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Abstract: Whitebark pine (Pinus albicaulis Engelm.) plays a prominent role throughout high-

elevation ecosystems in the northern Rocky Mountains. It is an important food source for many 

birds and mammals, as well as a major player in high-elevation watershed maintenance, both 

slowing snowmelt and stabilizing soils. Whitebark pine is vanishing from the landscape due to 

three main factors – white pine blister rust (Cronartium ribicola) invasions, mountain pine beetle 

(Dendroctonus ponderosae) outbreaks, and successional replacement by more shade-tolerant tree 

species historically controlled by wildfire. In the past century, human activity such as fire 

suppression has altered these systems, potentially causing dramatic changes to the landscape. 

Managers now are implementing a variety of treatments across the landscape to encourage 

whitebark pine regeneration and survival. The objective of this study was to determine how 

whitebark pine regeneration (less than 9 inches diameter at breast height) responds to selective 

thinning and prescribed burn treatments, otherwise known as release treatments, intended to cause 

an increase in annual growth. I examined the growth ratio (GR) obtained from tree cores and 

destructive sampling at four sites in Montana and Idaho treated in the late 1990s. Overall, the 

average annual radial growth rates of the trees in treated areas was greater than that of trees in 

control areas. Specifically, there were significant increases in the GR in the two sites that were 

both thinned and later burned. All sites showed high variability in the GR of individual trees; 

however, there was greater variability in the annual growth rates of trees in treated areas than in 

trees from the control areas. I also mapped the height to age relationship of a subsample of the trees 

to examine how the vertical growth profile changed after treatment. Results suggest that whitebark 

pine regeneration can respond to thin and burn release treatments and that managers may see 

positive results in other areas that are treated similarly. 
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Introduction  

 Landscapes are constantly in flux, forcing species within them to keep pace with ever-

changing conditions. Over centuries, weather patterns and disturbance regimes vary, invading 

species encroach, and plants are exposed to new diseases (Ellison et al. 2005). Native species 

struggle to cope with and adapt to these many changes (Liu et al. 2016). Adaptability of a species 

to change greatly affects its ability to survive. Species experiencing multiple disturbances at the 

same time have a greater risk of suffering a population-wide decline, depending upon that species’ 

adaptive capacity (Ellison et al. 2005). Whitebark pine (Pinus albicaulis Engelm.) is one such 

species with multiple disturbances acting upon it (Keane et al. 2007). 

 Whitebark pine is a foundation species throughout high elevation forests of the western 

United States and Canada (Ellison et al. 2005, Tomback and Achuff 2010). This tree serves as a 

foundation species by promoting biodiversity throughout high elevation ranges and by stabilizing 

ecosystem functions such as water quality and quantity regulation (Ellison et al. 2005, Keane and 

Parsons 2010, Tomback and Achuff 2010). Whitebark pine is a long-lived, slow-growing tree with 

moderate shade tolerance (Minore 1979, Eggers 1990). It can easily reach 400 years in age; the 

oldest tree ever recorded was more than 1300 years old (Arno and Hoff 1990). In the northern 

portions of its range, whitebark pine is usually replaced by more shade-tolerant species such as 

subalpine fir (Abies lasiocarpa Hook), Engelmann spruce (Picea engelmannii Engelm), and 

mountain hemlock (Tsuga mertensiana Bong) (Keane and Parsons 2010). These shade-tolerant 

species replace whitebark pine in the overstory 50 to 250 years after a stand replacing disturbance, 

depending on the previous fire history and local environments (Arno and Weaver 1990, Keane 

2001).   
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 Whitebark pine has the most extensive distribution of all the five-needle pines, occurring at 

high elevations in seven U.S. states and two Canadian providences (Tomback and Achuff 2010). 

Whitebark is found throughout the Rocky Mountains of Wyoming, Idaho, Montana, Alberta, and 

British Columbia, as well as in the Sierra Nevada and Cascade mountains in California and the 

Pacific Northwest. Small populations occur sporadically in the Great Basin of Nevada, and in the 

mountains of northeast Oregon and Washington (Keane et al. 2012).  Whitebark pine 

communities comprise up to 15% of the forested areas throughout the Rocky Mountains (Arno 

1986) with the majority of populations occurring on public lands, including wilderness areas, 

national parks, and national forests. The three largest wilderness areas in the contiguous U.S. - the 

Bob Marshall Wilderness Complex, the Selway-Bitterroot-Frank Church Wilderness Complex, 

and Yellowstone National Park - each contain about 25 to 50% potential whitebark pine forest 

habitat (Keane 2000). Whitebark pine typically grows either as a seral species, eventually being 

replaced by more shade tolerant species, or as a climax species in climates too inhospitable for 

other conifer species to thrive (Arno and Hoff 1989). 

 Whitebark pine is an important food source for around 110 animal species (Kendall 1980). Its 

large seeds are depended upon by many creatures including black bears (Ursus americanus Pallas), 

grizzly bears (Ursus arctos horribilis Linnaeus), red squirrels (Tamiasciurus hudsonicus Erxleben) 

(Kendall 1980), and most importantly, Clark's nutcrackers (Nucifraga columbiana Wilson) 

(Tomback 1982).  Whitebark pine has a mutualistic relationship with the nutcracker, relying on the 

bird to disperse its heavy, wingless seeds (Tomback 1982). The nutcracker-stonepine interactions 

are regarded as coevolved mutualisms where the three species of nutcrackers worldwide are the 

primary seed dispersers for the five species of stone pines (trees that retain the mature seed within 

the cone; Hutchins and Lanner 1982). The Clark’s nutcracker harvests seeds from the whitebark 
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pine cones and transports them to a cache up to 10 km away from the parent tree (Lorenz et al. 

2008). Nutcrackers often cache their seeds in large open areas, usually old burns, with plenty of 

visual markers to help the birds relocate their cache. However, some of these caches are forgotten 

and the seeds later germinate (Tomback 1982, Arno and Hoff 1990).    

 Whitebark pine is generally the first species to reestablish in an area that has experienced a 

stand-replacing fire, thanks to its relationship with the Clark’s nutcracker and specific 

physiological traits, such as its ability to tolerate drought (Leirfallom et al. 2015). The traits may 

then help the tree facilitate the establishment of other conifer species, particularly subalpine fir and 

Engelmann spruce (Callaway 1998, Resler and Tomback 2008). A study done by Sala et al. 

(2001) comparing the instantaneous gas exchange and water use efficiency between mature 

subalpine fir and whitebark pine trees found that whitebark pine use water more efficiently. This 

trait allows whitebark pine to colonize much dryer sites and act as a nurse plant for less drought-

tolerant species. It also reinforces the importance of whitebark pine to high-elevation 

communities. 

