
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2017 

ENHANCING CONSERVATION WITH HIGH RESOLUTION ENHANCING CONSERVATION WITH HIGH RESOLUTION 

PRODUCTIVITY DATASETS FOR THE CONTERMINOUS UNITED PRODUCTIVITY DATASETS FOR THE CONTERMINOUS UNITED 

STATES STATES 

Nathaniel Paul Robinson 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Robinson, Nathaniel Paul, "ENHANCING CONSERVATION WITH HIGH RESOLUTION PRODUCTIVITY 
DATASETS FOR THE CONTERMINOUS UNITED STATES" (2017). Graduate Student Theses, Dissertations, 
& Professional Papers. 11085. 
https://scholarworks.umt.edu/etd/11085 

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11085?utm_source=scholarworks.umt.edu%2Fetd%2F11085&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


ENHANCING CONSERVATION WITH HIGH RESOLUTION PRODUCTIVITY 

DATASETS FOR THE CONTERMINOUS UNITED STATES 

By 

NATHANIEL PAUL ROBINSON 

B. S., Wheaton College, Wheaton, IL, 2004 
M. S., University of Montana, Missoula, MT, 2009 

 
Dissertation 

presented in partial fulfillment of the requirements 
for the degree of 

 
Doctor of Philosophy 

in Forest and Conservation Sciences 
 

The University of Montana 
Missoula, MT 

 
December 2017 

 
Approved by: 

 
Scott Whittenburg, Dean of The Graduate School 

Graduate School 
 

Dr. Brady W. Allred, Chair 
Forest Management 

 
Dr. Stephen F. Siebert 
Forest Management 

 
Dr. Steven W. Running 

Ecosystem and Conservation Sciences 
 

Dr. Mark Hebblewhite 
Wildlife Biology Program 

 
Dr. Hugh S. Robinson 

Wildlife Biology Program 
 

Dr. Anna E. Klene 
Geography 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

© COPYRIGHT 
 

by 
 

Nathaniel Paul Robinson 
 

2017 
 

All Rights Reserved 
  



 iii 

 
Robinson, Nathaniel, Ph.D., Autumn 2017  Forest and Conservation Sciences 
 
High resolution GPP and NPP for the conterminous United States 
 
Chairperson:  Brady W. Allred 
 

Human driven alteration of the earth’s terrestrial surface is accelerating through 
land use changes, intensification of human activity, climate change, and other 
anthropogenic pressures. These changes occur at broad spatio-temporal scales, 
challenging our ability to effectively monitor and assess the impacts and subsequent 
conservation strategies. While satellite remote sensing (SRS) products enable monitoring 
of the earth’s terrestrial surface continuously across space and time, the practical 
applications for conservation and management of these products are limited. Often the 
processes driving ecological change occur at fine spatial resolutions and are undetectable 
given the resolution of available datasets. Additionally, the links between SRS data and 
ecologically meaningful metrics are weak. Recent advances in cloud computing 
technology along with the growing record of high resolution SRS data enable the 
development of SRS products that quantify ecologically meaningful variables at relevant 
scales applicable for conservation and management. The focus of my dissertation is to 
improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) 
datasets for the conterminous United States (CONUS).  
 

In chapter one, I develop a framework for creating high resolution datasets of 
vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance 
data and a novel gap filling approach to create spatially continuous 30 m, 16-day 
composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In 
chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm 
to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the 
applicability of these products for conservation and management, showing the 
improvements beyond currently available products. In chapter three, I utilize this dataset 
to evaluate the relationships between land ownership and terrestrial production across the 
CONUS domain. 
 

The main results of this work are three publically available datasets: 1) 30 m 
Landsat NDVI; 2) 250 m MODIS based GPP and NPP; and 3) 30 m Landsat based GPP 
and NPP.  My goal is that these products prove useful for the wider scientific, 
conservation, and land management communities as we continue to strive for better 
conservation and management practices. 
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INTRODUCTION AND OVERVIEW 
Background 

Human land use practices can greatly alter land cover dynamics and ecosystem processes 

at a wide range of spatio-temporal scales (Houghton 1994, Ojima et al., 1994, Foley et 

al., 2005). The rate and extent of land use and land cover (LULC) is strongly linked to 

human population growth, economic growth, and technological development (Lambin et 

al., 2001). Over the last few centuries, particularly since the industrial revolution, broad 

scale human driven environmental change has occurred at unprecedented rates, with 

estimates as high as one-half of the earth’s land surface directly altered by human activity 

(Vitousek et al., 1997). With increasing human population growth over the next century 

(Mustard et al., 2012), continued economic expansion and further technological 

development, global LULC change is not expected to diminish. Additionally, the impacts 

of human activities on the landscape often have broader, cumulative effects on ecosystem 

processes and services, with implications well beyond locally realized direct effects 

(Allred et al., 2015), as energy and nutrient fluxes, water availability, biodiversity, and 

species distributions may all be altered. 

A considerable challenge for conservation is monitoring and evaluating human induced 

LULC and quantifying these changes in metrics useful for assessing the effects on 

ecological processes and ecosystem services (Pettorelli et al., 2014, Maron et al., 2015). 

A primary challenge is overcoming divergent scales between the ecological processes 

and standard approaches to measuring them. Field based measurements are generally not 

feasible at scales most LULC occurs (Kerr & Ostrovsky 2003). Satellite remote sensing 

(SRS) datasets and models can overcome these limitations, providing spatio-temporally 
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continuous datasets across broad extents. However, these data are beset with inherent 

tradeoffs between spatial and temporal resolutions, spectral sensitivity to ecologically 

relevant factors, and the representativeness of models to biophysical processes (Kennedy 

et al., 2009). Until recently, analyses across broad spatial or temporal extents have 

generally limited to data with coarse spatial resolution, while analyses at higher spatial 

resolutions are conversely limited to finer spatial and temporal extents. Thus, crucial 

ecological processes occurring across broad spatio-temporal scales and at fine spatial 

resolutions are often missed (Turner et al., 2003). Additionally, linking SRS data to 

meaningful metrics that relate to ecological processes and ecosystem services is not 

always straightforward. As a result, the effective use of these datasets in conservation has 

been limited. 

Terrestrial gross and net primary production (GPP/NPP) are key biological variables that 

can be modelled using SRS data and process based models (Potter et al., 1993, Running 

et al., 2000). These variables represent the entry point of carbon into ecosystems and 

quantify the amount of energy available across trophic levels. Thus, GPP and NPP are 

fundamental ecosystem processes foundational to biodiversity and all ecosystem services 

(Loreau et al., 2001). GPP and NPP dynamics vary greatly both spatio-temporally and 

relative to human influence. As such, GPP and NPP are ideal variables for defining 

healthy ecosystems, assessing change and degradation at broad scales, and quantifying 

cumulative effects of land management and conservation strategies.  

Despite the utility of GPP and NPP, the only existing publically available dataset is the 

MODIS based MOD17 product (Running & Zhao 2015). While the utility and 

applicability of this product cannot be overstated, it is fundamentally a global product at 
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coarse resolution (500 m), limiting its applicability in monitoring at ecologically relevant 

scales. Recent advancements in geospatial cloud computing technologies, such as Google 

Earth Engine (Gorelick et al., 2016), enable the access and utilization of vast archives of 

publically available high resolution SRS and other high resolution geospatial datasets. 

These technologies are facilitating exciting new areas of research and application, 

integrating SRS for enhanced conservation and management, at scales and resolutions not 

previously possible. These data are being used to monitor forest change at global scales 

(Hansen et al., 2013), provide detailed datasets of global water occurrence and change 

(Pekel et al., 2016), predict crop yields (Lobell et al., 2015), map disease risk (Sturrock et 

al., 2014) and better understand species distributions around the globe (Map Of Life, 

2017). In this dissertation, I add to this inventory of high resolution, broad scale, and 

highly relevant products. Capitalizing on these technologies, I create the highest 

resolution datasets of GPP and NPP available for the conterminous United States 

(CONUS), based on the MOD17 algorithm.   

 
Research Objectives 

The main objective of this study is to create GPP and NPP datasets that better match the 

resolution of conservation and land management. To achieve this, I: 

(i) Develop a methodology for creating high resolution, spatially continuous and 

temporally regular Landsat NDVI mosaics that integrate into the MOD17 algorithm as 

the underlying inputs (FPAR and LAI) of vegetation dynamics.  



 4 

(ii) Develop and validate high resolution GPP and NPP datasets for CONUS, integrating 

the MOD17 algorithm into Google Earth Engine, replacing model inputs with higher 

resolution datasets and parameterizing the model with locally optimized parameters.  

(iii) Demonstrate the applicability of the products for use within conservation and 

management. 

 

Summary Overview 

I divide this dissertation into three chapters. Each chapter is the subject of a peer-

reviewed journal submission, and as a result, is a distinct entity, but contributes to the 

primary objectives. 

Chapter 1: Landsat derived normalized difference vegetation index (NDVI) for the 

conterminous United States 

Satellite derived vegetation indices (VIs) are broadly used in ecological research, 

ecosystem modeling, and land surface monitoring. The NDVI, perhaps the most utilized 

VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, 

and other disciplines. Calculating satellite derived NDVI is not always straight-forward, 

however, as satellite remote sensing datasets are inherently noisy due to cloud and 

atmospheric contamination, data processing failures, and instrument malfunction. Readily 

available NDVI products that account for these complexities are generally at coarse 

resolution; high resolution NDVI datasets are not conveniently accessible and developing 

them often presents numerous technical and methodological challenges. We address this 

deficiency by producing a Landsat derived, high resolution (30m), long-term (30+ years) 
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NDVI dataset for CONUS. We use Google Earth Engine, a planetary-scale cloud-based 

geospatial analysis platform, for processing the Landsat data and distributing the final 

dataset. We use a climatology driven approach to fill missing data and validate the 

dataset with established remote sensing products at multiple scales. We provide access to 

the composites through a simple web application, allowing users to customize key 

parameters appropriate for their application, question, and region of interest.  

Chapter 2: Landsat 30 m and MODIS 250 m derived terrestrial primary production for 

the conterminous United States. 

Terrestrial primary production is a fundamental ecological process and a crucial 

component in understanding the flow of energy through trophic levels. The global 

MODIS gross primary production (GPP) and net primary production (NPP) products 

(MOD17) are widely used for monitoring GPP and NPP at coarse resolutions across 

broad spatial extents. The coarse input datasets and global biome level parameters, 

however, are well-known limitations to the applicability of the MOD17 product at finer 

scales. We address these limitations and create two improved products for the CONUS 

that capture the spatiotemporal variability of terrestrial production. We use the MOD17 

algorithm with medium resolution land cover classifications and improved 

meteorological data specific to CONUS to produce: a) Landsat derived 16-day GPP and 

annual NPP at 30 m resolution from 1986 to 2016 (GPPL30 and NPPL30, respectively); and 

b) MODIS derived 8-day GPP and annual NPP at 250 m resolution from 2001 to 2016 

(GPPM250 and NPPM250, respectively). We optimized the biome specific input parameters 

based on eddy covariance flux tower-derived GPP data from the FLUXNET2015 

database. We evaluated GPPL30 and GPPM250 products against the standard MODIS GPP 
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product utilizing a select subset of representative flux tower sites, and found 

improvement across all land cover classes except croplands. We further found consistent 

interannual variability and trends across NPPL30, NPPM250, and the standard MODIS NPP 

product. We highlight the application potential of the production products, demonstrating 

their improved capacity for monitoring terrestrial production at higher levels of spatial 

detail across broad spatiotemporal scales. 

Chapter 3: Ownership dynamics of terrestrial production across the conterminous United 

States: implications for conservation 

The foundational conservation paradigm in the United States centers around a network of 

public lands, accounting for almost 30% of the land area in the conterminous United 

States (CONUS). Although a third of the land area, public lands are unevenly distributed 

across the CONUS domain, resulting in a mosaic of public and private land in some 

areas, and completely private in others. We quantify the ownership patterns of terrestrial 

net primary production–a primary ecosystem function and supporting ecosystem service–

within CONUS and the extent to which public land conserves net primary production. 

Our results show that total production on private land across CONUS more than doubles 

that of production on public and tribal lands combined. Likewise, average productivity 

across CONUS is greater on private lands than on public and tribal land, 13 and 32% 

greater on forests and 83 and 36% greater on rangelands. In western ecoregions, that are 

predominantly public lands, average productivity on private lands exceeds that of public 

land on almost all ecoregions.  As terrestrial production is necessary for the production of 

all other ecosystem services, understanding the ownership–and ultimately management 
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and responsibility–of terrestrial production is a critical component of broader ecosystem 

sustainability. 
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CHAPTER 1: LANDSAT DERIVED NORMALIZED DIFFERENCE 
VEGETATION INDEX (NDVI) FOR THE CONTERMINOUS 
UNITED STATES 
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1.1 Introduction 

The Normalized Difference Vegetation Index (NDVI) is arguably the most widely 

implemented remote sensing spectral index for monitoring Earth’s land surface. Since the 

earliest report of use in 1973 (Rouse et al., 1974, Tucker et al., 1973), the term NDVI is 

found in nearly 121,000 scientific articles, conference papers, and books (Google 

Scholar). The index capitalizes on the optical properties of the cellular structure of leaves; 

the photosynthetic pigments (chlorophyll, associated light-harvesting pigments, and 

accessory pigments) efficiently absorb radiation in the visible range of the spectrum (to 

power photosynthesis) and reflect radiation in the near-infrared (NIR) range. The simple 

formula of NDVI and its direct relationship to vegetation photosynthetic capacity is a 

proxy for a wide range of essential vegetation characteristics and functions (e.g., fraction 

of photosynthetic radiation absorbed by the canopy, leaf area, canopy “greenness”, gross 

primary productivity) with countless applications in agriculture, forestry, ecology, 

biodiversity, habitat modeling, species migrations, land surface phenology, earth system 

processes (nutrient cycling, net primary productivity, evapotranspiration), and even 

economic, social, and medical sciences. 

Satellite remote sensing (SRS) allows for the calculation of NDVI globally at a range of 

temporal intervals and spatial resolutions dependent on sensor characteristics and the 

satellite orbit, with a common inverse relationship between temporal and spatial 

resolutions. The Landsat Mission, with its first sensor launched in 1972, is the only 

uninterrupted long-term (>30 years) high-resolution remote sensing dataset that can 

provide a continuous historic NDVI record globally. The Landsat record at 30-meter 

resolution is ideally suited for local or regional scale time-series applications, particularly 
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with the recent release of higher-level surface reflectance products from Landsat sensors 

5 ETM, 7 ETM+, and 8 OLI from 1984 to present. Utilizing these products across scenes 

and through time, however, is not without complications (Wijedasa et al., 2012), 

particularly for users without GIS and Remote Sensing training and resources. To create 

consistent mosaics or long-term time series, users must account for data record gaps, 

radiometric differences across sensors (She et al., 2015), scene overlaps, malfunctions 

(e.g., the Landsat 7 scan line corrector malfunction), and inherent noise (due to clouds, 

atmospheric contamination, missing auxiliary data, etc.). As the region of interest and 

temporal extent increases, data volume and compute processing needs present significant 

barriers to many users without access to high performance computing facilities or the 

necessary skills to manipulate such data. These limitations often prevent the 

implementation of such a dataset in ecological studies, conservation monitoring efforts, 

or teaching exercises despite the clear value of its application.  

The rise of high performance computing clusters, public access to supercomputing 

facilities and cloud computing and storage removes many of the computational barriers 

associated with Landsat data. The ability to create user friendly applications that interacts 

with these computing services eliminates additional barriers associated with data 

manipulation and enables users with minimal technical coding skills to access and 

process data. We capitalize on the abilities of high performance computing resources and 

web-based software to provide a Landsat derived conterminous U.S. (CONUS), 30-meter 

resolution, NDVI product (Figure 1.1). We use Landsat 5 ETM, 7 ETM+, and 8 OLI 

sensors, with a user specified climatology (historic NDVI value limited by a user-defined 

time-period) for temporal smoothing, and Google Earth Engine (a cloud-based geospatial 
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platform for planetary-scale data analysis) for rapid data processing and visualization 

(Gorelick et al., 2016), to produce 16 day NDVI composites from 1984-2016. We 

validate the NDVI product by comparing against other established remote sensing 

products across multiple spatial scales. The resulting NDVI record enables greater use of 

Landsat data in answering crucial ecological questions across broad spatio-temporal 

scales at a higher level of spatial detail than possible with other currently available NDVI 

products. While Landsat composite products exist (e.g., the Web Enabled Landsat Data 

product (Roy et al., 2010) and the ability to create simple mean/median/max composites) 

our product improves upon these with the novel gap-filling and smoothing approaches 

(Figure 1.2). Additionally, we make the composites available through a dynamic web 

application, allowing users to customize key parameters to produce NDVI composites 

more suited to specific regions or ecological questions. 

