 2002).  Similar effects occur at a range 

of scales where changes in fuel type, arrangement, and/or ignition pattern (e.g., strip or spot) 

influence the interactions of flaming fronts (Maynard et al.  2016).  Convergence of flaming fronts 

can result in increases in flame height, propagation, heat release rate, and flame angle as two fronts 

merge (Martin and Dell 1978).   Fuel patterns can also impact the way fire interacts across a 

landscape.  For example, where fuels are fire inhibitors, fuel moistures are high, or there is a lack 

of combustible fuels (e.g. bare ground, sparse vegetation) fire is forced to burn around features 

creating heterogeneous patterns of fire behavior and effects (Loudermilk et al. 2009; Dell et al.  
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2017).  Beer and Enting (1990) describe three possible regimes of fire spread- uninhibited spread 

where there is a generally uniform front of combustion that burns all available fuels; no spread due 

to conditions not supporting propagation; and geometrically constrained propagation where 

random variations in combustion are dependent on regional spatial patterns. Wind flow dynamics 

over fuelbeds also play an integral role in the propagation of fire by generating turbulence within 

and above the fuelbed (Pimont et al.  2009). Sudden heterogeneities in canopy induce additive 

canopy-based turbulences that accelerate surface winds (Dupont and Brunet 2006).  These 

interactions between large coherent structures and fire interactions are difficult to quantify and 

require additional investigation (Pimont et al.  2009).  

To examine the integration of wind-flow dynamics at local scales and the effects of fuels 

and fire propagation numerous investigations using computational fluid dynamics based fire 

behavior models (CFD) has occurred (Pimont et al.  2009). Experiments have been developed to 

duplicate observed wind characteristics that occur over vegetation using CFD models, specifically 

with heterogeneous fuels (e.g. Mueller et al.  2014) and along forested edges (Dupont and Brunet 

2008).  These studies observe windspeed and canopy roughness thresholds above which canopy 

winds are laminar and below which there are vertical accelerations of wind-flow that induce 

turbulence and influence fire propagation.  There are numerous additional inputs affecting how 

fire propagates involving fuel arrangement, flaming front interaction, and wind-flow dynamics and 

these inputs have generally been evaluated at large-scales (e.g., 30-1000m) to understand how tree 

canopies influence fire behavior. There are also important but as yet unquantified relationships 

between the aforementioned inputs and the complex responses of vegetation to fire (Loudermilk 

et al.  2012).  The Ecology of Fuels (Mitchel et al.  2009) and the wildland fuel cell concept (Hiers 

et al.  2009) both attempt to integrate fuel heterogeneity, fire behavior, and fire effects and to 



9 
 

identify spatial limits on these processes (Loudermilk et al.  2012).  Ultimately, the unifying 

element that will allow these ideas to be tested is robust, scalable fuels characterizations that are 

compatible with CFD models.  Improvements in fine-scale fuels measurements will allow for 

enhancements in fine-scale CFD modeling that can be more easily compared to in situ high 

resolution thermal infrared measurements. 

Testing the wildland fuel cell concept requires alternative fuel sampling methods, as 

quantifying fire and fuel heterogeneity at fine scales has met with limited success to date (Mitchell 

et al.  2006). Fuels have typically been characterized at stand-scale (Ottmar et al.  2003) and fine 

scale sampling is usually averaged over the larger unit and generally represents mass and vertical 

variability, but lacks information on horizontal fuel continuity (Fernandes et al.  2000; Ottmar et 

al.  2007). Rationale for using stand level averages is partly based on fire behavior models currently 

in use for management (e.g. BEHAVE PLUS (Andrews et al.  2005), FARSITE (Finney 2004)), 

which incorporate assumptions of fuels homogeneity that derive from Rothermel’s fire spread 

model (1972).   

Typical fuels measurements include transects (Brown 1974) and point intercept data 

(Mueller-Dombois and Ellenburg 1974) to determine mass of coarse woody debris, along with fuel 

depth, and cover.  These methods are used to estimate fuels across the landscape for the purpose 

of coarse-grained fire behavior and effects modeling, but they do not encompass the full range of 

heterogeneity across the landscape (Hardy et al.  2008). In fact, the inability to characterize spatial 

non-uniformity of fuels and fire behavior is one of the primary drivers for development of CFD 

fire behavior models for wildland fire. These models attempt to integrate atmospheric and fire fluid 

dynamics using physical principles to propagate fire across the landscape (as opposed to 

empiricism). They have the potential to improve understanding of fire processes that cannot be 
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seen because they occur at scales difficult to observe or at the extreme limits of fire behavior. The 

Wildland Fire Dynamic Simulator (Mell et al.  2009) and FIRETEC/higrad (Linn et al.  2005) are 

the two primary models in use. The desire to validate these models with field measurements has 

become a driving force behind comprehensive multi-disciplinary experiments such as the 

Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE). 

One avenue to improve fuelbed characterization has been through application of airborne 

and terrestrial laser scanning. Commonly referred to as Light Detection and Ranging (LiDAR), 

these systems employ laser emissions ranging from 10 kHz to 300 kHz that can register multiple 

returns per pulse. The laser returns are used to construct three-dimensional point clouds or digitized 

waveforms that represent 3-D models of aboveground and surface features.  The utilization of 

airborne laser scanning (ALS) to derive fuel metrics has been applied to canopy bulk density 

(Riaño et al.  2003; Andersen et al.  2005), surface fuel model classification, by fusing multi-

spectral data with ALS (Riaño et al.  2003; Mutlu et al.  2008), surface fuel loading (Hudak et al.  

2016), and canopy base height (Andersen et al.  2005; Rowell 2005).  These metrics have been 

derived for inclusion in current standard fire models (FARSITE, Finney 2003), as well as to 

produce landscape estimates of critical fuel patterns.   

As ALS datasets have become increasingly rich in resolution (~9-13 returns per meter2) 

there have been improvements in the ability to estimate important forestry metrics.  Jakubowski et 

al.  (2013) report reductions in root mean square error (RMSE) for models of eleven key forest 

metrics as ALS pulse density increases.  This in part due to higher probability of laser pulses being 

intercepted by features representing the full range of heights occurring on the landscape. The 

primary source of uncertainty, however, is how the laser pulse interacts with an object. It is known 

that ALS data are collected when sufficient energy is returned to the sensor to trigger a return.  The 
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value returned represents a weighted average of the energy intercepted by the energy footprint.  

Hopkinson et al. (2005) noted systematic underestimation of vegetation heights when field 

measured and ALS height metrics were compared.  Inversely, the same study demonstrated that 

ground height measurements between GPS and ALS showed a slight over estimation of height by 

ALS instruments.  These findings are significant for characterizing surface fuels, as many of these 

fuel types are typically less than 0.5m in height and the findings from Hopkinson et al. (2005) 

denote underestimates of heights ranging from 22-63 percent.  The level of error for surface fuel 

features is significant enough to impact estimates of height, mass, and cover that are used to 

characterize the landscape.  

Because Terrestrial Laser Scanners (TLS) provide more highly resolved data, their 

employment in surface fuels characterization is expected to improve derivation of fuelbed metrics 

and perhaps to improve estimations from ALS-derived metrics as well. TLS collect local and 

highly resolved three-dimensional data (0.001 to 0.5m point spacing).  Related to fuels 

characterization, TLS has been used to estimate biomass of individual shrubs (Hosoi and Omasa 

2006; Loudermilk et al.  2009; Olsoy et al.  2014; Greeves et al.  2014). Loudermilk et al.  (2009) 

quantified heterogeneous fuelbeds in the southeastern United States by deriving krigged surface 

volumes from high resolution TLS scans and comparing with point intercept estimates of volume.  

Ultimately, a primary limitation in characterizing heterogeneous fuelbeds results from the 

ubiquitious mixture of fuel elements that are difficult to segment from one another in laser scans 

(Rowell et al.  2016a). These fuels generally have different mass\density partitioned throughout 

the fuelbed (e.g shrubs, woody debris, grass, etc.), which have different combustion characteristics 

(Fonda 2001).   The general limitation of TLS data stems from the oblique scan orientation that 

causes occlusion of the laser pulses. Penetration of laser pulses into dense features (e.g. palmetto 
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shrubs) is highly limited as the energy passes through gaps and is intercepted by objects.  The 

assumptions developed by Hosoi and Omasa (2006) and supported by Loudermilk et al. (2009) 

suggest that “over sampling “by scanning from multiple angles overcomes some of the problem 

of canopy interception of energy and shadowing effects.  Ultimately the amount of biomass within 

a hull of a vegetation clump remain uncharacterized by the TLS, and its presence and amount is 

known only by relying on assumptions that the surface area of a hull is a well-correlated proxy for 

leaf area. 

Despite these limitations, there is significant potential to improve characterization of all 

fuel types using TLS, from the framework of biomass quantity, arrangement, type, and 

vertical\horizontal connectivity. Furthermore, TLS fuel derivatives will allow for improved 

comparisons with ALS derived fuels data, as they both are capable of describing local and larger 

landscapes in ways that traditional fuels inventories have been unable to perform.  A key limitation 

from the standpoint of ALS data to date has been the inability of the laser to characterize fine fuels 

(Seielstad and Queen 2003).  This assertion is substantiated from fuel mapping studies conducted 

in the New Jersey pine barrens (Skowronski  et al. 2007; Clark et al.2009), where ladder and 

hazardous fuels were primary features characterized using lidar transects.  Fine fuels in this study 

were generally characterized only when there was an absence of overstory vegetation. 

1.3.2 Integrated Fuels Characterization 

Given the different limitations of ALS and TLS data, I have developed a framework 

describing how these two data sources can be leveraged together to produce cohesive, integrated 

landscape-scale fuel characterizations. As described previously, ALS data have known 

underestimations of height that lead to error associated with surface fuel metrics.  However, TLS 

is an advantageous method to improve characterization of local metrics that can be used to inform 
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ALS-derived metrics across the landscape.  The concept depicted in figure 1, utilizes ALS-derived 

metrics as a unifying element for estimating fuel properties for the landscape and TLS metrics, 

field measurements, and fuelbed simulations to relate back to ALS-based measurements, where 

cross-validation occurs when all three types of data exist for the same area.  Then, additional TLS, 

field, and simulated fuelbed data are collected to densify the training data needed to impute the 

ALS-based fuels metrics. The proposed model also allows for investigation of fuels and 

subsequent fire behavior across multiple scales as well as cumulative effects as a function of 

grainsize.  When integrated with existing methods and results regarding canopy metrics, this 

approach is expected to provide context for asking and answering questions about the impacts of 

scale and spatial variability on fire behavior, fire behavior, wind-flow dynamics, and smoke 

production from fire.   
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Figure 1.  The Integrated Fuels Concept:  In this model, ALS and TLS coupled with simulated 

fuelbeds provide the basis for scalable fuels data for both surface and canopy layers. Using this 

approach, fuels data can be ported for high resolution fuels assessment and modeling (0.25m2)   

typical of the southeastern US or scaled up to scales of 10-20m2 that are most useable for 

western fire science.  The key benefit is that all scales start at the highest resolution and are 

aggregated to coarser scales which produce more robust datasets.
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2.1 Abstract 

Terrestrial laser scanning (TLS) was used to collect spatially continuous measurements of 

fuelbed characteristics across the plots and burn blocks of the 2012 RxCADRE experiments in 

Florida. Fuelbeds were scanned obliquely from plot/block edges at a height of 20 m above ground. 

Highly instrumented plots (HIPs) were scanned at ~8 mm spot spacing from a single viewing 

position pre- and post-fire while blocks were scanned from six perspectives pre- and four post-fire 

at ~2 cm spot spacing. After processing, fuel height models were developed at 1 m2 spatial 

resolution in burn blocks and 0.25 m2 resolution in plots and compared with field measurements 

of height. Spatial bias was also examined. The resultant fuel height data correspond closely with 

field measurements of height and exhibit low spatial bias. They show that field measurements of 

fuel height from field plots are not representative of the burn blocks as a whole. A translation of 

fuel height distributions to specific fuel attributes will be necessary to maximize the utility of the 

data for fire modeling. 

 

2.2 Introduction 

Fire science and management typically utilize statistical inference and generalization to 

produce fuels data for fire behavior prediction (Anderson 1982; Burgan and Rothermel 1984; 

Keane 2013). The emergence of next-generation wildland fire behavior models that simulate fire 

propagation through three dimensional lattices at fine grain has placed new demands on fuels data 

(Linn et al.2002; Morvan and Dupuy 2004; Mell et al. 2007; Pickett et al. 2009; Prince et al. 2010). 

However, distributing fuel realistically across landscapes is difficult, and measuring three-

dimensional locations of fuels in the field accurately is time consuming and hard to replicate. 

Consequently, most fuels data are collected within small areas (transects or plots) and must be 

abstracted to represent fuels on larger domains. Given the very high spatial variability observed in 
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even fairly simple fuelbeds (Keane et al. 2012), the need to describe the actual arrangement of 

materials as an alternative to abstraction has increased irrespective of domain size. Further, 

because fuelbeds used in validation of fire behavior prediction cannot be disturbed by field 

sampling before burning, a remote sensing approach is required. 

Recent advances in laser scanning are producing more replicable and accurate renderings 

of fuels in regards to the spatial distribution of plant elements. Experiments in the southeastern 

United States have integrated terrestrial laser scanning (TLS) to extract volumes of shrub fuels in 

laboratory experiments (Loudermilk et al. 2009), as well as to fuse TLS data with thermal images 

of fire behavior in long-leaf pine forests (Hiers et al. 2009). Outside of the realm of fuels, 

experiments to detail plant area density as a function of voxel-based canopy volume in wheat, 

shrubs and trees (Hosoi and Omasa 2006; Van der Zande et al. 2006; Hosoi and Omasa 2008) have 

yielded strong correlations with dry biomass.  

In each of these instances there is a requirement for high spatial resolution data and 

measurements from multiple perspectives to reduce occlusion from foreground objects and to 

maximize penetration into vegetation (Hosoi and Omasa 2008). These previous approaches show 

promise for characterizing individual plant elements in controlled environments, but the 

characterization of fuels matrices over larger domains in natural environments using TLS data has 

not been widely investigated. Given considerable uncertainties in estimating specific fuels 

attributes such as mass by size-class or surface area to volume ratio, the potential near-term 

advantage of TLS for providing improved fuels data is in mapping characteristics of the fuelbed 

in terms of the height, shape, and arrangement of vegetation across landscapes up to a few hectares 

in size with the purpose of explicitly characterizing some of the spatial variability in fuels that may 

affect fire behavior and effects.  
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This paper describes methods for acquiring and processing high resolution TLS data across 

2-ha blocks of mixed grass and shrub fuels in the southeastern United States as developed through 

the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) 

conducted at Eglin Air Force Base, Florida.  The objectives of the study are to produce a single 

large dataset suitable for validation of fire behavior models. To meet this objective, data accuracy 

and bias are quantified in the 2-ha blocks where scans were collected from 10 perspectives per 

block (40 individual scans). We report accuracies associated with the spatial fidelity (easting, 

northing, and height accuracies) of the complex acquisition modes of TLS data and hypothesize 

that the majority the error within the point clouds is introduced as a function of how the laser 

samples objects at the farthest ranges from scan origin. We also speculate that variability between 

height metrics from TLS and field measurement are the result of characterization modes and not 

spatial incongruities that cascade from the processing stream. This research shows how integration 

of large TLS point clouds can be used to produce spatially explicit and continuous measurements 

of fuelbed height over 2-ha areas at ~2 cm resolution, in conjunction with the other measurements 

of RxCADRE described in this issue. We provide a simple analysis of height comparisons from 

field validation and TLS-based estimations to quantify errors and bias that will allow for further 

types of analysis as biomass, percent cover, and fuel type and arrangement. 

 

2.3 Methods  

2.3.1 Study area  

Terrestrial laser scanning (TLS) data were acquired at Eglin Air Force Base, Florida, in October 

2012. Eglin AFB is located in the panhandle of northwestern Florida, USA, which was originally 

a unit of the former Choctawhatchee National Forest; Eglin is an important resource in the 
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management of longleaf pine ecosystems with 180,000 ha of longleaf pine sandhills and flatwoods 

(for site map and details see Ottmar et al. 2016b). Landscapes with dimensions of 100 m x 200 m 

(S blocks) were established in two fuel types, grass-dominated and shrub-dominated, and were 

subsequently burned with strip head fires.  

 

2.3.2 Field data  

One meter square clip plots were measured adjacent to each TLS sampling area (Ottmar et al. 

2016b). For the six S-blocks, one square meter pre-burn plots (n=25 per block) were established 

around the perimeter of each 2 ha area at 20-m intervals. Each field plot was monumented with a 

metal pole on its southeast corner. Plots on the eastern edge of each block were offset eastward by 

one meter so they did not fall within the burn block itself. Metal poles were wrapped with retro-

reflective tape for easy identification within the TLS point cloud. Field measurements for all small 

field plots included maximum height, average “center of mass” height, canopy cover, and dry 

biomass weight by lifeform (grass, forb, and shrub). Plots were also photographed obliquely from 

the north to document pre-fire spatial organization of fuel elements.  Blocks S3, S4, and S5 were 

mowed the previous spring and are generally grass dominated with low shrubs and forbs that are 

primarily at the same height as the grass clumps.  Blocks S7 and S8 have a significant oak and 

palmetto component and have not been treated mechanically or chemically. 