Invasive fungal pathogen, native insects, and successional replacement by more shade-

tolerant species are important ecosystem drivers that have sent whitebark pine into a tailspin of 

decline. White pine blister rust (Cronartium ribicola Fischer) is an exotic pathogen that attacks 

most five-needle pines, but is particularly deadly to whitebark pine (Bingham 1972, Hoff et al. 

1980, Arno and Hoff 1989).  This disease was introduced into North America around 1900 on 

Eastern white pine (Pinus strobus Martínez) seedlings grown in European nurseries (Maloy 1997). 

By the 1950’s, white pine blister rust was widespread throughout most of North America 

(McKinny and Tomback 2007).  White pine blister rust is currently present throughout most of the 

range of whitebark pine, reducing cone production and killing trees (Schwandt et al. 2010, 
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Tomback and Achuff 2010). White pine blister rust requires two hosts, a five-needle pine and most 

commonly a species from the Ribes L. family such as a currant (e.g., Ribes lacustre Poir; found 

throughout the study region). Blister rust spores grow through the stomatal openings in the needles 

of the pine. The infected area of the tree swells and forms blisters which rupture and release bright 

orange aeciospores in the spring. These spores infect the alternate host which produces 

basidospores in the fall that can infect more trees (Maloy 1997).There is variation in the estimated 

levels of white pine blister rust, but likely levels range from 0-24% in the Sierra Nevada Range 

(Maloney 2011) to as high as 73% in the Rocky Mountains (Smith et al. 2008). In Waterton 

Lakes National Park, Alberta, Smith et al. (2008) reported stands last assessed in 1996 showed 

increases in infection levels from 43% to 71%, and also observed that mortality increased from 

26% to 61%. Although tree mortality may not occur for decades, infected trees rapidly lose the 

ability to produce cones (McKinny and Tomback 2007) thus reducing the likelihood of 

regeneration.  

 Mountain pine beetle (Dendroctonus ponderosae Hopkins) is an aggressive insect, native to 

western North America, that attacks most pine trees (Wood 1982). These insects play an important 

role in the life of a forest, attacking and killing old or weakened trees, thus accelerating 

development of understory cohorts by increasing their access to nutrients, light, and water (Hansen 

2014).  Mountain pine beetles create breeding chambers in the living wood and lay eggs under the 

bark. The beetles introduce blue stain fungi into the sapwood, which reduces the trees’ ability to 

repel attacking beetles with pitch. The joint action of larval feeding and fungal colonization kills 

the host tree within a few weeks of a successful attack, as these two processes interrupt water 

transport and girdle the tree by cutting off the flow of water and nutrients (Dooley et al. 2015). 

Several major mountain pine beetle outbreaks over the last 90 years have killed many mature cone-
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bearing whitebark pine across the range (Logan and Powell 2001). Current climate-facilitated 

severe outbreaks have additionally reduced the numbers of large, cone-bearing, whitebark pine, 

severely depressing the regeneration potential of the species (Logan and Powell 2001, Schwandt et 

al. 2010, Macfarlane et al. 2013).  

 Finally, the large-scale suppression of wildfires over the last 100 years has led to 

successional replacement of whitebark pine by more shade-tolerant species including subalpine fir 

and Engelmann spruce (Arno 1986, Keane et al. 1994, Murray et al. 2000). These species replace 

whitebark pine in the overstory 50 to 250 years post-fire depending on the previous fire history and 

local environments (Arno and Weaver 1990, Keane 2001). Whitebark pine stands typically 

experience three distinct types of fire regimes: mixed-severity, low-intensity, and stand-replacing. 

The most common fire regime is a mixed-severity regime where the fire varies in intensity and 

frequency, creating patchy mosaics of mortality and survival across the landscape (Morgan et al. 

1994). Mixed-severity fires generally occur every 60-300 years and are usually less than 50 

hectares in size (Arno and Weaver 1990). These mix-severity burns include areas of non-lethal 

underburns and areas of stand replacing fire (Morgan et al. 1994).  

Whitebark pine is physiologically better equipped to survive such fires than other high-

elevation species due to its thicker bark, deeper roots and thinner crowns (Morgan et al. 1994). In 

areas with sparse surface fuels, these fires typically are low-intensity ground fires that kill only 

young, thin barked trees and rarely damage mature trees. Increased fuel loads or high winds can 

increase the severity of the fire (Arno and Hoff 1990, Morgan et al. 1994). Some whitebark stands 

only experience light underburns due to consistently low fuel loads, such as those found in the 

most southern parts of the tree’s range (Morgan et al. 1994). However, the majority of whitebark 

pine stands in the species’ northern range establish after large stand-replacing fires occur and 



10 
 

Clark’s Nutcrackers cache seeds in the newly burned areas (Murray et al. 2000). With continued 

exclusion and fire suppression, these large, stand-replacing fires are occurring less frequently. 

The combination of these three factors, white pine blister rust, mountain pine beetle, and 

fire exclusion, have contributed to a nearly range-wide decline in whitebark pine populations; as a 

result, it was recently listed as both a candidate species under the United States Endangered 

Species Act (US Fish and Wildlife Service 2011) and an endangered species in Canada under the 

Species at Risk Act (Government of Canada 2012).  

  Whitebark pine is highly dependent upon the Clark’s nutcracker for successful regeneration 

(Tomback 1982). As populations of whitebark continue to decline, the bird may revert to seed 

predation, consuming more whitebark pine seeds than it caches (Schaming 2015). Furthermore, 

with the exclusion of fire from the landscape, forest openings that Clark’s nutcrackers favor for 

caching seeds are becoming sparser as they are overgrown with shade-tolerant fir and spruce. 

These shade-tolerant species out-compete existing whitebark pine seedlings (Arno and Hoff 1989). 

This reduces the chances that the seedlings will eventually become cone-producing adults. As 

these openings dwindle, so do the chances that any genetic resistance to blister rust will be passed 

on since it is unlikely resistant seedlings will mature and produce cones under such heavy 

competition (Keane et al. 2000).  

 Restoration in whitebark pine ecosystems is challenging and costly. Therefore, it is 

important for managers to understand the most effective restoration methods in order for the most 

beneficial and cost effective decisions to be made. The physical environment of high-elevation 

ecosystems is subject to severe temperature swings, poor quality soil, high winds, and a lack of 

soil moisture in the summer months (Arno and Hoff 1989). However, extensive research and 

modeling predict that without successful restoration activities whitebark pine populations will 
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continue to decline, potentially changing high elevation landscapes throughout the west (Keane et 

al. 2000).  

 Little research has been done examining the success of currently used restoration methods. At 

the moment, the most effective methods are believed to be selective cuttings which focus on 

removing shade-tolerant species, and prescribed burns which remove slash and kill seedlings, 

creating openings for nutcrackers to cache cones (Keane et al. 2000). Both of these methods 

attempt to create an environment suitable for increasing whitebark pine radial growth rate. Release 

treatments are commonly defined as a variety of treatments designed to free young trees from 

undesirable, usually overtopping, competing vegetation (Silviculture Instructors Subgroup 1994, 

Brockwell and Davis 2002). For this study, I evaluated growth release primarily as an increase in 

annual radial growth, and release treatments as the selective thinning and prescribed burns 

conducted on the study sites.    

