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ABSTRACT

A new monthly global drought severity index (DSI) dataset developed from satellite-observed time-variable

terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE) is presented.

TheGRACE-DSI record spans from 2002 to 2014 andwill be extended with the ongoingGRACE and scheduled

GRACE Follow-On missions. The GRACE-DSI captures major global drought events during the past decade

and shows overall favorable spatiotemporal agreement with other commonly used drought metrics, including the

Palmer drought severity index (PDSI) and the standardized precipitation evapotranspiration index (SPEI). The

assets of the GRACE-DSI are 1) that it is based solely on satellite gravimetric observations and thus provides

globally consistent drought monitoring, particularly where sparse ground observations (especially precipitation)

constrain the use of traditionalmodel-basedmonitoringmethods; 2) that it has a large footprint (;350 km), so it is

suitable for assessing regional- and global-scale drought; and 3) that it is sensitive to the overall terrestrial water

storage component of the hydrologic cycle and therefore complements existing drought monitoring datasets by

providing information about groundwater storage changes, which affect soil moisture recharge and drought re-

covery. In Australia, it is demonstrated that combining GRACE-DSI with other satellite environmental datasets

improves the characterization of the 2000s ‘‘Millennium Drought’’ at shallow surface and subsurface soil layers.

Contrasting vegetation greenness response to surface and underground water supply changes between western

and easternAustralia is found,whichmight indicate that these regions have different relative plant rooting depths.

1. Introduction

Drought indices are convenient tools for evaluating

drought and its social and ecological impacts, as well as for

decision-making in drought prevention and mitigation.

Many global gridded drought indices such as the Palmer

drought severity index (PDSI) and the standardized pre-

cipitation index (SPI) rely on the accuracy of meteorolog-

ical inputs and/or simple water balance models. They

become unreliable where ground observations (especially

precipitation and soil properties) are sparse. Therefore,

satellite remote sensing of drought-related variables such

as normalized difference vegetation index (NDVI), surface

soil moisture (SM), and terrestrial water storage (TWS)

have been proposed for complementing more traditional

meteorological drought indices (Anderson et al. 2011; Mu

et al. 2013; Thomas et al. 2014; AghaKouchak et al. 2015).

Drought indices are generally sensitive to a specific

part of the hydrological cycle. The PDSI is sensitive to
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atmosphere moisture demand and near-surface soil

moisture content and has been frequently used as a

measure of meteorological and soil moisture drought

(Mishra and Singh 2010). The SPI measures accumu-

lated precipitation deficits over varying time scales.

Shorter time scales are sensitive to surface SM vari-

ability, medium scales are sensitive to streamflow and

reservoir levels, and longer time scales are sensitive to

groundwater variations (McKee et al. 1993). However,

this sensitivity pattern varies by region and land cover,

which might complicate the choice of SPI time scale in

characterizing drought onset, duration, and recovery

(Zeng et al. 2008; Wang et al. 2015). An index that

reflects total water storage changes in the hydrological

cycle is desired for fully characterizing drought evolu-

tion and ecosystem response to water supply variations

(Van Loon 2015).

TWS estimates derived from the Gravity Recovery

and Climate Experiment (GRACE) have been widely

used to examine regional-scale droughts worldwide

(Yirdaw et al. 2008; Leblanc et al. 2009; Chen et al.

2010a; Long et al. 2013). Li et al. (2012) assimilated

GRACE TWS into a land surface model to monitor

drought in Europe. Thomas et al. (2014) proposed a

framework to quantify drought-induced water storage

deficits. However, previous studies did not consider

the spatial and temporal variability of local hydro-

climatology, which is important for drought comparison

across space and time (Zhao et al. 2017). Houborg et al.

(2012) account for this issue by deriving local cumulative

distribution of dry and wet conditions from the GRACE

data assimilation system; however, this system may

not be readily available outside of North America.