 

1.2 Materials and Methods  

1.2.1 DATA 

We use the surface reflectance (SR) products from Landsat 5 ETM, 7 ETM+, and 8 OLI 

sensors to create NDVI composites. The Landsat satellites have near-polar orbits with a 

repeat overpass every 16 days; throughout the Landsat missions; however, two satellites 

have often operated simultaneously (Figure 1.3) in asynchrony, creating an eight-day 

return overpass for a given area. Furthermore, adjacent orbits of a single sensor spatially 

overlap from 7% at the equator to 68.7% at 70° latitude (Pekel et al., 2016). During a 

single 16-day period there may be as many as four independent views for a given point. 
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Our compositing method (Figure 1.4) capitalizes on the operation of multiple sensors and 

views to maximize the potential of retrieving an NDVI observation every 16 days. 

The Landsat SR products (Masek et al., 2006, Vermote et al., 2016) correct for 

atmospheric and illumination/viewing geometry effects, and are the highest level of 

image processing available for Landsat data. Although some images are not processed 

due to missing auxiliary data, the use of SR is generally more appropriate for measuring 

and monitoring vegetation at the land surface (Song et al., 2001, Feng et al., 2012) 

Landsat Surface reflectance products also contain useful pixel data quality flag 

information indicating clear, water, snow, cloud or shadow conditions, as determined by 

the CFMask algorithm (Foga et al., 2017). We employ this information to select the best 

available data within each composite period.  

 

1.2.2 COMPOSITING 

To produce a pixel-wise 16-day composite (date of composite plus subsequent 15 days), 

all available Landsat surface reflectance images (from 5 ETM, 7 ETM+, and 8 OLI) are 

processed. Landsat scenes are resampled bilinearly to a Geographic Coordinate System 

WGS84 grid of approximately 30m (1/5000 degrees) resolution. NDVI is calculated as: 

𝑁𝐷𝑉𝐼	 = (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)
(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷)	 (1) 

where rNIR is surface reflectance in the near infrared band (band 4 - Landsat 5, 7; band 5 

-Landsat 8) and rRED is surface reflectance in the red band (band 3 - Landsat 5, 7; band 

4 - Landsat 8). To account for sensor differences, we adjusted landsat NDVI values from 
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Landsat 5 ETM and 7 ETM+ to match Landsat 8 OLI using a simple linear 

transformation: (Roy et al., 2016).  

𝑁𝐷𝑉𝐼./ = 0.0235 + 0.9723 ∗ 𝑁𝐷𝑉𝐼.8,:	 (2) 

Additionally, Landsat 5 scenes often contain abnormalities along scene edges, resulting 

in both missing data and erroneously high NDVI values. These pixels are removed by 

buffering 450 m inwards from the image mask (Figure 1.S1). The buffer size was 

determined from visual inspection of a subset of Landsat 5 scenes, ensuring removal of 

all the erroneous pixels without losing substantial amounts of valid data. To ensure the 

best available data for each composite, pixels are selected and used based on their quality 

flag. First, all pixels flagged as clear during a 16-day period are selected and the mean 

NDVI calculated. If no ‘clear’ pixels are available, the mean NDVI value of all ‘water’ 

and ‘snow’ pixels is used. If there are still no available pixels, (i.e., all pixels within the 

16-day period are flagged as cloud or shadow, or no surface reflectance images are 

available) the pixel is filled with a climatology. The climatology is calculated as the 

median NDVI of ‘clear’, ‘water’ and ‘snow’ pixels over the same 16-day period from 

previous years, with the user specifying the number of years. The median climatology is 

used to minimize the effects abnormally wet or dry years within the climatology record. 

In rare instances when no climatology is available (i.e., all pixels within the set 

climatology length are flagged as cloud or shadow), the composite is filled with a no-data 

value.  
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1.2.3 SMOOTHING 

As NDVI is a proxy for vegetation greenness, it is expected to follow a relatively smooth 

and continuous temporal profile. Outside of disturbance or land cover change events, a 

sudden drop in NDVI is likely due to atmospheric contamination or a quality issue not 

identified in the Landsat surface reflectance product (Reed et al., 2994, Bradley et al., 

2007). To account for these anomalous declines, we employ a smoothing method, similar 

to iterative Interpolation for Data Reconstruction (IDR) (Julien & Sobrino 2010). If a 

composite NDVI value is less than the mean of the previous and following time step 

composites by a threshold of 0.1, it is replaced by that mean value. While Julien and 

Sobrino suggest iteratively smoothing until convergence is reached, we only smooth once 

as multiple runs significantly increases computational time at large scales. Invocation of 

the smoothing algorithm by the user is optional.  

 

1.2.4 QUALITY 

A quality band is provided to specify the attributes of the raw data used to calculate each 

pixel’s composite value. The quality band indicates if a composite value was calculated 

from clear pixels; water or snow pixels; or if the climatology was used. The quality band 

also indicates if a composite value is the result of smoothing. Table 1.1 shows the range 

of quality band values and descriptions. 
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1.2.5 PRODUCT CREATION AND DISTRIBUTION 

Landsat derived NDVI is available through a simplified web-interface (Figure 1.5, 

http://ndvi.ntsg.umt.edu/) that utilizes Google Earth Engine. Users define a region of 

interest, select a time period, the length of the climatology used for gap filling (2, 5, 10, 

15, 20, 25 or 30 years), inclusion of Landsat 7 ETM+ SLC-off data, and whether to apply 

the smoothing algorithm. The customized NDVI composite is then produced (as a 

GeoTIFF) as requested based on the user defined parameters.  

 

1.2.6 NDVI COMPARISONS ACROSS SPATIAL SCALES 

We compare the Landsat derived NDVI record to independently derived finer and coarser 

resolution data, including: the green chromatic coordinate from in situ phenology camera 

(phenocam) observations and the Moderate Resolution Imaging Spectroradiometer 16-

day 250m NDVI product (MOD13Q1). We use Landsat derived NDVI composites with a 

five-year climatology for gap filling and employ the IDR smoothing algorithm for the 

validation comparisons. 

The PhenoCam Network provides automated, sub-daily, near-surface remote sensing of 

canopy phenology through digital repeat photography (Richardson et al., 2009). The 

images are continuous in time and robust to variation in illumination condition, with 

minimal influence from clouds or atmospheric effects, particularly when calculating 

vegetation indices (Sonnentag et al., 2012). Numerous studies (Richardson et al., 2007, 

Ahrends et al., 2009, Zhao et al., 2012) have demonstrated that the green chromatic 

coordinate (GCC; Tomey et al., 2015); can be used to identify phenology phases and 
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monitor canopy development, with strong correlations to NDVI time series. The GCC is 

calculated as: 

𝐺𝐶𝐶	 = 𝐷𝑁=
(𝐷𝑁> + 𝐷𝑁= + 𝐷𝑁?)	 (3) 

Where DN is the digital number recorded by the camera and r, g, and b denote red, green, 

and blue channels respectively. PhenoCam Network sites within CONUS that had at least 

four years of continuous imagery were selected for analysis; resulting in 43 sites that 

include agriculture/crops, shrublands, grasslands, deciduous broadleaf forests, and 

evergreen needleleaf forests (Figure 1.S2). We use the daily GCC90 data provided by the 

PhenoCam Network, which represents the daily 90th percentile of the GCC during 

daylight hours. A 16-day mean is calculated from the daily GCC90, using the same 16-

day period as the Landsat NDVI product. The corresponding Landsat NDVI time series is 

extracted over each PhenoCam site, followed by calculation of Pearson correlation 

coefficients. 

Within each image field of view (FOV), a predefined region of interest (ROI) is used to 

calculate the GCC, isolating the plant functional type (PFT) of interest. Depending on the 

FOV, more than one ROI can be defined, providing two independent time series of 

different PFTs. Four of the 43 sites contained two ROIs and we compare both ROIs at 

these sites to the single broader scale (30m) Landsat NDVI time series. 

The comparison of two independent vegetation indices derived from sensors with 

different bandwidths, fields of view, and viewing geometries is not without issue (Petach 

et al., 2014) The GCC is more sensitive to leaf pigmentation than NDVI (Keenan et al., 

2014) and the Landsat pixel may not capture the camera FOV or may be smaller than the 
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FOV. However, the PhenoCam data provides the only multi-year, high spatial and 

temporal resolution standardized product comparable to the 30m land surface phenology 

signal. The correlations provide an assessment of the Landsat NDVI composites seasonal 

response to vegetation conditions either within or in close proximity to the camera FOV. 

The MODIS VI products (MOD13) are designed to provide consistent spatiotemporal 

observations of vegetation conditions, have been continually produced since 2001 

(Solano et al., 2010), and employed in at least 1700 peer-reviewed research articles 

(Google Scholar). The MOD13Q1 product has a 16-day NDVI composite with an 

approximate spatial resolution of 250m. Like the Landsat NDVI product, the MOD13Q1 

16-day composite period includes the composite date and 15 ensuing days. MOD13Q1 

composites are created using a constrained-view angle, maximum value composite 

technique, and the MODIS surface reflectance product (Didan et al., 2015).  

We compare the Landsat derived NDVI to the MOD13Q1 NDVI from 2000-2016. Time 

series of both products are extracted for a set of points across the CONUS domain 

(Figure 1.S2) using a stratified random sample across land cover classes. Points are only 

selected within areas of homogenous land cover at the MODIS resolution, determined 

using the National Land Cover Dataset (NLCD) for 2001, 2006 and 2011 (Homer et al., 

2007, Fry et al., 2009, Homer et al., 2015). Within these homogenous regions, up to 50 

random points are created, using Google Earth Engine’s random point function, for 12 

major land cover classes across the domain (evergreen forest, deciduous forest, mixed 

forest, shrubland, grassland, pasture/hay, herbaceous wetland, wooded wetland, barren, 

developed-open space and developed-low intensity). For certain land cover classes, less 

than 50 random points in homogeneous pixels are available, resulting in a total sample 
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size of 356 points across the domain. To match resolutions, the Landsat NDVI was 

degraded to the MODIS 250m resolution where the mean Landsat NDVI value was 

calculated within the extent of each MODIS pixel. The time series for both products were 

extracted, disregarding any null values, resulting in 131,973 paired observations. The 

Pearson correlation coefficients (r-value), mean bias, mean absolute bias (MAB), and 

root mean square error (RMSE) are calculated for the entire series and each location 

separately. 

 

 1.3. Results 

1.3.1 PHENOLOGY CAMERAS RESULTS 

The phenocam correlation analysis (Table 1.S1) resulted in 36 of the 47 ROIs exhibiting 

r-values greater than 0.70, and just three ROIs with r-values less than 0.30 (all ROIs: 

mean r-value = 0.72; range: -0.35 - 0.92; p < 0.01 for all cases). The high and significant 

correlations demonstrate that the 16-day Landsat composites do well in capturing the 

seasonal greenness patterns exhibited by the phenocam GCC90. The sites with the three 

lowest correlations provide good examples where the resulting NDVI values and their 

comparison to other data products requires careful interpretation. One site 

(drippingsprings; r = 0.22) presents a mismatch between the vegetation in the extent of 

the Landsat pixel and the ROI of the phenocam image. The phenocam ROI delineates a 

single deciduous broadleaf tree canopy in a narrow ravine, while the extent of the 

Landsat pixel includes other riparian zone species and shrubs above the ravine. Another 

low correlation site (oregonMP; r = -0.24) is from an evergreen needleleaf forest in 

Oregon. Examination of the quality band indicates this site is often obscured by clouds 
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and snow in the winter months, resulting in a spurious NDVI time series with poorly 

defined seasonality, while the GCC90 time series provides a well-defined seasonal signal. 

The site with the lowest correlation (sedgwick SH; r = -0.35) contained two ROIs and is 

discussed below. 

Three of the four sites with two ROIs displayed strong correlations both between ROI’s 

(0.81< r < 0.94) and versus the Landsat NDVI (0.72 < r < 0.88). Therefore, even though 

the two ROIs within a site delineated separate PFTs, the PFTs displayed a common 

seasonality. The fourth site with one grass ROI and one shrub ROI, located on the 

Sedgwick Reserve in southern California, displayed contrasting results: Shrub vs. Grass 

ROI, r-value = -0.20; Shrub ROI vs. Landsat NDVI, r-value = -0.35; Grass ROI vs. 

Landsat NDVI, r-value = 0.75. Examination of the time series revealed that the Shrub 

ROI was out of phase with the Grass ROI, with a seasonal lag of approximately three 

months, resulting in negative correlations when compared to the grassland dominated 

NDVI signal.  

The low correlation sites highlight two important considerations that must be accounted 

for when comparing satellite and ground-level observations. First, vegetation indices 

from satellite data represent integrated measures of the vegetation at the pixel scale often 

confounding comparisons to canopy scale indices, such as those derived from phenology 

cameras particularly over heterogeneous landscapes (Hufkens et al., 2012, Klosterman et 

al, 2014). Second, phenology camera FOVs will vary from site to site, and in some cases 

an ROI may be beyond the extent of the satellite pixel that contains the camera, 

particularly when implementing high resolution (30m) data.  
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1.3.2 MOD13Q1 RESULTS 

We found high correlations between the Landsat NDVI product and coarser MOD13Q1 

observations (Table 1.2, Figure 1.6), with an overall r-value of 0.94. When disaggregated 

by the Landsat product quality flag these data show a higher correlation for clear pixels 

(r-value = 0.97), slightly lower correlation for climatology filled pixels (r-value = 0.88) 

and still lower correlation for snow/water pixels (r-value = 0.70).  

When disaggregated to individual points, 258 of the 356 points (72%) exhibit r-values 

greater than 0.70, while 24 points had correlations lower than 0.30 (all points: mean r-

value = 0.74; range: 0.01 - 0.97). The generally favorable results demonstrate that the 16-

day Landsat NDVI composites track the greenness trends captured by the MOD13Q1 

product.  The relationship breaks down at some sites, especially within certain land cover 

classes (Figure 1.6). 

The poorest performing land cover classes, with r-values less than 0.70, represent barren, 

evergreen needleleaf forest, and herbaceous wetland (mean r-values: 0.41, 0.57, and 0.64 

respectively) land cover conditions. NDVI over barren land may be highly variable due to 

the high saturation of background soils affecting the sensors differently. The low mean 

correlations in evergreen forest is largely due to a few influential outliers. Many of these 

sites are located in the northwest. Similar to the oregonMP PhenoCam site, the time 

series are often contaminated with clouds and snow, and exhibit little NDVI seasonality. 

Temporal profiles of the Landsat NDVI and MOD13Q1 product (Figure 1.7), for a 

selection of points representing the major land cover classes across CONUS (Figure 

1.S2), demonstrate the strong correlation between the two products. 
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The profiles are particularly analogous during the growing season. It is mainly during the 

winter months where the profiles tend to diverge, as the Landsat composites are more 

likely contaminated with cloud and/or snow cover, with lower signal-to-noise. 

Additionally, in heterogenous landscapes, the 30m Landsat NDVI product better reflects 

the spatial variability of the underlying land cover (Figures 1.1 and 1.8). 

 

1.4 Discussion 

The first-ever 16-day continuous and customizable Landsat derived NDVI composites 

produced here (30m resolution for CONUS; 1984-2016) overcome many of the previous 

barriers of working with Landsat imagery (e.g., obtaining current or historical images; 

managing overlapping scenes; image storage and processing; etc.), permitting ecologists 

to focus time and effort on specific questions rather than data/imagery manipulation. The 

composites are well correlated with other observational benchmarks, including in situ 

phenocam observations of local vegetation conditions and coarser satellite observations 

from MODIS (MOD13Q1), demonstrating product capabilities for tracking greenness 

trends from local to regional extents. Fine spatial resolution products such as these, with a 

longer historical record (Figure 1.3), open the door to numerous analytical possibilities 

and applications, ranging from change detection to conservation monitoring to ecosystem 

assessment (Jensen et al., 2995, Nouvellon et al., 2001, Hansen & Loveland 2012) The 

ability to customize the NDVI composite, per user specification, grants the use of a priori 

knowledge of the region to obtain the most suitable composite for the question at hand, 

producing an application ready product without the need for post-processing.  
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As with all remotely sensed products, the scope of Landsat derived NDVI has limitations, 

and is best suited for local or regional applications, where incomplete data are minimized 

due to a smaller spatial extent. Due to the infrequent return time of Landsat observations, 

data may be limited during the 16-day compositing period; cloudy pixels or the lack of 

surface reflectance images will reduce the overall data available for the composite. 

Additionally, due to the orbital paths of the Worldwide Reference System 2, a composite 

may be created from multiple scenes obtained from different dates within the 16-day 

period (e.g., different scenes that intersect an area of interest but are acquired at the 

beginning and end of the 16-day period). If data are incomplete (e.g., cloudy pixels, scan 

line corrector errors of Landsat 7 ETM+, etc.) within these scenes, it is possible that two 

adjacent pixels can represent two different acquisition dates; if no data for the period are 

available then a climatology is used for gap filling, further distancing the dates used in 

the composite. Frequency of gap filling that occurs varies both geographically and 

seasonally, and is more likely when only a single Landsat sensor is operational. 