Study Objective 

 This study builds upon previous work done by Keane et al. (2007) which examined the 

diameter growth response of whitebark pine greater than 23 cm in diameter at breast height 

(DBH; 1.37 m) to the removal of competition through harvest. Results from that study showed 

that larger whitebark pine responded well to release treatments, showing an increase in annual 

radial growth in the years following treatment (Keane et al. 2007). However, there are very few 

data to determine if the same release methods also work on whitebark pine regeneration. Keane et 

al. (2007) were unable to analyze data from young trees because they did not contain enough 

growth rings prior to harvest to calibrate their gorwth models. The main objective of this study 

was to examine the basal area increment of whitebark pine regeneration (defined as less than 23 
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cm DBH) to release treatments, focusing specifically on the trees’ growth ten years pre-treatment 

and their response ten years post-treatment.  

 During the summers of 2016 and 2017, I sampled 90 trees from four sites that received 

combinations of selective thinning and prescribed burning in the late 1990s and early 2000s. 

Each site was paired with a corresponding control that was also sampled to establish a baseline 

of tree growth. I hypothesized that whitebark pine regeneration in treated units would display an 

increase in annual radial growth post-treatment, while little or no release would occur in the 

control sites; this would result from the reduction in competition and increase in available 

resources imparted by the treatments. In addition, I evaluated site conditions within the treatment 

areas that may have influenced whitebark pine radial growth response. I also graphically 

examined the height growth response of the trees to the treatments.  

Methods 

Study Sites 

 I selected four sites in the Northern U.S. Rocky Mountains (Bear Overlook, Beaver 

Ridge, Coyote Meadows, and Snow Bowl) which were part of the Keane et al. (2010) long-term 

monitoring study examining whitebark pine restoration through selective thinning and prescribed 

burnings. The four sites were treated in 1999-2001 (Table 1). Pre-treatment measurements were 

taken in the mid-1990’s in monitoring plots, and they were re-measured 1-year post-treatment 

and then every five years for fifteen years. Regeneration sample trees were drawn from the same 

sites as these monitoring plots, but not from within those plots. I used the monitoring plot data to 

determine the pre- and post-treatment conditions across the sites but located distinct sample plots 

within each. Of the sites, three are located in Montana, and one in Idaho (Figure 1). They range 

in elevation from 2088 m to 2438 m and have southerly aspects (Table 1).  
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Multiple treatment and control units were laid out at each site when the monitoring plots 

were established in the 1990’s. Each unit was thinned, burned, received a mix of both treatments, 

or was left untreated as a control. In the thinned units, three competitive species were removed: 

the subalpine fire, Engelmann spruce, and mountain hemlock. Lodgepole pine (Pinus contorta  

Douglas ex Loudon) was not removed because the investigators in charge of the original study 

did not think that its density negatively impacted whitebark survival (Keane et al. 2007). In burn-

only units, prescribed fires were mostly lit by hand with drip torches, though Beaver Ridge units 

were burned with a flame thrower mounted on a truck (Keane and Parsons 2010) Fires were 

allowed to burn freely, resulting in a mixed-severity fire with unburned areas intermixed with 

burned patches. The thin-burn units were first thinned to remove competitive species and then 

broadcast burned to dispose of the slash. These units burned more evenly due to the 

connectedness of the unpiled fuels (Keane and Parsons 2010). 

The Snow Bowl, Bear Overlook, and Coyote Meadows sites were all thinned, albeit to 

and from different initial densities. Thinning was the only treatment conducted at the Snow Bowl 

site. Bear Overlook and Coyote Meadows both received prescribed burns in the thinning units. 

Coyote Meadows also had some units that were only burned (Table 1). At Beaver Ridge, 0.08 to 

2 hectare burn-only units were created to encourage nutcracker caching (Keane and Parsons 

2010). Thin-only and thin-burn units were also established at Beaver Ridge. However, many of 

them burned completely when a wildfire swept through the area in 2002 and were not sampled 

for this study. The burn-only units and their control unit at Beaver Ridge did not burn. The 

monitoring plots were re-measured intermittently (approx. every 5 years) to assess re-

establishment of tree species, particularly whitebark.  
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Field Sampling Methods 

Sample locations within each treatment unit at a given study area were selected at random 

from a grid of points overlaid on the unit and located with a recreational-grade global positioning 

system (GPS) unit. Once the plot center was located by the field crew, a fixed area 11.3 m radius 

plot was established (Figure 2). North and east photos were taken from plot center to provide a 

visual description of the plot. A hemispherical lens was also used to take an upward photo to 

later use for calculating the tree canopy cover on the plot. The FFI methods (FEAT (Fire 

Ecology Assessment Tool) and FIREMON (Fire Effects Monitoring and Inventory Protocol) 

integration system, Lutes et al. 2009) for measuring plot and tree characteristics were used to 

collect plot specific information. I recorded universal transverse Mercator (UTM) coordinates for 

each plot, plus elevation (m), landform, aspect, slope, ground cover, and habitat type (Arno and 

Hoff 1989). The height, DBH, and health status (healthy, unhealthy, sick, dead) of all trees (> 

11.4 cm DBH) within the plot boundary was also collected. The DBH of the trees was later used 

to calculate the aggregate basal area of the plot. The same information was collected for all of the 

saplings on the plot (trees < 11.4 cm DBH). A dot tally by species and height was done for the 

seedlings (trees < 1.4 m in height) on an additional nested fixed area plot with a radius of 2 m.   

I selected sample trees based on the health and vigor classes adapted from Keen’s (1943) 

ponderosa pine classifications. Changes were made to the original tree classes to better fit the 

morphology of whitebark pine with guidance from Kipfer (1992) (Table 2). No more than four 

whitebark were sampled on each plot. The sample trees were selected through a combination of 

diameters and health/vigor ratings to ensure that no particular size class or vigor group was favored 

(Tables 3 and 4).  
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 A sample tree was first photographed from the north and east to capture the tree’s shape and 

growth form. The total height and DBH of the tree was collected and the tree was also described 

using the terms in Table 3 and given a health and vigor rating. If the tree was large enough (usually 

>5 cm DBH) then a core was taken from the base of the tree, perpendicular to the slope, and a 

second at breast height. Cores were placed in paper straws for storage and transport. Each straw 

was labeled with the plot number, sample tree number, and core number. Trees too small to core 

successfully were cut down with a hand saw at the base of the tree, and five sections (discs) of the 

tree were removed, one from the base and the other 4 at evenly spaced intervals up the tree. Each 

section was labeled with the plot number, tree number, and section number, and packaged up for 

transport back to the lab.  