Recently, Zhao et al. (2017) developed a new drought

severity index (DSI) based solely on GRACE TWS

estimates. Compared to previous GRACE TWS-based

drought studies, theGRACE-DSI is calculated without

model assimilation and considers spatial and temporal

variability of local hydroclimatology. Zhao et al. (2017)

evaluate the performance of the GRACE-DSI in

the continental United States, where robust drought

characterization is available attributed to dense surface

observation network and reliable PDSI estimates,

whereby GRACE-DSI shows significant agreement

with the PDSI and overall favorable spatiotemporal

correspondence with satellite retrievals of NDVI

and SM.

Here we present a global gridded GRACE-DSI re-

cord derived from the standard spherical harmonic ap-

proach extending from 2002 to 2014. We compare the

GRACE-DSI record with traditional drought indices

including the PDSI and the standardized precipitation

evapotranspiration index (SPEI; Vicente-Serrano et al.

2010a) over the global domain, excluding Antarctica

and Greenland. We also exclude the barren or sparsely

vegetated land cover based on theModerate Resolution

Imaging Spectroradiometer (MODIS) land-cover type

data product (MCD12Q1; Friedl et al. 2010) because

these regions have low hydroclimatic variability and

large DSI error (Dai 2011). We conduct a regional case

study of the 2000s ‘‘Millennium Drought’’ in Australia

(van Dijk et al. 2013) to evaluate potential synergy be-

tween the GRACE-DSI and other satellite environ-

mental data records, including SM and NDVI, for

monitoring drought-related impacts on terrestrial eco-

systems.We quantify the uncertainty ofGRACE-DSI in

characterizing drought. We evaluate the impact of

using a 13-yr reference period on climatology estimates

rather than a longer record. We also discuss DSI results

derived from the GRACE mascon solutions.

2. Data and methodology

We use Release-05 (RL05) Center for Space Research

(CSR) GRACE gravity solutions in the form of spherical

harmonic coefficients truncated to degree 60 for the pe-

riod from April 2002 to October 2014. We substitute the

GRACE-derived C20 (degree 2 order 0 spherical har-

monic coefficient) coefficients with monthly estimates

from satellite laser ranging (Cheng et al. 2013).We include

degree-1 coefficients calculated as in Swenson et al. (2008)

and correct the glacial isostatic adjustment signal follow-

ing A et al. (2013). To reduce correlated errors, we filter

each monthly field following Swenson and Wahr (2006).

We convolve the filtered coefficients with a 350-km radius

Gaussian averaging function (Wahr et al. 1998) and cal-

culate the monthly TWS mass anomalies relative to the

2002–14 mean on a 18 3 18 latitude–longitude grid.

We use the 2.58 global self-calibrated PDSI developed

by Dai (2011). The PDSI uses a two-layer model to as-

sess soil water balance by accounting for both water

supply and demand (Palmer 1965). The PDSI values

correlate with top 1-m depth soil moisture observations

over the United States, the former Soviet Union, Mon-

golia, and China, and with streamflow over major global

river basins (Dai et al. 2004; Dai 2011).

We use the 0.58 global SPEI developed by Vicente-

Serrano et al. (2010a). The SPEI evaluates accumulated

precipitation minus potential evapotranspiration (PET)

over multiple time scales up to 48 months (Vicente-

Serrano et al. 2010b). The SPEI extends the SPI by in-

corporating PET in determining drought and shows

advantages over the SPI in capturing temperature im-

pact on water demand (Vicente-Serrano et al. 2014).

In the Australian case study, we use remotely sensed

0.258 SM data from the European Space Agency

2118 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



Climate Change Initiative (Liu et al. 2011, 2012). The

SM record employs satellite passive and active micro-

wave sensor data with improved spatial and temporal

coverage and resolution. We also use the MODIS

monthly Climate Model Grid 0.058 NDVI (MOD13C2;

Huete et al. 2002) as a proxy for drought-sensitive veg-

etation growth changes. Previous studies have shown

that, at the site scale, changes in NDVI are sensitive to

root-zone SM variations in dry regions (e.g., Wang et al.

2007; Schnur et al. 2010). Recent studies confirmed this

result at the regional scale in Australia (Chen et al. 2014;

Yang et al. 2014; De Keersmaecker et al. 2017).