Furthermore, gap filling with climatology may produce anomalies, particularly during 

unusually wet or dry years, yielding systematically low or high values, respectively. 

These caveats may result in visual artifacts in areas with incomplete data or along scene 

edges.  

The real power of emerging big data, cloud and web-based applications, and technologies 

(e.g., Google Earth Engine, GeoTrellis, GeoMesa, Apache Spark, etc.) is our new-found 

ability to create customizable geospatial products. Publicly available applications may be 

built upon these technologies, ultimately allowing users greater flexibility to provide 

input data, set spatial or temporal restrictions, modify parameters of algorithms, or 
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perform on the fly testing and validation before final analysis. Such capabilities change 

the paradigm of static geospatial products to dynamic geospatial products, where the 

output is dependent upon the user’s knowledge of both the system and the question. 

Although this requires products to be generated as needed, it provides the ability to create 

a much more appropriate product for any given system and question. The Landsat NDVI 

product and its associated web application (http://ndvi.ntsg.umt.edu/) provide a glimpse 

into this reality of dynamic geospatial products. 

 

1.5 Conclusions 

The present work introduces a unique approach to creating and disseminating high 

resolution spatially and temporally continuous Landsat derived NDVI. Our motivation is 

to remove the barriers of these datasets to further conservation and ecological research. 

Sixteen-day composites are created by selecting the best available pixels during each 16-

day composite period from all available Landsat sensors. Missing values, due to 

unprocessed scenes, atmospheric contamination, or sensor malfunction are gap filled with 

a user-defined climatology. The resulting NDVI time series is then smoothed to 

approximate natural vegetative phenology. We validate the NDVI dataset using 

established remote sensing products at multiple scales, demonstrating the effectiveness of 

our approach. We provide open access to the dataset through a simple web application 

(http://ndvi.ntsg.umt.edu/) enabling ecologists, land managers, conservationists, and 

others–who may not have the compute processing capacity or technical skills–to process 

massive amounts of remote sensing data. This process is simplified with Google Earth 

Engine, an advanced planetary-scale cloud-based geospatial processing platform, which 
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processes and distributes the product. Each 16-day composite for CONUS requires 

processing at least 2700 individual Landsat scenes (more if the climatology is used for 

gap filling). The web application permits on-the-fly processing with customizable 

parameters, eliminating the need to store large amounts of data. Although we limit this 

study to CONUS, the framework can be expanded beyond CONUS where Landsat 

surface reflectance data are available and to include other useful vegetation indices (e.g. 

EVI, SAVI), and can be updated to accommodate updates or reorganization of the 

Landsat archive (e.g., Collection 1) or be modified to utilize other satellite remote sensing 

datasets.  
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1.8 Tables 

Table 1.1 NDVI quality band values and descriptions. 
 

 

 
 
 
 
 

 
 
  

Pixel 
Value 

Description 

10 Clear not smoothed 
11 Clear and smoothed 
20 Snow or water not smoothed 
21 Snow or water smoothed 
30 Climatology not smoothed 
31 Climatology smoothed 
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Table 1.2 Mean bias, mean absolute bias, root mean square error, and r-values for all the 
MOD13Q1 and Landsat NDVI sample points combined. Each statistic is calculated for all pixels 
and each quality flag separately. 

Statistic All Pixels Clear Pixels Snow/Water Pixels Climatology Pixels 
Mean Bias -0.03 -0.03 -0.01 -0.02 
MAB 0.06 0.05 0.10 0.09 
RMSE 0.10 0.08 0.15 0.14 
Pearson’s r 0.94 0.97 0.71 0.88 
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1.9 Figures 

 
Figure 1.1 (a) A 30m continuous CONUS Landsat NDVI composite for July 28, 2015. Our 
methods produce broad scale composites with minimal gaps in data and reduce the effect of scene 
edges. Local scale comparison of (b) Landsat NDVI at 30 m and (c) MODIS MOD13Q1 at 250 m 
from the same composite period. The Landsat product provides added spatial detail important in 
measuring certain ecological processes. 

  



 37 

 
Figure 1.2 (a) A simple 16-day mean NDVI composite from July 28 to August 12, 2015 created 
from Landsat 7 and 8 sensors. The composite contains missing data due to cloud cover and scene 
edges are apparent due to differing acquisition dates. (b) A 16-day climatology (5-year) gap filled 
composite for the same time and location. The climatology is user defined in order to produce an 
appropriate composite for the question being asked. 
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Figure 1.3 A timeline showing the data availability for Landsat NDVI, based upon Landsat 
surface reflectance products and MOD13Q1. The extended Landsat record provides a longer 
continuous record of high resolution NDVI.  
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Figure 1.4 A flow chart demonstrating the NDVI compositing process, in which the best 
available pixels from all available Landsat sensors are selected and combined to produce the final 
NDVI composite value. 
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Figure 1.5 A screen shot of the NDVI web application (https://ndvi.ntsg.umt.edu). To download 
a composite, users set their desired parameters in the left panel. The region of interest can either 
be an uploaded shapefile or a polygon drawn directly on the map. The composite is processed on 
the fly and users are notified via email when it is ready to download. 
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Figure 1.6 The distribution of Pearson correlation coefficients between MOD13Q1 NDVI and 
Landsat NDVI for each land cover class.  
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Figure 1.7 Time series of 30m Landsat NDVI and 250m MOD13Q1 NDVI time series from 2013 
to 2015, separated by land cover class. After April 2013, the Landsat NDVI time series include 
data from both Landsat 7 and 8, while before April 2013 they included just Landsat 7 data. Each 
time series is from a single point, within a homogenous area (i.e., pixels where both Landsat and 
MOD13Q1 represent the same land cover), sampled at a location indicative of the major land 
cover classes. 
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Figure 1.8 (a) Pixel locations in central Washington, USA. Landsat derived NDVI can provide 
increased detail in heterogeneous landscapes. The difference in pixel shape is due to native 
projections being transformed to a common projection. (b) Chart for 2015 of a Landsat derived 
NDVI and MOD13Q1 NDVI time series.  
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1.10 Supplemental Materials 

Table 1.S1. List of PhenoCam sites and resulting Pearson correlation coefficients (r) comparing 
phenocam GCC90 to Landsat NDVI (16-day means). Plant Functional Type (PFT): DB - 
Deciduous Broadleaf; EN - Evergreen Needleleaf; GR - Grass; SH - Shrub; AG - 
Agriculture/Crop. Start date and End date indicate temporal extent used in correlations. Map ID 
corresponds to map labels in Figure 1.S1.  

Site_Name Pearson's r* PFT Start date End date Latitude Longitude Map ID 
acadia 0.71 DB 3/15/07 12/31/15 44.37694 -68.26083 1 
bartlett 0.87 DB 3/1/07 12/31/15 44.06460 -71.28810 2 
bitterootvalley 0.86 DB 9/15/11 12/31/15 46.50700 -114.09100 3 
bostoncommon 0.90 DB 5/6/10 12/31/15 42.35591 -71.06415 4 
boundarywaters 0.83 DB 3/26/07 3/13/12 47.94670 -91.49551 5 
butte 0.77 GR 1/6/09 12/31/15 45.95304 -112.47964 6 
caryinstitute 0.79 DB 4/14/08 12/31/15 41.78390 -73.73410 7 
coaloilpoint 0.85 GR 5/11/08 12/5/12 34.41370 -119.88023 8 
coweeta 0.92 DB 4/14/11 12/31/15 35.05959 -83.42798 9 
dollysods 0.84 DB 11/21/03 4/17/14 39.09953 -79.42704 10 
drippingsprings 0.24 DB 4/6/01 5/26/09 33.30000 -116.80000 11 
gatesofthemountains 0.44 GR 8/11/11 12/31/15 46.82620 -111.71070 12 
harvard 0.88 DB 4/4/08 12/31/15 42.53780 -72.17150 13 
howland1 0.60 EN 3/27/10 12/31/15 45.20410 -68.74030 14 
hubbardbrook 0.83 DB 4/3/11 12/31/15 43.94380 -71.70100 15 
joycekilmer 0.88 DB 6/6/06 3/27/15 35.25700 -83.79500 16 
kaweah 0.46 SH 7/14/11 12/31/15 36.44350 -118.90925 17 
mammothcave 0.80 DB 6/11/10 12/31/15 37.18583 -86.10194 18 
monture 0.88 DB 11/4/10 12/31/15 47.02019 -113.12832 19 
monture 0.86 GR 11/4/10 12/31/15 47.02019 -113.12832 20 
morganmonroe 0.89 DB 8/27/08 12/31/15 39.32310 -86.41310 21 
nationalcapital 0.44 DB 9/17/09 12/31/15 38.88818 -77.06950 22 
niwot2 0.32 EN 10/2/09 7/16/15 40.03286 -105.54697 23 
oakridge2 0.81 DB 1/17/08 12/31/15 35.93110 -84.33230 24 
oregonMP -0.16 EN 6/15/11 12/31/15 44.45230 -121.55740 25 
pointreyes 0.38 SH 1/24/04 12/31/15 37.99639 -123.02111 26 
proctor 0.89 DB 9/11/08 12/31/15 44.52500 -72.86600 27 
sedgwick 0.75 GR 9/18/08 4/25/13 34.69685 -120.04840 28 
sedgwick -0.35 SH 9/18/08 4/25/13 34.69685 -120.04840 29 
shenandoah 0.87 DB 9/14/09 12/31/15 38.61670 -78.35000 30 
shiningrock 0.91 DB 9/15/09 12/31/15 35.39016 -82.77497 31 
smokylook 0.87 DB 7/3/02 12/31/15 35.63253 -83.94311 32 
smokypurchase 0.91 DB 7/3/08 12/31/15 35.59000 -83.07750 33 
snakerivermn 0.74 DB 1/1/11 12/31/15 46.12056 -93.24467 34 
teddy 0.82 GR 10/6/10 12/31/15 46.89472 -103.37750 35 
thompsonfarm2N 0.87 DB 5/17/10 12/31/15 43.10860 -70.95050 36 
thompsonfarm2N 0.88 EN 5/17/10 12/31/15 43.10860 -70.95050 37 
tonzi 0.72 DB 10/26/11 12/31/15 38.43092 -120.96589 38 
tonzi 0.86 GR 10/26/11 12/31/15 38.43092 -120.96589 39 
uiefmaize 0.81 AG 11/5/08 12/31/15 40.06282 -88.19613 40 
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uiefmiscanthus 0.88 AG 11/11/08 12/31/15 40.06281 -88.19843 41 
uiefprairie 0.68 GR 10/22/08 12/31/15 40.06369 -88.19729 42 
uiefswitchgrass 0.76 AG 10/20/08 12/31/15 40.06369 -88.19729 43 
umichbiological 0.90 DB 12/3/08 3/28/14 45.55984 -84.71382 44 
vaira 0.89 GR 10/18/11 12/31/15 38.41328 -120.95064 45 
windriver 0.41 EN 4/30/10 8/24/14 45.82128 -121.95208 46 
woodshole 0.87 DB 4/14/11 12/31/15 41.54950 -70.64320 47 
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Figure 1.S1 (a) Map of phenocam locations. 
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Figure 1.S2 (a) Landsat 5 edge removal illustration. 
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CHAPTER 2: LANDSAT 30 M AND MODIS 250 M DERIVED 
TERRESTRIAL PRIMARY PRODUCTION FOR THE 
CONTERMINOUS UNITED STATES. 
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2.1 Introduction 

A primary process in all terrestrial ecosystems is the flux of carbon through trophic 

levels. Considered a supporting ecosystem service, primary production provides the 

foundation for numerous other services, including food, fuel and fiber (Running et al., 

2000; Haberl et al., 2007; Smith et al., 2012a). Terrestrial gross primary production 

(GPP) is the total amount of carbon captured by plants while net primary production 

(NPP) is the carbon allocated to plant tissue after accounting for the costs of autotrophic 

respiration (Ruimy et al., 1994). GPP and NPP thus represent the carbon removed from 

the atmosphere and the carbon available to other trophic levels, respectively (Field et al., 

1995). The spatiotemporal variability of GPP and NPP across the terrestrial surface is 

substantial, and is primarily affected by climate, land cover, disturbance, and land use 

practices (Piao et al., 2009). Given the importance of GPP and NPP to ecosystem 

function and the capacity for humans to alter production via land use/land cover change 

and climate change, developing appropriate products for monitoring these processes has 

emerged as a key component of ecological research, conservation, and management.  

GPP and NPP cannot be directly observed at broad scales and requires models based on 

biophysical factors and atmospheric dynamics (Cramer et al., 1999; Scurlock et al., 

1999). Models that integrate remotely sensed-derived estimates of vegetation provide 

mechanisms for estimating, monitoring, and evaluating the spatiotemporal variability of 

terrestrial ecosystem production (Field et al., 1995; Running et al., 2000; Turner et al., 

2004). One of the primary remote sensing-based models of terrestrial GPP and NPP is the 

Moderate Resolution Imaging Spectroradiometer (MODIS) MOD17 algorithm (Running 

et al., 2004; Sims et al., 2008; Smith et al., 2016). The MOD17 algorithm was originally 
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designed for global monitoring and is widely applied across ecology (Haberl et al., 2007; 

Running, 2012; Smith et al., 2012a, 2012b; DeLucia et al., 2014). MOD17 products are 

currently the only regularly produced production products publicly available, with 8-day 

GPP and annual NPP estimates for the global vegetated surface at 1 km (version 5.5) and 

500 m (version 6) spatial resolutions.  

While the MOD17 product is widely utilized, tradeoffs between temporal resolution, 

spatial resolution, and spatial extent restrict its use and applicability in ecology and 

natural resource conservation and management (Turner et al., 2003; Heinsch et al., 2006; 

Sims et al., 2008). Process based models like MOD17 are often computationally 

demanding and limited by computational processing and data storage capacity. To 

maintain global coverage, MOD17 inputs are spatially coarse, utilizing 0.5° (≈ 50 km) 

meteorological data, 500 m land cover classifications, and 500 m FPAR (fraction of 

photosynthetically active radiation), and LAI (leaf area index) estimates. The algorithm 

also relies on biome-specific parameters applied through a biome parameter look-up table 

(BPLUT). The BPLUT parameters are both parameterized and applied to biomes at the 

global scale, and thus do not capture variation within biomes (e.g., grasslands in North 

America use the same parameters as those in East Africa). While this simplification 

permits global estimations of terrestrial production, the coarse inputs and BPLUT 

approach attenuate ecologically important variation at finer scales (Running et al., 2000; 

Zhao et al., 2005; Neumann et al., 2016). 

The patterns and spatiotemporal variability of GPP and NPP across landscapes are the 

result of numerous processes occurring at multiple spatiotemporal scales. Many of these 

processes occur simultaneously at fine resolutions but across broad spatial extents. 
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Furthermore, human alteration and impact occurs at multiple scales. Discrete individual 

disturbances, small and potentially undetectable in isolation, can have substantial impacts 

when viewed cumulatively (Allred et al., 2015). Land management activities (e.g., crop 

agriculture, grazing, or forestry) can occur at fine or broad spatial scales, as well as across 

long time periods. Due to its coarse resolution, the MOD17 product is generally ill-suited 

for evaluating production responses to finer-scale processes and impacts. To more 

effectively assess and monitor production, higher resolution products that balance the 

scales of observed patterns and underlying processes are needed.  

Addressing some of the limitations of the MOD17 product, we develop two separate 

medium resolution (30 m and 250 m) GPP and NPP products for the CONUS region. As 

the MOD17 algorithm is not bound to the coarse input datasets, we replace input datasets 

with finer resolution and locally validated datasets, and optimize model parameters to 

reflect conditions specifically found within CONUS. We capitalize on advancements in 

cloud computing and parallel processing technologies to process historical Landsat and 

MODIS images alongside finer resolution meteorological data and land cover 

classifications to produce 30 m Landsat-derived GPP and NPP products from 1986 to 

2016 (GPPL30 and NPPL30) and 250 m MODIS-derived GPP and NPP products from 2001 

to 2016 (GPPM250 and NPPM250). We describe, evaluate, and emphasize the applicability 

of these two products, highlighting the capability to monitor terrestrial production at 

increased levels of spatial detail.  
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2.2 Methods 

2.2.1 MOD17 OVERVIEW 

To create both the MODIS and Landsat derived production products we utilize the 

established framework of the MOD17 algorithm (Figure 1). The theoretical basis for the 

MOD17 algorithm stems from original work by Monteith (1972), directly relating GPP 

and NPP to the amount of solar radiation absorbed by the plant canopy. Remotely sensed 

vegetation information is combined with light use efficiency logic and incident shortwave 

radiation to calculate daily GPP and after accounting for losses due to respiration, annual 

NPP.  