 

2.3.3 TLS data collection and processing 

Laser scans were completed pre-and post-burn using an Optech ILRIS
TM 

36D-HD instrument 

scanning at 10 kHz. Two modes of data were captured for the RxCADRE project: first, the six S-

blocks representing relatively homogeneous and continuous grass fuels interspersed with shrubs 
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over 100 m x 200 m extents (block S9 is not included in these analyses as there were issues related 

to acquisition of the data including too small of a view window that ultimately excluded the 

reflective poles used to tie scans together. Details of the RxCadre sample design are reported by 

Ottmar et al. (2016b). In the S-blocks, the TLS instrument was also positioned in the mobile boom 

lift at a height of 20 m above the fuelbed. Laser scans were collected at six positions around each 

burn block (Figure 2) at 20-m horizontal distance from the edge of the block. Post-fire scans were 

collected from the east and west positions only for a total of four per block. 

In each scan, the laser was pointed downward at an angle of 23°. The scanner was operated 

from the ground using a tablet computer with a wireless connection.  Scanner settings were 

optimized to achieve consistent point density across the block with the caveat that point density 

necessarily declines as range increases. The ILRIS laser allows point density to be set as a function 

of focal distance; all S-block scans were set to collect 2-cm spot spacing at 90 m, ranging from 8 

mm at 20-m range to 56 mm at 300-m range. The 2 cm sampling resolution is based on constraints 

for sampling in the field.  Due to the data collection occurring on an active bombing range at Eglin 

AFB, we had limited access to the range between missions.  Data collections were limited to 45 

min. per scan location for an average scan time of 8 hours per S-block including moving the boom 

lift between each scan location.   
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Figure 2. (a) An example of the fuelbed for block S3 from the boom lift, (b) TLS data clipped to 

the block boundary with scan locations, and (c) a three-dimensional graph demonstrating height 

variability for a 10 m x 10 m subset of the TLS data. 
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The 2cm resolution at 90 meters range allowed for relatively dense data resolution within 

the block in a time frame that allowed for completion of the data collection prior to the execution 

of the prescribed fire.  Time-of-flight scanners collect richer datasets near the point of origin of 

the scan with less dense point spacing as range increases. As the laser pulse moves away from the 

ILRIS instrument, the point spacing increases linearly with range at a rate of 16.8 mm per 100 m 

of range. Additionally, the illuminated footprint of the scanner increases linearly with range, 

becoming less sensitive to canopy gaps as spot size increases (Seielstad et al. 2011). Spot size in 

the foreground of each S-block was 16 mm, expanding to 29 mm at 100 m range. Though we 

acknowledge that there is higher point densities on the edges 

 

2.3.4 TLS processing 

Each scan was initially corrected to a GPS control data set (as collected in the RxCADRE 

experiment) around each block using the Polyworks software suite (Innovmetric: Quebec, Canada) 

by replacing corner post locations in the raw point clouds with GPS locations. The ILRIS laser 

scanner collects data in individual 40° x 40° windows which then need to be aligned with one 

another. Scan-to-scan corrections were completed by selecting identifiable points within the 

control data (usually monument posts) and then further refining the scan correction using the 

automated align algorithm within Polyworks. The corner reference points were more easily 

identified in post-burn scans; therefore these points were used to tie adjacent scan scenes together 

to create a reference for the pre-burn scans. Because all laser scans were collected from the same 

locations, pre- and post-burn, pre-burn scans were aligned by using the locations of the post-burn 

scan head as the initial control points.  

5 

1 
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Matching of scans was highly dependent on the auto-align algorithm in Polyworks. The 

absence of hard targets in the pre-fire scans made matching of scenes difficult. Polyworks uses a 

proprietary meshing algorithm in the auto-align procedure. In dispersed fuelbeds, the meshing 

algorithm struggles to manifest identifiable objects such as the corner posts in enough detail to 

accurately merge scans. Therefore, an open-source point alignment software package was 

employed to refine alignment (Cloud Compare 2014) using individual points rather than meshes. 

All scans from each scanhead location were merged together using code developed in the lead 

author’s lab and written in IDL, and adjacent scan groups were aligned to the group showing the 

least variability in alignment quality and encompassing the greatest number of visible metal posts. 

Scan groups were aligned and merged by selecting coincident points and applying an alignment 

matrix to orient each group into a common projected space. All scan groups were then merged into 

a single dataset for each burn block and clipped to a 20-m buffer around each burn block. These 

block datasets were then converted into lidar-specific .las format files and an initial surface and 

ground separation was performed within LASTools (rapidlasso GmbH, Gilching, Germany) using 

the LASGround algorithm. 

Initial assessment of the ground surface classification suggested differential occlusion of 

ground points within the center of the burn blocks compared to edges (e.g. ‘ground’ returns within 

the fuel height model [FHM] appear lifted in block centers compared with areas at the edges where 

ground is clearly identified and separate from the FHM). We suggest that occlusion was a function 

of oblique viewing angles that preferentially samples upper reaches of the fuels canopy with less 

representation of lower fuel objects and the ground. To correct for this condition, airborne scanning 

laser (ALS) data (for methods see Hudak et al. 2016) collected at the same time as the TLS data 

were used to adjust the TLS data for geoid and normalized height using the TLS Processor DTM 
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Correct routine written in IDL. This routine imports .las format laser data and interpolates the ALS 

ground points into a bare earth digital terrain model (DTM), in this case, at 0.25 m2 resolution. The 

bare earth TLS data points were compared to the coincident ALS ground points and differences 

between elevations were used to adjust the TLS data to the proper geoid height for both ground 

and FHM strata. Corrected geoid heights for the FHM were then differenced from the digital 

elevation model (DEM) to produce the normalized heights above ground. 

 

2.3.5 TLS data accuracy assessment  

 Vertical and horizontal accuracy of TLS data were assessed on three criteria. To assess 

accuracy, point clouds from each of the small field plots were extracted by importing feature 

datasets of the TLS point clouds into the ArcGIS environment and identifying highly reflective 

lidar points (intensity values >8000). These reflective data points generally represent low gain 

returns from the highly reflective retro-tape encasing the 1-m tall aluminum poles at each field plot 

corner. The points representing monumented plot corners were isolated by selecting 1 m x 1 m 

buffers around clusters of highly reflective points. At each corner post, 1 m2 plot boundaries 

representing the field plots were digitized using the plot corner as the southeast corner of the field 

plot. Points from monumented plot corners were cleaned to remove reflective artifacts such as 

ghosting (Seielstad et al. 2011) and remaining points were spatially joined with the field plot 

locations identified above. The result was a cleaned FHM for each small field plot. 

The first level of assessment regards the horizontal accuracy of scan-to-scan 

representations of the corner posts. Plot corner points from each scan station were compared to all 

coincident corner points for each 2 ha block, with associated errors reported as root mean square 

error (RMSE). Each plot corner was assessed in the horizontal and vertical domain. The second 
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level of assessment regards vertical error from scan station to scan station. For all combinations of 

scan stations for each 2 ha block, 0.5 m2 resolution bare earth DEMs were extracted using the 

BLAST2DEM routine in LASTools lidar processing suite. These DEMs were imported into the 

ArcGIS environment, where raster calculations were conducted and zonal statistics based on the 

clip plots extracted. Multiple DEMS were generated for each scan station to assess whether there 

was significant differences between scans.  Even by normalizing heights to the ALS DEM if a scan 

swath is pitched at a 30 degree angle for instance, there will be artifacts or the surface might be 

lifted if there are erroneous low points.  So we compared every single scan swath from the TLS to 

insure that there were no incongruities. The third level of assessment regards spatial bias between 

plot corners as determined by the comparison of TLS derived post locations with surveyed GPS 

points. 

 

2.3.6 Spatial bias 

To assess variability of height metrics as a function of distance from scan station, height-

normalized laser data were clipped to block boundaries and examined as a function of distance 

from block centroids. We hypothesized that as scan distance increases towards the center of the 

block, the increasingly oblique nature of the scan could result in differential occlusion of ground, 

thus skewing the fuel height model higher in the center of the plot. In effect, viewing vertically-

oriented grass fuels from above may reduce the probability of detecting foliage, particularly at top 

of canopy, compared with viewing them obliquely. A smaller laser spot size may produce a similar 

effect. To test this hypothesis we examined height metrics in 10-m wide concentric rings centered 

on block centroids out to 50 m distance (block edges on east and west sides).  There were two 

centroids per block that represent the center of all scan groups.  As we are unable to measure the 
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interior of the block due to altering the fuelbed that may influence fire behavior during the 

prescribed burn, we sought to assess point density and potential bias within the block compared to 

the validation plots that occur closest to the scan station and have the highest point densities. 

2.3.7 TLS-based height metrics  

Height metrics were extracted from the height distribution of each 1 m2 field plot including 

mean height, standard deviation height, inflection height, and the first and second peak of the 

distribution (figure 3). The first peak of the height distribution is the highest frequency height bin 

(from bottom) greater 1 cm in height. The second peak is the second highest frequency after the 

first peak. Two mean height metrics were calculated; the first mean height uses all points in the 

plot subset and the second mean excludes all points that are ≤1 cm to reduce the influence of the 

ground points on the average. The inflection point is calculated by using a derivative function on 

the frequency values of the histogram. The function outputs signed values of the slope of the 

histogram and looks for a sign change to positive for heights 5 cm greater than the height of the 

first peak.  

This inflection point is hypothesized to represent the transition from grass clumps, low 

forbs, and shrubs to grass seed heads and taller shrubs. In previous work, the inflection height of 

grass fuel matrices was systematically lower than inflection heights associated with shrub fuels 

(Rowell and Seielstad 2012). Aside from vector based height metrics, raster based height metrics 

were generated across each S-block using LASCanopy in the LASTools suite. These products 

included maximum, mean, minimum, standard deviation, first, fifth, tenth, twenty fifth, fiftieth, 

seventy fifth, ninetieth, ninety fifth, and ninety ninth percentile heights at one meter spatial 

resolution.  
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2.4 Results  

2.4.1 Horizontal and vertical accuracy  

For these results, accuracies are derived through comparison of highly reflective points 

around plot corners. The horizontal accuracy assessment (Table 1) produces average between-scan 

easting and northing errors for all posts of 10.75 mm and 9.94 mm, respectively. For individual 

blocks, S5 contained that largest northing error of 13.97 mm and S4 had the largest easting error 

(11.43 mm). The vertical accuracy assessment results in between-scan errors ranging from 40 to 

120 mm. Assessment of the vertical accuracy of the segmented plot corners indicated better 

alignment between adjacent scans in blocks S3, S4, and S5. Blocks S7 and S8 exhibited larger 

error indicating less certainty regarding alignment of some adjacent scan stations. The latter blocks 

exhibited larger magnitude vertical error suggesting less certainty in definition of ground between 

some scan stations, effectively resulting from the more heterogeneous fuelbed that might occlude 

tops of the poles from being accurately sampled from all directions due to tall shrubs.  

These results summarize the vertical accuracies in regards to scan-to-scan comparisons of 

bare earth interpolated surfaces. The vertical offsets derived from scan-to-scan comparison of bare 

earth interpolated surfaces (Table 1) produced average error of 8.83 mm across all S-blocks. The 

lowest vertical errors were associated with block S3 (5.41 mm) and highest vertical errors were 

associated with block S8 (15.84 mm). Given the between-scan consistency of bare earth surfaces, 

the differences in vertical accuracy obtained from bare earth points versus plot corner posts (from 

above) are likely attributable to the difficulty in characterizing post heights consistently at long 

scan distances. 

2.4.2 Comparison with GPS control points 

Comparison of 35 GPS surveyed points (6 to 8 per block) with the predicted points from 

the TLS data showed offsets for all blocks (Table 2) ranging from 75 to 185 cm. Errors were 
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similar and minor in S3 and S4 (easting RMSE = 1mm, northing RMSE = 1mm, height RMSE=5.3 

and 5.9 respectively). Co-location errors were evident in 1 to 2 individual scan stations in each 

block for S4–S8, specifically the vertical offset. After a second-order polynomial transformation, 

RMSE was reduced to less than a millimeter for S3 and S4, and to 14 to 19 cm for S5–S8. The 

internal  

 

 

Figure 3 (a) An example of a normalized histogram of the TLS fuel height distribution with the 

peak frequency, mean height, inflection point, and second peak frequency for plot 18 in block 

S4, and (b) the plot photo of the same area. 

  

A. B. 
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Table 1. Scan to scan errors associated with the merging of opposing scans into a single dataset 

 

Errors are reported as root mean square error (RMSE) for horizontal and vertical domains 

representing identified plot corners in the point cloud. The vertical RMSE for the bare earth is 

the RMSE of the difference for each scan direction compared to all other scans in a block. 

 
Block ID Plot posts error 

(cm) 

Bare earth vertical 

error (mm)  

 

X Y Z  

S3 0.1 0.1 5.9 5.4 

S4 0.1 0.1 5.3 6.8 

S5 0.1 0.9 3.9 6.8 

S7 3.0 2.0 11.0 6.1 

S8 3.0 4.0 12.1 15.0 

 

Table 2. Differences between TLS post locations and GPS survey points before and after 2nd-

order polynomial transformation 

 

Root mean square error for TLS and GPS data pre- and post- second-order polynomial 

transformation  
Block ID Root mean square error 

Pre-transform 

(cm) 

Post-transform 

(cm) 

S3 74.9 <0.01 

S4 97.8 <0.01 

S5 147.0    14.5 

S7 74.0 18.5 

S8 185.0 19.3 
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consistency of the untransformed point clouds was high as evidenced by coincidence of posts in 

the aligned scans. The observed offsets from the GPS survey points shows that the internal 

alignments of the point clouds did not perfectly align with the surveyed geometry. It is probably 

not coincidental that the largest error occurs in shrub-dominated plots where identification of posts 

in the point clouds is more difficult. 

 

2.4.3 Height of vegetation 

Maximum heights of field-collected and TLS derived data were compared to assess the 

ability to predict heights of fuel elements. These results show a reasonable relationship between 

maximum heights of both datasets (r2 = 0.70, adjusted r2 = 0.70, p<0.0001) (figure. 4). The scatter 

plot of maximum heights reveals general agreement between the dependent and independent 

observations at heights of ≥50 cm.  Below this threshold, there was more variability in the 

estimated maximum height and the laser tends to overpredict (bias of 9.6 cm). For instances of 

over prediction, these results appear to be caused by contamination of the plot point clouds due to 

ghosting from the reflective corner posts and subtle misalignment of plot boundaries due to 

uncertainty of the corner point used to anchor each 1-m2 plot polygon. Ghosting occurs when areas 

of high reflectance are averaged with a background of lower reflectance objects creating a trailing 

cloud from the highly reflective surface towards the background. Where TLS derived maximum 

height is underestimating the maximum height substantially (4 cases), plot misalignment is the 

primary culprit.  

Very weak relationships were observed between TLS mean height and field-estimated 

center of mass height (not shown) and it is not evident that relationships should exist given how  
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Figure 4. Scatter plot of observed and TLS-based maximum height for clip plots in the S-blocks 

demonstrating the overestimation of height from the TLS estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



32 
 

field estimation was executed (a measurement based on the ocular assessment of the mean height 

of each life form). However, variability in scan angle might be expected to produce variations in 

characterizations of central tendency particularly in vertically-oriented fuels such as grasses. 

However, no consistent spatial bias is evident for maximum or mean heights (Table 3) as 

characterized by trends in means from center of blocks to edges. In grass-dominated S4 and S5, 

heights declined by 4 cm on average from centroid to edge, but this effect is not apparent in grass-

dominated S3. In shrub-dominated S7 and S8, small changes between distance rings from centroid 

are random. Overall, the average absolute difference in maximum heights between rings is 4.8 cm 

with negative and positive values equally represented. Variability as characterized by standard 

deviation of heights is very consistent across all blocks.  

While these data don’t absolutely resolve the question of spatial bias, they suggest that 

bias, if present, is small. Additional evidence supporting the conclusion of no bias can be found in 

comparison of maximum height data from coincident field and TLS measurements and from all 

maximum height data from each block (Table 4).  