For each grid cell, the GRACE-DSI is defined as the

standardized anomalies of GRACE TWS as follows:

GRACE-DSI
i,j
5

TWS
i,j
2TWS

j

s
j

, (1)

where i is year ranging from 2002 to 2014; j is month

ranging from January to December; and TWSj and sj are

the mean and standard deviation of TWS anomalies in

month j, respectively. The GRACE-DSI is a dimension-

less quantity that detects both drought and abnormally

wet events: less than 22.0 is an exceptional drought,

from 21.99 to 21.60 is an extreme drought, from 21.59

to 21.30 is a severe drought, from 21.29 to 20.80 is a

moderate drought, from 20.79 to 20.50 is abnormally

dry, from20.49 to 0.49 is near normal, from 0.50 to 0.79 is

slightlywet, from 0.80 to 1.29 ismoderatelywet, from 1.30

to 1.59 is very wet, from 1.60 to 1.99 is extremely wet, and

higher than 2.0 is exceptionally wet.

Because of the truncation and filtering applied to reduce

short-scale errors in GRACE, each GRACE-DSI grid cell

represents conditions averaged over a 350-km radius foot-

print (Velicogna and Wahr 2006, 2013). For consistency,

all datasets are processed the same as the GRACE data,

that is, expanded in spherical harmonic, truncated to de-

gree 60, filtered, spatially smoothed, and projected onto a

18 3 18 grid (Velicogna et al. 2012). To bring the data com-

parison to the same reference period, we standardize the

PDSI, SPEI, SM, andNDVI relative to theGRACE-DSI

period (2002–14), herein referred to as PDSI-Z, SPEI-Z,

SM-Z, and NDVI-Z using the following equation:

X2Z
i,j
5
X

i,j
2X

j

s
j

, (2)

where X represents PDSI, SPEI, SM, or NDVI and Xj

and sj are the monthly mean and standard deviation of

X calculated from the same years and months used for

the GRACE-DSI. This standardization process has also

been employed in previous drought index studies

(Anderson et al. 2011, 2013; Mu et al. 2013).

We calculate the GRACE-DSI uncertainty due to

GRACE measurement error and leakage error. At ev-

ery grid cell, we estimate the GRACE measurement

error following Wahr et al. (2006) and the leakage error

following Landerer and Swenson (2012). A synthetic

TWS field from the Community LandModel, version 4.5

(CLM4.5), is used as a realistic representation of the

observed TWS signal. The leakage error is defined at

each grid cell as the RMS difference between the orig-

inal and the GRACE-like processed CLM4.5 TWS time

series (i.e., converted into harmonics, truncated to de-

gree 60, de-striped, spatially smoothed, and converted to

18 3 18 regular longitude–latitude grids). The total

GRACE error is the summation of the measurement

and leakage error in quadrature. We then use a Monte

Carlo simulation to estimate the DSI error. At each grid

cell, we generate an ensemble of 1000 normally dis-

tributed zero mean random noise time series (s 5 total

GRACE error).We compute theGRACE-DSI for each

of those 1000 simulations and calculate the sample dis-

tances from their monthly sample means. The resulting

sample distances follow a normal distribution, and we

set the one standard deviation of the sample distances

as the error of GRACE-DSI. Our GRACE-DSI un-

certainty estimate is conservative as it assumes that all

nonannual and nonsemiannual variations in GRACE

data are due to measurement errors. This assumption

overestimates the GRACE-DSI error in regions where

large nonseasonal variability is observed, for instance

due to extreme drought and flooding (Wahr et al. 2006;

Tiwari et al. 2009). For the Australian case study, we

adopt the same approach to provide a conservative error

estimate for the NDVI-Z and SM-Z records.

3. Results

Figure 1 shows the global distribution of GRACE-

DSI, PDSI-Z, and SPEI-Z at selected time scales for

July 2010, a month in which major drought conditions

occurred worldwide (AghaKouchak et al. 2015). The

three indices show agreement in the intensity and spatial

distribution of drought conditions in western Russia,

Southeast Asia, and northern India. Differences are

observed in regions including northern China and

mainland Australia. The GRACE-DSI and 1-month

SPEI-Z show severe drought in northern China,

whereas the PDSI-Z and longer-time-scale SPEI-Z

(.6 months) show only moderate drought or near-normal

conditions. In mainland Australia, the GRACE-DSI

shows a similar drought pattern as the 36-month SPEI-Z,

butmore severe andwidespread drought than the PDSI-Z.