The global input datasets of the MOD17 product are replaced with finer resolution 

datasets (Table 1). For the GPP/NPPM250 and GPP/NPPL30 products, we obtain 

meteorological inputs from the University of Idaho’s 4-km gridded surface 

meteorological dataset, METDATA (Abatzoglou, 2013). The meteorological inputs used 

to calculate light use efficiency and scale rates of respiration are short wave radiation, 

daily minimum and maximum temperature, and vapor pressure deficit. Land cover 

classifications from 1992, 2001, 2006, and 2011 are used to apply biome specific 

constraints throughout the algorithm, and are obtained from the 30 m National Land 

Cover Database (NLCD) (Homer et al., 2007, 2015; Fry et al., 2011). For GPP/NPPM250, 

FPAR and LAI are calculated from the MODIS surface reflectance product, MOD09Q1 

(Vermote, 2015); for GPP/NPPL30, FPAR and LAI are calculated from the Landsat 

surface reflectance products (Masek et al., 2006; Feng et al., 2012; Vermote et al., 2016). 

We use established relationships of FPAR and LAI with the normalized difference 
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vegetation index (NDVI) (Choudhury, 1987; Sellers et al., 1994; Peng et al., 2012; Wang 

et al., 2014). 

As remotely sensed satellite data are inherently noisy due to atmospheric effects, cloud 

cover, data retrieval, and processing errors, a significant challenge is creating spatio-

temporally continuous NDVI composites from which to calculate FPAR and LAI. The 

MOD09Q1 product is an 8-day global composite product that accounts for some of these 

underlying complexities. To account for temporal noise in the data, we smooth data gaps 

and unusually low NDVI values based on the iterative Interpolation for Data 

Reconstruction (IDR) method (Julien & Sobrino, 2010). Landsat data are more complex, 

due to an infrequent overpass interval, collection date differences between adjacent 

scenes, radiometric differences between missions, and various sensor malfunctions (e.g., 

Landsat 7 ETM+ scan line corrector error). Thus, we utilize a smoothing and climatology 

driven gap filling approach to create spatially continuous and temporal regular Landsat 

NDVI composites across CONUS (Robinson et al., 2017). Detailed descriptions of these 

methods are provided in the supporting materials. 

 

2.2.2 GPP 

We use daily FPAR estimates, meteorological data, and the optimized parameter set to 

calculate daily GPP (Equation 1). 

𝐺𝑃𝑃	 = 	𝐿𝑈𝐸CDE	×	𝑓HCIJ	×	𝑓KLM	×	0.45	×	𝑆𝑊>DM	×	𝐹𝑃𝐴𝑅 (1) 

LUEmax (g C MJ-1) is a biome specific maximum potential light use efficiency and is 

attenuated by minimum temperature (fTmin) and vapor pressure deficit (fvpd) scalars 
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(Figure 2.S1) to account for temperature and water stress, respectively. These scalars 

utilize other biome specific properties (Tminmin, Tminmax, VPDmin and VPDmax) to 

linearly scale the daily minimum temperature and daily vapor pressure deficit between 0 

and 1. SWrad (w m-2) is incoming shortwave radiation, of which 45% is in wavelengths 

available for photosynthesis.  

The original MOD17 BPLUT parameters represent global biomes and do not vary 

spatiotemporally. As the GPP products we develop are limited to CONUS, we optimize 

these parameters (Tminmin, Tminmax, VPDmin and VPDmax) with reference GPP estimates 

from eddy covariance flux towers within CONUS. We use tier one level data from the 

FLUXNET2015 dataset, containing data from 43 tower sites across CONUS. To avoid 

the inclusion of poor quality data, we only use flux towers with at least two years of data 

and select daily GPP observations flagged as high quality (quality flag >= 0.75) 

(Richardson et al., 2010; Verma et al., 2015). At some flux tower locations, there is a 

discrepancy in land cover as designated by the flux tower dataset and the dominant land 

cover as classified by the NLCD. To avoid flux towers in areas with heterogeneous land 

cover, towers are only included if more than 50% of the pixels within a one km buffer are 

classified as the dominant land cover based on the NLCD and match the given land cover 

classification of the flux tower. This results in 30 flux towers representing the range of 

land cover classes (Figure 2.S2; Table S1). Our optimization approach finds the 

parameter set (Table 2) that minimizes the residual sum of squares between model 

outputs and the corresponding flux tower GPP estimates for each land cover class (Turner 

et al., 2006, 2009). We utilize a limited memory, quasi-Newton algorithm (L-BFGS-B) 
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for optimization (Byrd et al., 1995; Santaren et al., 2007), using original MOD17 BPLUT 

parameters as initialization values.  

To quantify the improvements made through the parameter optimization process, we 

compare Pearson’s correlation coefficients (r-values), root mean square error (RMSE), 

mean bias (MB), and mean absolute bias (MAB) calculated for daily GPP estimates using 

the original MOD17 parameters versus daily flux tower GPP estimates (GPPFlux) and 

daily GPP estimates using the optimized parameter set versus GPPFlux. To assess 

differences between the datasets, we compare the r-values, RMSE, MB and MAB for 

GPPM250, GPPL30, MOD17 GPP versus GPPFlux. As the MOD17 product is an 8-day 

product, we match GPPM250, GPPL30 and GPPFlux to the temporal granularity of MOD17. 

Eight day periods with less than four valid flux tower observations are discarded.  

 

2.2.3 NPP 

Daily estimates of LAI, meteorological data, and the relevant MOD17 algorithm BPLUT 

parameters are used to calculate daily maintenance respiration (MR). The logic and 

parameters are based on allometric relationships between estimated leaf area, leaf mass, 

fine root mass, and live wood mass. Annual NPP (Equation 2) is calculated as the sum of 

the daily differences between GPP and MR minus annual growth respiration (GR).  

𝑁𝑃𝑃	 = 	 𝐺𝑃𝑃I −	𝑀𝑅I − 𝐺𝑅TU8
IVMDW	X  (2) 

To assess the quality of NPPM250 and NPPL30 estimates, we compare cumulative NPP, 

separated by land cover, across CONUS to the MOD17 product. Detailed methods for 

GPP and NPP are provided in the supporting materials. 
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2.2.4 PRODUCTS 

GPPM250 is an 8-day cumulative estimate (kg C m-2 8-days-1) of GPP that matches the 

temporal resolution of the MOD17A2 GPP product; GPPL30 is a 16-day cumulative GPP 

estimate (kg C m-2 16-days-1). Both GPP products begin on day one of a given year and 

end on day 361 (MODIS derived 8-day) or 353 (Landsat derived 16-day). Each GPP 

composite includes the composite date and 7 or 15 ensuing days. The final period of each 

year is restricted to 5 days (6 days in a leap year) for GPPM250 and to 13 days (14 days in 

a leap year) for GPPL30. The NPPM250 and NPPL30 are estimates of annual NPP (kg C m-2 

year-1). Data are scaled by 10,000 and stored as a 16-bit integer. Each of the products 

contain a QC band providing information regarding the underlying NDVI estimate for 

each pixel (Table 3). We utilize Google Earth Engine (Gorelick et al., 2016) for data 

processing, product creation and product distribution. 

 

 

 

2.3 Results 

2.3.1 GPP ASSESSMENT 

Incorporating optimized parameters into Landsat and MODIS derived GPP improves 

estimates compared to the original MOD17 algorithm parameter set (Figure 2). Across all 

flux tower sites combined, r-values increased from 0.60 to 0.79 (GPPM250) and from 0.63 

to 0.80 (GPPL30), while RMSE values decreased from 4.33 to 2.84 (GPPM250) and from 

4.25 to 2.91 (GPPL30). Analysis of flux towers aggregated by land cover also produced 



 60 

improved results for most land cover classes (Figure 3; Table 4). Deciduous broadleaf 

(DBF) sites improved the most with r-values increasing from 0.55 to 0.85 (GPPM250) and 

from 0.57 to 0.88 (GPPL30) and RMSE decreasing from 5.11 to 2.56 (GPPM250) from 4.91 

to 2.33 (GPPL30). Shrubland (SH) sites revealed little change with optimized parameter 

sets, with decreases in RMSE values from 1.05 to 0.97 (GPPM250) and from 1.13 to 1.01 

(GPPL30) and decreases in r-values from 0.74 to 0.72 (GPPM250) and from 0.71 to 0.68 

(GPPL30). Of the six shrubland sites, five (44 of 46 site-years) are in semi-arid regions of 

Arizona and Utah. The shrubland class constitutes a diverse functional group, and this 

diversity is poorly represented in this clustering. Eddy covariance flux measurements in 

semi-arid areas often include significant components of abiotic CO2 fluxes, which may 

result in the overestimation of GPPFlux using traditional flux partitioning procedures 

(Serrano‑Ortiz et al., 2014). 

When comparing to GPPFlux, both GPPM250 and GPPL30 showed improvements over 

MOD17 GPP across all land cover classes except cropland (Table 5). Excluding 

croplands, the r-values improved from 0.91 (MOD17) to 0.94 (GPPM250) and 0.93 

(GPPL30), while the RMSE decreased from 1.49 (MOD17) to 1.29 (GPPM250) and 1.31 

(GPPL30). Seasonally, the temporal profiles of modelled GPP track the profiles of flux 

tower GPP (Figure 4). Across most flux towers, GPPM250 and GPPL30 correspond more 

closely to GPPFlux than the MOD17 product GPP. The most notable discrepancies are in 

cropland sites, where all models tend to underestimate peak flux tower GPP (Figure 4D). 

The poor performance of MOD17 within croplands is well documented and improved 

methods are needed to capture the wide variation of parameters across crop types (Chen 
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et al., 2011) and nonlinearities between LUE and GPP within croplands (Guanter et al., 

2014; Wood et al., 2017). 

 

2.3.2 NPP ASSESSMENT 

Comparing total annual NPP across CONUS (Table 6), we find high correlations between 

both NPPM250 and NPPL30 relative to the MOD17 product (NPPM250 r-value: 0.82; NPPL30 

r-value: 0.81). From 2001 to 2014, average annual NPP from the MOD17 product is 

estimated at 3.09 petagrams (Pg; 1015 g) of carbon while for the NPPM250 NPPL30 it is 4.49 

Pg and 3.03 Pg, respectively. When compared to the MOD17 product, NPPM250 is 41-

50% higher, while NPPL30 is 1.7 to 2.0% lower. The relatively high NPPM250 estimates are 

largely caused by differences in the parameterization of LUEmax for croplands (Table 2). 

While comparing the total absolute values of NPP across a region is useful for general 

validation purposes, discrepancies between models are expected due to the utilization of 

different input datasets and parameterization. More informative is the degree to which 

each product tracks interannual variability of total NPP. We find consistent interannual 

variability and seasonal magnitudes across all three NPP products for all land cover 

classes (Figure 5). The only notable exception occurs in the shrubland class (SH), where 

NPPL30 shows higher deviations from the mean in 2004 and 2012. NPPM250 and NPPL30 

consistently underestimate NPP across shrublands compared to the MOD17 product, 

likely originating from an underestimation of GPP (see GPP Assessment) or an 

overestimation of respiration (see Strengths, Challenges, and the Future).  
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2.4 Discussion 

We produce 30 meter and 250 meter GPP and NPP products for CONUS that better 

capture the spatiotemporal variability of terrestrial production than currently available 

coarser resolution products (Figure 2.6). Accounting for this variability reveals changes 

in production dynamics, particularly important for smaller scale monitoring, 

conservation, and land management (see case studies below and Figures 2.7-2.9). By 

optimizing the parameters with GPP data from FLUXNET2015 towers located within 

CONUS and using improved land cover and climate data specific to CONUS, we further 

refine the algorithm to more accurately reflect regionally unique conditions.  

 

2.4.1 VALUE FOR CONSERVATION AND MANAGEMENT 

Remotely sensed GPP and NPP extend satellite imagery beyond commonly used 

vegetation indices or land cover change. Production, measured in units of carbon, allows 

for assessing ecosystem dynamics in ecological, economical, and socially relevant terms 

(Vitousek et al., 1986; Haberl et al., 2004; Crabtree et al., 2009). Better understanding–

specifically with improved spatial resolution–of how land use activities affect carbon 

dynamics is critical in an era where climate change poses a massive challenge. 

Production also provides a foundation for process based models used to estimate 

ecosystem services, such as cropland agriculture (McGuire et al., 2001; Monfreda et al., 

2008), forest stand biomass biomass (Keeling & Phillips, 2007; Hasenauer et al., 2012), 

or rangeland forage (Hunt & Miyake, 2006; Reeves et al., 2006). As many of the 

conservation or management activities associated with these and other ecosystem services 

occur at finer scales across landscapes, medium resolution products are necessary for 
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assessment and monitoring. Built into decision frameworks, production information can 

help managers better understand the dynamics, impacts, and tradeoffs of their 

management. Quantifying conservation outcomes, e.g., management practices, 

restoration activities, etc., at fine resolutions, across broad spatial extents, and in relevant 

ecological terms (biomass, carbon), is essential in evaluation and adaptive management. 

We provide three examples highlighting the benefits of production estimates at increased 

spatial resolution and their utility for conservation and management. 

 

2.4.2 FIRE 

Fire affects a large proportion of grasslands, shrublands, and forests across the United 

States, fulfilling a critical ecological role in shaping these ecosystems (White, 1979; 

Oliver, 1980; Axelrod, 1985). Fire activity has increased due to plant invasions, changes 

in climate, and increased human activity (Westerling et al., 2006; Bowman et al., 2009; 

Balch et al., 2013). Fire is also a fundamental component of the global carbon cycle, 

releasing carbon through combustion or in the absence of fire, sequestering it as biomass 

(Seiler & Crutzen, 1980; Andreae & Merlet, 2001; Bond et al., 2005). Burned areas 

exhibit patterns of burn severity, related to topographic, meteorological, and pre-fire 

biomass dynamics (White et al., 1996). Burning directly influences production at fine 

scales, often with short-term immediate increases in grasslands (Knapp & Seastedt, 1986; 

Blair, 1997) and longer recovery times in forests (Amiro et al., 2000; Hicke et al., 2003; 

Goetz et al., 2006), varying with burn severity (White et al., 1996). 

We demonstrate fire-production dynamics at multiple scales utilizing burn severity data 

(Eidenshink et al., 2007) from a grassland (Lund fire, North Dakota, 2006) and a forested 
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(Horse Creek fire, Wyoming, 2007) system (Figure 7). In both systems, patterns between 

burn severity and NPP are detectable at finer resolutions, but these patterns diminish as 

spatial resolution becomes coarser. Using both NPPM250 and NPPL30, the grassland fire 

shows a positive relationship between burn severity and production (pre- and post-fire), 

indicating that more production resulted in greater burn severity, and that greater burn 

severity resulted in greater production post fire, a common occurrence in grasslands 

(Knapp & Seastedt, 1986; Blair, 1997). The coarser resolution MOD17 product shows 

little variation in production pre- or post-fire across burn severity levels. The forested 

system shows no detectable pattern between burn severity and pre-fire production across 

all NPP products, hinting at stability and spatial homogeneity. Post-fire dynamics, 

however, reveal a negative relationship between burn severity and production with 

NPPM250 and NPPL30, demonstrating that areas which burned less severely retained or 

recovered production while areas with greater burn severity had yet to recover. These 

dynamics and relationships were not present with the coarser resolution MOD17 product. 

To better understand the nuanced relationships between fire and productivity across 

broad scales, medium to high spatial resolution products are needed, as well as datasets 

that extend further back in time.  

 

2.4.3 DEVELOPMENT 

Anthropogenic land transformation occurs in many forms and substantially affects the 

Earth’s biological systems and processes (Imhoff et al., 2004; Metzger et al., 2006). 

Approximately one half of the terrestrial surface has been altered by human activity 

(Vitousek et al., 1997), with 55% of the annual primary production being appropriated by 
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humans (Vitousek et al., 1986; Haberl et al., 2004, 2007; Mustard et al., 2012). Many 

forms of human induced land transformation, such as urbanization and development, are 

especially disruptive as they greatly reduce or eliminate the photosynthetic capacity of 

land area where they occur (Wackernagel & Yount, 1998; Wackernagel et al., 2002; 

Imhoff et al., 2004). Development such as transportation networks, communication and 

energy infrastructure, or residential housing often occurs at fine spatial resolutions across 

broad spatiotemporal extents. Medium and high spatial resolution products allow for the 

assessment of these finer scale, localized disturbances which are often missed with 

coarser products.  