As noted above, TLS and field heights track consistently for the small field plots with 

overestimation by TLS. Comparison of these results with TLS-derived maximum heights for entire 

blocks suggests that fuels are consistently taller on average across the blocks than indicated by 

either field or TLS measurements from the small field plots. Though there was significant 

trampling of the fuelbeds outside of the clip plots, care was given to not disturb the clip plots before 

TLS scanning. To further examine whether proximity of the small plots to scan stations (overhead 

perspectives, small spot sizes) contributed to these differences, block boundaries were buffered by 

10 m inward and then maximum height metrics were recomputed for these areas. Maximum 

heights were no different along block edges than across entire blocks, suggesting consistent height  
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Table 3. Reported maximum, mean, and standard deviation height for concentric rings of TLS 

normalized height data at 10-m increments from the centroid of each S-block 

 

 

  

Block ID Height Distance from plot centroid 

(cm) 0–10 m 10–20 m 20–30 m 30–40 m 40–50 m 

       
S3 max 0.89 + 0.17 0.91 + 0.17 0.96 + 0.17 0.96 + 0.18 0.94 + 0.19 

 

mean 0.39 + 0.07 0.40 + 0.08 0.42 + 0.08 0.43 + 0.08 0.41 + 0.10 

 

stddev 0.17 + 0.04 0.18 + 0.04 0.20 + 0.04 0.20 + 0.04 0.20 + 0.04 

S4 max 0.89 + 0.21 0.99 + 0.20 0.95 + 0.21 0.92 + 0.23 0.89 + 0.23 

 

mean 0.36 + 0.11 0.40 + 0.13 0.38 + 0.12 0.35 + 0.13 0.29 + 0.12 

 

stddev 0.21 + 0.05 0.22 + 0.04 0.22 + 0.05 0.22 + 0.06 0.22 + 0.07 

S5 max 0.96 + 0.18 0.98 + 0.21 0.98 + 0.20 0.95 + 0.20 0.87 + 0.20 

 

mean 0.38 + 0.09 0.41 + 0.12 0.41 + 0.13 0.38 + 0.11 0.31 + 0.10 

 

stddev 0.21 + 0.04 0.22 + 0.05 0.22 + 0.05 0.22 + 0.05 0.20 + 0.05 

S7 max 1.20 + 0.23 1.12 + 0.26 1.04 + 0.26 1.06 + 0.27 1.09 + 0.25 

 

mean 0.53 + 0.15 0.48 + 0.16 0.43 + 0.15 0.43 + 0.16 0.43 + 0.16 

 

stddev 0.28 + 0.07 0.26 + 0.07 0.24 + 0.07 0.25 + 0.08 0.26 + 0.08 

S8 max 0.95 + 0.23 0.92 + 0.25 0.96 + 0.23 0.96 + 0.26 0.97 + 0.25 

 

mean 0.33 + 0.11 0.30 + 0.12 0.31 + 0.11 0.30 + 0.13 0.30 + 0.12 

 

stddev 0.22 + 0.06 0.22 + 0.07 0.23 + 0.07 0.23 + 0.07 0.24 + 0.07 
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Table 4. Reported mean maximum, and standard deviation height for clip plots collected around 

the block for TLS normalized height data and the mean maximum height for each block 

  

Block Field plot height 

(cm) 

TLS plot height 

(cm) 

Block total TLS height 

(cm) 

Max Stdev Max Stdev Max Stdev 

S3 74.72 21.63 80.24 24.10 93.0 20.0 

S4 76.32 24.97 77.84 24.64 91.0 22.0 

S5 68.36 25.89 72.48 20.80 92.0 21.0 

S7 79.40 26.50 89.00 18.52 1.07 26.0 

S8 86.64 30.01 96.01 18.13 97.0 28.0 
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Figure 5. A sample of three 1-m wide transects from the origin of a scan across to the origin of 

the opposing scan with the running maximum height (dashed line) and the running mean height 

(solid line). (a) The top two transects are from S3, the bottom transect is from S7. (b) Graphs 

depicting the number of TLS points as a function of range, where the highest density is on either 

end of the graph near the origin of the scans. 
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characterization across the blocks and supporting the conclusion that the field plots are not 

representative of the blocks with respect to canopy top.  

Further assessment of the fuel height model for 1-m wide transects at the 100 m or halfway 

north-south mark on 2 ha blocks (S4, S5, S7) shows mean height trending lower for the grass 

dominated blocks (S4 and S5) and higher for the shrub dominated blocks (S7) (Figs. 5a, 5b). Data 

suggest a more rapid reduction in sampling frequency for shrub- and oak-dominated blocks (S7) 

with point counts dropping over 50% within 15m of the scan origin. The latter effect is almost 

certainly attributable to occlusion.  

 

2.5 Discussion 

Before this study, it was not evident that consistent measurements of fuel heights across 

domains >1 ha were practical from TLS. Potential error associated with stitching together many 

scenes of diffuse vegetation combined with instability of the scanning platform was unknown. 

Further, the inherent variability in scan angle, spot size, and density across the blocks raised 

questions of data consistency. Intuitively, one might anticipate that as scan angle becomes more 

oblique, the laser may tend to sample higher in the fuelbed especially in vertically oriented fuels 

such as grasses and taller shrubs. As spot size increases, the ability of the laser pulse to penetrate 

through gaps in the canopy was decreased as the larger footprint has a higher probability of being 

intercepted by objects effectively reducing the potential for the laser to characterize lower strata 

of the fuelbed. It is more difficult to speculate on the impacts of variations in data density because 

data density varied by a factor of five across the S-blocks. 

Despite these uncertainties, the geometric consistency of scans from the S-blocks appears 

high and there is little evidence for spatial bias, perhaps because scan angles and spot sizes are 
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effectively mixed at any point on the landscape. Canopy top (maximum height) is measured 

consistently as evidenced by comparisons with field data and by examining heights as a function 

of distance from block centers. The TLS does over predict height in the small field plots, but the 

measurements also suggest that the fuelbeds are consistently taller across the blocks than the field 

measurements.  Vierling et al.  (2013) were successful in capturing accurate shrub heights in sage-

brush steppe using TLS data at moderate distances (40m) and also found an underestimation of 

height by approximately 10%. In short, the TLS data appears to provide an improved spatially 

explicit representation of fuel height within the blocks, which is difficult to obtain using field data 

collection.  Additionally, given the mode of data collection and the understanding of bias we can 

adjust across the block to improve characterizations of fuel height used for fire behavior modeling. 

The validity of other TLS height metrics such as mean and standard deviation is unknown 

due to the absence of similar field measurements, although each of the TLS metrics appears 

spatially consistent across the blocks. The inability to directly match laser height distributions with 

similar field measurements is a chronic problem in lidar remote sensing (Popescu et al. 2002; 

Hopkinson et al. 2005;  Riaño et al. 2007; Streuker and Glenn 2006; Glenn et al. 2010). In this 

study, 99th percentile height is the only viable field validation metric obtained. Developing models 

to translate lidar height metrics to specific fuels metrics will be necessary. A useful target starting 

point for modeling is biomass prediction because field plot measurements of biomass are more 

objective compared to the height measurements collected in this study.  Others have utilized both 

convex hulls and voxel volumes to tease out biomass in sage steppe systems (Olsoy et al. 2014) 

and Arctic shrubs (Greaves et al. 2014) from relatively short ranges of ± 5m with generally good 

success. However, given the typical importance of a canopy cover metric in lidar biomass 

prediction combined with the difficulty in producing consistent cover metrics from oblique TLS 
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scans, there remains considerable uncertainty for using TLS to predict attributes such as fuel load 

over larger areas. Initial investigation with scan data from the more richly-sampled HIPs plots 

showed that the surface area of meshed point clouds correlated well with pre-fire fuel mass, 

although the approach did not work well in the S-blocks. In the latter areas, reduced data density 

produced mesh volumes with artificially inflated surface areas due to excessively large 

triangulated facets. The application of convex hulls (after Olsoy et al.  2014) and mesh surface 

areas to fuel load estimation is the subject of ongoing research.  

Perhaps the most promising area of future work is developing fuel type classifications from 

laser height metrics (e.g. shrub, grass, and bare). Preliminary application of unsupervised 

classification techniques (ISODATA; Principal Components) reveals coherent spatial pattern that 

is difficult to interpret with available field data due to the mixture of vegetation types within 

validation plots. It may be that comparisons of pre- and post-fire laser height metrics with spatially 

explicit fire energy measurements from airborne and ground-based thermal radiometers (Hiers et 

al. 2009) will aid in understanding some of the observed variations in TLS height metrics in mixed 

fuels.  

With respect to field sampling and processing techniques, this research identified useful 

protocols as well as shortcomings. Extensive monumenting with retro-reflective tape (used on 

highway signs) was critical for establishing geometry and for closely identifying locations of field 

plots. Conversely, the 50 cm aluminum boxes used to monument block corners were not useful for 

stitching scans together because they were not resolved in enough detail from the farthest scan 

stations to provide consistent tie points. A consideration when using the reflective tape was the 

contamination of plots with ghost points as described in Seielstad et al. (2011), which contributes 

strongly to the TLS height bias observed in the field plots. These erroneous data were mostly 
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removed from the validation datasets by thresholding intensity although residual points remained 

which artificially inflated maximum height estimated from the TLS data, specifically in sites 

dominated by taller grasses. The prevalence of mixed fuelbeds combined with imperfect field plot 

identification in the scans also resulted in sloppy height comparisons where tall fuels occurred 

along field plot edges. Scanning from the boom lift provided a stable platform except when winds 

exceeded ~6 m sec-1, but controlling the scanner remotely was also very important in maximizing 

stability. For processing TLS data from natural landscapes, software that renders individual points 

rather than meshes is important for identifying specific targets such as monument poles. For 

validation purposes, future projects would benefit from field plots distributed within the burn units, 

at least some plots established in homogenous fuels, and direct field measurements of monumented 

pole heights.  Potentially laboratory based experiments with synthetic or truly homogenous fuel 

beds (Hosoi and Omasa, 2008) would also enable better understanding of the potential use of TLS 

for fuelbed characterization. 

Without the DEM corrections derived from the airborne laser altimeter, vegetation in the 

center of the blocks would be biased downward in height because the ground surface is not as well 

characterized when all scan angles are highly oblique and data density is relatively low. Further, 

the availability of high-quality GPS ground control allowed precise spatial reconciliation of the 

lidar data with other data collected. These caveats highlight the uniqueness of the multidisciplinary 

approach afforded by RxCADRE, and point to the difficulties (and cost) in obtaining quality 

datasets. All of the TLS scans for RxCADRE were completed in four full-time weeks of effort by 

a field crew of three, and processing of data to the point reported in this paper was completed in 

about six months of full-time work and much trial-and-error by two analysts. Although efficiencies 
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have been gained that can be applied to future acquisitions, it should be acknowledged that TLS is 

not necessarily an alternative to field measurements of fuels in terms of time savings. 

Finally, although the height data produced in this study are not yet widely applicable to fire 

modeling, it is worth considering how they might be used for that purpose. The canopy top metric 

(99th percentile height) defines the volume occupied by fuel at one meter spatial resolution. Canopy 

top alone does not address how much fuel resides in the volume, where it is concentrated, or what 

its characteristics are. However, we anticipate that height of maximum amplitude, inflection 

points, or central tendency metrics will address where biomass is concentrated in the vertical 

domain. The big unknown is how much fuel exists in a given cell. Fuel loading will need to be 

modeled from the height distributions or fuel types will have to be classified so that fuel 

characteristics can be inferred from field measurements. In the meantime, it would be worth 

investigating model sensitivity to fuels variability to determine how accurate the fuels data need 

to be. 

 

2.6 Conclusion 

This study marks an approach in which surface fuels heights are characterized across 2-ha 

burn blocks that are relatively big by TLS standards. The resultant fuel height data correspond 

with field measurements of height and are spatially accurate. They represent a first step toward 

spatially explicit and continuous fuels data for fire modeling. They can be represented at multiple 

scales and resolutions and are potentially useable for many types of modeling. The translation of 

height data to fuel attributes is the subject of current and future research.  
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Chapter 3 – Fuel Estimation 

 

Predicting mass of mixed surface fuel beds across scales using terrestrial and 

airborne laser scanning 
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3.1 Abstract 

Quantifying spatially-explicit surface fuel mass is an important step in development of 

scalable datasets of mixed fuels that are expected to allow fine-scale fire behavior and effects to 

be assessed more realistically. Leveraging terrestrial and airborne laser scanning data (TLS and 

ALS) collected at Eglin Airforce Base, Florida, USA, we use voxel counting methods to quantify 

pre- and post-fire occupied volume of fuelbeds from terrestrial laser scanning data, predict fuel 

mass at 0.25 m2 resolution from volume using LOOCV linear regression models, quantify 

consumption, and utilize outputs to inform a multiple linear model of ALS height metrics to predict 

fuel mass at 5 m resolution across larger landscapes.   Results show strong relationships between 

TLS voxel-based occupied volume and observed fuel mass (Adjusted R2 0.62 – 0.87; SE (19-35%)) 

in forest, shrub, and grass fuels.  Using TLS fuel mass as an independent variable with ALS-

derived dependent variables allowed prediction of landscape-scale total surface fuel load (Adjusted 

R2 0.71 ; SE (26%)). Post-fire fuel mass was strongly related to TLS occupied volume (Adjusted 

R2 0.84-0.85; SE (11-16%)), which allowed for estimates of consumption at plot scale (Adjusted 

R2 0.91; SE 20%). Realistic consumption estimates at fine grain (0.5m) were produced but not 

validated due to the necessary absence of pre-fire mass data from the areas where consumption 

was measured. Collectively, the ALS-TLS combination produced accurate fuel mass estimates for 

a range of spatial scales and grain sizes useful to a variety of emerging fire models.    

3.2 Introduction 

Spatially explicit surface fuel loading is a critical input for emerging physics-based fire 

models (Linn et al. 2002; Mell et al. 2007) and for prediction of fine-scale ecological fire effects 

(Hiers et al.  2009; Loudermilk et al.  2009). However, characterization of surface fuels in three 

dimensions is not readily achievable through conventional fuels inventory methods (Keane et al. 
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2001).  Traditional fuel measurements are generally abstractions used to represent fuelbeds at 

coarse grains (10-30 m) rather than spatially explicit representations of all the fuel elements that 

make up fuelbeds. (Hardy et al. 2008).  Laser scanning, both terrestrial (TLS) and airborne (ALS), 

is providing gains in 3-D characterization of biomass. Here, we combine TLS and ALS to predict 

fuel loads before and after fire at resolutions of 0.5 – 5.0 m and on landscapes ranging in size from 

0.04 ha to 1000 ha. Our research focuses on longleaf pine systems in the southeastern United States 

where the spatial scale and arrangement of surface fuels is hypothesized to drive major ecological 

processes (Mitchell et al.  2006; Hiers et al.  2009; Loudermilk et al. 2012). 

In the frequently burned pine systems of the southeastern United States, prescribed fires 

are used to maintain forest health through management of surface fuels comprised largely of pine 

litter (Varner et al. 2015).  In these fire dependent ecosystems, a fire return interval of 2-5 years is 

imperative for maintaining the pine overstories that deposit needles and ensure the spread of 

periodic low intensity fire (Mitchell et al. 2009; O’Brien et al. 2016).  Frequent fire also consumes 

litter and duff to expose mineral soil, enhances recruitment of longleaf pine seedlings, and in xeric 

environments, helps maintain the oak midstories that increase hydraulic lift and shading beneficial 

to seedling survivability (Loudermilk et al. 2016).  Similarly, in the western United States, low 

intensity surface fires are a key restoration and long-term management tool for maintaining 

ponderosa pine savannas (Swetnam and Baisan 1996). Characterizing surface fuels from litter, 

coarse woody debris, and regeneration patches is also important for understanding transitions of 

surface fire into crown fires (Scott and Reinhardt 2001).   

Specific to the southeastern United States, the ecology of fuels refers to linkages between 

pine stocking density, needle litter deposition, and distribution of coarse woody debris that allow 

fire to persist and to move across the landscape at varying intensities and produce fine-grained 
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patterns in understory plant species composition (Mitchell et al.  2009; Dell et al.  2017). Hiers et 

al.’s (2009) wildland fuel cell concept theorizes that in forest systems dominated by frequent 

surface fires, fine-scale heterogeneity (< 0.25m2) drives fire behavior, with direct linkages to 

ecological response. These authors examined spatial autocorrelation in coincident in situ digital 

infrared thermography and terrestrial laser scanning data (TLS) to show that fuel composition, 

characteristics, and architecture were spatially independent at scales >0.25m2 (Hiers et al.  2009). 

Recent approaches to characterize fuel have increasingly moved toward high resolution 

laser scanning and simulations and focused primarily on canopy fuels (Riano et al.  2003; Andersen 

et al.  2003; Garcia et al.  2011; Pimont et al.  2016).  Several studies have used airborne and 

terrestrial laser scanners to estimate crown bulk density, crown base height, crown diameter, and 

crown length for the purposes of fire behavior modeling (Riano et al.  2003; Andersen et al.  2003; 

Pimont et al.  2016). Typically, these attributes are characterized as discrete objects such as 

individuals or clusters of trees with generally well characterized statistical distributions of mass 

based on allometries and direct measurement.   

More confounding are surface fuel beds representing assemblages of smaller, more discrete 

fuel elements that are grouped or not well characterized individually (Pimont et al.  2016).   Surface 

fuels are the primary carrier of fires in the southeastern United States (Mitchell et al.  2009) and 

the link between surface fires and crown fires is important for predicting potential fire intensity 

and severity (Scott and Reinhardt 2001).  Independent of fire, several studies have used terrestrial 

laser scanning (TLS) data to estimate above ground biomass (AGB) of individual plants, for 

example in sagebrush steppe (Olsoy et al.  2014) arctic shrub plant communities (Greaves et al.  

2015), and in shrubs of the southeastern United States (Loudermilk et al.  2009).   
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Outside of shrub systems, TLS point clouds have been used to estimate AGB of grasslands 

(Umphries 2013; Cooper et al.  2017) and winter wheat over multiple growing seasons (Eitel et al.  

2014). Ultimately, the latter studies have examined homogeneous fuel beds or discrete components 

of fuel beds such as shrubs.  Seielstad and Queen (2003) employed a surface roughness technique 

to determine fuel class from ALS data in lodgepole pine forests of the northern Rocky Mountains.  

Mutlu et al. (2008) integrated ALS and multispectral data to produce traditional fuel model 

classifications for input into the FARSITE model (Finney 2009).  Hudak et al.  (2016) predicted 

in situ AGB from selected airborne laser scanning (ALS) metrics using a multiple linear regression 

model in the same mixed fuel beds considered in our study.  However, only a few studies have 

attempted to use higher resolution TLS data in mixed herbaceous, shrub, and litter fuel beds.  