In the Amazon, the GRACE-DSI and PDSI-Z capture

similar drought intensity and extent. The SPEI-Z also
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detects drought in the Amazon, but with varying extent

and intensity for different time scales.Wet events are also

observed by these indices, but with different extents and

magnitudes. For instance, all indices capture the flooding

in China except the 36-month SPEI-Z. The GRACE-

DSI, PDSI-Z, and shorter-than-15-months SPEI-Z observe

the wetting in Pakistan (Webster et al. 2011), whereas

the long-time-scale SPEI-Z does not detect this wet-

ting event. The GRACE-DSI characterizes the south-

ernAfrica wetting as a very wet to extremely wet event,

which is consistent with other observation-based drought

indices (AghaKouchak et al. 2015). This event, however,

is missed by the PDSI-Z and short-time-scale SPEI-Z

(,6 months).

Figure 2 shows time series of theGRACE-DSI, PDSI-Z,

and SPEI-Z at selected time scales for four locations

where major drought events have been reported. The

GRACE-DSI shows generally close agreement with the

PDSI-Z, with a 1-month delay behind PDSI-Z in re-

sponse to drought evolution for the 2010 western Russian

drought (Fig. 2a; Yoshida et al. 2015) and the 2005–

06 vegetation drought in East Africa (Fig. 2c; Rulinda

et al. 2012). In the Amazon, the GRACE-DSI is con-

current with the PDSI-Z and captures the extraordinary

2005 and 2010 droughts in this region as well as the

exceptional 2009 flooding (Fig. 2b; Zeng et al. 2008; Chen

et al. 2010b; Lewis et al. 2011).

The GRACE-DSI agrees well with the 6–12-month

SPEI-Z (Figs. 2i–p). The GRACE-DSI also captures

drought events detected by the shorter-time-scale SPEI-Z.

For instance, the GRACE-DSI captures the short-term

2005/06 winter drought in western Russia (Figs. 2e,i,m).

This event is well captured by the 1–12-month SPEI-Z

but is missed by the 24-month SPEI-Z. The GRACE-

DSI captures the severe short-term 2010 drought

and the 2011/12 winter drought in northern China

(Barriopedro et al. 2012), which are both missed by

other indices except for the 1-month SPEI-Z (Fig. 2h).

In the Amazon, the GRACE-DSI agrees better with

the SPEI-Z at time scales shorter than 6 months

(Figs. 2f,j).

Figure 3 shows the spatial distribution of monthly

GRACE-DSI correlations with the PDSI-Z and SPEI-Z

at selected time scales. The correlation between the

GRACE-DSI and PDSI-Z is significant at the 95%

confidence level over 91% of our study domain with an

area-weighted mean correlation coefficient of 0.54

(Fig. 3a). The 1-month SPEI-Z has a low correlation

with the GRACE-DSI in most regions (Fig. 3b). The

correlation increases in magnitude and spatial extent at

FIG. 1. Global patterns of the GRACE-DSI, PDSI-Z, and SPEI-Z drought metrics at selected

time scales (1, 3, 6, 9, 12, 15, 24, and 36 months) for July 2010.
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time scales of 3–18months and weakens at time scales of

18–48 months (Figs. 3c–i). The GRACE-DSI correla-

tion with SPEI-Z is significant at the 95% confidence

level over 90%of our study domain at time scales from 5

to 10 months with area-weighted average correlation

coefficients above 0.43. Generally, the GRACE-DSI

and SPEI-Z have the highest correlation at time scales

of 6–18 months (Figs. 3d–f).

Distinct rainfall and drought patterns were docu-

mented between western and eastern Australia during

the Millennium Drought period (Beard et al. 2011; van

Dijk et al. 2013). Figures 4b and 4c show the time series

of the GRACE-DSI, SM-Z, and NDVI-Z for western

Australia (location 1) and easternAustralia (location 2).