Rapid energy development across the United States is a major driver of land use change 

(McDonald et al. 2009, Trainor et al. 2016). The cumulative impacts of these 

developments, specifically on terrestrial production, is substantial but difficult to assess 

due to their broad geographic extent and the scale mismatch between the disturbances 

and products (Allred et al., 2015). Examining a well site in New York, drilled in 2006, 

both the MOD17 (500 m) and NPPM250 products fail to detect discrete losses in NPP 

caused by disturbance at this scale, while the NPPL30 product detects a 68% loss in mean 

NPP (Figure 8). The NPPL30 product improves the tracking and accounting of these 

discrete losses while also extending the historical record. 

 

2.4.4 RESTORATION 

Restoration activities, aimed to repair degraded systems, are often central to conservation 

practices (Hobbs & Norton, 1996). While the aims and scope of restoration activities vary 

in objective, complexity, size, cost, etc., they often target restoring natural processes–
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commonly at localized sites–with the goal of returning ecosystem structure and function 

to its pre-degraded state (Jackson et al., 1995). Across the semi-arid western United 

States, riparian restoration activities are common, re-establishing the linkages between 

hydrologic processes to broader ecosystem function (Kauffman et al., 1997) and include 

activities such as stream channel engineering, grazing management, and vegetation 

rehabilitation. Restoring ecosystem structure and function in riparian zones often 

improves production and is considered an indicator of success (Ehrenfeld & Toth, 1997). 

In the early 1990s, Maggie Creek (a tributary to the Humboldt River in north-central 

Nevada) underwent comprehensive restoration efforts aimed at restoring riparian area 

habitat and production. Activities included changes in grazing management, fencing, and 

culvert replacement (Elliott et al., 2004; Huntington et al., 2016). Maggie Creek is 

relatively small, with a narrow riparian area often less than 150 m wide and is surrounded 

by semi-arid shrubland. Due to the timing (early 1990s) and scale of restoration activities, 

coarser MODIS based NPP products are inadequate for evaluating this restoration. Using 

the NPPL30 product, we detect measurable differences in NPP within the narrow riparian 

zone after restoration (Figure 9). As the higher resolution GPP and NPP products more 

closely match the scales at which many conservation and management actions take place, 

they provide expanded capacity for conservationists and managers to monitor and 

evaluate activities. 
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2.4.5 STRENGTHS, CHALLENGES, AND THE FUTURE  

The Landsat (30 m) and MODIS (250 m) derived products have specific applications 

they are best suited for. The finer resolution of Landsat sensors allows for more detailed 

examination of production dynamics and responses to human activities that are largely 

absent in coarser products. The historical Landsat archive adds another 15+ years to that 

available with MODIS, permitting longer trend analysis. Landsat derived production 

(GPPL30 and NPPL30) is best suited for detailed, smaller scale assessments where 

responses or trends of localized areas are desired. The 16-day return interval of satellites 

and temporal offset between adjacent orbital paths, however, can create discontinuous 

data across broad scales. Although the compositing and gap filling mitigates much of the 

resulting effects and artefacts, they do not eliminate them. The daily overpass of MODIS 

sensors make MODIS derived estimates of production well suited for analysis across 

broad geographic regions or continental analysis. MODIS derived production (GPPM250 

and NPPM250) minimizes atmospheric and cloud contamination; increases resolution from 

500 to 250 m relative to the MOD17 product, permitting examination of some of the finer 

scale processes and responses (Figure 6); and follows the same 8-day schedule of the 

MOD17 product. Users should examine both products before application to determine 

which is appropriate for their needs.  

Despite the noted improvements and added utility of the high-resolution products, some 

of the simplifying assumptions and limitations of the MOD17 algorithm itself are 

maintained in our methods. First, there is an unmeasured propagation of errors, stemming 

from the underlying accuracy and mismatched resolution of input datasets. Second, the 

biome specific parameters do not vary spatiotemporally and are applied through 



 68 

temporally discrete land cover datasets, which may not reflect rapid land cover change. 

Third, the optimization process is based on a limited and clustered network of flux tower 

data. Due to the sparse data across representative land cover classes, independent samples 

were unavailable for validation. While users should be aware of these limitations, these 

are key areas for future research and product development. For example, strategies to 

incorporate the spatiotemporal variability of key parameters or to more accurately 

represent land cover through time at sub-pixel levels are promising approaches for 

improvement (Madani et al., 2014; Yang et al., 2015). Additionally, respiration is a key 

source of uncertainty in the NPP algorithm (Figure 1B), as it is calculated independently 

from GPP and utilizes biome level allometric relationships (Turner et al., 2005; Zhang et 

al., 2009). Simplifying respiration to a fixed proportion of GPP can avoid associated 

uncertainties (DeLucia et al., 2007; Zhang et al., 2009; Van Oijen et al., 2010). A fixed 

ratio reduces the interannual variability of NPP across land cover classes and removes the 

NPP anomalies in shrublands and deciduous forest (Figure 2.S4, Table 2.S3). 

Emerging big data technologies and geospatial applications (e.g., Apache Spark, Google 

Earth Engine, etc.) enable new and dynamic approaches to geospatial product creation 

and distribution. A barrier to using Landsat or other fine resolution data is the access, 

retrieval, storage, and manipulation of images. As the spatiotemporal extents increase, so 

do data volume and compute processing needs, making it difficult or impractical to those 

without access to high performance computing facilities and the skills to work with such 

systems. We overcame these barriers and limitations by implementing the MOD17 

algorithm in Google Earth Engine. The structure of Google Earth Engine creates the 

ability to incorporate data from multiple sensors and datasets to build even more robust 
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products. What we accomplish with multiple Landsat sensors can be extended to include 

even higher resolution sensors, such as Sentinel-2. However, the real power of these new 

platforms and technologies is the ability to create customizable and dynamic geospatial 

products (Robinson et al., 2017). When algorithms are programmed into a web 

application, model parameters and input datasets can be customizable so that users not 

satisfied with the standard parameters or other inputs can modify them based on a priori 

knowledge. For example, a user working with a web application that utilizes the MOD17 

algorithm to estimate productivity can correct misclassified pixels in land cover datasets, 

or select between standard approaches or fixed ratios to calculate respiration used in NPP. 

Models can be tuned for specific regions or environmental conditions, providing locally 

optimized products that are more appropriate for a given system or question.  

The new Landsat (30 m; 1986 to 2016) and MODIS (250 m; 2001 to 2016) derived 

primary production products provide new opportunities in the study of production 

dynamics and variability. Of significance is the ability to utilize these datasets for 

conservation and management, as the scales of both the product and the 

conservation/management activities are now better aligned. These enhancements will 

advance the study of terrestrial primary production, enable future refinements, and 

generate new applications of vegetation productivity measures. 
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used eddy covariance data acquired and shared by the FLUXNET community, including 
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AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of 

CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux 

offices.  
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2.7 Tables 

Table 2.1: Underlying data sources for the MOD17 (500 m), MODIS derived GPP/NPPM250 
(CONUS only; 250 m), and Landsat derived GPP/NPPL30 (CONUS only; 30 m) products. 

  MOD17 MODIS250 LS30 

Input Variable Units Source Resolution Source Resolution Source Resolution 

VPD1 Pa GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km 
SWrad2 w m-2 GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km 
Tavg3 °C GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km 
Tmin4 °C GMAO/NASA 0.5° Idaho Metdata 4 km Idaho Metdata 4 km 
Land Cover na MOD12Q1 500 m NLCD 30 m NLCD 30 m 
FPAR5 na MOD15A2 500 m MOD09Q1 250 m Landsat SR 30 m 
LAI6 m2leaf m-2grd MOD15A2 500 m MOD09Q1 250 m Landsat SR 30 m 

1 vapor pressure deficit, 2 incident shortwave radiation, 3 average daytime temperature, 4 daily minimum temperature, 5 

fraction of photosynthetically active radiation, 6 leaf area index 
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Table 2.2: The biome parameter lookup table (BPLUT) for MOD17, the GPP/NPPM250 and the 
GPP/NPPL30. * Indicates parameters that were modified from the original MOD17 algorithm. ** 
Indicates parameter added to the BPLUT for LAI calculations. 

Dataset Parameter ENF1 DBF2 MF3 SH4 GR5 CR6 

MOD17 

LUEmax 0.00096 0.00117 0.00105 0.00128 0.00086 0.00104 

Tminmin -8.00 -6.00 -7.00 -8.00 -8.00 -8.00 

Tminmax 8.31 9.94 9.50 8.61 12.02 12.02 

VPDmin 650.0 650.0 650.0 650.0 650.0 650.0 

VPDmax 4600.0 1650.0 2400.0 4700.0 5300.0 4300.0 

GPP 
/NPPM250 

LUEmax* 0.00132 0.00156 0.00144 0.00104 0.00142 0.00227 

Tminmin* -9.43 -8.44 -8.94 -7.54 -10.56 -9.48 

Tminmax* 7.63 8.59 8.11 10.26 9.45 10.53 

VPDmin* 721.51 745.26 733.39 627.08 778.52 723.69 

VPDmax* 5703.33 3922.55 4812.94 4206.98 7040.36 5982.23 

GPP/ 
NPPLS30 

LUEmax* 0.00133 0.00142 0.00138 0.00101 0.00091 0.00176 

Tminmin* -9.44 -8.15 -8.78 -7.94 -11.57 -10.31 

Tminmax* 7.63 8.76 8.20 9.97 8.44 9.71 

VPDmin* 722.23 733.84 728.04 647.37 828.54 765.33 

VPDmax* 5714.47 3650.12 4682.30 4287.20 7697.52 6178.25 

All 

LAImax** 6.501 6.091 6.296 6.328 6.606 6.543 

SLA 14.1 21.8 21.5 11.5 37.5 30 

Fine Root to Leaf Ratio 1.2 1.1 1.1 1.3 2.6 2 

Base Leaf MR 0.00604 0.00778 0.00778 0.00519 0.0098 0.0098 

Base Fine Root MR 0.00519 0.00519 0.00519 0.00519 0.00819 0.00819 

Q10MR 2 2 2 2 2 2 

Live Wood to Leaf Ratio 0.182 0.203 0.203 0.04 0 0 

Base Livewood MR 0.00397 0.00371 0.00371 0.00218 0 0 
1Evergreen Needleaf Forest, 2Deciduous Broadleaf Forest, 3Mixed Forest, 4Shrubland, 5Grassland, 6Cropland 
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Table 2.3: QC band pixel value descriptions for GPP/NPPM250 and GPP/NPPL30. Differences in 
the QC values between the two products are due to different input datasets and processing 
methods. The pixel values indicate the quality of the NDVI values used in calculating FPAR and 
LAI.  

Dataset Pixel Value Description 

GPPM250 

0 Original NDVI value used 

1 Smoothed NDVI value used 

NPPM250 0 - 100 Percent of NDVI values gap filled 

GPPL30 

10 Clear not smoothed 

11 Clear smoothed 

20 Snow or water not smoothed 

21 Snow or water smoothed 

30 Climatology not smoothed 

31 Climatology smoothed 

40 Gap filled not smoothed 

41 Gap filled smoothed 

NPPL30 

0 - 100 Percentage of gap filled 16-day composites 

255 Incomplete data (gap filling failed) 
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Table 2.4: Pearson’s r-value, RMSE, bias, and mean absolute bias (MAB) between GPPM250 and 
GPPL30 and CONUS flux tower GPP aggregated by land cover. Results include GPP calculated 
with both the original MOD17 algorithm parameters and optimized parameters produced in this 
paper. The optimized parameters for both datasets yielded better statistics across all land cover 
classes except shrublands Pearson’s r value. 

 Tower vs. GPPM250 Pearson’s r RMSE Bias MAB 

All Sites 
Optimized Parameters 0.79 2.84 0.02 1.72 

MOD17 Parameters 0.60 4.33 1.90 2.42 

ENF 
Optimized Parameters 0.85 1.55 0.11 1.15 

MOD17 Parameters 0.84 2.16 1.43 1.59 

DBF 
Optimized Parameters 0.85 2.56 -0.01 1.75 

MOD17 Parameters 0.55 5.11 3.05 3.35 

SH 
Optimized Parameters 0.72 0.97 < 0.01 0.62 

MOD17 Parameters 0.74 1.05 -0.46 0.79 

GR 
Optimized Parameters 0.76 1.72 < 0.01 1.24 

MOD17 Parameters 0.74 2.44 1.38 1.66 

CR 
Optimized Parameters 0.71 5.13 -0.01 3.61 

MOD17 Parameters 0.64 7.12 3.49 4.23 

 Tower vs. GPPL30     

All Sites 
Optimized Parameters 0.80 2.91 0.06 1.76 

MOD17 Parameters 0.63 4.25 1.72 2.41 

ENF 
Optimized Parameters 0.86 1.53 0.10 1.12 

MOD17 Parameters 0.85 2.18 1.44 1.12 

DBF 
Optimized Parameters 0.88 2.33 0.05 1.62 

MOD17 Parameters 0.57 4.91 2.81 3.19 

SH 
Optimized Parameters 0.68 1.01 < 0.01 0.64 

MOD17 Parameters 0.71 1.13 -0.45 0.81 

GR 
Optimized Parameters 0.74 2.09 0.26 1.51 

MOD17 Parameters 0.72 2.41 0.94 1.62 

CR 
Optimized Parameters 0.70 5.18 < 0.01 3.70 

MOD17 Parameters 0.63 6.74 2.96 4.11 
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Table 2.5: Pearson’s r-value, RMSE, bias and mean absolute bias (MAB) between flux tower 
GPP and the MOD17 product, GPPM250 and GPPL30. These comparisons use 8-day mean GPP, 
matching the temporal granularity of the MOD17 product. Bold indicates the best statistic. 

Tower Dataset Correlation RMSE Bias MAB 

All 

MOD17  0.89 1.53 0.09 0.96 

GPPM250 0.91 1.55 -0.48 1.02 

GPPL30 0.90 1.50 -0.26 0.99 

ENF 

MOD17  0.90 1.07 -0.33 0.72 

GPPM250 0.93 1.09 -0.32 0.76 

GPPL30 0.94 0.90 -0.19 0.62 

DBF 

MOD17  0.91 1.98 -0.12 1.28 

GPPM250 0.95 1.62 -0.55 1.12 

GPPL30 0.94 1.70 -0.09 1.13 

SH 

MOD17  0.69 1.04 0.03 0.68 

GPPM250 0.76 0.94 0.04 0.62 

GPPL30 0.74 0.97 0.04 0.64 

GR 

MOD17  0.63 1.30 0.13 0.78 

GPPM250 0.69 1.23 -0.27 0.84 

GPPL30 0.66 1.28 -0.25 0.86 

CR 

MOD17  0.68 1.82 0.24 1.25 

GPPM250 0.66 2.86 -1.84 2.15 

GPPL30 0.65 2.57 -1.53 1.96 
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Table 2.6: Total annual NPP for CONUS in Pg (1015 g) carbon for MOD17, NPPM250 and NPPL30. 
Results are shown aggregated across all land cover as well for each class individually. 