Rowell et al.  (2016b) utilized simulated fuel beds to examine arrangement of AGB in longleaf 

pine systems and compared results against TLS measurements of fuels. Their study found a 

significant underrepresentation of point data in the lowest strata of the fuel bed (<10cm), where 

the bulk of available AGB exists in the form of litter. Attempts at characterizing mixed type fuel 

beds using TLS have consistently demonstrated the difficulty in identifying metrics within point 

clouds to enable accurate predictions or un-mixing of individual fuel types (Loudermilk et al.  

2009; Rowell and Seielstad 2012). 

One approach to improve characterization of the 3-D arrangement of fuel mass and type is 

to segment fuel beds into volumes (voxels) with dimensions that match the size of discrete fuel 

objects.  An alternative approach is to identify the objects and their dimensions.  Both approaches 

are possible using TLS point clouds to define spatial domains and to produce volumetric objects 

that can be summed to represent occupied volume (Popescu and Zhao 2008; Kim et al. 2016).  An 

alternative association between TLS data and biomass measurements is the use of convex hulls or 
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interpolated surfaces from the point clouds (Olsoy et al. 2014; Greaves et al. 2015; Li et al.  2015). 

Typically, with highly resolved TLS data very small (≤ 1cm) voxel volume domains are specified, 

dependent on the resolution and range of the TLS data (Hosoi and Omasa 2006; Kim et al.  2015).  

Surface areas of convex hulls have shown strong correlations with field biomass in western sage 

(Olsoy et al. 2014; Kim et al. 2015) and arctic shrub (Greaves et al. 2015) systems.  Studies that 

include both voxel counting and convex hull estimates of surface area and/or volume have yielded 

strong relationships (Greaves et al. 2015; Kim et al.  2015), although the uncertainty introduced 

by obscuration of laser energy in complex vegetation along with the variability in the range of the 

laser to the target affects optimal voxel size (Hosoi and Omasa 2007; Greaves et al.  2015).   

In this study, we employ voxel counting methods of TLS data to predict AGB in mixed 

fuel beds.  We use a relatively coarse dimension (10cm) to roughly match the size of discrete 

elements in the fuel beds. Specific objectives are to: 1) predict AGB from TLS data in 

heterogeneous herbaceous/shrub and forest litter fuel matrices at fine grain (≤1m2); 2) extrapolate 

total fuel mass (AGB, kg / m2) over a range of scales (400m2 to 2ha); 3) predict fuel consumption 

from TLS change detection at plot scale; and 4) integrate TLS and ALS to estimate fuel mass at 

landscape scale. Our data were collected as part of the 2012 RxCADRE experiment using both 

research and operational prescribed fires at Eglin AFB. 

3.3 Methods 

3.3.1 Study area  

Field, TLS, and ALS data were acquired at Eglin Air Force Base, FL, in October 2012 as 

part of the RxCadre Experiments (Ottmar et al. 2016a).   Eglin AFB is located in the panhandle of 

Florida, USA, originally a unit of the former Choctawhatchee National Forest. Eglin is an 

important resource in the management of longleaf pine ecosystems with 180,000 ha of longleaf 
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pine sandhills and flatwoods (for site map and details see Ottmar et al. 2016b). Data were derived 

from two general vegetation types (non-forest and longleaf pine forest) and from two unit types 

(S-Blocks and HIPS). The S-Blocks were six 100 x 200 m units located in grass and shrub fuels. 

The HIPS (Highly Instrumented Plots) were nine 20 x 20 m plots located in grass/shrub (n=6) and 

longleaf pine (n=3) litter fuels. One of the forested HIPS (HIPS 1) was not included in this study 

due to the lack of coincident thermal imagery (n=2 in longleaf pine litter fuels). The S-Blocks were 

burned individually in prescribed fires as part the RxCADRE experiments to generate validation 

data for fire behavior modeling. The HIPS were located within three large units; L1G, L2G, and 

L2F, that were 454, 127, and 151 ha.  Three HIPS each were located in two large grass/shrub units 

and three HIPS were located in one large longleaf pine forest unit. 

The forested burn units were characterized by a longleaf pine overstory, with a mixed oak 

midstory.  Oak species included turkey oak (Quercus laevis), sand post oak (Q. margaretta 

Ashe), laurel oak (Q. laurifolia), and blue jack oak (Q. incana Bartram) among others (Hiers et 

al.  2007; Ottmar et al. 2016b) (Figure 6A &B).  Understory fuels were comprised of a variety of 

herbaceous (grass and forb) fuels with pine and oak litter dominant.  The non-forest burn units 

were characterized by various proportions of grasses, forbs, and shrubs. Grass species included 

little bluestem (Schizachyrium scoparium) and big bluestem (Andropogon gerardii) and 

shrub\forb species included woody golden rod (Chrysoma pauciflosculosa), gopher apple 

(Licania michauxii), saw palmetto (Serenoa repens), and persimmon (Diospyros virginiana) 

(Ottmar et al.  2016b) (Figure 6C).  For prescribed fire protocols and prescription information for 

each unit refer to Ottmar et al.  (2016a). 

3.3.2 Field Data  



48 
 

 Biomass was destructively sampled from small field plots surrounding each S-Block and 

HIPs (Ottmar et al. 2016b). Pre-fire destructive sampling included separation of mass by fuel type 

(grass, forb, shrub, litter, coarse wood). Post-fire destructive sampling was conducted at separate 

plots coupled with the pre-fire plots and sampling included separation of mass by residual fuel 

type. For the six S-Blocks, pre- and post-burn plots (n=25 per block at 1m2) were established 

around the perimeter of each 2 ha area at 20 m intervals and marked with metal poles wrapped in 

retro-reflective tape. The nine HIPs were sampled identically to the S-Blocks except that the fuel 

plots were 0.25m2 in size (n=9 per grass HIPs and n=12 for forested HIPs) and pre-fire plots were 

equally spaced by five meters on three sides of the HIPs. The anticipated upwind side of each non-

forest HIPs was left unsampled to allow for fire to enter unimpeded by disturbances to the fuel 

beds. All plots were also photographed obliquely from the north.  Post-fire consumption plots were 

established in equal intervals between pre-fire fuel plots. Post-fire plots were collected to capture 

residual dry weight biomass for herb (grass and forb), shrub, woody (1, 10, 100 hour fuels), and 

litter. Details of fuel data collection can be found in Ottmar et al.  (2016b).  
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Figure 6. Examples of typical fuels encountered at Eglin AFB from oblique overhead perspective, 

including: A) A natural longleaf pine site indicative of broad tree spacing, substantial oak mid-

story, and herbaceous ground cover. B) A managed longleaf pine site indicative of closely spaced 

longleaf pine, a saw palmetto understory, and substantial needle cast. C) A grass and shrub matrix 

indicative of the fuels typically encountered on the L1G, L2G, and S-Blocks comprising a variety 

of oaks, forbs, and herbaceous fuel type. 
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Figure 7.  TLS point cloud for L2FH3 shows the relatively low density of longleaf pine 

overstory and significant oak midstory that is evident in natural unmanaged longleaf pine stands 

at Eglin AFB.Units are meters.
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3.3.3 TLS Data Collection and Processing 

Terrestrial laser scans were completed pre-and post-burn using an Optech ILRIS
TM 

36D-

HD instrument scanning at 10 kHz.  For the S-blocks, the TLS instrument was positioned in an 

articulated boom lift at a height of 20 m above the fuelbed. Laser scans were collected at six 

positions around each burn block at 20-m horizontal distance from the edge of each block (Figure 

7). Post-fire scans were collected from the east and west positions only for a total of four per block. 

In each scan, the laser was pointed downward at an angle of 23°. All S-block scans were set to 

produce 2-cm spot spacing at 90 m, resulting in 8 mm spacing at 20-m range to 56 mm at 300-m 

range.  TLS sampling protocols for the HIPs plots were similar. The laser was raised to a height 

of 20m above ground with a downward pointing angle of 45° and the scan head was positioned 

nine meters from the plot edge. A single scan captured the entire plot producing ~8mm spot 

spacing. For instances in forested HIPs, data were collected from 3-7 perspectives at variable 

heights to minimize occlusion of the fuel bed by tree boles and canopies (Figure 8). Post-fire scans 

duplicated the pre-fire scans. Details of laser acquisitions can be found in Rowell et al.  (2016a). 

Scanner settings were optimized to achieve consistent point density across each acquisition. Scan 

to scan correction, multiple scan integration, spatial alignment, and height normalization to ground 

methods are outlined in Rowell et al. (2016a).  

To assess fuel load as AGB and calculate consumption, we merged the pre- and post-fire 

TLS acquisitions of only the HIPS into single datasets.  S-Blocks were not compared for post-fire 

consumption due to irregular point density due to long range scanning described in Rowell et al. 

(2016a), therefore only pre-fire scans were used to estimate pre-fire fuel load. We use this method 

to account for objects missed in the pre-fire acquisition due to occlusion (figure 8).  This method 

allows for capturing occupied space within the fuelbed that is missed by the laser in the pre-fire 
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scan (because it is occluded). Hereafter, pre-fire HIPS data means pre-fire and post-fire combined 

while post-fire data is only post-fire.  

3.3.4 Airborne Laser Scanner Data 

Discrete-return lidar data were collected on 3 November 2012 by Kucera International employing 

a Leica ALS60 instrument. ALS data were collected at 1200 m above ground level, at a pulse rate 

of 178.6 kHz, a field of view of 20 °, and a sidelap of 50%.  A nominal point density of 6.8 points 

m2 was achieved using these parameters (Hudak et al. 2016). Sub-meter vertical uncertainty 

(RMSE = 0.082 m) was achieved using 20 survey grade ground control points (Hudak et al.  

(2016). A 1-m digital terrain model (DTM) of the ground surface was interpolated using the 

GridSurfaceCreate function of FUSION (McGaughey 2014) using the minimum Z value instead 

of the mean Z, as is the default; this was done to preserve the heights of near-ground returns as 

positive values upon height normalization. The GridMetrics function of FUSION was used to 

calculate a suite of height and density metrics from all returns in the 0-2m height range, within 5m 

x 5m resolution bins. Nine of these metrics were selected as significant predictors of total surface 

fuel load in a multiple linear regression model that included both non-forest and forest plots 

(Hudak et al.2016). These same nine metrics were considered for upscaling TLS-based fuel mass 

predictions to the landscape level in our study. 

3.3.5 Voxel Volume Estimation 

We used 1000cm3 voxels in this study (10 x 10 x10 cm) and counted occupied voxels within raster 

cells to produce gridded volumetric proxies for fuel mass. Voxels are three dimensional pixels that 

allow for volumetric representation of discontinuous surfaces using a regularly spaced three-

dimensional grid (Stoker, 2009) (Figure 9). Voxelization and voxel counting scripts were written 

in the Interactive Data Language (IDL) software package (ver. 8.4, Harris Geospatial Solutions).  

Voxel domains were selected to produce voxel counts for 0.25m2 cells (0.5 x 0.5 m rasters), 
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allowing for one processing stream for all TLS data sets. Voxelization was executed across the 

2ha S-Blocks and 400m2 HIPs so that models developed from the comparisons of plot data with 

TLS occupied volume could be applied across all of the TLS data sets.   

Figure 8. Histograms representing height distributions for pre-burn biomass for hardwoods, 

palmetto, and grass fuels (a.) and post-burn fuels (b.).  Occlusion of the laser data captures an outer 

hull of the fuelbeds that are apparent after fire has moved through a unit.  Anecdotally, hardwoods 

remain relatively unchanged in terms of woody mass, internal elements of the palmetto are 

revealed, and grasses are almost totally consumed.  The residual fuels exemplified in the palmetto 

instance are the basis for integrating the pre- and post-fire scans for the voxel occupancy 

calculation. 

A ‘filled’ voxel was required to meet a threshold point density of 5 returns per cubic decimeter. 

Additionally, each counted return was required to have an intensity of 200-15000 DN. Logic for 

these criteria is a follows. Selection of the 10cm3 voxel cell was determined based on a sensitivity 

analysis over a range of voxel scales (1, 8, 1000, 3375, and 4000 cm3). Optimal voxel dimensions 

were selected for computational efficiency, common scale between S-Blocks and HIPS, and to 

maintain discrete features within the point cloud (e.g., individual plant parts and types). Others 

have noted that a limitation of voxel analysis using TLS data is data voids that are created when 

A B 



54 
 

the laser does not fully penetrate canopies of trees and shrubs (Hosoi and Omasa 2006; Greaves et 

al.  2015; Cooper et al.  2017). The use of relatively coarse voxels in our analysis moderates the 

occurrence of holes within plant crowns by bridging gaps created by occlusion and produces 

estimates of occupancy similar to the filled hull estimates used by Olsoy et al.(2014) and Greaves 

et al.(2015). 

With respect to the intensity thresholds, values <200 DN generally result from halos around 

objects that represent partial interception of matter due to the high sensitivity and relatively large 

footprint of the ILRIS instrument (Seielstad et al. 2011). Values >15000 DN are associated 

primarily with reflections from atmospheric aerosols. For these reasons, returns that did not meet 

our intensity criteria were removed, similar to Greaves et al. (2015) and Pfennigbauer (2010). 

Total occupied volume was calculated as the sum of all voxel domain centroids that fell 

within a 0.25m2 cells (rasters).  For the S-Blocks, which used 1m2 field plots, occupied volume 

was gridded to 1m2 by summing the voxel volumes of four connected 0.25m2 cells. Occupied 

volume is represented in Eq (1), 

𝑶𝑽𝑻𝒐𝒕𝒂𝒍 = ∑𝑶𝑽𝒊𝟎…𝒊𝒊                                                                   [1] 

where total occupied volume (OVtotal) is the sum of occupied volume (OV) for height strata ranging 

from 10cm to 80cm above the ground surface.  Importantly, the lowest 10cm is excluded due to 

uncertainty in precise definition of ground at the scale of analysis, and all voxels above 80 cm are 

excluded to reduce the risk of inflating volume estimates from individual leaves and stems 

protruding above the dominant fuel layer.   Occupied volume is calculated at cubic decimeters and 

expressed in cubic meters. 
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Figure 9. Typical fuels characteristic of the S-Blocks and examples of stacked voxel density for 

1cm3 voxel cells for A) Sparse, low grass, and exposed bare ground, B)  Grass and shrub matrices 

(saw palmetto, and C) Tall and dense grass bunches.  
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3.3.6 Pre-Fire Biomass Prediction using TLS and Field Data 

To estimate pre-fire AGB using TLS-derived occupied volume for the S-Blocks and HIPs, 

Leave-One-Out-Cross-validation (LOOCV) linear models were developed using the train function 

in the caret package (Kuhn 2017) through a script in R version 3.2.5 (R Core Team 2017).  The 

regression model is of the form Eq. [2]: 

AGB = b0 + b1(OVPre,+PostTls)                                                              [2] 

where AGB is the predicted aboveground biomass in the surface fuelbed OV is occupied volume 

from the combined pre- and post- fire point clouds.  Regression intercept and slope parameters are 

represented as b0 and b1, respectively. Separate regression models were developed for the non-

forested and forested HIPs as well as for each of the six pre-fire S-Blocks, resulting in eight 

separate models.  Additionally, two combined models were produced, one for all of the pre-fire 

HIPs and one for all of the pre-fire S-Blocks. The models were used to predict fuel mass density 

in kg m-2 across the HIPs at 0.5m x 0.5m resolution and the S-Blocks at 1m x 1m resolution, 

respectively.  

3.3.7 Biomass Prediction using TLS and ALS 

ALS metrics considered in the predictive modeling included mean height, kurtosis, the 

return proportion from 0.0 to 0.05 m, mode of returns from 0.0 to 0.5 m, the return proportion from 

0.0 to 0.05 m, standard deviation of height for elevations between 0.05 to 0.15 m, standard 

deviation of height for elevations between 0.15 to 0.50 m, the coefficient of variation for heights 

between 0.15 to 0.50 m, standard deviation of height for elevations between 0.50 to 1 m, and 

standard deviation of height for elevations between 1 to 2 m.  These ALS metrics were calculated 

using the CloudMetrics function of FUSION software (McGaughey 2014). AGB from the models 
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described above were summed to 25m2 resolution to facilitate model development using the ALS 

data.  This resolution matches the resolution used by Hudak et al. (2016) with the same ALS 

dataset. We employed a multiple linear model using the ‘lm’ function in R.  Candidate ALS metrics 

were thinned to represent “best” regressions using the ‘regsubsets’ function in the ‘leaps’ package 

of R. The Akaike Information Criterion (AIC) statistic was used as the basis for choosing the best 

subset model.  We tested normality of the response variable and the model residuals using the 

Shapiro-Wilk W statistic.  We also tested for dissimilarity between predictions and observed 

values using a bootstrap test for equivalence (Robinson et al. 2005).  Coefficient of determination 

(adjusted R2) values were used to evaluate the robustness of the relative predictive power of the 

regressions.  Prediction error was assessed by calculating the Root Mean Square Error (RMSE). 

3.3.8 Post-fire Biomass Prediction and Consumption using TLS and Field Data 

Post-fire TLS-derived occupied volume for the HIPs was used to estimate post-fire AGB 

with a Leave-One-Out-Cross-validation (LOOCV) linear model. The regression model for plot-

scale estimation is presented as Eq. [2]: 

AGBpost = b0 + b1(OVpost-tls)                                                              [3] 

where post-fire AGB is the predicted aboveground biomass (kg) of mixed type fuelbeds for 

grass/shrub and forested sites as a function of TLS-based occupied volume (OVtls).  Regression 

intercept and slope parameters are represented as b0 and b1, respectively.  Separate regression 

models were developed for aggregated non-forest HIPs and aggregated forested HIPs, resulting in 

two separate models.  To estimate consumption, we differenced the pre- and post-fire combined 

AGB from the post-fire estimated AGB.  HIPs average consumption is reported per unit  

(20mx20m plot) and compared to the average consumption reported in Ottmar et al.(2016b). We 
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also present fuel consumption at the native 0.5 m resolution to depict the fine-grained spatial 

variability but note that these predictions are not validated. 