The GRACE-DSI and NDVI-Z have much smaller

uncertainty than SM-Z. These satellite-based metrics

show overall consistent temporal variations, but differ-

ences in trends and magnitude. From 2002 to late 2009,

the GRACE-DSI shows statistically significant drying

trends in both locations (20.276 0.03 yr21, p, 0.001 for

western Australia and 20.07 6 0.02 yr21, p , 0.005 for

eastern Australia). A significant NDVI-Z decreasing

trend (20.08 6 0.04 yr21, p , 0.05) is observed in

western Australia but not in eastern Australia. The

FIG. 2. Time series of the GRACE-DSI (red), PDSI-Z (black), and SPEI-Z (blue) at selected time scales at four locations annotated

with 350-km radius footprints in the map. The geographic coordinates are (548N, 468E), (88S, 728W), (08, 388E), and (448N, 1168E) for
locations 1–4, respectively. Note that theGRACE-DSI is the same for all plots in the same location. Error bar onGRACE-DSI represents

the GRACE-DSI uncertainty due to GRACE measurement and leakage errors. Pearson correlation coefficient of each comparison is

shown on top of each plot. Correlation coefficients larger than 0.17 are significant at the 95% confidence level.
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SM-Z shows no trend in either location.During the extreme

2010/11 La Niña–induced flooding (Beard et al. 2011),

the SM-Z increases earlier than GRACE-DSI at both

locations. The NDVI-Z increases concurrently with

GRACE-DSI in western Australia but responds simul-

taneously with SM-Z in eastern Australia. For the entire

study period, the GRACE-DSI has consistently good

agreement with NDVI-Z at both locations with a

FIG. 3. Correlation betweenmonthly (a)GRACE-DSI and PDSI-Z and (b)–(i) GRACE-DSI and SPEI-Z at time scales of 1, 3, 6, 12, 18,

27, 36, and 48 months, respectively. (j) Max correlation between monthly GRACE-DSI and SPEI-Z at various time scales. (k) Time scale

of SPEI-Z in which the max correlation in (j) is recorded. Insignificant correlation coefficients (p . 0.05) are masked out in (a)–(j).

FIG. 4. (a) Time series of GRACE-DSI (red), satellite-retrieved SM-Z (yellow), and NDVI-Z (green) for two

locations in mainland Australia annotated with 350-km footprints in the land-cover map. (b) Location 1 (278S,
1218E) in western Australia and (c) location 2 (288S, 1488E) in eastern Australia. Time series are smoothed using

a quadratic polynomial filter with a 13-month window (Savitzky and Golay 1964). Uncertainties of these satellite

records are shaded in corresponding colors. The errors of SM-Z and NDVI-Z are estimated conservatively in

a similar manner as the GRACE-DSI considering both measurement error and leakage error.
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correlation coefficient R of 0.80 and root-mean-square

error (RMSE) of 0.60. SM-Z has good agreement with

NDVI-Z in eastern Australia (R5 0.84, RMSE5 0.57)

but less agreement with NDVI-Z in western Australia

(R 5 0.53, RMSE 5 0.96).

Figure 5 shows the GRACE-DSI uncertainty in

drought category caused by GRACE measurement and

leakage errors. We find that GRACE-DSI characterizes

drought severity with an uncertainty less than one cat-

egory (i.e., DSI error ,0.4, one drought category in-

terval) in 47% of our study domain (all land regions

excluding Antarctica, Greenland, and barren grounds),

with one category uncertainty (0.4#DSI error, 0.8) in

51% andwith two categories uncertainty (DSI error$0.8)

in 2%.

4. Discussion

a. GRACE-DSI comparison with PDSI and SPEI

The three indices adopt different water balance con-

cepts and address different hydrological processes. The

GRACE-DSI is based on direct measurements of water

balance that account for water supply from precipitation

and water demand from actual evapotranspiration and

runoff. The PDSI also accounts for the net water

changes but through a simplified two-layer bucket

model, which usually represents the water balance of

shallow soil depth (Dai 2011). The GRACE-DSI cap-

tures total water supply conditions while PDSI-Z cap-

tures conditions relative to the shallow-depth water

storage. For instance, in July 2010 over easternAustralia

(Fig. 1), the GRACE-DSI captures the groundwater

deficit near the end of the Millennial Drought (van Dijk

et al. 2013; Leblanc et al. 2009, 2012) while the PDSI

shows surface water replenishment from the 2010 La

Niña event (Beard et al. 2011). The difference in water

balance concepts causes the two indices to capture dif-

ferent long-term trends in surface or deeper water

storage; this is the case for northern China (Fig. 2d)