Laboratory Procedures 

 All of the field data was entered into the appropriate FFI databases. The individual photos of 

the trees from each plot were labeled with the plot number, tree number, photo direction (north, 

east) and stored in a specific photo project file. Cores and tree sections were sanded with a belt 

sander and hand-polished with 9 micron grit sandpaper, then scanned using an Epson platform 

scanner at 1200 dpi. If the tree rings were hard to discern at this resolution, a slice of the specimen 

was removed using a rotary microtome, stained with a blend of Safranin and Astrablue dye, 

mounted on a slide, and rescanned (Figure 3). I used CooRecorder 7.8 (Cybis 2015) to date and 

measure annual radial growth. The program CDendro (Cybis 2015) was then used to crossdate the 

samples and create a chronology for each site (site specific series intercorrelation =0.35-0.4; mean 

sensitivity =0.3). 

Data Analysis 
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 I used the dplR package (Bunn 2008) in RStudio 3.3.2 (R Core Team) to calculate basal area 

increments (BAI; mm² yr-1) at the base of the tree (not breast-height) for each individual tree.  I 

used these measurements to create growth ratios (GR) for each tree, relating growth post-treatment 

to growth pre-treatment. Growth ratios greater than 1 translate to an increase in growth by the tree, 

and growth ratios less than one equate to a decrease in growth. GR was calculated by dividing the 

post-treatment 10-year BAI (𝐵𝐴𝐼+10) by the 10-year pre-treatment BAI (𝐵𝐴𝐼−10):   

Equation 1:     𝐺𝑅 =
𝐵𝐴𝐼+10

𝐵𝐴𝐼−10
 

  In order to examine factors influencing radial growth response I used an analysis of 

covariance run in RStudio 3.3.2 (R Core Team). Specifically, GR was linearly related to the 

independent variables site, treatment, age of tree at time of treatment, basal diameter at the time of 

treatment, elevation, tree vigor, and total basal area of the plot at the time of sampling. Included in 

the model were the interactions of site with tree age, elevation, tree vigor, plot basal area at time of 

sampling, tree basal diameter at time of treatment, and treatment.  The importance of these factors 

and interactions were assessed at a significance level of 0.05.  

 Two-sample t-tests were conducted to evaluate differences between the average GRs of trees 

in the control areas and the trees in the treated areas. The data were checked for possible outliers 

using both Tukey’s Range test and an analysis of the standard deviations around the mean 

(Grayson 2017 in progress, Tukey 1977).  Tukey’s Range test defines potential outliers as points 

that are greater than the value of the third quartile + 2.2 times the inter-quartile range or IQR, and 

values less than the first quartile – 2.2IQR (Tukey, 1977, Hoaglin et al. 1986).  Commonly, the 

multiplier used for this test is 1.5 time the IQR, however, further analysis by Tukey and others 

favored the multiplier 2.2  (Hoaglin and Iglewicz, 1987). The analysis of the standard deviations 
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looked for points that were more than two standard deviations away from the mean and 

identified them as possible outliers. The other conditions necessary to perform a two-sample t-test 

were also checked. Independence of the trees within plots was assumed, in part because none of 

the trees were taken from clusters. Normality of the data was evaluated visually using histograms 

and normal-quantile plots.  

 Finally, a subsample of the trees was used to analyze the height growth of treatment and 

control trees. Since all five discs needed to be processed and aged to allow comparison of height 

growth over the lives of the trees, only the trees sampled during the 2016 field season were used. In 

order to analyze the height response of the tree over the period, I plotted the numbers of growth 

rings on a given disc against the corresponding disc height to create a growth profile. In total, six 

measurement points were available. The base disc (measurement point #1) had a height of zero and 

an age corresponding to the total age of the tree. The tip measurement point (#6) corresponded 

with the total height of the tree and had a matching age of zero since it represented the lowest 

height not yet surpassed by the tree.  

Results 

 All of the long-term monitoring plots, treatment and control, showed a decrease in stand 

basal area between the pre-treatment and post-treatment measurements (Table 5). In the treated 

units, this decrease is attributed to the treatment that was implemented. In the control units, the 

agent of mortality was unable to be determined, however all tree species were affected equally. 

The time between measurements at the monitoring plots did not allow us to determine exactly 

when the mortality occurred. Pre-treatment basal areas in the treatment unit monitoring plots 

ranged from 21.44 m² ha-1, at Coyote Meadows, to 59.73 m² ha-1
, at Bear Overlook. In the control 
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units, the basal areas of the monitoring plots before treatment ranged from 32.52 m² ha-1, at Bear 

Overlook to 63.16 m² ha-1 at Snow Bowl (Table 6, Figure 4). After the treatments, the basal areas 

of the monitoring plots in treated units ranged from 0.15 m² ha-1, at Beaver Ridge, to 37.04 m² 

ha-1 at Snow Bowl. The basal areas of the control units post-treatment ranged from 11.08 m² ha-1 

at Coyote Meadows to 36.04 m² ha-1 at Snow Bowl (Table 6).  

In total I sampled 93 trees, less than 23 cm at DBH, from four sites in Idaho and Montana 

that received release treatments between 1999 and 2001. Trees sampled from treated units ranged 

in age from 17 years old to 201 years old, with an average age of 65 years. Trees sampled from 

the control units ranged in age from 24 years old to 269 years old with an average age of 81 

years. Coyote Meadows had the youngest sampled trees with a mean age of 56 years old, while 

the trees at Snow Bowl were on average the oldest with a mean age of 108 years old (Table 7). 

The species composition of the four sites was dominated by subalpine fir and whitebark pine in 

the control plots, and whitebark pine, subalpine fir, and lodgepole pine in the treated units 

(Figure 5). Saplings had the highest density at greater than 180 trees/ha for all sites.  

After aging the samples, I found a weak positive correlation (R=0.55) between tree basal 

diameters (BD) and ages (Figure 6). The median BD of trees sampled at Snow Bowl was 11 cm 

and the mean age was 108 years. Beaver Ridge had the smallest median BD of all of the sites at 

4.3 cm and a mean sample tree age of 61 years (Table 7). The sample tree site distribution was 

heavily skewed towards the smaller trees (Table 7).  