 

3.4 Results 

3.4.1 Pre-fire Estimates of Aboveground Biomass from Occupied Volume 

Pre-fire occupied volume from the voxel analysis was linearly correlated with dry-weight 

AGB and model predictions center on the 1:1 line when compared to observed biomass (Figure 

10a and b).  For the HIPS, the forested and non-forest models explained 84% (Adj. R2 = 0.84) and 

71% (Adj. R2 = 0.71) of the variability respectively. Models of total fuel load per 0.25m2 in 

forested fuel beds produced a 19.5% error (RMSE = 0.049 kg) and non-forest modeled estimates 

produced a 29.7% error (RMSE = 0.077 kg). Mapped spatial distributions of predicted AGB were 

produced from the models (Figure 11). They show high spatial variability at 0.5 m grain, reflecting 

diverse patches of vegetation types and open areas. Residuals of the linear model for the forested 

model were not significantly non-normal by the Shapiro-Wilk test (W=0.92834, P= 0.11), but the 

grass model residuals did indicate significant non-normality (W=0.92856, P<0.005).  Bootstrap 

tests of equivalence rejected the null hypothesis of dissimilarity (P = 0.025) for both the forested 

and non-forest data, suggesting that predictions and observations were similar with no bias or 

disproportionality (Robinson et al.2005).   

A combined model for the HIPs using both the forested and non-forest data explained 67% 

of the variability (Adj. R2 = 0.67, RMSE 0.076 kg, Table 5).  Residuals of the combined model 

were not non-normal when one extreme outlier residual was removed (W=0.96219, P=0.086) at 

alpha 0.05 levels, although this result was non-significant. Bootstrap tests of equivalence rejected 
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the null hypothesis of dissimilarity (P = 0.025).  Linear model parameters indicate a steep slope of 

the linear model (Table 1), suggesting a general constricted estimate of occupied volume produced 

from the TLS instrument.  Pre-fire AGB and occupied volume were also closely related in the S-

Blocks. Individually, the S-Block models explained 66-76% of AGB variability (Table 5). 

Associated error ranged from an RMSE of 0.056 - 0.103 kg m-2 (19.2-35.1%) across grass and 

shrub burn units (Figure 12).   Residuals for each S-Block indicated no significant non-normality.  

Bootstrap tests of equivalence rejected the null hypothesis of dissimilarity (P = 0.025) for all 

individual S-Blocks. Inter-comparison of boxplots for each block show broader ranges of voxel-

derived occupied volume values compared to dry-weight biomass (Figure 13).   
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Figure 10.  Linear regression models predicting A) forested pre-fire HIPS B) grass\shrub pre-fire 

HIPS C) forested post-fire HIPS D) grass\shrub post-fire HIPS. Separate models are used in each 

case.   
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Figure 11.  Pre-fire AGB is mapped for each of the HIPs demonstrating the variability and 

distribution of mass across the HIPs from the forested and grass\shrub predictive models presented 

in in Figures 10A and 10B.  
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Table 5. Linear regression model coefficients predicting pre-fire AGB from occupied volume for 

HIPs and S-Block sites.  

 

Predictor Estimate Std. Error t-value Pr(>|t|) Significance 

HIPs Grass/Shrub 
(Intercept) 60.90 20.39 2.99 0.0044 ** 

Voxel OV 2.53 0.23 11.06 4.94e-15 *** 

HIPs  Forested 
(Intercept) 26.41 23.07 1.15 0.266  

Voxel OV 2.14 0.21 10.26 2.07e-09 *** 

HIPs  Combined 

(Intercept) 62.03 17.66 3.51 0.000773 *** 

Voxel OV 2.26 0.184 12.25 <2e-16 *** 

S-Blocks Grass/Shrub 

Grass 

(Intercept) 112.82 17.87 6.329 1.11e-07 *** 

Voxel OV 0.542 0.057 9.406 4.26e-12 *** 

Shrub 

(Intercept) 18.82 33.05 0.569 0.572  

Voxel OV 1.002 0.081 12.36 2.0e-07 *** 

All 

(Intercept) 44.91 23.52 2.19 0.0311 * 

Voxel OV 0.872 0.056 15.48 2.0e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 12.  Linear regression models predicting pre-fire AGB from voxel estimated occupied 

volume for S-Block by grass, shrub, and all combined.  
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Figure 13.   Boxplots depict the distribution of dry weight biomass (DWB) in grams per meter 

squared and voxel occupancy (OV) in cubic decimeters for the S-Blocks.  These distributions show 

similar ranges between S-Blocks, Mann-Whitney-Wilcoxon non-parametric tests show that the 

DWB and OV distributions are equivalent across S-Blocks, with the exception of S5. 
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We assume that dry weighed biomass and voxel-based occupied volume are identical 

populations (P>0.5), except for burn unit S5 (W=195, P=0.023).  Integration of the S-Blocks in a 

single model explained 52.6% of the variability (Adj. R2=0.52; RMSE= 0.1224 kg). As previously 

noted, S5 occupied volume was statistically from a different population distribution then the dry 

weight biomass.  Dropping S5 from the integrated model improved the relationship between OV 

and AGB, explaining 72% of the variability and reducing the error (Adj. R2=0.72; RMSE= 0.09325 

kg). In both cases, the residuals were non-normal and the null hypothesis was rejected (W 

=0.89135, P<0.0001 and W =0.91856, P<0.0001 respectively).  Removal of outliers did not 

improve the results, with p values remaining below 0.05 levels.  The S-Blocks were also modeled 

collectively using a multiple linear model with burn block ID as a factor. Sixty-three percent of 

fuels variability was explained by this model (Adj. R2 = 0.63; RMSE = 0.1117kg; Figure 12).   

3.4.2 ALS-based Surface Fuel Loading 

A useful model was derived from the five selected using the best subsets ALS height 

metrics (following Hudak et al.  2016) and the TLS (Table 6) estimates of fuel load at 1m2 spatial 

resolution (Adj. R2 = 0.71; RMSE = 0.032 kg, Figure 14).  Observed versus predicted fuel load 

again centered on the 1:1 line. Fuel load estimates were non-normal by the Shapiro-Wilk test 

(W=0.9264, P<0.0001) and did not achieve normality using alternative transformations.  Residuals 

from the model were normally distributed (W=0.9939, P=0.91). The range of ALS fuel predictions 

encompassed ranges similar to those observed in the TLS-based fuels predictions.  Bootstrap tests 

of equivalence rejected the null hypothesis of dissimilarity (P = 0.025), which suggests that 

predictions and observations were similar with no bias or disproportionality. Mapping model 

results depicts patterns of variability that were observed in the field, with higher concentrations of 

AGB in the forested (L2F) and shrub (L2G, S7-S9) dominated units of the site and lowest 
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concentrations in the chemically treated grass (L1G) units (Figure 14). Distributions of ALS-

derived fuel mass track similarly to Hudak et al. (2016) spatially.  Spatially explicit estimates of 

occupied volume explain more of the variability than observed dry weight biomass plots alone. 

 

Table 6. Multiple linear regression model coefficients predicting pre-fire AGB from TLS 

estimates of fuel mass and five selected ALS metrics. 

 

 

 

  

 

ALS Predictor Estimate Std. Error t-value Pr(>|t|) Significance 

(Intercept) 7.941e-02 2.342e-02 3.391 0.001001 ** 
Kurtosis (0-2 m) 1.503e-04 7.434e-05 2.022 0.045877 * 
Mode (0–0.05 m) -2.691e-01 7.784e-02 -3.458 0.000805 *** 
Proportion (0–0.05 m) -8.653e-02 2.333e-02 -3.709 0.000343 *** 
Proportion (0.05–0.15 m) -6.974e-02 1.956e-02 -3.566 0.000560 *** 
s.d. (0.05–0.15 m) 1.121e+00 2.816e-01 3.979 0.000132 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 14.   Multiple linear regression models predicting pre-fire AGB from five ALS metrics.  
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Figure 15.   Pre-fire fuel mass from the ALS-derived model for the study area. Forest (L2F) and 

shrub (S7-S9) areas show high concentrations of fuels relative to chemically treated grass areas 

(L1G).   
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3.4.3 Post-fire Estimates of Above Ground Biomass and Consumption 

 

Similar to the pre-fire models, post-fire occupied volumes from the voxel analysis were 

highly correlated with post-fire dry-weight AGB (Figure 10c and d).  For the HIPS, the forested 

and non-forest models explained 84% (Adj. R2 = 0.84) and 85% (Adj. R2 = 0.85) of the variability 

respectively.  Models of total post-fire fuel load (Table 7) in forested fuel beds produced a 69.6% 

error (RMSE = 0.016 kg) and non-forest modeled estimates produced a 46.4% error (RMSE = 

0.061 kg).  Residuals of the forested and non-forest linear models were not significantly non-

normal by the Shapiro-Wilk test (W=0.92576, P= 0.089; W=0.95452, P<0.0393). Bootstrap tests 

of equivalence rejected the null hypothesis of dissimilarity (P = 0.025) suggesting that predictions 

and observations were similar, with no bias or disproportionality. 

Differencing the pre- and post-fire estimates of AGB for the HIPS produced estimates of 

consumption (Figure 16). Consumption at the HIPs plot-scale (20x20m) compared favorably with 

field measurements, producing a 17% (RMSE= 0.066 kg m-2) error in prediction. Predicted 

consumption at 0.25m2 spatial resolution is shown in Figure 17. The patterns depicted are rational 

based on observations of fire behavior and pre-fire fuels but cannot be validated for reasons 

described previously. 
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Table 7. Linear regression model coefficients predicting post-fire AGB from occupied volume 

for HIPs sites. 

 

 

 

 

 

Predictor Estimate Std. Error t-value Pr(>|t|) Significance 

Post-Fire HIPs Grass/Shrub 
(Intercept) 12.81 3.90 3.292 0.00179 ** 

Voxel OV  0.72 0.042 17.49 <2e-16 *** 

Post-Fire HIPs  Forested 
(Intercept) 9.30 13.35 0.696 0.494  

Voxel OV 1.03 0.095 10.85 4.55e-10 *** 

Post-Fire HIPs Combined 
(Intercept) 8.80 5.22 1.684 0.963  

Voxel OV 0.88 0.047 18.68 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 16.   Post-fire consumption comparisons between HIPs from pre-fire predictions (Table 

1) minus post-fire AGB predictions vs observed consumption at a plot level   
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Figure 17. Fuel consumption for each of the HIPs at 0.25m2 resolution showing variations in 

consumption patterns from plot to plot.  The models used to produce these outputs are depicted in 

Figure 10.  The bottom two tiles are forested, the top six tiles are grass/shrub.  
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3.5 Discussion 

We demonstrate that AGB can be directly predicted with reasonable efficacy using 

relatively simple TLS-based occupied volume estimates. To our knowledge, this represents the 

first successful fuel load prediction from TLS in fuel beds with mixtures of grasses, forbs, shrubs, 

and litter.  We also utilized TLS-predicted AGB as a surrogate for in situ field measurements to 

predict landscape-scale surface fuel loads using ALS, adding considerably to the methods and 

findings reported by Hudak et al.  (2016).  Finally, we quantified post-fire fuels and consumption 

across the HIPs plots, although there remains uncertainty regarding how TLS-based methods of 

fuel load estimation perform due to limited samples and as a result of field methods that make 

direct comparisons of consumption intractable. 

We acknowledge that this study is not producing a three dimensional fuels data product 

directly.  The compression of voxel data into 2-D voxel densities is necessary as the field data 

were collected to represent total fuel load and fuel mass as a function of fuel type, which we do 

not address in this paper. Our voxel analysis does export occupied volume per height strata that 

could be used to estimate three-dimensional metrics if similar data were collected in the field. We 

also note that the range of predicted fuels is not as broad as the observations as a result of regression 

modeling, which compress predictions towards the mean (Hudak et al.  2016).   

3.5.1 Estimate of Aboveground Biomass from Occupied Volume 

Overall, we report error rates that are similar to other biomass estimates from TLS data 

(Greaves et al.  2015, Cooper et al. 2017), and our approach to estimating AGB stands as an 

improvement on previous efforts in mixed southern fuel types (e.g., Loudermilk et al.  2009). In 

the HIPs, the forested areas produced the tightest predictions of AGB (19% error) compared to the 

non-forested areas (30% error). We speculate that there is generally less fuel type variability in the 
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forested.  Additionally, the forested HIPs biomass was dominated by longleaf pine litter 

representing 37% of biomass in forest HIPs 2 and 81% of biomass in forest HIPs 3.  Although the 

TLS does not sample the litter layer at the bottom of the fuel bed as occupied volume using our 

methods, it is clear that the variability in aboveground features such as shrubs, grass, and perched 

litter are playing a large role in overall fuels variability.  The larger error observed in the grass and 

shrub dominated HIPs may be in part a result of using voxels to estimate biomass by occupied 

volume.  Volume is not a proxy that considers the specific fuel density of the fuel type (grass, forb, 

or shrub) and therefore may underestimate mass as fuel density increases. Additionally, sparse 

objects such as grass blades consistently trigger reflections with the ILRIS, perhaps inflating 

occupied volume estimates and creating noise in the models.  We note that there was a saturation 

point around 550 grams where fuel density increases at a faster rate than occupied volume.  

Ultimately, a separate model is likely needed for fuels that were dense (e.g. oak shrubs), but share 

similar occupied space with less dense fuels (e,g. tall forbs). 

Others researchers have used the gridded surface areas of convex hulls instead of voxels to 

predict the total mass of sage brush (A. tridentata subsp. Wyomingensis; Olsoy et al. 2014) and 

low stature Arctic shrubs (Betula nana and Salix pulchra; Greaves et al. 2015).  In these studies it 

is not clear if TLS metrics for surface area performed well due to only sampling shrubs with 

relatively consistent fuel densities such that larger shrubs have predictably more biomass than 

smaller shrubs. In the grass and shrub sites at Eglin, there was a broad spectrum of shrub species 

with different forms and dimensions that potentially differed significantly in fuel density from one 

and other.  Robertson and Ostertag (2009) developed allometries from basal stem diameter to 

predict biomass of fourteen hardwood species common in the southeastern US and found 

significant variability in biomass in shrubs with small diameter stems.  We speculate that part of 
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the variability in prediction of AGB in the grass\shrub HIPs is derived from time since last burn 

(1 year for one of the grass/shrub units and 3 years for the other).  Variability in aboveground 

biomass for the hardwood species found in the units is known to decline as stem diameter increases 

(Robertson and Ostertag 2009), suggesting that over time we might expect convergence of fuel 

density in hardwood species as a function of time since fire. The unit that burned one year 

previously averaged 193.94 grams of dry weight biomass with one standard deviation representing 

54% of the mean. In contrast, the unit burned three years previously averaged 318.86 grams of 

biomass with standard deviation accounting for 45% of the mean.  The greater time since fire may 

account for some of the reduced variability in fuel mass observed in the latter unit as there are 

more relatively large hardwood shrubs.  Further, the more recently burned unit was also treated 

with an herbicide (hexazinone) to inhibit hardwood recruitment (Ottmar et al.  2016b), increasing 

grass/forb dominance and reducing complexity to fuel variations.  

The S-Blocks produced models with similar efficacy as the HIPs despite lower scan 

resolution and more oblique viewing angles.  The variability of predictions of occupied volume 

and reciprocal measurements of dry weight biomass between S-Blocks is an important 

consideration.  For example, occupied volume estimates in S5 were consistently lower than in the 

other S-Blocks despite containing similar biomass, suggesting a difference in the TLS dataset for 

this unit.  It should be noted that occupied volume in S5 by itself was strongly correlated to 

observed dry weight biomass and performed similarly to other sites that contained strong shrub 

signatures, but when combined with the other S-Blocks, AGB was significantly and consistently 

under estimated. 

Although spatially explicit, high resolution predictions of AGB across fuel types were 

produced in this study, we acknowledge that fire behavior depends on more than fuel load.  Fuel 
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type, in particular, is critical as different fuels combust differentially depending on variations in 

fuel structure, density, moisture, and ambient temperature.  Numerous studies have identified 

ranges of intensity, residence time, and consumption of primary litter components of longleaf pine 

dominated southern litter (Fonda 2001; Fonda and Varner 2004; Kane et al.  2008; Varner et al. 

2015).  Rowell et al. (2016b) integrated fuel bed simulations (synthetic fuel beds) with TLS-based 

height distributions to address distributions of fuel mass as a function of type and arrangement. 

Further development of this approach may prove useful for predicting fuel type probabilistically 

based on TLS height distributions and voxel arrangement. In our study, it is clear from 

comparisons of model outputs and photographs of field plots that occupied volume is sensitive to 

at least some aspects of fuel type (e.g., shrub versus grass). 

3.5.2 Estimates of Aboveground Biomass from ALS and TLS 

Greaves et al. (2017) showed that ALS-derived canopy volume can be calibrated using 

TLS canopy volume to produce robust estimates of tree biomass.  Similarly, we found that TLS-

derived occupied volume corresponds with fuel bed AGB and relates nicely to ALS canopy metrics 

via multiple linear modeling. We observe marked improvement in prediction of AGB using our 

method over the previous example outlined in Hudak et al.  (2016), using the same ALS variables. 