where the GRACE-DSI indicates a drying trend in

overall water storage from 2002 to 2012 while the PDSI-Z

suggests a surface wetting trend from 2006 to 2014. This

agrees with the observation fromQin et al. (2015) in the

same area that surface soil moisture and NDVI are in-

creasing during our study period despite significantly

decreasing annual precipitation trend. For this reason,

we find a low temporal correlation in this region be-

tween GRACE-DSI and PDSI-Z for the entire time

series (R5 0.29, p, 0.05) while the correlation between

the detrended time series increases to 0.50 (p , 0.05).

In addition, the response time of shallow soil moisture

to drought can be shorter than the overall water storage

(e.g., Van Loon 2015). This explains the 1-month lag

delay between the GRACE-DSI and PDSI-Z for the

2010 western Russian drought and the 2005–06 East Af-

rica drought (Figs. 2a,c; Rulinda et al. 2012; Yoshida et al.

2015). Groundwater pumping and agricultural irrigation

can also delay the response of GRACE-DSI to natural

drought evolution, which would affect its agreement with

PDSI in heavily irrigated areas (Dai 2011).

The SPEI-Z assesses the climatic water balance (pre-

cipitation minus potential evapotranspiration) over mul-

tiple time scales (Vicente-Serrano et al. 2010a). The

GRACE-DSI represents moisture variations from all hy-

drological components. The response time of these com-

ponents to climatic water balance generally lengthens as

they go deeper into the ground (e.g., McKee et al. 1993;

Vicente-Serrano et al. 2010a). Therefore, the component

that dominates changes in the hydrologic cycle will deter-

mine at which time scale SPEI-Z agreeswithGRACE-DSI.

For instance, the GRACE-DSI only has good agreement

FIG. 5. Global distribution of GRACE-DSI uncertainty in drought category excluding

Antarctica, Greenland, and barren grounds.
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with 1-month SPEI-Z in detecting the northern China

drought (Fig. 1), indicating that shallow-depth water

storage deficit dominates this drought event, in agreement

with Barriopedro et al. (2012) describing this event as

short-term drought caused by transient summer precipi-

tation shortage. In Australia (Fig. 1), where the GRACE-

DSI is dominated by severe deep-water depletion near the

end of the Millennium Drought (e.g., Leblanc et al. 2012;

van Dijk et al. 2013), GRACE-DSI shows a better agree-

ment in terms of spatial pattern with SPEI-Z for time

scales longer than 30 months (Fig. 1). In the Amazon we

find a maximum correlation for 6-month SPEI-Z (Figs. 2j,

3k), indicating that surface and shallow soil moisture

dominates the changes in the hydrologic cycle, in agree-

ment with earlier studies in the same area (Han et al. 2009;

Kim et al. 2009; Frappart et al. 2012, 2013). These results

demonstrate that the time scale at which the SPEI-Z

achieves maximum temporal correlation with the

GRACE-DSI (optimal time scale) is of potential use to

constrain the relative depth of the water component that

dominates the overall changes in the water cycle at a

specific location. For instance, the optimal time scale in

northern and western Australia is much smaller than in

southeasternAustralia (Fig. 3k). This result suggests that a

relatively shallower hydrologic component dominates the

overall changes in the water cycle in northern and western

Australia compared to southeastern Australia, where se-

vere groundwater depletion dominates the changes in

TWS during theMillenniumDrought (Leblanc et al. 2009,

2012). We evaluate this hypothesis using NDVI-Z as a

proxy for root-zone soil moisture variations (Chen et al.