LC Product 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Mean 

Total 

MOD17 2.996 2.946 3.275 3.389 3.217 2.880 3.196 3.162 3.137 3.297 2.880 2.786 3.070 3.120 3.097 

NPPM250 4.606 4.192 4.762 5.017 4.712 4.504 4.699 4.631 4.692 4.617 3.864 3.892 4.069 4.566 4.487 

NPPL30 3.114 2.834 3.221 3.431 3.194 3.054 3.139 3.208 3.267 3.137 2.519 2.491 2.712 3.148 3.034 

ENF 

MOD17 0.606 0.543 0.609 0.629 0.644 0.573 0.565 0.585 0.595 0.605 0.519 0.508 0.570 0.607 0.583 

NPPM250 0.657 0.588 0.635 0.681 0.661 0.639 0.635 0.615 0.645 0.612 0.535 0.561 0.575 0.636 0.620 

NPPL30 0.616 0.556 0.598 0.638 0.625 0.602 0.593 0.594 0.613 0.588 0.503 0.525 0.534 0.604 0.585 

DBF 

MOD17 0.602 0.634 0.752 0.710 0.630 0.565 0.578 0.654 0.661 0.651 0.613 0.614 0.683 0.631 0.641 

NPPM250 0.923 0.837 0.987 1.000 0.889 0.907 0.886 0.929 0.926 0.861 0.752 0.779 0.799 0.886 0.883 

NPPL30 0.701 0.630 0.758 0.772 0.672 0.675 0.637 0.715 0.720 0.649 0.509 0.501 0.573 0.675 0.656 

MF 

MOD17 0.093 0.089 0.096 0.101 0.091 0.087 0.087 0.092 0.091 0.091 0.087 0.087 0.091 0.089 0.091 

NPPM250 0.125 0.113 0.123 0.127 0.120 0.120 0.115 0.117 0.118 0.114 0.103 0.111 0.106 0.115 0.116 

NPPL30 0.153 0.138 0.152 0.156 0.147 0.146 0.139 0.145 0.146 0.138 0.119 0.129 0.127 0.143 0.141 

SH 

MOD17 0.378 0.366 0.404 0.441 0.456 0.396 0.459 0.407 0.394 0.457 0.380 0.384 0.393 0.414 0.409 

NPPM250 0.257 0.235 0.270 0.317 0.317 0.261 0.295 0.263 0.281 0.297 0.234 0.222 0.242 0.279 0.269 

NPPL30 0.179 0.162 0.187 0.237 0.224 0.179 0.211 0.186 0.204 0.204 0.149 0.127 0.158 0.191 0.186 

GR - 
Natural 

MOD17 0.334 0.315 0.358 0.382 0.384 0.325 0.435 0.360 0.361 0.402 0.325 0.292 0.337 0.369 0.356 

NPPM250 0.604 0.527 0.621 0.660 0.650 0.561 0.676 0.612 0.635 0.663 0.523 0.502 0.549 0.623 0.600 

NPPL30 0.309 0.274 0.317 0.343 0.336 0.295 0.346 0.329 0.344 0.351 0.351 0.266 0.273 0.332 0.319 

GR - 
Pasture/

Hay 

MOD17 0.379 0.387 0.410 0.414 0.377 0.345 0.393 0.394 0.377 0.401 0.351 0.363 0.373 0.368 0.381 

NPPM250 0.552 0.508 0.576 0.591 0.544 0.535 0.542 0.556 0.545 0.535 0.457 0.484 0.482 0.535 0.532 

NPPL30 0.232 0.211 0.244 0.251 0.229 0.227 0.227 0.241 0.235 0.224 0.184 0.191 0.196 0.292 0.227 

CR 

MOD17 0.597 0.606 0.638 0.705 0.628 0.583 0.672 0.663 0.650 0.683 0.599 0.532 0.616 0.635 0.629 

NPPM250 1.488 1.384 1.550 1.642 1.532 1.480 1.577 1.540 1.543 1.537 1.260 1.235 1.317 1.493 1.470 

NPPL30 0.925 0.863 0.965 1.032 0.961 0.930 0.985 0.998 1.103 0.983 0.783 0.751 0.836 0.975 0.935 
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2.8 Figures 

 

Figure 2.1: Flowchart of the MOD17 GPP and NPP algorithms. The main components are A) 
GPP; B) maintenance respiration; and C) annual NPP. Adapted from the MOD17 user’s guide 
(Running & Zhao, 2015). 
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Figure 2.2: GPPM250 (A & B) and GPPL30 (C & D) relative to GPPFlux (FLUXNET2015, CONUS 
only). GPP250 GPPL30 in plots A and C are calculated with the original MOD17 BPLUT 
parameters, while GPP in B and D use parameters optimized for CONUS and demonstrate 
improvement.  
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Figure 2.3: GPPM250 (left column) and GPPL30 (right column) relative to GPPFlux 
(FLUXNET2015, CONUS only), aggregated by land cover.  
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Figure 2.4: Time series of 8-day GPPFlux, MOD17 GPP (500 m), GPPM250 (250 m) and GPPL30 
(30 m) from towers representing the range of land cover classes. Data from two cropland towers 
(C and D) are plotted demonstrating the range of GPP variability across cropland sites. The 
GPPM250 and GPPL30 datasets correspond well with GPPFlux at the ARM flux tower (C; Oklahoma, 
wheat and soybean) while underestimate GPP compared to GPPFlux at the NE1 flux tower(D; 
Nebraska, irrigated corn). 
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Figure 2.5: Time series of NPP anomalies for the MOD17 (500 m), NPPM250 (250 m), and 
NPPL30 (30 m) datasets. All three datasets track the interannual variability of NPP with similar 
magnitudes. Anomalies are calculated as the percent difference from the long-term mean for each 
dataset and land cover class.  
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Figure 2.6: Maps of 2010 annual NPP across CONUS at levels of decreasing resolution: (A) 
NPPL30 at 30 m; (B) NPPM250 at 250 m; and (C) the MOD17 product at 500 m. Higher resolution 
reveals greater spatial variability of NPP.  
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Figure 2.7: Boxplots showing pre- and post-fire NPP dynamics (anomalies) relative to burn 
severity for a grassland fire (top panels; Lund fire, North Dakota) and an evergreen needleleaf 
forest fire (bottom panels; Horse Creek fire, Wyoming) using the MOD17 (500 m), NPPM250 (250 
m), and NPPL30 (30 m) products. The nuances of fire-productivity relationships–increased 
variability between NPP and burn severity, and the resulting responses of NPP to burn severity,–
are detected using the medium resolution NPPM250 and NPPL30 products but are lost with the 
coarser resolution MOD17 product. 
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Figure 2.8: Annual NPP for an energy site using the MOD17 product (500 m), NPPM250 (250 m), 
and NPPL30 (30 m) datasets. Losses in NPP due the discrete disturbance are reflected in the finer 
resolution NPPL30 dataset , but are absent in the coarser resolution datasets. The time series also 
demonstrates the historical data available using the full Landsat archive. The relative differences 
in pixel sizes are shown in the right panel. 
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Figure 2.9: The GPP/NPPL30 datasets permit the tracking of primary production change across 
broad spatiotemporal scales. Here, annual NPP for a 60 m buffer around Maggie Creek, Nevada 
is plotted. Restoration activities occurred in 1994 (vertical black line). The pre- and post-
restoration mean NPP (dashed lines) along with 95% confidence intervals are shown.  
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2.9 Supplemental Materials 

Methods 

The MOD17 algorithm is built upon four main variables: the absorbed fraction of 

photosynthetically active radiation (FPAR), leaf area index (LAI), a suite of 

meteorological measurements, and land cover classification. GPP (Equation 1) combines 

light use efficiency logic with incident shortwave radiation and FPAR. 

 

𝐺𝑃𝑃	 = 	𝐿𝑈𝐸CDE	×	𝑓HCIJ	×	𝑓KLM	×	0.45	×	𝑆𝑊>DM	×	𝐹𝑃𝐴𝑅 (1) 

 

LUEmax (g C MJ-1) is a biome specific maximum potential light use efficiency and is 

attenuated by temperature (fTmin) and vapor pressure deficit (fvpd) scalars to account for 

temperature and water stress, respectively. SWrad (w m-2) is incoming shortwave 

radiation, of which 45% is in wavelengths available for photosynthesis. FPAR (unitless) 

is the estimated fraction of photosynthetically active radiation captured by the plant 

canopy. NPP is determined by accounting for costs due to maintenance and growth 

respiration (Equation 2). 

 

𝑁𝑃𝑃	 = 	 𝐺𝑃𝑃I −	𝑅YZ − 𝑅[TU8
IVMDW	X  (2) 

 

Maintenance respiration (RM; g C m-2 d-1) is calculated using remotely sensed estimates 

of LAI (m2 leaf m-2 ground), biome specific properties, and meteorological data. The 

logic is based on allometric relationships between estimated leaf mass, fine root mass, 

and live wood mass. Plant mass is multiplied by the rate of respiration (Equation 3). 
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QX]𝑀𝑅	 = 	𝑄X]
[`abcdef.fgf.f ]  (3) 

 

For live wood and fine roots, Q10 is a constant of 2.0, while for leaves it is a temperature 

acclimated equation (Tjoelker et al., 2001). 

 

QX] 	= 3.22	 − 0.046HDK=  (4) 

 

Growth respiration (RG) is roughly estimated to be 25% of NPP (Field et al., 1995; 

Crabtree et al., 2009; Cleveland et al., 2015). A detailed description of the MOD17 

algorithm and individual equations is documented in the MOD17 user's guide (Running 

& Zhao, 2015). 

 

Meteorological Variables 

The daily meteorological variables required for the MOD17 algorithm are minimum 

temperature (Tmin), average daytime temperature (Tday) and vapor pressure deficit (VPD). 

Tmin is obtained directly from METDATA while the Tday (Running et al., 1987) is 

calculated from average and maximum temperature estimates (Equation 5). VPD 

(Equation 6) is simply the difference between the saturation vapor pressure (VPsat) and 

the actual vapor pressure (VPact). VPsat (Equation 7), is a function of Tday (Buck, 1981), 

while VPact (Equation 8) is a function of specific humidity (SPH) and atmospheric 

pressure (Equation 9). Atmospheric pressure (Patm) is calculated using the standard 
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barometric formula and elevation is obtained using the 10 m United States Geological 

Survey National Elevation Dataset (NED).  

 

𝑇MDW 	= 	 (0.45	×	(𝑇CDE 	−	𝑇DK=)) 	+	𝑇DK= (5) 

𝑉𝑃𝐷	 = 	𝑉𝑃kDl 	−	𝑉𝑃Dml (6) 

𝑉𝑃kDl 	= 	611	×𝑒𝑥𝑝(17.502	×( Hras
(Hras	t	euf.vw)

))	 (7) 

𝑉𝑃Dml 	= 	
(xyz	×	X]]]	×y>{kk|>{	)

U}X.~:
	 (8) 

𝑃DlC 	= 	101325	×((1	 −	((].]]U8	×{�{K)
}//.X8

))8.}88// (9) 

 

The 4 km gridded meteorological data are resampled using bilinear interpolation to a 

Geographic Coordinate System (GCS) WGS84 grid at the output resolution of the 

respective datasets. 

 

Land Cover  

We utilize the NLCD to apply biome specific parameters (Table 2.S3). The NLCD 

contains a 21-class land cover for 1992 and a consistent 16-class land cover for 2001, 

2006 and 2011. We exclude classes from the classification scheme that are not pertinent 

to terrestrial productivity (i.e.,. water, developed, barren) and that are not present within 

CONUS (i.e., dwarf scrub, sedge). The wetland classes, while important to terrestrial 

production are also excluded, as the presence of water can negatively influence the 

normalized difference vegetation index (NDVI) which is the source of our FPAR and 

LAI estimates. Additionally, we combine pasture/hay with the grassland class. The result 
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is a 6 class land cover classification for CONUS (Table 2.S4) for time periods spanning 

1992, 2001, 2006 and 2011. For a given year of GPP and NPP, the closest subsequent 

NLCD year is used. For example, the 2006 NLCD is used in calculations for 2002 - 2006. 

From 2007 to 2016, the 2011 dataset is used as the 2016 NLCD is not currently available. 

For both datasets, the NLCD is resampled, using the mode value, to GCS WGS84 grids at 

the output resolution of respective datasets. 

 

FPAR and LAI  

The MOD17 GPP and NPP products use estimates from another MODIS product, 

MOD15, as FPAR and LAI inputs. As these estimates are unavailable at finer resolutions, 

we use established relationships of FPAR and LAI with the normalized difference 

vegetation index (NDVI) (Choudhury, 1987; Goward & Huemmrich, 1992; Sellers et al., 

1994; Paruelo et al., 1997; Gower et al., 1999; Peng et al., 2012; Wang et al., 2014). The 

NDVI (Equation 10) is one of the most widely implemented spectral indices and is 

calculated as: 

 

𝑁𝐷𝑉𝐼	 = 	 (����	�	��{M)
(����	�	��{M)

	 (10) 

 

where ρNIR is surface reflectance (SR) in the near infrared band and ρRED is SR in the 

red band. We first create daily NDVI time series across CONUS for both MODIS and 

Landsat derived production using the MOD09Q1 and Landsat SR products (Masek et al., 

2006; Vermote et al., 2016), respectively. Satellite remotely sensed data are inherently 

noisy due to atmospheric effects, cloud cover, data retrieval, and processing errors. While 
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MOD09Q1, an 8-day composite product, accounts for some of these issues, Landsat data 

are more complex, due to an infrequent overpass interval, collection date differences 

between adjacent scenes, radiometric differences between missions, and various sensor 

malfunctions (e.g., Landsat 7 ETM+ scan line corrector error). Thus, for each dataset we 

employ a separate method for creating the NDVI time series.  

 

MOD09Q1 Processing 

MOD09Q1 is an 8-day composite of the Terra/Aqua MODIS red and near-infrared bands 

(E. Vermote, 2015). Each pixel within each composite constitutes the best available 

observation during the 8-day window, based on low view angle, high observation 

coverage, levels of cloud and cloud shadow, and low aerosol loading. Despite this level 

of processing, MOD09Q1 may still contain cloud or aerosol contamination. Using 

provided quality control (QC) information, we calculate NDVI for pixels that are flagged 

as ‘clear’, resulting in a temporally discontinuous profile in regions of CONUS with a 

high probability of cloud cover. While QC labels reliably flag pixels with cloud 

contamination, they do not always specify anomalously low NDVI values. As we 

generally expect continuous and smooth NDVI temporal profiles, outside of sudden 

disturbance or land use change (Reed et al., 1994; Bradley et al., 2007; Julien & Sobrino, 

2010), we smooth data gaps and unusually low NDVI values based on the iterative 

Interpolation for Data Reconstruction (IDR) method (Julien & Sobrino, 2010). The NDVI 

value for each pixel is compared with the mean NDVI value of the first previous and 

subsequent observations; if the mean is higher than the original value by a threshold of 

0.1, the original value is replaced by the mean value. This process is repeated again with 
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the new temporal profile, resulting in a smooth and continuous 8-day NDVI profile. 

Estimated daily NDVI values are calculated by linearly interpolating between the 8-day 

values. The composites are resampled to a GCS WGS84 grid of approximately 250 m 

(1/450 degrees) resolution. 

 

Landsat SR Processing 

The Landsat 5 ETM, 7 ETM+, and 8 OLI SR products are the highest level of processing 

available for Landsat imagery and are corrected for atmospheric effects and 

illumination/viewing geometry (Masek et al., 2006; Vermote et al., 2016). We first create 

16-day NDVI composites by selecting the best available, cloud free pixels from all 

available landsat sensors during each composite period (Robinson et al., 2017). If no 

cloud free pixels are available during a composite window, the gap is filled with the 

median climatology of the five previous years for that particular 16-day window. If the 

climatology is unavailable, the gap is filled with a linearly interpolated value between the 

previous 16-day composite and the subsequent 16-day composite. This interpolation fails 

when there are two or more composite windows in a row with no data; the pixel is given 

a no data value and flagged in a QC band. The resulting 16-day NDVI time series is 

smoothed using iterative IDR, but with only one smoothing iteration due to the large 

volume of Landsat data. Estimated daily NDVI values are calculated by linearly 

interpolating between the 16-day composites. The composites are resampled to a GCS 

WGS84 grid of approximately 30 m (1/5000 degrees) resolution. 

 

FPAR and LAI Calculations 
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The daily NDVI estimates for both products are used to calculate FPAR (Equation 11) 

and LAI (Equation 12). FPAR is calculated as: 

 

𝐹𝑃𝐴𝑅	 = 	 (����	�	�����Z�)(�y���a�	�	�y���Z�)
�����a�	�	�����Z�

	+	𝐹𝑃𝐴𝑅CIJ (11) 

 

where NDVImin = 0.03, NDVImax = 0.96, calculated as the 2% and 98% of the NDVI 

frequency distribution and FPARmin = 0.001, FPARmax = 0.95, corresponding to the 

theoretical minimum and maximum FPAR for any vegetated surface (Wang et al., 2014). 

The relationship between NDVI and LAI is more complex, as NDVI can effectively 

saturate while LAI continues to increase, leading to potential underestimation of LAI. 

LAI is calculated as: 

 

𝐿𝐴𝐼	 = 	 ��=(X	�	�y��)
��=(X	�	�y���a�)

	×	𝐿𝐴𝐼CDEZ (12) 

 

where FPARmax is 0.95 and LAImax,i is the potential maximum LAI for each land cover 

class from the BPLUT (Sellers et al., 1994). 