We also report total fuel load per 25m2 which differs to reporting units used by others (Hudak et 

al.  2016; Ottmar et al.  2016b).  Though this approach may be an improvement over conventional 

approaches, these estimates may not be suitable for current fire behavior models that are 

parameterized to use unit averages.  However, unit averages could easily be derived from our data. 

By linking TLS and ALS data we have produced a framework to scale TLS-based AGB to 

landscape scales, provide assessments of spatial variability of AGB, and mechanisms to downscale 

relatively coarse estimates of AGB from ALS data. These findings are particularly encouraging 
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because they represent a mixed fuel beds including grass, shrub, and forest understory fuels with 

results that are similar to those found in calibrations for exclusively shrub fuels (Greaves et al.  

2017).  This study also marks a step forward for using TLS-based as a surrogate “truth” that in 

tandem with field data allows for improvements of landscape-scale estimates of AGB using other 

remotely sensed data.  The primary limitation for the estimation of fuels using combined TLS and 

ALS data is the inability to identify specific fuel types to go along with the estimates of AGB.  

Classification of surface fuel beds into fuel types has been successful in other systems using ALS 

data alone or in combination with multi-spectral data (Seielstad and Queen 2003; Mutlu et al. 

2008; Hiers et al.  2009; Garcia et al.  2011; Jakubowski et al.  2013). Some combination of these 

methods combined with our AGB estimates could significantly improve inputs to CFD fire 

behavior models.  Research is continuing in terms of the uncertainty assessment because the two-

stage model currently does not integrate error from the model stages that represent different spatial 

scales and model error propogation. 

3.5.3 Estimates of Consumption from TLS-based Aboveground Biomass 

Our findings demonstrate that post-fire AGB can be predicted using occupied volume.  To 

our knowledge, these results are the first successful application using independent TLS-estimates 

of pre- and post-fire fuel mass together to calculate consumption of fuels. Though we produce a 

spatially explicit map of consumption that is rational, we are unable to validate these findings yet. 

Use of these mapping products could be beneficial for assessing fire energy release (Hudak et al. 

2016) and when tied to fuel type, variability in emissions (Strand et al. 2016). Our method 

demonstrates an improvement in spatial estimates of consumption as compared to the CONSUME 

model and the First Order Fire Effects Model (FOFEM) (Ottmar et al. 2016b). A first attempt to 

employ the pre-fire model to estimate post-fire fuel mass over-estimated residual fuelload thus 
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using post-fire observed data was critical to producing the model used.    Estimates of consumption 

across the HIPs were favorable, but direct comparison at plot-scales is intractable as pre-fire 

observations cannot be conducted at post-fire observation sites.  Though the relationship between 

occupied volume and observed dry weight biomass was strong, the errors associated represented 

69% of the mean observed for the forested unit and 46% of the mean observed for the grass\shrub 

unit. Error is introduced in plots that appeared to experience near total consumption from the TLS 

perspective, but most likely had residual fuels on the ground that were not fully consumed in the 

form of ash or black carbon.  These fuels would not be distinct from the ground plane. One 

limitation to our approach in forested systems was possibly due to adjacent shrubs and tree 

branches introducing occupancy in the voxel arrays that is not represented in the field data. Our 

estimates of fuel consumption can also be tied to research assessing change detection using TLS 

data (Liang et al.  2009; Gupta et al. 2015).  Though the aforementioned studies only address 

changes in height, merging these findings with spatially explicit consumption from our approach 

may yield improvements for consumption estimates in other systems. 

 

3.6 Conclusions 

The niche for the research presented here is in development of fine-grained, spatially-

explicit fuels data for validating fire models, understanding how heterogeneity in fuels and fire 

behavior link to ecosystem processes, and testing theories such as the wildland fuel cell concept 

(Hiers et al.  2009). By combining fuel mass estimates like those developed here with fuel type 

classification methods, and coincident digital thermography may allow researchers the ability to 

conduct and validate high resolution CFD model runs to assess fine-scale fire dynamics and 

effects.  Additionally, the integration of stem detection algorithms (Popescu and Wynne 2004; 

Rowell et al. 2006; Silva et al. 2017) and derivative crown fuel metrics allow for the spatial 
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distribution of canopy fuels to go along with surface fuels data (Andersen et al.  2004; Rowell et 

al.  2009), providing a comprehensive framework to understand the ecology of fuels.  The ability 

to ascertain relationships between stocking density, litter distribution, and expected fire behavior 

over large landscapes using combinations of TLS and ALS fuels metrics could substantially aid 

managers across the southeastern United States by improving understanding of how fuels 

variability modulates fire behavior and produces fire effects 
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Chapter 4 - Simulation 

 

Using simulated 3D surface fuelbeds and terrestrial laser scan data to develop 

inputs to fire behavior models 
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4.1 Abstract 

Understanding fine-scale variability in understory fuels is increasingly important as 

physics-based fire behavior models are driving needs for higher resolution data.  Describing 

fuelbeds three dimensionally is critical in determining vertical and horizontal distributions of fuel 

elements and the mass, especially in frequently burned pine ecosystems, where fine-scale fuels 

arrangement drives fire intensity and resulting fire effects. Here we describe research involving 

the use of highly resolved three-dimensional models. We create fuelbeds using individual grass, 

litter, and pine cone models designed from field measurements. These fuel models are distributed 

throughout the fuelbed to replicate fuel distribution in rectified nadir photography taken for each 

plot.  The simulated fuelbeds are converted into voxel arrays and biomass is estimated from 

calculated surface area between mesh vertices for each voxel.  We compare field-based fuel depth 

and biomass with simulated estimates to demonstrate similarities and differences.  Biomass 

distributions between simulated fuel beds and terrestrial laser scan data correlated well using 

Weibull shape parameters (r = 0.86).  Our findings indicate that integration of field, simulated, and 

terrestrial laser scanner data will improve characterization of fuel mass, type, and spatial 

allocations that are important inputs to physics-based fire behavior models. 

4.2 Introduction 

The ability to spatially describe wildland fuels across an array of scales is critical for 

decision making in operational wildfire and prescribed fire management (Mutch et al. 1993; Keane 

et al. 2001).  Spatial fuels data have historically been used in fuels planning, fire behavior and 

effects modeling, and hazard assessment.  With recent advances in fire behavior modeling, the 

need for these types of data has expanded to include higher-resolution three dimensional 

characteristics. New computational fluid dynamics (CFD) models provide opportunities to 
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examine the fine spatial scale (<1m) fire behavior, that potentially drives larger scale fire behavior 

and may spatially organize ecosystems (Hiers et al. 2009). These models rely on appropriately 

dimensioned fuels data which are not readily available from conventional sampling techniques. 

The basis for fuels measurements has been to provide a generalized fuels description considering 

that collecting all physical attributes of a fuel bed is usually intractable (Keane et al. 2001).  In 

2001, the Core Fire Science Caucus, a self-directed group of fire scientists, elucidated the need for 

a new context to describe fuels that coupled with advances in fire behavior and smoke modeling 

(Sandberg et al. 2003;Hardy et al. 2008).  Fuel measurement methods were developed to support 

coarse-grained fire behavior or fire effects modeling that do not encompass the full range of 

heterogeneity or spatial non-uniformity in fuels found within and across landscapes (Hardy et al. 

2008).  Similar limitations are noted in the realm of ecology, where conventional methods of 

inventory are designed to classify abundance of dominant vegetation rather than individual 

organisms using most common species characterization (Thompson 2004).   

Fire is a dynamic process, influenced by discontinuities and variability that are not fully 

captured in traditional fuels measurements.  Commonly used direct measurements of fuels are 

taken from planar transects or point intercept coupled with dry-weighed biomass samples (Brown 

1974;  Brown 1981)  These direct sample protocols are labor intensive and limited in scale and 

they are not efficient at estimating fine fuels such as grasses (Loudermilk et al. 2009). Estimation 

of bulk density of shrubs and grasses requires unrealistic assumptions that inherently oversimplify 

the fuel elements (Van Wagner 1968).  Yet, fine-scale patterns of surface fuels are complex and 

relate to spatial measurements of fire intensity in low-intensity fire regimes (Loudermilk et al. 

2012, 2014).  Fine scale fire effects have also been commonly described in frequently burned pine 

conifer forests, where variability of fire intensity depends on the matrix and orientation of 
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flammable grasses, forbs, shrubs, and pine needles (Thaxton and Platt 2006; Mitchell et al. 2009).  

New fire behavior models combined with new fuels measurement techniques are now providing 

opportunities to better understand patterns of fuels and the effects of fine-scale fire behavior, and 

the research community is active in rethinking approaches to fuels inventory and developing 

alternative methods (Hiers et al. 2009).   

A relatively new approach to characterize fuels is by application of active remote sensing 

in the form of Light Detection and Ranging (lidar), which potentially characterizes fuel beds 

continuously by collecting height and reflectance properties of fuel objects (Seielstad and Queen 

2003; Hudak et al. 2015). Lidar remote sensing is limited in its ability to directly matching 

biophysical parameters with similar field measurements (Popescu et al.2002; Hopkinson et al. 

2005; Riano et al. 2007; Streuker and Glenn 2006; Glenn et al. 2010). Platforms such as terrestrial 

laser scanners (TLS) collect enormous quantities of point data (mm to cm point spacing) for small 

areas (1m – 1ha), but are victim to issues of sampling variability.  TLS point density degrades over 

distance and data collection must be executed from multiple angles to reduce the effects of 

occlusion as energy is intercepted by taller and larger objects that shadow the other parts of the 

scan (Hosoi and Omasa 2006; Rowell et al. 2016a).   Moreover, studies are generally limited to 

extraction of biometrics of individual identifiable objects within larger fuelbeds, for example for 

shrubs in open arctic environments (Vierling et al. 2013; Greaves et al. 2014) and sagebrush steppe 

(Olsoy et al.2014).  Attempts at characterizing mixed fuelbeds (e.g., nearly all fuelbeds at fine 

grain) with terrestrial laser scanning have shown the difficulties in unmixing objects or types 

within laser point clouds to characterize mass and heights per fuel type (Loudermilk et al. 2009; 

Rowell and Seielstad 2012; Rowell et al. 2016a) 
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To address limitations of TLS, one approach uses parametric plant models to simulate 

biomass distributions. A small number of studies are utilizing three-dimensional models of trees 

and plants to produce object-based simulations of ecosystems for use in a variety of applications, 

such as simulations to assess spectral properties of plants (Disney et al. 2009; Cawse-Nicholson 

et al. 2013; Woodgate et al. 2015) and modeling of airborne lidar data for individual tree inspection 

in forested environments (Disney et al. 2010, 2011).  A related method for individual plant 

modeling is the application of Lindenmayer system (L-systems) fractal modeling for virtual 

construction of xeric shrubs for use in leaf-scale fire behavior simulations (Prince et al. 2014; 

Prince 2014). L-systems used in Prince et al. (2014) grows fractal plant features using assigned 

angles of rotation representative of the specific plant morphology. Prince et al. (2014) showed that 

bulk densities similar to those reported in the literature could be obtained from geometrically 

correct plant models of chamise, manzanita, and Utah juniper.  In similar work, Parsons et al.  

(2011) used probability functions to distribute biomass throughout an individual tree canopies as 

a collection of simple shapes (cylinders and frustrums) using a pipe model approach.  This 

approach has yielded highly detailed tree models that are applied in the FUEL3D model for 

improved understanding of fire dynamics within forest stands. FUEL3D uses allometric estimates 

of biomass based on inputs from the Forest Vegetation Simulator (FVS, United States Forest 

Service, http://www.fs.fed.us/fmsc/fvs/) that are distributed throughout individual trees as 

partitions of bole, branch, and needles.  All of these studies focus on modeling the individual tree 

and shrub canopies. As of this study, there has been no similar examination of understory 

vegetation and surface fuels focused on construction of three dimensional assemblages of mixed 

fuel elements.   

http://www.fs.fed.us/fmsc/fvs/
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Here, we present methods for constructing spatially-explicit, highly-resolved, and realistic 

fuel beds using tools developed for 3D animation and modeling.  Each fuel element/type (e.g. 

shrub, grass, needle, etc.) is discretized in the fuelbed, allowing for direct accounting of metrics 

such as height, volume, cover, surface area, density, and mass.  We then examine the fuelbeds 

through comparison with in situ nadir imagery and field measurements, and explore the utility of 

these models as tools to better understand spatial variability in fuel properties and to improve 

remote sensing of fuel beds and fine-grained fire modeling. Finally, we compare simulated fuelbed 

height distributions with TLS-derived height distributions to assess correspondence of the two 

methods as a preamble to future incorporation of lidar ray-tracing for simulating TLS. 

Our research centers on a main objective of developing realistic and quantifiable simulated surface 

fuelbeds in longleaf pine ecosystems.  We approached this objective in three phases: first, we 

generated fuel simulations from parametric plant models using high resolution nadir photo imagery 

and detailed height measurements and parameterized them with biomass estimates for discrete fuel 

elements; second, we transposed the models to an independent validation site and compared 

biomass estimates to actual dry weights; and third we derived and contrasted height distributions 

from the simulations and TLS data.  

4.3 Methods 

4.3.1 Study Area 

Two field campaigns were conducted to acquire data at Eglin Air Force Base (AFB), 

Florida, in October 2012 and February 2014. Eglin AFB (30°3212 N, 86°4344 W) is located in the 

panhandle of northwestern Florida, USA, which was originally a unit of the former 



86 
 

Choctawhatchee National Forest; Eglin is an important resource in the management of longleaf 

pine ecosystems with 180,000 ha of longleaf pine sandhills and flatwoods. 

4.3.2 Field Observations 

The October 2012 data were collected as part of the Prescribed Fire Combustion and 

Atmospheric Dynamics Research Experiment (RxCadre) funded by the Joint Fire Sciences 

Program (11-2-1-11).  Fuels data were collected at twenty three 0.5 m2 plots around small replicate 

prescribed fire sampling blocks (20 m x 20 m) nested within a larger burn unit. These small 

replicate blocks are referred to as highly instrumented plots (HIPs). Height metrics for each plot 

were collected (maximum and mean height for grass, forbs, shrubs, and litter). Each plot was 

clipped of all vegetation, sorted by fuel type, and samples were oven-dried at 70°C for 48 hours 

and then weighed (Ottmar et al. 2016b).   

The February 2014 data were collected as part of a Department of Defense Strategic 

Environmental Research and Development Program (SERDP) funded project (#RC-2243).  

Vegetation and fuel characteristics were gathered in nine plots located in longleaf pine sandhills 

of Eglin AFB.  Plots measured one by three meters in size and were gridded into cells measuring 

10 cm by 10 cm, so that each of the nine plots contained 300 cells. For each cell, point intercept 

measurements of plant species and fuelbed height were collected. Fuel measurements included 

fuel and litter depths (cm), and presence or absence of fuels.  As part of a separate experiment 

(O’Brien et al.  2016), longleaf cones were randomly distributed at densities of 0, 5, or 10 per m2.  

4.3.3 Workflow Description 

Workflow is divided into three phases (Figure 18), 1) Model development and 

parameterization, 2) Replication and validation of simulations, and 3) TLS and simulation 
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comparison. Phase 1 outlines the development of plant models and construction of fuelbeds via 

interpretation of nadir and oblique photography and subsequent application of generalized fuel 

mass allocations. Phase 1 also outlines the development of these methods and application of 

generalized fuel mass allocations (see surface area and fuel mass).  Phase 2 describes the 

replication of the technique at an independent site along with comparisons of simulated and 

measured biomass and height. Phase 3 examines the derivation and comparison of TLS-based and 

simulated height distributions. 

4.3.4 Fuel Bed Simulations 

Synthetic fuel beds (Figure 19) were generated through a series of steps starting with the 

Onyx Garden Suite (Onyx Computing Inc. 1992-2008, http://www.onyxtree.com) a parametric 

plant modeling system that allows users to adjust physical parameters of individual plant elements 

to create three-dimensional plant models.  This model generator was used to produce individual 

plant elements representative of types observed in our field plots.  Fuel elements for each plant 

model were selected based on primary life-form measurements collected in the field campaign 

including models of tall grass (senesced), moderate stature grass (senesced), low grass (senesced), 

tall shrubs, low shrubs (senesced), low shrubs (evergreen), longleaf pine litter, deciduous oak litter, 

other deciduous litter, and longleaf pine cones.  Height dimensions of the models were 

parameterized based on average heights coincident with identifiable plants located in nadir 

photographs collected at each plot. The horizontal extent of plant elements and objects in the litter 

were determined from measurements in rectified plot photos in a Cartesian coordinate space, using 

the southwest corner of the plot as the origin.  