2014; Yang et al. 2014; De Keersmaecker et al. 2017). We

calculate the optimal time scale between SPEI-Z and

NDVI-Z in Fig. 6a. In northern and western Australia, we

find that the optimal SPEI-Z time scale for NDVI-Z is

consistent with the optimal time scale for GRACE-DSI

(Fig. 6b), suggesting that root-zone soilmoisture variability

dominates the overall changes in thewater cycle over these

regions. This result therefore confirms that changes in the

water cycle in northern and western Australia are domi-

nated by a relatively shallower hydrologic component

(root-zone soil moisture) than in southeastern Australia

(groundwater).

The optimal time scale (Fig. 3k) shows large spatial

variability. This variability is consistent among different

GRACE processing approaches (see Fig. S3b in the

supplemental material). We also find that the spatial

pattern of Fig. 3k is insensitive to GRACE measure-

ment errors. Therefore, the result of Fig. 3k is robust.

The large spatial variability highlights the geographical

complexity of the translation of climatic water balance

into hydrologic system (e.g., Tallaksen et al. 2009;

Teuling et al. 2013; Van Loon et al. 2012, 2014; Van

Loon 2015). This large spatial variability is also observed

in previous studies comparing SPEI with PDSI at global

scale (Vicente-Serrano et al. 2010b) and comparing

SPEI and SPI at local and regional scales with hydro-

logical drought proxies using groundwater and stream-

flow observations (Bloomfield and Marchant 2013;

López-Moreno et al. 2013; Li and Rodell 2015; Kumar

et al. 2016). We observe very long time scales

(.40 months) over regions such as western Africa;

southern Africa; southern South America; and parts of

Australia, western Russia, and North America (Fig. 3k).

During the analyzed period, those regions have experi-

enced persistent trends in TWS (Long et al. 2017),

mainly driven by long-term changes in climatic condi-

tions such as the sustained wetting trend in western and

FIG. 6. (a) Time scale by which NDVI-Z achieves max correlation coefficient with SPEI-Z. (b) The Australia

subregion in Fig. 3k, that is, the time scale bywhichGRACE-DSI achievesmax correlation coefficient with SPEI-Z.

Note that a large area of (b) saturates at time scales over 20months. Correspondingmax correlation coefficients are

significant at the 99% confidence level for both plots.
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southern Africa (Maidment et al. 2015) and persistent

drought conditions in southern South America and

Australia (Chen et al. 2010a; van Dijk et al. 2013). In

those regions, the GRACE-DSI is largely influenced by

long-term accumulation of climatic water balance,

therefore achieving maximum correlation with long-

time-scale SPEI-Z.

b. Australian case study

From 2002 to late 2009, surface soil moisture (SM-Z)

shows no trends but GRACE-DSI indicates significant

drying trends in both western and eastern Australia. This

suggests gradual depletion of deeper water storage, which

is beyond the depth that microwave satellites can sense,

such as root-zonemoisture and groundwater. Our analyses

for location 2 agree with the results from Leblanc et al.

(2009, 2012) and van Dijk et al. (2013) in the Murray–

Darling basin, where soilmoisture droughts stabilize at low

levels since 2002 while groundwater levels gradually de-

cline until late 2009. Leblanc et al. (2012) also observe a

small increase in total water storage from 2007 to 2008 and

estimate that about two-thirds of this increase is used to

replenish the shallow surface soil moisture reservoir. This

is highly consistent with our results in eastern Australia

(Fig. 4c). The small increase in total water storage in 2008

greatly reduces the magnitude of the drying trend in

eastern Australia from 2002 to late 2009.

The NDVI-Z has different degrees of agreement with

SM-Z in western and eastern Australia, but has an overall

good and consistent agreementwithGRACE-DSI in both

locations. This suggests that the GRACE-DSI is a more

consistent indicator of plant water availability than surface

soil moisture across Australia, in agreement with earlier

studies (e.g., Chen et al. 2014; Yang et al. 2014; Wu et al.