 

Parameter Optimization 

We use tier one level data from the FLUXNET2015 dataset, containing data from 43 

tower sites across CONUS and representing the range of land cover classes (Figure 2.S2; 

Table 2.S1). To avoid the inclusion of poor quality data, we only use flux towers with at 

least two years of data and select daily GPP observations flagged as high quality (quality 

flag >= 0.75) (Richardson et al., 2010; Verma et al., 2015). At some flux tower sites 
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there is a discrepancy in land cover as designated by the flux tower dataset and the 

dominant land cover as classified by the NLCD. To avoid flux towers in areas with 

heterogeneous land cover, towers are only included if more than 50% of the pixels within 

a one km buffer are classified as the dominant land cover based on the NLCD and match 

the given land cover classification of the flux tower. At each flux tower location we 

extract the spatial mean of daily meteorological input variables (Tmin, VPD and SWrad) 

within a one km buffer of each tower location. The daily FPAR estimates for each 

product are extracted in the same way, however only pixels representing the dominant 

land cover (based on the categorization of the NLCD) within the buffer are included 

(Figure 2.S3). Our optimization approach finds the parameter set (Table 2.2) that 

minimizes the residual sum of squares between model outputs and the corresponding flux 

tower GPP estimates for each land cover class (Turner et al., 2006, 2009). We utilize a 

limited memory, quasi-Newton algorithm (L-BFGS-B) for optimization (Byrd et al., 

1995; Santaren et al., 2007), using original MOD17 algorithm parameters as starting 

values for initialization. 
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Table 2.S1: Flux Tower Info 

 Site ID Dates State Lat (°N) Long (°E) NLCD LC DOI 
1 US-AR1 2009-2012 Oklahoma 36.4267 -99.42 GR http://dx.doi.org/10.17190/AMF/1246137 

2 US_AR2 2009-2012 Oklahoma 36.6358 -99.5975 GR http://dx.doi.org/10.17190/AMF/1246138 

3 US-ARb 2005-2006 Oklahoma 35.5497 -98.0402 GR http://dx.doi.org/10.17190/AMF/1246025 

4 US-ARc 2005-2006 Oklahoma 35.5465 -98.04 GR http://dx.doi.org/10.17190/AMF/1246026 

5 US-ARM 2003-2012 Oklahoma 36.6058 -97.4888 CR http://dx.doi.org/10.17190/AMF/1246027 

6 US-Blo 1997-2007 California 38.8953 -120.6328 ENF http://dx.doi.org/10.17190/AMF/1246032 

7 US-Cop 2001-2007 Utah 38.09 -109.39 SH http://dx.doi.org/10.17190/AMF/1246129 

8 US-GLE 2004-2014 Wyoming 41.3665 -106.2399 ENF http://dx.doi.org/10.17190/AMF/1246056 

9 US-Ha1 1991-2012 Massachusetts 42.5378 -72.1715 DBF http://dx.doi.org/10.17190/AMF/1246059 

10 US-Me2 2002-2014 Oregon 44.4523 -121.5574 ENF http://dx.doi.org/10.17190/AMF/1246076 

11 US-Me6 2010-2014 Oregon 44.3233 -121.6078 ENF http://dx.doi.org/10.17190/AMF/1246128 

12 US-MMS 1999-2014 Indiana 39.3232 -86.4131 DBF http://dx.doi.org/10.17190/AMF/1246080 

13 US-Ne1 2001-2013 Nebraska 41.1651 -96.4766 CR http://dx.doi.org/10.17190/AMF/1246084 

14 US-Ne2 2001-2013 Nebraska 41.1649 -96.4701 CR http://dx.doi.org/10.17190/AMF/1246085 

15 US-Ne3 2001-2013 Nebraska 41.1797 -96.4397 CR http://dx.doi.org/10.17190/AMF/1246086 

16 US-NR1 1998-2014 Colorado 40.0329 -105.5464 ENF http://dx.doi.org/10.17190/AMF/1246088 

17 US-SRG 2008-2014 Arizona 31.7894 -110.8277 SH http://dx.doi.org/10.17190/AMF/1246154 

18 US-SRM 2004-2014 Arizona 31.8214 -110.8661 SH http://dx.doi.org/10.17190/AMF/1246104 

19 US-Ton 2001-2014 California 38.4316 -120.966 GR http://dx.doi.org/10.17190/AMF/1245971 

20 US-Tw3 2013-2014 California 38.1159 -121.6467 CR http://dx.doi.org/10.17190/AMF/1246149 

21 US-Twt 2009-2014 California 38.1087 -121.653 CR http://dx.doi.org/10.17190/AMF/1246140 

22 US-UMB 2000-2014 Michigan 45.5598 -84.7138 DBF http://dx.doi.org/10.17190/AMF/1246107 

23 US-UMd 2007-2014 Michigan 45.5625 -84.6975 DBF http://dx.doi.org/10.17190/AMF/1246134 

24 US-Var 2000-2014 California 38.4133 -120.9507 GR http://dx.doi.org/10.17190/AMF/1245984 

25 US-WCr 1999-2014 Wisconsin 45.8059 -90.0799 DBF http://dx.doi.org/10.17190/AMF/1246111 

26 US-Whs 2007-2014 Arizona 31.7438 -110.0522 SH http://dx.doi.org/10.17190/AMF/1246113 

27 US-Wi3 2002-2004 Wisconsin 46.6347 -91.0987 DBF http://dx.doi.org/10.17190/AMF/1246018 

28 US-Wi4 2002-2005 Wisconsin 46.7393 -91.1663 ENF http://dx.doi.org/10.17190/AMF/1246019 

29 US-Wi9 2004-2005 Wisconsin 46.6188 -91.0814 SH http://dx.doi.org/10.17190/AMF/1246024 

30 US-Wkg 2004-2014 Arizona 31.7365 -109.9419 SH http://dx.doi.org/10.17190/AMF/1246112 
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Table 2.S2: Total annual NPP for CONUS in Pg (1015 g) carbon for MOD17, NPPM250 and 
NPPL30 calculated with respiration as a fixed ratio of GPP and with the MOD17 procedure. 
Results are shown aggregated across all land cover as well for each class individually. 

 
LC Product 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Mean 

Total 

MOD17 2.996 2.946 3.275 3.389 3.217 2.880 3.196 3.162 3.137 3.297 2.880 2.786 3.070 3.120 3.097 
NPPM250 4.606 4.192 4.762 5.017 4.712 4.504 4.699 4.631 4.692 4.617 3.864 3.892 4.069 4.566 4.487 
NPPM250 (fixed ratio) 4.084 3.813 4.161 4.334 4.192 3.979 4.194 4.017 4.022 4.115 3.590 3.649 3.731 3.983 3.990 
NPPL30 3.114 2.834 3.221 3.431 3.194 3.054 3.139 3.208 3.267 3.137 2.519 2.491 2.712 3.148 3.034 
NPPL30 (fixed ratio) 3.281 3.091 3.319 3.472 3.393 3.254 3.356 3.307 3.350 3.380 2.976 3.070 3.158 3.378 3.270 

ENF 

MOD17 0.606 0.543 0.609 0.629 0.644 0.573 0.565 0.585 0.595 0.605 0.519 0.508 0.570 0.607 0.583 
NPPM250 0.657 0.588 0.635 0.681 0.661 0.639 0.635 0.615 0.645 0.612 0.535 0.561 0.575 0.636 0.620 
NPPM250 (fixed ratio) 0.666 0.615 0.650 0.675 0.659 0.640 0.639 0.611 0.625 0.614 0.559 0.593 0.590 0.624 0.626 
NPPL30 0.616 0.556 0.598 0.638 0.625 0.602 0.593 0.594 0.613 0.588 0.503 0.525 0.534 0.604 0.585 
NPPL30 (fixed ratio) 0.677 0.633 0.659 0.683 0.680 0.666 0.653 0.640 0.655 0.648 0.599 0.636 0.636 0.674 0.653 

DBF 

MOD17 0.602 0.634 0.752 0.710 0.630 0.565 0.578 0.654 0.661 0.651 0.613 0.614 0.683 0.631 0.641 
NPPM250 0.923 0.837 0.987 1.000 0.889 0.907 0.886 0.929 0.926 0.861 0.752 0.779 0.799 0.886 0.883 
NPPM250 (fixed ratio) 0.791 0.750 0.817 0.831 0.781 0.776 0.762 0.775 0.762 0.762 0.690 0.708 0.707 0.743 0.761 
NPPL30 0.701 0.630 0.758 0.772 0.672 0.675 0.637 0.715 0.720 0.649 0.509 0.501 0.573 0.675 0.656 
NPPL30 (fixed ratio) 0.691 0.653 0.713 0.730 0.685 0.677 0.660 0.688 0.689 0.673 0.591 0.606 0.639 0.682 0.670 

MF 

MOD17 0.093 0.089 0.096 0.101 0.091 0.087 0.087 0.092 0.091 0.091 0.087 0.087 0.091 0.089 0.091 
NPPM250 0.125 0.113 0.123 0.127 0.120 0.120 0.115 0.117 0.118 0.114 0.103 0.111 0.106 0.115 0.116 
NPPM250 (fixed ratio) 0.146 0.136 0.144 0.147 0.142 0.140 0.135 0.135 0.134 0.134 0.124 0.132 0.127 0.132 0.136 
NPPL30 0.153 0.138 0.152 0.156 0.147 0.146 0.139 0.145 0.146 0.138 0.119 0.129 0.127 0.143 0.141 
NPPL30 (fixed ratio) 0.147 0.137 0.144 0.147 0.144 0.142 0.136 0.137 0.138 0.137 0.126 0.136 0.133 0.140 0.139 

SH 

MOD17 0.378 0.366 0.404 0.441 0.456 0.396 0.459 0.407 0.394 0.457 0.380 0.384 0.393 0.414 0.409 
NPPM250 0.257 0.235 0.270 0.317 0.317 0.261 0.295 0.263 0.281 0.297 0.234 0.222 0.242 0.279 0.269 
NPPM250 (fixed ratio) 0.376 0.357 0.397 0.435 0.440 0.381 0.436 0.390 0.395 0.425 0.344 0.358 0.368 0.402 0.393 
NPPL30 0.179 0.162 0.187 0.237 0.224 0.179 0.211 0.186 0.204 0.204 0.149 0.127 0.158 0.191 0.186 
NPPL30 (fixed ratio) 0.294 0.282 0.309 0.344 0.352 0.308 0.345 0.320 0.329 0.350 0.282 0.293 0.304 0.334 0.318 

GR - 
Natural 

MOD17 0.334 0.315 0.358 0.382 0.384 0.325 0.435 0.360 0.361 0.402 0.325 0.292 0.337 0.369 0.356 
NPPM250 0.604 0.527 0.621 0.660 0.650 0.561 0.676 0.612 0.635 0.663 0.523 0.502 0.549 0.623 0.600 
NPPM250 (fixed ratio) 0.522 0.465 0.535 0.561 0.561 0.489 0.586 0.525 0.538 0.572 0.471 0.455 0.493 0.538 0.522 
NPPL30 0.309 0.274 0.317 0.343 0.336 0.295 0.346 0.329 0.344 0.351 0.351 0.266 0.273 0.332 0.319 
NPPL30 (fixed ratio) 0.325 0.298 0.330 0.349 0.353 0.314 0.366 0.342 0.352 0.371 0.314 0.317 0.331 0.356 0.337 

GR - 
Pasture/

Hay 

MOD17 0.379 0.387 0.410 0.414 0.377 0.345 0.393 0.394 0.377 0.401 0.351 0.363 0.373 0.368 0.381 
NPPM250 0.552 0.508 0.576 0.591 0.544 0.535 0.542 0.556 0.545 0.535 0.457 0.484 0.482 0.535 0.532 
NPPM250 (fixed ratio) 0.461 0.433 0.472 0.485 0.455 0.443 0.456 0.451 0.443 0.452 0.402 0.421 0.417 0.437 0.445 
NPPL30 0.232 0.211 0.244 0.251 0.229 0.227 0.227 0.241 0.235 0.224 0.184 0.191 0.196 0.292 0.227 
NPPL30 (fixed ratio) 0.288 0.273 0.291 0.300 0.287 0.281 0.288 0.288 0.284 0.290 0.264 0.281 0.277 0.290 0.284 

CR 

MOD17 0.597 0.606 0.638 0.705 0.628 0.583 0.672 0.663 0.650 0.683 0.599 0.532 0.616 0.635 0.629 
NPPM250 1.488 1.384 1.550 1.642 1.532 1.480 1.577 1.540 1.543 1.537 1.260 1.235 1.317 1.493 1.470 
NPPM250 (fixed ratio) 1.123 1.056 1.146 1.200 1.153 1.111 1.180 1.130 1.126 1.156 1.001 0.983 1.029 1.107 1.107 
NPPL30 0.925 0.863 0.965 1.032 0.961 0.930 0.985 0.998 1.103 0.983 0.783 0.751 0.836 0.975 0.935 
NPPL30 (fixed ratio) 0.859 0.815 0.874 0.919 0.892 0.866 0.908 0.893 0.903 0.911 0.800 0.802 0.839 0.903 0.870 
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Table 2.S3: Biome specific properties used in the MOD17 algorithm (Running & Zhao, 2015). 

Component Pameter Units Description 

GPP 

LUEmax kg C MJ-1 Maximum light use efficiency 

Tminmax °C Daily minimum temperature at which LUE = LUEmax (for optimal VPD) 

Tminmin °C Daily minimum temperature at which LUE = 0 (for any VPD) 

VPDmax Pa Daylight average VPD at which LUE = LUEmax (for optimal Tmin) 

VPDmin Pa Daylight average VPD at which LUE = 0.0 (for any Tmin) 

Daily MR 

LAImax m2leaf m2ground Potential maximum LAI 

SLA m2kg C-1 Leaf area per unit mass of leaf carbon 

Fine Root-Leaf Ratio na Fine root carbon to leaf carbon ratio 

Base Leaf MR kg C kg C-1day-1 Maintenance respiration per unit leaf carbon per day at 20 °C 

Base Fine Root MR kg C kg C-1day-1 Maintenance respiration per unit fine root carbon per day at 20 °C 

Q10MR na Exponent shape parameter controlling respiration as a function of temp 

Annual MR 

Live Wood-Leaf Ratio na Live wood carbon to annual maximum leaf carbon ratio 

Base Livewood MR kg C kg C-1day-1 Maintenance respiration per unit live wood carbon per day at 20 °C 

Q10MR na Exponent shape parameter controlling respiration as a function of temp 
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Table 2.S4: Reclassification scheme for National Land Cover Database (NLCD). Grassland and 
pasture/hay are combined as grassland. 

 
Class Reclassified Value NLCD Values NLCD Classes 

Evergreen Needleleaf Forest (ENF) 1 42 Evergreen Forest 

Deciduous Broadleaf Forest (DBF) 2 41 Deciduous Forest 

Mixed Forest (MF) 3 43 Mixed Forest 

Shrublands (SH) 4 52, *51 Shrub/Scrub, *Shrubland 

Grasslands (GR) 5 71, 81 Grassland, Pasture/hay 

Croplands (CR) 6 82, *83 Crops, *Small grains 

  * Indicates unique class in NLCD 1992 
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Figure 2.S1: Illustration of the linear ramp functions for scaling minimum temperature 
and vapor pressure deficit. 
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Figure 2.S2: Map of individual flux tower sites used for the GPP parameter optimization. 
The numbers correspond with individual flux towers described in Table 2.S1. 
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Figure 2.S3: (A) The NLCD within a 1 km buffer of the Wi4 flux tower located in 
Northern Wisconsin, demonstrating heterogeneous land cover cover at 30 m resolution. 
(B) Only FPAR values from pixels of the dominant land cover (evergreen needleleaf 
forest for this tower) are used in the parameter optimization process. 
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Figure 2.S4: Time series of NPP anomalies including the MODIS and Landsat derived 
NPP calculated with respiration as a fixed ratio (50%) of GPP. Using the fixed ratio 
approach, large anomalies in NPP are reduced for both the MODIS and Landsat derived 
datasets. 
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CHAPTER 3: OWNERSHIP DYNAMICS OF TERRESTRIAL 
PRODUCTION ACROSS THE CONTERMINOUS UNITED STATES: 
IMPLICATIONS FOR CONSERVATION 
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3.1 Introduction 

Within the conterminous United States (CONUS), public land across federal, state, and 

local jurisdictions accounts for over 450 million acres (~ 30% total land area), the 

remainder predominantly under private ownership, with a small fraction (~ 2%) under 

Native American jurisdiction. The resulting landscape–particularly in the western US–is 

often a mosaic of ownership, with varying ranges of management objectives and 

protection levels, that may or may not correspond to underlying ecological patterns or 

processes. As the predominant conservation paradigm operating in the United States 

centers around the network of public lands (Knight, 1999; Scott et al., 2001), including 

national parks, forests, and wildlife refuges, it is critical to assess and understand the 

extent to which public lands conserve key components. 

Quantifiable and meaningful metrics of ecosystem structure and function are not readily 

available at broad spatio-temporal scales. Many conservation assessments focus on 

narrowly defined questions across limited spatio-temporal scales, resulting in 

management actions that are therefore narrow and limited in scope (Hiers et al., 2016). 

For example, assessments often rely on single metrics, like biodiversity, demonstrating 

that public lands do not adequately cover the distributions or requirements of key 

threatened or endangered species (Groves et al., 2000; Jenkins et al., 2015). Subsequent 

policy, management, and conservation actions follow suit and result in overly precise 

prescriptions–often confined to the specific species of concern–failing to account for 

broader ecological processes. A critical and expanding area of research is the 

development of quantifiable variables across broad spatio-temporal scales that relate to 

key ecological processes and ecosystem functions (Maron et al., 2015). Compelling 
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approaches integrate satellite remote sensing (SRS) data and process-based models to 

produce datasets of relevant biological variables (Pereira et al., 2013). Terrestrial net 

primary production (NPP) is a key biological variable that can be modelled using SRS 

data (Potter et al., 1993; Running et al., 2000).  