Fuelbeds were constructed as assemblages of plants, litter, and cones using the freeware 

Blender 2.74 (www.blender.org). Blender is typically used as a platform to produce scenes and 

http://www.onyxtree.com/
http://www.blender.org/
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objects for three-dimensional renderings for use in graphic design and tree-dimensional animation 

applications.  Onyx-based plant and litter objects were imported into the Blender environment as 

wavefront open format file input (.obj).  Identifiable objects such as tall grass, isolated moderate 

stature grass, shrubs, and cones, were positioned by their artesian coordinates as measured in the 

rectified high resolution nadir plot photography in the ArcGIS environment (ESRI, Redlands, 

California, USA).  Each fuel element contains an anchor point representing the center of the object 

on the ground plane.  This point was the location used to place each element.  Distributions of 

other fuel elements such as clusters of deciduous litter, long-leaf litter, and congruous clumps of 

grass were placed within bounded areas as defined by presence/ absence of each fuel type specified 

by the field-collected point intercept data.  Groupings of fuel elements were refined based on visual 

comparison with plot photography, as the point intercept data omits areas of data between sample 

points. The final scenes were exported to an x,y,z text format representing the fuel bed with all 

elements included (e.g.,herbaceous plants and grasses, needles, oak leaves, litter, and cones).  Each 

x,y,z point represents a vertex from a mesh object of a fuel element and is attributed with specific 

fuel type (e.g., grass, needle, cone, etc.)  

The SERDP data were used to develop and parametrize the models in Phase 1 as the spatial 

resolution of the nadir photo imagery and density of measured fuelbed heights were more highly 

resolved than in the data collected from the RxCadre experiment. The simulation techniques 

developed from the SERDP project were replicated for the RxCadre data. However, because these 

data were less intensively sampled for fuelbed height metrics (Figure 19), oblique imagery was 

used to place fuel elements in the simulation.  
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Figure 18. The diagram depicts the three phases of work conducted to produce fuel simulations 

(phase 1), replicate and validate biomass at an independent site (phase2), and compare simulated 

and TLS height distributions (phase 3).
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Figure 19.  A comparison of synthetic fuelbeds for plot 1 (1A) with the nadir plot photo (1B) 

and plot 7 synthetic fuelbed (1C) with the nadir plot photo (1D).     This comparison 

demonstrates that placement of objects is coincident between photo and the synthetic fuelbed and 

the objects used to populate that simulation behave like real plants with some generalization. 

  

1A 

1B 

1C 

1D 
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4.3.5 Voxelization 

A voxelized approach was taken to reduce the dimensionality of the data and to exploit 

analysis techniques that rely on cell-based arrays. Each fuel bed was voxelized using the approach 

outlined in Hosoi and Omasa (2006). Voxels, 3D pixels that allow for volumetric representation 

of discontinuous surfaces using a regularly spaced three-dimensional grid were developed (Stoker 

2009). A three-dimensional search cube was applied to the x,y,z files to summarize the number of 

fuel vertices found within each 1 cm3. A benefit of voxel analysis is the ability to depict areas of 

missing and present data in geometric space. In the domain of fuelbed geometry, voxelization 

allows for the ability to examine connectivity in three-dimensions, which is paramount to 

understanding where fuel elements exist and how they are distributed in space. The 1 cm3 voxel 

resolution was selected based on two criteria:  

1.) Within the shrub grassland matrix 1cm3 voxel cells allow for characterization of both 

clusters of grass clumps (grass blades are typically ≤ 1cm in width) and larger shrub 

components (e.g. leaves and branches > 1 cm in width).   

2.) This grain size preserves gaps between clusters of fuel elements. Larger grains (e.g. > 

decimeter) begin to fill gaps and generalize the fuel bed in ways that limit further analysis.  

4.3.6 Filled Volume 

Previous work using terrestrial laser scans of grass-shrub fuel beds has shown that plant 

material concentrates in the lower part of the fuel bed in the form of densely clustered leaves and 

stems of grass bunches and plant litter and the upper part of the fuelbeds typically contain more 

dispersed stems and grass inflorescence (Rowell and Seielstad, 2012; Rowell et al. 2016a). Total 

occupied volume of each 1 m2 subplot was calculated by summing the total number of occupied 

voxel cells present. 
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4.3.7 Surface Area and Fuel Mass 

To realize the full value of modeled fuelbeds for examining fuels variability, it was 

necessary to relate the vertices that define each fuel elements to specific fuel properties. Vertices 

density was determined to be a poor representation of plant material, as some plants that have large 

amounts of biomass were represented by a relatively small numbers of vertices in the plant models. 

To overcome this, we calculated fuel surface area for each fuel type using the 

MESH_SURFACEAREA routine in IDL (Exelis VIS, Boulder, Colorado, USA) for each 1 cm3 

voxel cell in. The meshing algorithm used incorporates mesh normals to connect vertices, allowing 

calculation of the surface area for each resulting polygon. Total surface areas per 1 m2 subplot is 

reported in Table 10.   We then used the surface area calculations to weight mass per occupied 

volume in our simulated fuelbeds on a voxel by voxel basis. Additional information concerning 

fuel mass and fuel volume are needed to impute bulk density, particle density, and packing ratio.  

For fuel mass, we examined the literature to find general data describing fine-grained 

biomass properties of representative grasses, longleaf pine litter and cones, and turkey oak leaves 

(Table 8). We use the shrub biomass properties for the forb biomass estimation as we were unable 

to find appropriate biomass estimates for this fuel type. Then we calculated an average mass of 

each fuel (derived from the literature) per mm2. For example, for grass we took the average mass 

per unit area reported in the literature for the species little bluestem and used associated cover and 

height to generate a plant volume. From these dimensions we calculated a mass per area (mm2) for 

each plant/litter model. For cones, we use average mass of a longleaf pine cone divided by average 

volume of cones in our dataset. These average density estimates were used to distribute biomass 

within each element in the simulated fuel beds in the following way.  The purpose of this 

admittedly indirect method of biomass estimation was to account for the high variability in vertex 
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density within fuel elements that is not obviously related to density of biomass. The weighting 

assumes that surface area calculated from our meshes is directly related to mass.  

 

 

Table 8.  List of the studies used to produce the portioned biomass allocation used to predict the 

biomass for each voxel for little blue stem, turkey oak litter, longleaf pine litter, and longleaf cones.  

Biomass partitions are reduced to biomass for grams per mm2. 

  

 

Grasses 

 

Fuel Type Study Study site Treatment 
Reference 

Biomass 

Reference 

Units 

Cover  

(%) 

Height 

(cm) 

Biomass 

(grams/mm2) 

Aristidia 

stricta Michx. 

Brockway 

et al.  1998 

Marion 

County, FL 
Herbicide 15.5 

Grams per 

m2 
57.8 * 0.00155 

 

Cones 
 

Fuel Type Study Study site Treatment 
Reference 

Biomass 

Reference 

Units 

Cover  

(%) 

Length 

(cm) 

Biomass 

(grams/mm3) 

Pinus 

palustris 

Fonda and 

Varner 

2004 

Ocala, FL - 59.1 
Grams per 

cone 
- ** 0.000591 

 

Longleaf Pine Litter 
 

Fuel Type Study Study site Treatment 
Reference 

Biomass 

Reference 

Units 

Cover  

(%) 

Height 

(cm) 

Biomass 

(grams/mm2) 

Pinus 

palustris 
Fonda 2001 Ocala, FL 

2x2 Factorial 

design 
14.21 

Grams per 

m2 
100 5 0.002321 

 

Turkey Oak Litter 
 

Fuel Type Study Study site Treatment 
Reference 

Biomass 

Reference 

Units 

Cover  

(%) 

Height 

(cm) 

Biomass 

(grams/mm2) 

Quercus 

Laevis 

Kane et al. 

2008 

Jones 

Ecological 

Center 

Lab 

experiment 
15 

Grams per 

35 cm2 
100 6.2 0.000197 
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4.3.8 Calculating Height Metrics  

Height metrics were extracted from the simulated fuelbeds on a 10 cm grid within each 

plot by applying a 10 cm equal spaced point array and sampling a 10 cm2 area around each centroid. 

Height metrics were only compared within the SERDP data, the RxCadre data were collected as 

plot averages and not spatially explicit.  Fuel depth from the simulated fuelbed represents all 

heights found in the area as opposed to the point intercept data collected in the field which 

documents only intercepted heights at a point.  Although we could have used the same approach 

and only considered objects from the modeled fuelbed that fell on top of the field measured points, 

it is extremely unlikely that field measurements would precisely coincide with features of our plant 

models and we instead chose to include any point found within the search area so we could express 

height variability per fuel cell.  By applying the point network from our point intercept data to the 

simulated fuel beds, we also developed a suite of height metrics, including maximum, 99th 

percentile, mean, inflection height, standard deviation, median height, standard deviation height, 

kurtosis, and skewness. All heights within a 100cm2 area around each field sample point were used 

to calculate these metrics from the artificial fuelbeds at a grain of 10cm.  These metrics were 

ultimately compared to coincident field observed heights.   

4.3.9 Terrestrial Laser Scanning Collection and Processing 

Laser scans were collected pre- and post-fire using an Optech ILRISTM   36D-HD laser 

scanner at a 10kHz sampling frequency.  Data were collected for the L2 forested burn blocks 

(RxCadre) which contained two years of fuel accumulation and plant growth since the last 

prescribed fire.  The TLS instrument was positioned at the four corners of the HIPs plot, positioned 

an average distance of 7 m from the edge of the plot on a telescoping tripod set at a height of 2.74 

m.  The laser was pointed downward with an average inclination of -30° and a focal range of 20 
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m resulting in an average scan density of 8.4 mm.  Reflective posts were placed on the southeast 

corner of every 0.25 m2 sample plot around each HIPS plot resulting in twelve tie points per HIPs. 

Terrestrial laser scans were aligned using the Polyworks software suite (Innovmetric, 

Quebec, Canada) and further point cloud spatial refinements were completed using CloudCompare 

(CloudCompare 2014; www.cloudcompare.org), an open source point alignment software 

package.  Individual scans were merged together into a single dataset and projected on a UTM 

coordinate system through coincident GPS data collected for all HIPs corner points. A more in 

depth processing explanation can be found in Rowell et al. (2016a).  Point clouds were subset into 

individual sample plots (n=23) by locating the reflective post on each corner and defining a clip 

polygon feature in ArcGIS (Environmental Research Systems Institute, Redlands, California, 

USA).  A fuel height model (FHM) was generated by subtracting the geoid height from a local 

minimum height producing normalized height above ground. TLS point clouds were imported into 

R (www.r-project.org) for statistical analysis. 

4.3.10 Statistical Analysis 

Analyses are presented in the three phases described above parts: Phase 1: Parameterization 

and development of simulated fuelbeds and biomass estimations using high resolution nadir 

imagery and field-based height data (n=100 data points per plot) for the SERDP site. Height 

comparison is conducted using Pearson correlation.  Phase 2: Replication of model development 

and biomass estimation for the RxCadre site and comparison with in situ measurements of 

biomass. Comparisons are conducted using Pearson correlation, ANOVA, and RMSE. Phase 

3:Fuelbed height distributions comparison between TLS-based and simulation-based using 

Weibull distribution functions to analyze shape (α) and scale (β) parameters using the fitdistrplus 

http://www.cloudcompare.org/
http://www.r-project.org/
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package (Delignette-Muller and Dutang 2015) in R.  The Weibull function is fit to the TLS and 

simulated fuel height model using the maximum likelihood estimate method. 

4.4 Results 

4.4.1 Phase 1: Parametrization and Simulation Development in the SERDP plots 

The simulated fuel beds closely resembled the plot photos in appearance and geometry 

(Figure 14) and share characteristics with field measurements in terms of fuel depth and cover. In 

this study fuel depth and cover are the only directly comparable metrics between the field measured 

and the simulated fuelbed data as no other field data were collected.  

4.4.2 Height Metrics 

Comparisons of field and simulated fuel depth (Table 9) were well correlated with 

correlation coefficients ranging from 0.75 to 0.96.  The tightest correspondence occurred in plot 6 

(r =0.96, p-value < 0.001).  Plots with high densities of overhanging grass stems proved most 

variable when compared against the point intercept data with correlation coefficients ranging from 

0.81 to 0.88.  In all cases the tallest measurements from the field and simulated fuel heights related 

well, with less correspondence in the lower reaches of the fuel beds.  Plots with generally low 

stature fuels and isolated taller grass fuels performed best.  The largest residual standard error 

occurred in plot 3 where a lattice of overhanging grass stems crisscrossed the plot. The field point 

intercept data often miss these sparse objects, whereas careful attention was given to adding them 

in generation of the simulated fuelbeds.  
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Table 9. Simulated fuelbed heights correlate well with measured fuel depth, with most variability 

resulting from grass blades in the simulation crossing in the 10 cm2 grid cell. Residual standard 

errors (RSE) were greatest in plot 3 which had a lattice of reproductive grass stems that were bent 

across the plot. 

 

 

Plot Correlation df p-value 

Confidence 

Interval 

(95%) 

RSE 

1 0.94 298 < 0.001 0.92 - 0.95 5.76 

2 0.81 298 < 0.001 0.81 - 0.87 8.98 

3 0.84 298 < 0.001 0.80 - 0.87 14.36 

4 0.75 298 < 0.001 0.69 - 0.79 4.88 

5 0.86 298 < 0.001 0.82 - 0.88 3.70 

6 0.96 298 < 0.001 0.94 - 0.96 2.21 

7 0.88 298 < 0.001 0.85 – 0.90 5.76 
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4.4.5 Biomass Estimation 

Estimates of per subplot biomass fell within expected ranges reported in the literature 

(Table 8) for grass, needles, cones, and deciduous litter, with three exceptions.  Ranges for grass 

biomass were from 43.43 to 664.22 grams/m2, needle litter ranged from 0.23 to 35.23 grams/m2, 

and cone biomass ranged from 117.96 to 509.95 grams/m2.  Plots 3, 4, and 5 exhibited grass 

biomass estimates that exceeded expected norms.  Occupied volume on these plots varied from 

consistent with other plots having similar fuel loads to nearly twice the average volume of all plots. 

Surface area for these same plots appears to be the primary driver of the larger biomass estimate 

as these plots average 150% more surface area to volume than plots that fell within expected 

biomass ranges. Volume and surface area per plot for each fuel type are reported in Table 8.  

Estimates of longleaf pine needle litter biomass performed within published ranges. These fuel 

layers potentially produce the most realistic estimates of mass as the strata is limited in depth 

(between 2 -5 cm) and has very clear physical boundaries, whereas the grass fuels require more 

interpretation regarding height and dispersion across the fuelbed.  Bulk densities derived from the 

biomass and occupied volume averaged from 0.012 grams/cm3 for grass to 0.077 grams/ cm3 for 

cones. Longleaf pine litter had an average bulk density of 0.0007 cm3. 

Analysis of height distributions of biomass in the simulated fuelbeds shows that nearly 

70% of grass biomass is located below 5.5 cm height, which is where the height biomass curves 

inflect upward (Figure 20). This inflection height corresponds with the transition from grass bunch 

to the sparser stems and inflorescence.  Additionally, about 40% of the grass biomass occurs within 

2 cm of the ground, occupying the litter layer more so than the aerial fuels within each fuel bed. 

All longleaf pine litter and deciduous oak litter biomass fell below the grass biomass inflection 

height   



99 
 

Table 10. Occupied voxel volume (OV), surface area (SA), biomass (B), and bulk density (BD) 

is reported for grass, needle litter, and cones for each plot’s subplot. 
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Figure 20.  Mean biomass for 1 cm height bins for all plots in Phase 1 are shown (solid line) 

bounded by standard deviation (dashed line).  The bulk of biomass is allocated at the lowest strata 

of the fuelbed.  
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described above. Cone litter generally bisected the grass inflection height with fuel depth ranging 

from 5 to 8 cm.   

 

4.4.4 Phase 2: Validation and Comparison in the RxCadre Plots 

4.4.5 Biomass Validation 

Biomass was estimated for the three dominant fuel types (needle litter, oak leaf litter, and 

perennial grasses) across the HIPs plots. The litter biomass estimates were combined into a single 

litter value, as the weighed biomass is described in a single litter term.  Simulated litter biomass 

correlated well with oven-dried litter biomass (r=0.86, P < 0.05, RMSE = 15.8 g, Figure 21).  

ANOVA detailed no significant difference between mean simulated and actual litter biomass 

values (F = 1.05, P < 0.93, df =16, confidence level = 0.95).  Litter averaged 80% (σ = 21%) of 

the total biomass for all clip plots combined from the weighed biomass data.  Grass biomass 

represented a range of 2% to 17% of total biomass for eight clip plots and simulated biomass again 

correlated well with oven-dried biomass (r = 0.98, P < 0.05, RMSE=1.6g).   Simulated forb 

biomass performed least well (r = 0.75, P < 0.05) revealing substantial variability in estimates 

when the species bracken fern models are present.  There is difficulty in assessing if the error with 

these models is associated with the model or the field data classifications of emergent and non-

emergent vegetation. In many of the plot photographs collected for the experiment, bracken ferns 

are desiccated and in some cases have perched litter on top.  Therefore, these ferns may also be 

partitioned to the litter fuel class. 
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Figure 21.  An equivalence scatter plot of the simulated litter and oven-dried litter biomass for 

each plot in the RxCADRE validation. 

.  
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Figure 22.  An equivalence plot between the Weibull α parameter derived from the TLS and 

simulation height distributions. 

.  
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Figure 23.  An equivalence plot between the Weibull β parameter derived from the TLS and 

simulation height distributions. 

.  
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Figure 24.  Weibull distributions for five example plots used in the RxCadre experiment 

demonstrate similarities between simulations and TLS-based height profiles.  
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Figure 25.  Biomass distributions for a mixed grass (A.), forb (B.), and litter (C.) plot 

demonstrating the vertical distribution of biomass per fuel type. 

.  

 

A. 

B. 