The average annual basal area increments (mm² yr-1, BAI) for the trees in the four sites varied 

by treatment (Table 5). At Bear Overlook, the average BAI, before treatment, in the control was 

232.43 mm² yr-1, and the average BAI of the thinned and burned unit was 204.05 mm² yr-1. After 

the treatment, the average BAI of the control unit decreased to 209.98 mm² yr-1, and the average 
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BAI of the thinned and burned unit increased to 277.07 mm² yr-1 (Figure 7). At Beaver Ridge the 

pattern was the same: average BAI decreased in control units and increased in the treated units 

(Figure 7). The average BAI increased in all units at Coyote Meadows, though the increases were 

proportionally greater in the treated units.  Conversely, average BAI declined in all unit at Snow 

Bowl, though the decline was proportionally greater in the control unit (Figure 7).  I saw an 

immediate response to the treatment from the trees in the Bear Overlook, Beaver Ridge, and the 

burn unit trees in Coyote Meadows. The cut-burn unit at Coyote Meadows and the thin unit at 

Snow Bowl showed a slight lag before the trees responded to the treatment (Figure 7). 

Growth ratios varied greatly among trees and could only be partially accounted for by 

differences in measured tree, plot, and site factors, with an overall model goodness of R² = 0.53. 

Some of the variability in GR was attributable to treatment: in particular, linear modeling results 

showed that sample trees in treatment units had higher growth ratios than those in control units 

(p = 0.0009; Table 8).  In the control units, GR ranged from 0.99 (se = 0.16) to 1.59 (se = 0.22) 

and in the treated units it ranged from 1.04 (se = 0.15) to 2.67(se = 0.49). Snow Bowl, where the 

only treatment applied was thinning, showed the smallest difference between the average percent 

annual growth rates of the treated and control units. The trees in the treated unit at Coyote 

Meadows, which was thinned and later burned, showed the greatest change in GR when 

compared to the trees in the adjacent control unit. The treated trees there reported a mean GR of 

2.67 (se = 0.49) while the control trees only had a mean GR of 1.44 (se = 0.14) (Table 5).   

In addition to treatment effects, modeling results also identified tree age as having an impact 

on GR, albeit in a manner that varied by site (Table 8, Figure 8). In contrast, the aggregate basal 

area of the sample tree plots as measured in 2016/2017 did not appear to affect GR (p=0.76; 

Table 8). This may be because the plots were too large to capture neighborhood tree competition, 
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or because aggregate basal areas were affected by multiple factors between 2000 and 2016/2017. 

Similarly, plot elevation did not appear to influence GR, possibly due to the small differences in 

elevation between plots within sites. Vigor of the sample trees – as measured in 2016/2017 – also 

did not contribute to the growth ratio changes of the trees in this study. The vigor classifications 

used in this study were modified from a crown ratio classification system used for ponderosa 

pine (Pinus ponderosa Lawson and C. Lawson) and may not have been sufficient for accurately 

classifying whitebark pine.  Alternatively, the vigor observed in 2016/2017 may not represent the 

status and dynamics of tree vigor prior to and within 10 years of treatment. 

Treatment effects on radial growth 

 In total, I examined the annual percent growth response of trees in three types of 

treated areas: thinned units, prescribe burn units, and thinned units that were later burned. Within 

a site, the mean GR was greater for all of the treated units than the control units (Figure 10). Site-

level t-tests indicated that units which were thinned and later burned (Coyote Meadows and Bear 

Overlook) had a significantly higher GR than controls (p =0.05; Table 5).  The difference in 

mean GR in the burn-only unit at Coyote Meadows was marginally significant (p =0.1). The 

other burn-only unit, at Beaver Ridge, showed an increase in GR of 2.49 versus 1.59 in the 

control unit. Yet owing to the small sample size and the high variability of growth rates between 

trees, the difference between the treated and control means was not statistically significant. The 

thinned unit at Snow Bowl showed almost no difference in GR between the treated unit and the 

control unit (Table 5).  

Two trees were identified as potential outliers, one at Bear Overlook and one at Beaver 

Ridge. These trees were growing much faster than the others. They were not removed from the 
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dataset however, because no errors could be found in the tree data that would have falsely 

contributed to the reported GR. 

Height growth responses 

 I examined the vertical growth response on a subsample of 28 trees taken from the four 

sites during the 2016 year of field work. The resulting line graphs showed how quickly the trees 

increased their statures between sample sections (Figure 11). Trees from both treatment and 

control units were examined. As with radial growth, graphical examination of the trees’ vertical 

response showed a wide degree of variability between trees. In general, all of the trees showed 

similar growth patterns between the first (base disc) and second discs. At this point, the majority 

of the trees were old enough that the growth they exhibited between these cuts was manifest 

before any treatment took place. However, data from the 3rd, 4th, and 5th discs suggest that the 

trees in the treated areas increased height at a faster rate than the trees in the control areas (Figure 

11). Beaver Ridge and Bear Overlook showed the least amount of difference in height growth 

between treated and control trees. These two sites also showed the most variability between trees 

in the same treatment or control units. The treatment trees at Coyote Meadows and Snow Bowl 

clearly increased in height faster than the control trees. The increase was most dramatic at 

Coyote Meadows between the 3rd and 4th cuts while the increase at Snow Bowl was more gradual 

and less variable (Figure 11), though only four trees were measured at that site.  

Discussion 

 Given the rapid decline of whitebark pine throughout much of its range, and the expense 

of habitat restoration, the question of whether and how whitebark pine regeneration respond to 

treatments is one crucial for future management of the species. This study is the first to examine 
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the radial and vertical response of whitebark regeneration to release treatments. I sampled trees 

in treatment and control plots, located within four long-term monitoring sites treated circa 2000. 

Overall, I found that trees in treated areas showed a greater relative increase in radial and in 

vertical growth than trees in control units. However, the variability in growth was also greater 

among trees in treated units and could not be attributed to any single treatment factor.  

Related studies 

A previous study found similar results in mature whitebark pine. Keane et al. (2007) 

examined stem cross-sections from 59 mature whitebark pine sampled from 21 logged stands 

where most of the competing tree species were removed by the logging activity. Of all the trees 

sampled by Keane et al., 14 were excluded from the analysis because they did not contain 

enough rings pre-treatment to calculate baseline growth. Of the remaining trees, more than 80% 

showed an increase in radial growth. The trees also showed a large amount of variability in their 

growth response to the treatment. Site specific factors such as temperature and precipitation were 

also ruled out as the cause for the increased ring width because the year-over-year growth trends 

did not correlate with these climate variables (Keane et al. 2007). Some trees immediately 

increased their radial growth, while others experienced a lag of up to 15 years before they 

showed any response to the treatment. The few saplings in the study decreased in ring growth 

immediately after treatment. This was attributed to a lack of established root systems and foliage 

to support the sudden increase in available resources.  

My findings are consistent with those of Keane et al. (2007) in regards to increased radial 

growth in treated stands post-harvest. Since I focused on whitebark pine regeneration, I had a 

larger sample size with which validate the positive response of smaller diameter trees. Keane et 

al. had only two saplings in the study that were old enough to have sufficient number of rings 
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pre-treatment. These two trees showed a decrease in ring width after treatment. My study found 

that younger trees tended to show a greater increase in GR than did older ones (Table 8, Figure 8). 