NPP is a fundamental component of the carbon cycle, marking the sequestration of CO2 

into biomass through photosynthesis (Roy et al., 2001). As the entry point of carbon into 

ecosystems and the ultimate source of energy for all terrestrial species, NPP is linked not 

just to biodiversity across trophic levels, but is a supporting ecosystem service that is 

necessary for the production of all other ecosystem services (Field et al., 1995; Loreau et 

al., 2001). Largely controlled by climate, land cover, disturbance regime, and land-use 

practices, NPP is highly variable across space and time and is easily influenced by human 

activity (Piao et al., 2009). SRS derived estimates of terrestrial NPP and can be applied 

toward defining healthy ecosystem function (Costanza & Mageau, 1999), for assessing 

change and degradation across landscapes (Running et al., 2004), quantifying broader 

cumulative effects of landuse and management practices (Allred et al., 2015), and 

implementing effective conservation strategies (Turner et al., 2003).  

Given the need for essential metrics across broad spatio-temporal scales and the 

fundamental role of NPP, we use NPP to examine the effectiveness of the public land 

system in conserving ecosystem structure and function. Despite the substantial amount of 

public land within CONUS, its distribution is unequal and acreage increases from east to 

west. Production–largely driven by rainfall patterns at the continental scale–follows an 

opposite course and generally increases from the west to east (Figure 3.1). This inverse 

relationship, of production to public land acreage, is the direct result of historic policies 



 120 

that drove settlement of the United States, whereby lands best suited for agriculture and 

industry (i.e., the most productive) were settled and transferred out of the public domain 

(Scott et al., 2001). The premise that public lands tend to represent the least productive 

areas across CONUS has long been surmised, particularly for rangelands. We are the first 

to actually quantify this. The objectives of this paper are twofold: first, we examine 

ownership patterns of America’s terrestrial production. Second, we examine the role of 

the public lands system in conserving America’s terrestrial production and ensuing 

ecological processes and ecosystem services. The production-ownership relationship 

highlights key challenges and opportunities for conservation in the United States, 

providing a strong basis for programs and actions to be integrated across land ownership. 

 
3.2 Methods 

3.2.1 DATA 

To examine production-ownership relationships, we utilized a new high resolution NPP 

dataset specifically developed for CONUS (Robinson et al. 2017). This dataset, adapted 

from the global MOD17 NPP model (Running & Zhao, 2015), incorporates high 

resolution (30 m) Landsat estimates of vegetation dynamics, along with high resolution 

land cover and meteorological datasets specific to CONUS. These improvements produce 

a dataset well suited for monitoring the spatio-temporal variability of NPP across 

ownership, land-use, and management regimes at ecologically relevant scales. We 

obtained land ownership from the Protected Areas Database of the US (PAD-US CBI 

edition, version 2), a GIS dataset containing polygons of land ownership across CONUS, 

designated as federal, state, local, tribal, and private (The Conservation Biology Institute, 

2012). We classified ownership into three broad categories: public (aggregating federal, 
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state, and municipal ownership), tribal (Native American reservations) and private. The 

PAD-US represents ownership as of 2016; we assumed the transfer of land across the 

three major categories to be minimal during our study period (1993 to 2016).  

We used the 30 m National Land Cover Database (NLCD) (Homer et al., 2007, 2015; Fry 

et al., 2011) to disaggregate production-ownership results by dominant land cover class. 

We aggregated evergreen, deciduous, and mixed forests into a single forest category, and 

shrublands and grasslands into a single rangeland category. Croplands, pasture/hay, and 

built-up (e.g., urban) areas were excluded from the analysis. For a given year, we used 

land cover from the closest subsequent NLCD year (2001, 2006, or 2011). To compare 

production- ownership results across similar ecoclimate zones, we utilized the Level I 

Ecoregions of North America (hereafter ecoregions) (Omernik & Griffith, 2014). 

 
3.2.2 MULTI-SCALE ANALYSIS 

To explore our first objective of overall ownership patterns of terrestrial production 

across CONUS, we calculated total production and average productivity annually from 

1993 to 2016 for each ownership category at the CONUS scale. Total production is the 

cumulative amount of carbon allocated to plant tissue annually over a given area, often 

measured in Pg (1015) of carbon, while average productivity is the mean rate of allocation 

over a given area (kg C m-2 y-1). We used linear regression to determine temporal trends in 

both total production and average productivity. We also calculate a deviation metric, the 

percent departure from expected production or PDE, quantifying the degree to which 

total production for each ownership category and land cover class departs from the 

expected amount of production given the relative areas (Equation 1). 
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	𝑥	100     (1) 

Positive values indicate that total production is higher than expected for a given 

ownership class and land cover based on the area, while negative values indicate the 

opposite.  

To explore our second objective of assessing the role of public lands in conserving 

production, we quantified the ownership-production relationships at both the state and 

ecoregion scales. Dynamics at the state scale are important, as states represent relevant 

jurisdictional boundaries for both private and public land. Comparisons within ecoregions 

restrict analysis to ecologically similar areas and may highlight dynamics that are not 

apparent at the broader CONUS scale. We used Spearman’s rank-order correlation 

analysis to test for a correlation between the acreage of public lands and the average 

productivity of the public lands. At the state scale, this analysis is aggregated across land 

covers (forest and rangeland) while at the ecoregion scale it is disaggregated by land 

cover. At the ecoregion scale, we also calculated the total production, average 

productivity, trends from 1993 to 2016, and the PDE metric for ownership category and 

land cover class. Using finer resolution Level IV ecoregions, we calculated and mapped 

the PDE metric for private lands across for forests and rangelands. All analyses were 

done in Google Earth Engine (Gorelick et al., 2016) and R (R Core Team, 2015).  

 
3.3 Results 

Across CONUS private lands exhibit both higher total production and higher average 

productivity than public and tribal lands (Figure 3.2, Table 3.1). Production on privately 
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owned rangelands and forests accounts for approximately 67.3% (1.310 Pg C) of forest 

and rangeland NPP across CONUS, while production on public and tribal forests and 

rangelands accounts for 30.4% (0.591 Pg C) and 2.4% (0.046 Pg C) respectively. 

Average productivity of forests and rangelands is also substantially higher on private land 

than on public and and tribal land (0.455, 0.323, and 0.234 kg C m-2 y-1, respectively). 

Disaggregating by land cover yields similar results, with the exception of rangelands, 

where tribal ownership exhibits higher average productivity than public ownership (Table 

3.1). Additionally, PDE across CONUS reveals that privately owned land have 8.5% 

more total production than expected, given their respective area, while public and tribal 

land show less than expected production (-6.9% and -1.6% respectively). By land cover, 

private forests across CONUS are 3.2% more productive than expected while private 

rangelands are 14.1% more productive than expected. Public and tribal forests show less 

than expected production (-2.8% and -0.4%, respectively) as do public and tribal 

rangelands (-13.2% and -0.9%, respectively). 

At the state level there is a significant inverse relationship between the total area and the 

average productivity of public land (Figure 3.3a; ⍴ = -0.53; p < 0.01). This trends also 

occurs for rangelands at the ecoregion scale (Figure 3.3c; ⍴ = -0.79; p ≤ 0.01) but is not 

evident for forests (Figure 3.3b; ⍴ = 0.082; p = 0.72). Average productivity across forests 

and rangelands is higher on private than on public lands within most ecoregions (Table 

3.1). Eastern Temperate Forests, Southern Semi-Arid Highlands, and Temperate Sierras 

are the only ecoregions where productivity of public forests exceeds that of private 

forests. Likewise, productivity on public rangelands exceeds private rangelands in Marine 

West Coast Forests and Eastern Temperate Forests. Rangeland productivity on tribal 
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lands exceeds that of private and public lands within the Temperate Sierras, Southern 

Semi-Arid Highlands, Great Plains, and Eastern Temperate Forests. Total production 

across tribal lands, however, remains less that private and public lands simply due to total 

area. These dynamics are similarly reflected in the PDE. 

Within the CONUS domain, moderate trends were in total production and average 

productivity were present for some land covers. Private forests experienced a moderate 

decline in total production over the time period (slope = -0.0004 Pg C y-1; p = 0.14) while 

public forests increased in average productivity (slope = 0.002 kg C m-2
 y-1; p ≤ 0.05). At 

the ecoregion scale, two dominantly forested ecoregions appear to be driving the decrease 

in private forest total production, Marine West Coast Forest (slope = -0.0002 Pg C y-1; p ≤ 

0.01) and Eastern Temperate Forests (slope = -0.000341 Pg C y-1; p ≤ 0.10). The 

increasing trend in the average productivity in public forests can be attributed to Northern 

Forests (slope = 0.003 kg C m-2
 y-1; p ≤ 0.05), Northwestern Forested Mountains (slope = 

0.003 kg C m-2
 y-1; p ≤ 0.01), and Marine West Coast Forests (slope = 0.003 kg C m-2

 y-1; p 

≤ 0.05). 

 
3.4 Discussion 

Public lands are a central feature of the American conservation paradigm. Wilderness 

areas, national and state parks, wildlife refuges, national forests, and other publically 

owned lands are invaluable assets, conserving vast amounts of acreage and ecosystem 

structure and function. Public lands however, are only a portion a broader mosaic of land 

ownership, all with varying degrees of conservation value. Across CONUS, the vast 

majority of this mosaic is privately owned with considerable conservation value but 
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minimal conservation incentive or protection (Knight, 1999). The need for the integration 

of private lands into the broader conservation paradigm is well recognized, simply due to 

acreage and distribution (Groves et al., 2000; Scott et al., 2001; Donnelly et al., 2016). 

Our analysis of the ownership of terrestrial production adds compelling evidence to this 

discussion. As a supporting ecosystem service, terrestrial production is necessary for the 

production of all other ecosystem services, and thus the ownership–and ultimately 

management and responsibility–of terrestrial production is a critical component of 

broader ecosystem sustainability. 

Total production on private forests and rangelands across CONUS is more than double 

that of production on public and tribal lands combined. While not entirely unexpected, 

subtle dynamics highlight key points for ecological conservation. Not only does total 

production of private lands exceed that of public and tribal lands, average productivity is 

likewise greater; 13 and 32% greater across forests and 83 and 46% greater across 

rangelands, for public and tribal lands, respectively. When focusing on the ecoregions of 

the western United States, where public lands are predominant, the average productivity 

of private lands exceeds that of public lands for nearly every ecoregion (Table 3.1). 

Despite total production being greater on public lands (simply due to area), the most 

productive land is generally in the private domain, while the least productive is in the 

public domain. At the state scale, there is a clear inverse association between the total 

acreage of public land and its productivity (Figure 3.3a). This dynamic largely relates to 

the historic processes which drove the settlement of the country, where land suitable for 

agriculture and industry (i.e., most of the eastern United States and select areas in 
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proximity to water and with good soils in the western United States) were privatized first 

(Scott et al., 2001). 

The extent to which private land is disproportionately associated with higher productivity 

is especially apparent across western rangelands (Figures 3.3c, 3.4b). Although discussed 

and surmised for many years, we are the first to quantify that private rangelands are 

indeed more productive than public rangelands. While variable, productivity can be 2 to 

42% greater on private lands, suggesting that despite the vast acreage of western 

rangelands in the public domain, rangelands under private ownership are vital 

components of the ecological processes and ecosystem services that rangelands provide. 

Across the arid and semi-arid rangelands that are characteristic of the American west, 

these areas of higher productivity are often associated with water availability and higher 

quality soils, and have a disproportionate importance for broader ecological processes 

given their area within the landscape (Patten, 1998; McKinstry et al., 2004). Productive 

rangelands are critical for both wildlife and livestock, providing heterogeneity to the 

landscape (Fuhlendorf & Engle, 2001), are key to maintaining rangeland resilience 

(Bestelmeyer & Briske, 2012), and serving as critical microrefugia for drought, fire, 

climate change, and harsh winters (Berry et al., 2007; Mackey et al., 2012).  

Average productivity of tribal rangelands exceeded that of private and public productivity 

across Great Plains, Southern Semi-Arid Highlands, Temperate Sierras, and Eastern 

Temperate Forests ecoregions. The greater productivity found on these tribal rangelands 

may arise from integration into an innovative ecosystem management scheme (Liu et al., 

2007) or from a lack of mechanisms and incentives to develop or alter tribal land, which 

are more substantial on surrounding privately and publically owned lands (McNeeley, 
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2017). As with private rangelands, tribal rangelands contribute to the overall 

heterogeneity of rangelands across the ecological mosaic. Heterogeneity at these scales is 

an integral component of maintaining rangeland resilience (Fuhlendorf et al., 2012), and 

is shown through the lack of significant trends in either production or productivity. 

Ownership classes capture constituent parts of this heterogeneity, prompting the need for 

rangeland conservation paradigms to reflect this. 

Through examining the ownership-production relationship across CONUS, it is clear that 

maintaining terrestrial production–which is vital for conserving broader ecological 

processes and ecosystem functions–is not simply about conserving acreage. The United 

States public lands system is invaluable, conserving vast acreage, particularly across the 

western states; yet it insufficiently conserves production in the eastern United States and 

key areas of productivity in the western United States. Incorporating strategies of both 

private and tribal land conservation into broader conservation paradigms will be critical 

to maintain fundamental ecosystem functions such as terrestrial production. Developing 

conservation strategies on private lands presents unique challenges, as private 

landowners, whether individual or corporate, hold substantial liberties to manage land as 

they see fit. Management actions can be driven by a suite of factors, and are more often 

than not socio-economic rather than ecological. For example, the western United States 

continues substantial growth and development due to rapid population influxes (Maestas 

et al., 2001), resulting in subdivision, expanding exurban growth, and added pressure on 

privately held areas of high productivity. Across the eastern United States, current rates 

of forest loss are approximately 2.5 times greater than the national average (Drummond 

& Loveland, 2010), mostly occurring on private land and resulting in net losses of forest 



 128 

cover and subsequently total production. Except under certain regulatory circumstances 

(e.g., endangered species, hazardous or toxic substances), little can be done through 

policy or regulation to broadly implement conservation strategies that function across 

private and public lands. 

Primary production is one of America’s greatest natural assets, providing the foundation 

for numerous ecosystem services, biodiversity, and habitat. The majority of production 

across the conterminous United States occurs in the private domain. Despite challenges, 

private land conservation presents unique opportunities for partnerships, innovative 

solutions, and perhaps more sustainable outcomes built on consensus and choice 

(Endicott, 1993). These solutions can be more readily contextualized to both local 

ecological and socio-economic conditions than imposed regulatory solutions (Morrisette, 

2001). They can be applied beyond single species or single metric approaches to 

incorporate ecosystem services, landscape heterogeneity, and key resource areas 

(Villamagna et al., 2015), all of which can be measured and monitored through 

production dynamics (Running et al., 2004). Furthermore, these solutions often connect 

with people’s livelihoods, creating mutually beneficial outcomes for both conservation 

and private landowners (Endicott, 1993; Morrisette, 2001). Many of these partnerships, 

programs, and solutions are already being implemented across the United States with 

exceptional results. For example, the Natural Resources Conservation Service (NRCS) 

led Sage Grouse Initiative, works collaboratively with private landowners and partners 

across the western United States to improve rangeland productivity and Greater sage-

grouse (Centrocercus urophasianus) habitat while maintaining economic viability of the 

landscape. The success of this initiative was a major contributor to the “unprecedented 
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conservation cooperation” (White House 2015) that ensured the Greater sage-grouse was 

not listed under the Endangered Species Act. Conservation efforts that cross ownership 

boundaries and integrate working landscapes can improve our broader conservation 

paradigm to not only conserve biodiversity, habitat, and species, but also the key 

ecological functions and processes on which they depend. 
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3.6 Tables 

Table 3.1: Total production, average productivity, trends and p-values, and PDE for forests and 
rangelands across CONUS and for level I ecoregions. 
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3.7 Figures 

 
 



 137 

Figure 3.1: Ownership categories across CONUS (a.) and average total annual production from 
1993 to 2016 (b.). There is a distinct inverse longitudinal pattern of public land acreage and total 
production.  

 

Figure 3.2: Time series plots of total production and average productivity across CONUS from 
1993 to 2016 for land cover classes combined (a. and b.), forest classes (c. and d.), and rangeland 
classes (e. and f.). Total production and and average productivity on private lands is higher in all 
cases. Despite noticeable interannual variability, there are no significant temporal trends at the 
CONUS scale. 
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Figure 3.3: Ranking of public land acreage by state (a.), level I ecoregion forests (b.), and level 1 
ecoregion rangelands (c.) vs the average productivity across public lands. Spearman’s rank 
correlations (⍴) are significant at the state (⍴ = -0.53; p < 0.01) and for rangeland ecoregion levels 
(⍴ = -0.79; p ≤ 0.01) but not forests (⍴ = 0.082; p = 0.72). 
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Figure 3.4: Percent departure from expected production (PDE) for private lands across level IV 
ecoregions for forests (a.) and rangelands (b.). PDE highlights the degree to which total 
production on private lands departs from the expected production given the respective area. 
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