C. 
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4.4.6 Phase 3: Weibull Distribution Comparison between Simulations and TLS 

Weibull shape parameters (α) for the TLS-based point clouds and simulations compared 

well (r = 0.86, P < 0.05, Figure 22) indicating that the Weibull slopes are similar in both datasets. 

Weibull α parameters for the simulation data indicated a weak relationship with plots that are litter 

dominated (r = 0.65, P < 0.05), suggesting that low height objects in the litter bed influence the 

Weibull slope value. The scale parameters (β) performed poorly (r = 0.21, P < 0.5, Figure 23). 

Clearly there are disparities in data density between the TLS and simulation data with the 

simulation data density heavily weighted toward the litter bed ranging in height from 0 – 5 cm 

(Figure 24).  Several plots (n=9) were partially obscured by adjacent or overhanging vegetation 

reducing the ability of the laser pulses to penetrate and accurately sample the litter layer of the 

plots  

4.5 Discussion 

This study provides a new approach for examining surface fuel variability at very fine 

scales (sub-meter). Simulated fuelbeds produce a high degree of visual realism (Figure 19) and 

share height and biomass attributes with field measurements. These fuel models and their metrics 

can be used to design fuelbeds that are consistent in measurement of structure and biomass.  This 

consistency in fuel attributes is currently missing from inputs needed for physics-based fire 

behavior models. We view these fuelbed simulations as a bridge between field and remotely sensed 

data. Field sampling results in aggregation over large areas to infer average fuel loading (Ottmar 

et al.2016).  As discussed previously, traditional inventory methods simplify the fuelbed at the 

cost of characterizing the full range of variability that exists.  Furthermore, an attempt at describing 

surface fuel mass using airborne lidar was inadequate in the same study area (Hudak et al.2016).  

This may be attributable to the fine-scale heterogeneity of fuels associated with longleaf pine 
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ecosystems, where the need to identify and spatially describe fuel distributions in regards to fuel 

type and fuel structure (Loudermilk et al. 2012; O’Brien et al. 2016).  

We have demonstrated that these simulations are highly correlated to field measured height 

and dry weight biomass.  More importantly, these metrics can be allocated to specific fuel types 

(Figure 25), where other attempts using lidar have only looked at predicting overall fuel mass 

(Hudak et al.2016) or predicting fuel models (Seielstad and Queen 2003). O’Brien et al. (2016) 

suggest the allocation to fuel type is a better predictor of subsequent fire radiative energy then fuel 

mass alone.   Active remote sensing platforms such as TLS collect rich data, but assessing the 

individual fuel elements with differing properties within complex fuelbeds is difficult and has yet 

to be executed satisfactorily (Rowell and Seielstad 2012).   In frequent low-intensity fire regimes, 

this specific allocation of fuel mass as a function of type and structure has the potential to quantify 

variability in fire radiative energy that contributes directly to fire effects (O’Brien et al.  2016).  

The key difficulty with mapping surface fuels using TLS is uncertainty regarding how the 

vertical distribution of the point cloud relates to complex matrices of fuels in the lowest strata of 

the fuelbed where the most influential fuels (e.g., pine litter, pine cones) are found (figure 25).  

The simulation approach we describe in this study performs best for characterizing these particular 

fuel types.  Previously, Coops et al. (2007) interpreted Weibull distributions of airborne lidar and 

related the Weibull α and β parameters to characterize distributions of biomass within forested 

canopies in British Columbia, Canada.  This study found correlations between Weibull parameters 

of lidar canopy height models and field measured height distributions, suggesting that airborne 

lidar data can be used to derive standard forest inventory information.  For our research, it is clear 

that the amount of information we can glean from the surface fuels characterization of TLS-based 

height distributions is pivotal in characterizing fuel metrics.  Within the RxCadre plots, TLS data 
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are underrepresenting the bulk of fuels occurring at the lowest heights of the fuelbed. This requires 

inference from vertical distributions of the upper reaches of the fuelbed to predict what the 

configuration of the lowest height strata of grass and litter are.  The Weibull α parameters for both 

the TLS and simulated data suggest that we are describing the density of points and simulated 

objects distributed vertically.  

The simulated Weibull distributions are based on the object vertices used to estimate 

surface area of the objects that are in turn used to predict biomass. From this, we infer that biomass 

is allocated similarly.  Remington et al. (1992) demonstrated that the use of the three parameter 

Weibull characterizes grass biomass distributions based on grazing treatments in Colorado, USA.  

Our findings are similar to this study in that litter dominated plots are heavily weighted to lower 

heights with the highest concentrations of biomass.   

Another important note is the effect of occlusion that results from laser pulses being 

intercepted by matter in the foreground or hanging over the plot of interest.  Our analysis 

demonstrated that where this effect occurs, the ground surface sampling attenuates in regards to 

the actual number of objects present.  Simulated fuel beds capture these elements and differences 

in the Weibull curves suggest that variability in TLS sampling may have a negative effect on 

predicting and distributing biomass in these systems. To overcome issues of occlusion, others have 

employed detailed and multi-angle TLS acquisition to produce high resolution scans that maximize 

laser pulse penetration into vegetation (Hosoi and Omasa, 2009).  Previous studies have 

demonstrated that for identifiable individual shrubs in large area scans, TLS data can be used to 

estimate biomass across size gradients (Loudermilk et al. 2009; Olsoy et al. 2014; Greaves et al. 

2015).  The ability to discriminate specific inter-mixed fuel types and arrangements at the lowest 

reaches of the fuelbed is therefore difficult utilizing TLS data. 
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We demonstrate that the simulated fuelbed approach produces meaningful estimates of leaf 

litter, grass, and forb biomass that are interspersed across the fuel matrix (Figure 25).  These 

findings suggest that our simulations provide an enhanced range of variability by tying precise 

height and fuel load metrics with field collected biomass.   An advantage to this modeling 

technique is the absence of a priori knowledge of biomass to attribute across the fuelbed.  

Similarly, Parsons et al. (2006) attributes biomass to fractal tree models using biomass estimates 

derived by the Forest Vegetation Simulator (FVS), where allometrically derived biomass is 

allocated across the tree per voxel unit as a function of branch and needle fuel type.  Vertical and 

horizontal distributions of fuelbeds are critical in the realm of understanding the role of fuels in 

fire behavior and post-combustion fire effects.   

Our fuelbeds depicted higher concentrations of biomass near the bottom of the fuelbed (< 

4cm) in grass fuels and showed a higher degree of variability in the lower reaches of the fuelbed 

than higher up.  Similarly, the ratio of occupied versus unoccupied space in the fuelbed changes 

with height, with more open space in the upper reaches of the fuelbed and less available biomass.  

We are also able to describe the horizontal distribution of fuels and decompose this distribution by 

fuel type in a way that is not currently possible with field methods or remote sensing. An advantage 

to using this method is that estimates of biomass and bulk density are not prone to the same types 

of error that airborne or terrestrial lidar experience. 

The description of fine scale fuelbed biomass and partition is important as fuels 

differentially combust based on changes in relative humidity and ambient temperature.  Varner et 

al. (2015) demonstrates the differences in combustion, specifically that longleaf pine needle litter 

has an intense, brief, and high consumption burn period that makes this fuel type a primary carrier 

of fire in southeastern forests. Inversely, turkey oak litter has a long flaming and a protracted 
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smoldering period.  Being able to distinguish between important fuel types and respective mass is 

important to understanding factors that influence heat flux and post-combustion fire effects 

(O’Brien et al.2016).  Andersen et al. (2004) describe small deviations from assumptions of 

uniform distributions of fuels that propagate significant effects of canopy bulk density in forested 

ecosystems. The ability to describe these fuels in terms of available biomass, volume, and surface 

area by fuel type and across large areas is an exciting prospect for advancing wildland fire science.   

4.5.1 Future work 

We pose that limited field data does not need to inhibit finer grain characterization of these 

fuelbeds.  In fact, a combination of general height characteristics, photography, and fuel load may 

suffice to produce accurate simulated estimates of a variety of fuel arrangements encountered in a 

landscape.  Lidar data may act as a frame work to distribute these simulated estimates of fuels 

through probability models or distribution analysis (figure 6).    However, characterizing large fuel 

beds (> 1 ha) using TLS is a difficult proposition.  We suggest using Weibull relationships to link 

field data with TLS or airborne lidar vertical distributions with simulated fuelbeds as a way to 

populate a landscape.  Specifically, integration of these data are crucial for creating consistent fuels 

data for validation of next generation fire behavior models, such as the Wildland Fire Dynamic 

Simulator (WFDS; Mell et al. 2009) and FIRETEC/higrad (Linn et al. 2006).  Although the 

resolution of the simulated fuelbeds are computationally too expensive for integration into these 

fire behavior models, we suggest utilizing the TLS-based height distributions as a mechanism to 

extrapolate the amount and type of mass detailed in the simulations aggregated to coarser grain 

sizes.  This technique may prove to be the most effective way to bridge the differences between 

field and lidar-based measurements.  
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From the perspective of lidar remote sensing, having a dataset parameterized to represent 

realistic 3D distributions of fuels and biomass will serve as a backdrop for simulating laser point 

clouds via ray tracing.  Disney et al. (2009) showed results that indicated the importance of lidar 

instrument settings and energy/matter interactions within simulated tree canopy structure using the 

same parametric plant models in OnyxTree.  This same study found that the ability to represent 

canopy architecture and elements discretely facilitated better understanding of how laser pulses 

penetrate tree crowns, with implications for predicting Leaf Area Index and related metrics 

(Disney et al. 2010). Palace et al. (2015) modeled canopy vegetation profiles and forest structure 

for comparison with similar airborne lidar metrics through simulated forest models in Costa Rican 

tropical forests.  This study found that simulations using established allometries to produce 

simulated forests found that canopy height is not a significant predictor of biomass, but modeling 

forest profiles that estimate plant area fractions improved lidar-derived estimates of forest biomass. 

The ability to produce realistic simulated laser point clouds is a significant proving 

mechanism for understanding how terrestrial laser scanners characterize fine fuels.  Previous 

attempts at describing these fuels have been difficult due to occlusion and point sampling 

variability using terrestrial laser scanner data collected obliquely from a boom lift (Rowell et al. 

2016a).  Further work needs to be conducted to determine how well biomass estimated from the 

simulated fuelbed performs specifically integrating more intensely sampled fuelbeds.  Automation 

of fuelbed construction is also imperative to reducing variability and subjectivity. We also foresee 

benefits for the integration of these findings with other high resolution simulation techniques, such 

as FUEL3D (Parsons, 2006), where we may begin to combine surface and canopy fuels for 

improved inputs used for physics-based fire behavior models. 
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4.6 Conclusions 

In this paper, we presented results that demonstrate 3D fuelbed simulations can explain 

much of the variability of biomass allocation and height distributions that are difficult to estimate 

using TLS data.  Though, the approach to building these simulations needs improvement in terms 

of automation and further validation, there is significant promise for using these methods to 

populate spatial datasets for use in CFD based fire behavior models.  Assumptions of plant 

structure, biomass partition, and height estimation need to be refined to include a broader diversity 

of species found in the southeastern United States and similarly structure ecosystems worldwide.  

We intend to further investigate the integration of these surface fuelbed simulations with other 

canopy fuel modeling techniques (e.g. FUEL3D) and the ability to leverage remotely sensed data 

to extrapolate landscape-scale fuelbed models 
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Chapter 5 – Research Summary 
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The purpose of this research was to advance the application of active remote sensing 

techniques for generating robust and quantifiable estimates of surface fuels at multiple scales.  The 

net contribution to fire science is methods, techniques, and spatially explicit and scalable data 

products which can be used for validating next generation CFD models and examining fire effects. 

Ultimately, the work of this dissertation along with subsequent advancements will enable better 

understanding of how fuels variability (and scale) modulate fire behavior and effects. This 

dissertation utilized TLS, ALS, and simulated data to: 1) demonstrate the ability to scan fuelbeds 

from a variety of angles and scales using TLS instruments and to validated estimates of fuel 

heights, 2) predict surface fuel load and fuel consumption at a variety of scales and fuel type 

configurations, and 3) employ three-dimensional surface fuelbed simulations to refine allocations 

of biomass and assess the potential limitations of TLS and observed data.  The end result of this 

dissertation support the assertion that active remote sensing platforms can play a valuable role in 

wildland fuels science.   

This work also expands on other studies (Olsoy et al. 2014; Greaves et al. 2014; and Cooper 

et al.  2017), to show that TLS is capable of producing robust estimates of individual and mixed 

fuel types.  The results of this work also outline advantages of using TLS-estimated surface fuel 

load as a surrogate for observed data to increase sample size and improve estimates of surface fuel 

load over using observed data alone (Hudak et al. 2016).  Finally, the use of three dimensional 

simulated fuelbeds improves our understanding of how fuelbed mass is distributed by type and 

spatial allocation.  This result provides a bridge between field observation and active remote 

sensing-based fuels data that has previously not existed. 

5.1 Ongoing Work 

Field Sampling Methods  
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A key limitation regarding comparisons of TLS-derived and observed fuels is the issue that 

the two datasets are essentially completely different ways of sampling the fuelbed.  The TLS data 

is more of a comprehensive representation of a population and depending on what data are 

collected in a field campaign, observed data are a generalization of the fuelbed.  This mismatch is 

a constant problem in remote sensing. There are also uncertainties regarding the true occupancy 

of fuel volume within the actual fuelbed versus the way that TLS data represent the fuelbed as a 

voxel array.  In this dissertation, I include a rationale for using a 10cm3 voxel dimension to bridge 

spaces effectively that may have been missed due to occlusion of the laser beam by fuel elements 

(e.g. shrubs). 

Figure 26. The 3D voxel sampling cube is used to sample fuels at Pebble Hill Plantation in 

Thomasville, Georgia.  This method collects observed data that is similar to the way TLS-derived 

voxels sample fuelbeds. 
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Consequently, I developed an alternative method of field sampling fuels that is designed to mimic 

the way TLS samples fuelbeds. The 3D voxel cube method (Figure 26) uses an adjustable height 

quadrat (0.25m2) that raises or lowers in 10cm increments.  The quadrat itself is subdivided into 

25 (10cm2) cells.  This method allows for sampling the fuels as voxels and strata, where for each 

cell, representative fuel types and fuel mass (dry weight biomass), height is integrated into the 

measurement as a function of voxel cell sampled.  This method will allow direct comparison of 

equivalent voxel measurements from TLS data, a plot based bulk density metric, distributions of 

biomass as a function of height, and inter-voxel variability through random sampling of voxel 

biomass for five voxels per strata. 

Figure 27.  Interpolated surfaces representing voxel occupancy from the 3D voxel cube sampling 

for a) forbs including vines and b) deciduous oak shrubs. 

 

 

A. B. 
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These data will allow for interpretations of distributions of fuel mass and bulk densities by fuel 

type (figure 27), which are spatially explicit and readily usable for both comparison with remotely 

sensed data and insertion into CFD models.  

Drone based structure-from-motion 

The advancement of UAS systems demonstrates strong potential for producing 3D datasets 

(Figure 28) that enhance the use of TLS-based fuel mass estimates.  Experiments conducted in the 

southeastern United States have shown that cohesive point clouds can be generated using UAS 

systems.  However, comparisons of the TLS and UAS point clouds have demonstrated that UAS 

systems produce points generally representative of the outer hull of fuel elements, whereas TLS 

data produce generally better representations of the structural components of the fuelbed.  The 

advantage of UAS systems is their ability to capture relatively large areas of data (10-100 ha) as 

compared to TLS data that functionally is better at capturing data for 10-100m.  A viable crosswalk 

is currently being developed to produce relationships between the TLS-derived fuel mass and the 

surface area derived from the hull sampling of the UAS data.  I believe that UAS platforms are a 

natural fit as a scaling lane from TLS to coarser remotely sensed data to produce robust estimates 

of fuel mass.  By validating TLS from plot data and then validating UAS data from TLS estimates 

of fuel mass, we increase the number of validation points that bolster fuel mass estimates.  This 

assumption is based on the improvements described in chapter 3, where using the TLS estimates 

of fuel mass improved the estimates produced from ALS by nearly 30%. 
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Figure 28. UAS point clouds for the Pebble Hill Plantation are derived photogrammetrically and 

represent the outer hulls of fuel objects.  These data can cover large areas and provide a scaling 

mechanism that allows for aggregation of TLS  fuel mass to landscape scales.
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5.1 Next  Steps 

The results of this dissertation provide a first step for integrating active remote sensing 

derivative products into a single encompassing fuels dataset for a broad array of applications.  The 

results of this work can be merged with crown fuel characteristics from TLS (Ferrarase et al.2013) 

and individual stem products from ALS (Rowell et al. 2006; Rowell et al. 2009; Silva et al. 2016).  

By integrating these data into formats that are useable by STANDFIRE\CAPSIS (Parsons et al. 

2016; Pimont et al.  2016), we are demonstrating significant advancements in development of fuels 

inputs to WFDS and FIRETEC\Higrad.  These data also provide a one-of-a-kind validation dataset 

with which to investigate the validity of southeastern fuels\fire effects hypotheses posed by the 

wildland fuel cell concept and the ecology of fuels. 

From the perspective of remote sensing, the three-dimensional simulations offer a unique 

potential to begin addressing issues of occlusion that are ubiquitous with TLS data acquisitions.  

Using ray tracing methods (Disney et al. 2009 and 2010; Yin et al. 2016) in combination with 

simulated fuel beds, I hope to better understand the energy-matter interactions that control how 

TLS and ALS characterize fuel properties, with expected improvements in fuel measurement and 

prediction.  
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