This suggests that once whitebark trees in the understory reach an advanced age they may respond 

slowly or poorly to release treatments.  

Occurrence of mortality in control units 

An unexpected issue that I encountered was the amount of amount of tree mortality 

occurring in the control units post-treatment (Figure 4). In the treated units, the reduction in 

stand basal area of the monitoring plots occurred mostly around the time of treatment. However, 

in the control units considerable mortality occurred over time. Since this mortality in the control 

units occurred gradually, the trees in my sample plots located in those control units are also 

likely experiencing a gradually diminishing competition regime. As a result, they may be 

experiencing a slow release. While this could make it harder to detect the direct treatment impact 

on GR. Although perhaps it is still the appropriate comparison because treated areas ought to be 

compared against conditions that would arise in the absence of treatment.  

Lag time before release 

In my study I focused specifically on the average growth 10 years pre- and post-treatment 

for each tree. Due to this short time window I were unable to fully examine the duration of the 

release that the trees experienced (Figure 7). I were also unable to examine the presence or 

effects of lag time, or the full duration of any lag time (Figure 7). Some of the trees in the study 

by Keane et al. (2007) still showed positive ring width responses up to 20 years after the harvest. 

Additionally, other trees experience lag times of up to 15 years before responding to the release 

treatment. The narrow window of time my study examines does not allow us to determine how 

long the whitebark regenerations response to treatment lasts. It also constrains my ability to 
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determine if trees that do not show a significant increase in GR are simply experiencing a lag due 

to the sudden removal of competition after treatment and will eventually respond or will simply 

never respond.  

Sources of Variability 

The universally high degree of variability among trees was only partially attributed to 

measured site and tree factors (R²=0.32). The unexplained portion could be due to a variety of 

factors such as variations in microsite, competition, or exposure. Most notably, the variability 

between trees in the control area was less than that of the treated areas except at Snow Bowl 

(Table 5). In the control sites, the basal area of the plots were fairly similar plot to plot, there was 

also less variability in the GR of the trees. In the treatment units, the basal area of the plots 

varied greatly and there was more variability in the GR of the sample trees (Table 6). Because I 

did not measure neighborhood competition from other trees within the plot and near the sample 

trees, my models were unable to determine if this affected GR. However, treatment had 

significant effects on GR and treatment was linked with plot basal area, at least at the time of 

treatment. The treatment was designed to affect plot basal area and the impacts on GR are 

broadly attributed to the removal of plot basal area (Figure 9).  

Limiting factors such as nutrients, water, or light, can change how the tree responds to 

changes in the environment (Poorter and Nagel 2000). It may be that some of the younger, 

smaller sample trees were limited by nutrients or foliage and existing root systems and therefore 

showed more variability in their annual growth when compared to other small trees from the 

same site. Additionally, older, larger trees have more developed crowns and, presumably, root 

systems, and may be less reactive to site-specific seasonal variation thereby reducing the amount 

of variation in GR (Poorter and Nagel 2000).  
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Furthermore, some of the variability observed in GR may be due to tree genetics. Liu et 

al. (2016) found clear genetic differentiation among seed families and spatial patterns of several 

genetic subgroups of whitebark pine. Genetic analyses were not part of this study, however the 

study sites are spatially dispersed (Figure 1) so it is reasonable to assume that there is some 

genetic variation between the seed sources at the four sites and that that may be contributing to 

some of the observed variation. In addition to genetic variation, some of the variability between 

individual trees may be traced back to the seed source. Leirfallom et al. (2015) examined 

seedling density and seed source health (health defined as parents that were rust and beetle free). 

Their study found a higher density of seedlings in areas with healthy seed sources suggesting that 

healthy parents lead to healthy offspring. Trees from healthy seed sources may grow and respond 

better to release treatments than trees from unhealthy seed sources.   

Implications of Increased Growth 

 Most researchers agree that without help from restoration efforts whitebark pine will be lost 

from much of its native range (Tomback et al. 2016). Restoration methods commonly focus on 

increasing the rate of growth of whitebark pine to decrease the time it takes to reach maturity. By 

reaching cone-producing maturity sooner, these trees will continue to maintain the genetic 

diversity of the population (Robinson and Wareing 1969, Tomback et al. 2016). Yet research 

suggests that there are benefits and downsides to this goal.  

Smaller trees face more challenges to survival and growth than large, established ones. 

They are often preyed upon by herbivores and must compete for light and other resources with 

other trees and vegetation. Price (1991) examined the response of young trees and plants to 

herbivores. He found that as trees and plants grew taller and older the rates of herbivory 

decreased. He also noted that individual plants and trees exposed to herbivory also tended to 
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develop chemical or physical defenses during the span of the study. By decreasing the time it 

takes for a tree to grow out of the reach of most ungulates, managers are shortening the amount 

of time that it is susceptible to that type of herbivory. 

There may be negative effects of improved growth that have not yet been realized due to 

the lack of long-term research on whitebark response to treatment. Eis et al. (1968) found that 

commercially grown Douglas fir (Pseudotsuga menziesii Franco), grand fir (Abies grandis 

Douglas) and western white pine (Pinus monticola Douglas) all showed depressed ring growth 

during years of heavy cone production suggesting that there is a trade-off between growth and 

cone production. Climent et al. (2008) found that in Aleppo pines there was a trade-off between 

growth and cone production. Trees which grew vigorously did not allocate as many resources 

towards cone production and had smaller cone crops than the slower growing trees in the study. 

Poor cone crops already occur due to white pine blister rust infections and mountain pine beetle 

attacks. A future generation of trees producing fewer cones could have wide-ranging negative 

effects on high-elevation ecosystems. Already it has been noted that during years of poor cone 

production, Clark’s nutcrackers turn into seed predators (Schaming 2015). Mueller at al. (2005) 

found that herbivory resistant traits in pinyon pines affected seed production. Trees with more 

resistance produced larger cones with more seeds. By increasing growth rates, managers may be 

inadvertently encouraging the trees to by-pass building resistances that they may need for the 

future. However, no research has been done on whitebark pine to show cone crops or tree 

resistance is affected negatively by increased growth rates.  

 Lastly, much research has focused on the tree size preference of mountain pine beetles. 

Increasing the growth of whitebark pine regeneration may make them more susceptible to beetle 

attacks before they have sufficient defenses (Raffa et al. 2013). With warming climates, 
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whitebark pine are being exposed to more beetle attacks and the beetles are targeting smaller 

trees. Bentz et al. (2015) found that even though mountain pine beetles were more likely to attack 

lodgepole pine, when they did attack whitebark pine, the beetles were more likely to mount a 

successful attack. Dooley et al. (2015) collected results showing that mountain pine beetles were 

attacking smaller diameter whitebark pine than lodgepole pine in the same area, and also showed 

that the emergence rate of beetles from a successfully attacked whitebark pine were higher when 

compared to similarly attacked lodgepole pine. Such results highlight the need for thorough 

research on the implications and outcomes of restoration activities.   

Restoration and Management implications 

 Despite the difficulties of restoring high-elevation ecosystems, managers are beginning to 

implement treatments which aim to mimic the structure of historic whitebark pine stands. 

Whitebark pine has a competitive advantage until more shade-tolerant species begin to take over 

(Keane and Parsons 2010). With the continued suppression of wildfire in whitebark pine 

environments, managers are relying on silvicultural cuttings as a means of restoring whitebark pine 

to the landscape. These treatments are usually used in stands with large proportions of suppressed 

whitebark pine in the understory.  By reducing competition, suppressed trees have access to more 

resources and therefore a greater probability of surviving, showing increased growth rates and 

eventually developing into cone-producing adults (Keane et al. 2007).  

 The study sites for this project are part of an on-going monitoring project, established in the 

mid-1990’s, which applies a mix of silvicultural treatments and prescribed burns to five whitebark 

sites in the Bitterroot Range to examine the outcome of restoring whitebark pine ecosystems to 

historic stand structures.  Ten-year results from Keane and Parsons (2010) show that whitebark 

presence is increasing in these treated areas. There is also a low prevalance of blister rust in new 
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seedlings and little to no signs of mountain pine beetle attack in mature trees (Keane and Parsons 

2010). The main drawback of restoration efforts like these are that they are very labor intensive, 

practical only on a small-scale basis, and limited by road access. Prescribed burns can only be 

conducted during a small window of time, are expensive to carry out, and labor intensive. They 

provide a short-term solution for managers seeking to save current populations of whitebark pine. 

Results from growth analysis projects like ours, which examine how how advanced-aged 

whitebark regeneration respond to treatments, add additional evidence that whitebark respond to a 

variety of restoration methods.  However, due to the difficulties of restoring large areas of 

whitebark habitat, it is unlikely that these techniques will be effective for range-wide restoration.  

 Another restoration strategy hinges on collecting cones from whitebark pine trees that show 

blister rust resistance, germinating the seeds in a greenhouse setting and then planting the seedlings 

back into old burns (Mahalovich et al. 2006).  Combining restoration and modeling work may be 

key for the success of future projects as it maximizes the efficiency of on-the-ground efforts and 

restoration funds. Ultimately the success of whitebark management and restoration will hinge on 

collaborative efforts across its whole range, even while the effectiveness of these effort may not be 

known for decades.  

Conclusions  

 Whitebark pine is widespread in the high-elevation ecosystems of western North America. Its 

loss could have cascading impacts on many other species and lead to landscape-level changes. The 

results from this study show that whitebark pine regeneration can respond to release treatments. 

Younger trees showed higher GR than older trees, and most trees in thin-burn and burn only units 

had higher GRs than trees in thin-only or control units. Not all treatments were implemented on all 

sites and trees at some sites responded better to treatments. This highlights the need for designing 
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future studies where treatments are closely replicated across sites.  Already there is a large amount 

of variability in GRs owing to site and stand factors – heterogeneity in treatment intensities and 

outcomes further complicates analyses. If the primary mechanism by which release treatments 

impact regeneration is through basal area reduction then more controlled conditions would be 

necessary to identify those effects. Future monitoring studies and restoration efforts should be 

closely paired to better understand where treatments would be most effective given the variability 

of high elevation ecosystems.    

 There is much debate about how whitebark pine will respond to modified wildfire regimes, 

mountain pine beetle outbreaks, and blister rust attacks as climates change. It is, however, widely 

agreed upon that restoration will be key to this species’ survival. Climate change will likely 

become more of a challenge for managers as they make decisions about allocating resources and 

limited funding. Collaboration between researchers, modelers, and managers will be essential to 

ensure the best decisions are made using recent, relevant research that will maximize the direct 

benefits to whitebark pine. Current restoration efforts should be continued, as they will be vital to 

the long-term survival of whitebark pine.   
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Tables 

Table 1: Description of study sites.  

 

Study Site National Forest Elevation (m) Aspect Habitat Type Cover Type Year of Treatment 

Bear Overlook Bitterroot, MT 2088-2149 Southeast ABLA/LUHI 

ABLA/MEFE 

PICO/ABLA 1999 

Beaver Ridge Clearwater, ID 2134-2179 South PICO/LUHI PICO/ABLA 1999 

Coyote Meadows Bitterroot, MT 2377-2438 Southwest PIAL/VASC PIAL/ABLA 2000 

Snow Bowl Lolo, MT 2164-2195 Southwest PIAL/LUHI PIAL/ABLA 2001 

Habitat type is taken from Pfister et al. (1977). ABLA is Abies lasiocarpa Hook, LUHI is Luzula 

hitchcockii Hamet-Ahti, VASC is Vaccinium scoparium  Leib, and MEFE is Menziesia ferruginea Smith. 

Cover type acronyms are  PIAL-Pinus albicaulis Engelm, ABLA– Abies lasiocarpa Hook, PICO– Pinus 

contorta  Loudon.  
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Table 2: Characteristics used to select and rate sample trees adapted from Keen (1943) and 

modified using Kipfer (1992).  

Full vigor Crown- Full vigorous crowns, with a live crown ratio of 55% or more, 

average width or wider with density average or better                             

Foliage-Needles are average length or longer, dense clusters 

Position- usually isolated or dominant, rarely codominant with regard to 

the other trees close by 

Good to fair vigor Crown- Good to moderately vigorous crowns, with a live crown ratio of 

30-55% assuming average width and density; or a longer crown if narrow 

or somewhat thin, not sparse or patchy 

Foliage- Needles average length, dense clusters 

Position- Usually codominant, but sometimes isolated or dominant, 

rarely intermediate 

Fair to poor vigor Crown- Fair to poor crowns, with live crown ratios of 10-30% if of 

average width and density, or long, sparse, narrow, or flat on one or more 

sides 

Foliage- Needles are often short and thinly distributed, but of normal 

length and density when confined to top 1/3rd of crown 

Position- Usually intermediate, sometimes codominant or suppressed, 

rarely isolated 

Very poor vigor Crown- Live crown ratio less than 10%, sometimes only a tuft at the top 

of the tree, or somewhat longer when sparse and ragged, usually very 

narrow or limbs all on one side 

Foliage- Needles often short, and foliage sparse or scattered, or only tufts 

at ends of branch; but of normal length and density if reduced in quantity 

Position- Usually suppressed or intermediate, but may occur in other 

positions if greatly reduced in vigor 
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Table 3: Definitions of terms used to describe sample trees 

Symmetrical: tree looks the same from all sides- tree is conical 

Asymmetrical tree’s foliage is clustered to one side, tree has holes in the branch 

pattern, lopsided 

Wispy tree branches look weak, droopy, tree is abnormally tall given its DBH 

(example: class one tree, 15 ft. tall) 

Stocky tree has very sturdy branches, tree is short and stout 

Needles clustered needles spread along less than half of the branch 

Needles spread needles spread along half or more of the branch 

Many branches five or more per whorl 

Few branches three or less per whorl 

Branches thick individual branch diameter is more than a quarter that of the tree 

diameter 

Branches thin individual branch diameter is less than a quarter that of the tree 

diameter 
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Table 4: Distribution of sample trees by vigor classification and basal diameter.  

 Class 4 Class 3 Class 2 Class 1 

0-2.54  cm 8 9 9 7 

2.55-10.16 cm 8 8 8 7 

10.3-22.86 cm 10 7 6 3 
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Table 5: Sample sizes, average change in annual growth rate, standard errors, and pre- and post- 

treatment basal areas (m2ha-1) by treatment unit and site. 

Site Treatment n pre-BAI post-BAI µ GR se GR 

Bear Overlook Control 10 232.43 209.98 1.09 0.17 

 Thin. Burn 10 204.05 277.07 2.34** 0.51 

Beaver Ridge Control 12 984.78 939.86 1.59 0.22 

 Burn 8 335.28 627.25 2.49 0.62 

Coyote Meadows Control 12 574.32 648.53 1.44 0.14 

 Burn 8 123.38 225.84 2.67* 0.49 

 Thin. Burn 11 903.58 1232.97 2.25** 0.29 

Snow Bowl Control 13 676.78 519.90 0.99 0.16 

 Thin 9 545.64 520.22 1.04 0.15 

 

n= number of trees  

se GR= standard error of mean growth ratio= standard deviation/√n 

** = statistically significant difference at p= 0.05 

*= statistically significant difference at p= 0.1 

BAI pre= average growth before treatment (mm²/yr) 

BAI post= average growth after treatment (mm²/yr) 

µ GR- mean growth rate (postBAI/preBAI) 
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Table 6: Pre- and post- treatment basal areas (BA; m2 ha-1) in the long-term monitoring plots  

Site Treatment Pre-BA Post-BA 

Bear Overlook Control 32.52 (1996) 19.96 (2015) 

 Thin. Burn 45.12 (1996) 21.01 (2000) 

Beaver Ridge Control 36.36 (1997) 18.98 (2005) 

 Burn 25.90 (1997) 0.15   (2005) 

Coyote Meadows Control 37.59 (1993) 11.8 (2003) 

 Burn 30.56 (1993) 5.25 (2001) 

 Thin. Burn 21.44 (1993) 1.76 (2001) 

Snow Bowl Control 63.16 (1996) 36.04 (2004) 

 Thin 59.73 (1996) 37.04 (2002) 

 

Pre- BA= average pre-treatment basal area/ha (m²/ha), collected from the monitoring plots before 

the treatment occurred, the year of data collection is in parentheses after the BA  

Post-BA= average post-treatment basal area/ha (m²/ha), collected from the monitoring plots (1-

15) years after treatment occurred, the year of data collection is in parentheses after the BA 

 

 

 

 

 

 



46 
 

Table 7: Age and basal diameter (BD) characteristics of the trees in the control and treatment 

units at the four sites. 

Site Age Range (yrs.) Mean Age Median BD (cm) Mean control age Mean trt. age 

Bear Overlook 20-201 74.3 5.21 67.6 80.9 

Beaver Ridge 24-113 61.3 4.32 58.3 65.6 

Coyote Meadows 17-118 56.3 5.33 67.3 48.2 

Snow Bowl 40-269 108.4 11.05 125.9 83.0 

 

Age range: youngest to oldest sample trees from the site 

Mean age: average age of all tree from the site 

Median BD: median used instead of average basal diameter due to the high number of small trees 

sampled 

Mean control age: average age of the trees sampled in the control units 

Mean trt.age: average age of the trees sampled in the treatment units 
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Table 8 : Analysis of covariance results for the growth ratio model based on all sample trees (df 

= degrees of freedom; ** = significant at 0.05 level; * = significant at 0.1 level). 

    
Factor  df F-value P-value 

Site 3 6.78 0.09* 

Treatment 3 6.47 0.0009 ** 

Tree age at treatment 1 8.86 0.000008** 

Elevation 1 0.29 0.59 

Tree vigor 1 0.33 0.57 

Tree basal diameter at treatment 1 0.13 0.72 

Plot basal area (2016/2017) 1 0.09 0.76 

Site×Treatment 2 0.13 0.87 

Site×Tree age at treatment 3 3.33 0.03** 

Site × Elevation 3 1.25 0.29 

Site× Tree vigor 3 0.15 0.92 

Site× Plot basal area (2016/2017) 3 0.71 0.54 

Site× Tree basal diameter at treatment 3 0.59 0.62 
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Figures 

Figure 1: Location of the four sample sites (image generated in Google Earth Pro 2017) 
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Figure 2: Schematic of plot layout with nested microplot 
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Figure 3: Example of visual differences in the identifiability of tree rings on a disc after scanning 

(A) and after the same disc was dyed light purple and prepared as a slide (B).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 



51 
 

Figure 4: Changes in stand basal area (m2 ha-1; live trees above 11.3 cm DBH) observed in the 

long-term monitoring plots across the four study sites (CM: Coyote Meadows; SB: Snowbowl; 

BO: Bear Overlook; BR: Beaver Ridge). The black line (year 0) indicates when treatment 

occurred 
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Figure 5: Species composition in 2016 by size class (trees: DBH > 11.4 cm; saplings: 11.4 ≥ 

DBH > 0 cm; seedlings: height < 1.37 m), treatment, and site (CM: Coyote Meadows; SB: 

Snowbowl; BO: Bear Overlook; BR: Beaver Ridge).  Tree counts derived from the same plots 

from which sample trees were drawn.  
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Figure 6: Relationship between sample tree DBH and total age across all sites, R= 0.55 
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Figure 7: Mean basal area increments (BAI; mm2 yr-1) over time for sample trees in the control 

and treated units. The black line indicates the year treatment occurred. 
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Figure 8: Relationship between growth ratio and tree age by site (CM: Coyote Meadows; SB: 

Snowbowl; BO: Bear Overlook; BR: Beaver Ridge). 

 

 

 

  

 

 



56 
 

Figure 9: Relationship between growth ratio and plot basal area for all sample trees 
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Figure 10: Distribution of growth ratios in treatment and control units at each site. Significance 

of differences between treatment and control means indicated by asterisks (** = significant 

difference at p= 0.05; *= significant difference at p= 0.1) 
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Figure 11: Height profiles of individual sample trees in the treated and control units by site (BO= 

Bear Overlook, BR= Beaver Ridge, CM= Coyote Meadows, SB= Snow Bowl).  The black 

vertical line indicates the year of treatment.  
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