2015). From 2002 to late 2009, although SM-Z has no

trend, NDVI-Z shows a decreasing trend in western

Australia that coincides with the drying trend in

GRACE-DSI. This possibly reflects increasingwater stress

on plants as the drought propagates from the shallow

surface to the deep underground. During and after the

2010/11 LaNiña–induced extremewetting, NDVI-Z closely

follows GRACE-DSI in western Australia. These together

suggest that deep-rooted and groundwater-dependent plants

might dominate vegetation greenness in western Aus-

tralia. In contrast, NDVI-Z does not show significant de-

creasing trend from 2002 to late 2009 in eastern Australia,

suggesting that vegetation might not be influenced by

the gradual depletion of deeper water storage. Overall,

NDVI-Z agrees better with SM-Z both in magnitude and

temporal variation than with GRACE-DSI in eastern

Australia, indicating that shallow-rooted plants might

dominate vegetation greenness in this region. This con-

trasting NDVI response pattern is consistent with the re-

gional distribution of drought-sensitive vegetation in

eastern Australia and drought-resistant vegetation in

western Australia where water-table depth is much

deeper than in the east (Khan et al. 2008; Fan et al. 2013;

De Keersmaecker et al. 2015; Seddon et al. 2016).

c. Short data record length

The initial GRACE-DSI period (2002–14) may not be

long enough to sample the full range of wetness and

dryness required for a climatological index, for which a

climatology of at least 30 years is preferred. To evaluate

the potential impact of short data record length on

drought characterization, we calculate the RMSE be-

tween two PDSI-Z records normalized to 2002–14 and

1982–2014, respectively, using Eq. (2). We find that using

the 13-yr climatology, PDSI-Z underestimates drought

by one category over 15% of the study domain (all land

regions excluding Antarctica, Greenland, and barren

ground) and by two categories over 1% of the study

domain (Fig. 7). These regions experienced a signifi-

cantly drier mean climate during 2002–14 than during

FIG. 7. Drought category overestimation (positive value) and underestimation (negative

value) using the 2002–14 reference period rather than the 1982–2014 reference period for the

PDSI-Z drought index.

AUGUST 2017 ZHAO ET AL . 2125



1982–2014.We also find that using the 13-yr climatology,

PDSI-Z overestimates drought by one category over 12%

of the study domain where the 13-yr mean climate is

much wetter and/or the hydroclimatic variability is much

smaller than the 33-yr climatology. Therefore, when using

GRACE-DSI in these regions, we suggest that the stake-

holders correct for the category bias to mitigate the short

baseline issue. When comparing the GRACE-DSI with

other long-term drought metrics, the bias can also be

effectively removed by referencing to the 2002–14 period

using the normalization method employed in this study.

d. GRACE-DSI calculated from JPL mascon
solutions

We also calculate GRACE-DSI using the Jet Pro-

pulsion Laboratory (JPL) RL05 Mascon solutions

(Watkins et al. 2015). Eachmascon solves for themonthly

gravity field averaged over an equal-area 38 spherical cap
mass concentration block. The spatial representation of

the GRACE-DSI from the mascon is therefore different

from the spherical harmonics–derived GRACE-DSI for

which each 18 grid cell represents conditions averaged

over a 350-km radius footprint. We repeat the drought

index intercomparison for the mascon-derived GRACE-

DSI (see supplemental material for details). Overall,

the mascon results are in agreement with the spherical

harmonics results except in the Amazon rain forest,

where for over a few months we observe north–south

stripes (e.g., Fig. S1) in regions characterized by larger

errors in the mascon (Watkins et al. 2015; Wiese et al.

2016). The stripes are not visible in the spherical

harmonics–derived GRACE-DSI and in the other

drought indices (Figs. S2–S4).

5. Conclusions

Wepresent a newmonthly globalDSI developed from

satellite-observed time-variable terrestrial water stor-

age changes from GRACE. The initial global GRACE-

DSI record extends from 2002 to 2014 and will be

updated on a regular basis when newly processed

GRACE solutions become available. Although cur-

rently not in real time, theGRACE-DSI has potential to

provide near-real-time drought monitoring capability

with the launch of the GRACE Follow-On mission in

2017. Moreover, the GRACE-DSI has several unique

advantages that make it valuable to study drought-

related processes and socioecological impacts. The

GRACE-DSI is unaffected by uncertainties associated

with traditional model-based indices (e.g., PDSI, SPI,

and SPEI), such as dependency on sparse weather sta-

tion observations or uncertainty from the use of simple

water balance models or reanalysis meteorological data.

Therefore, it provides an independent observation bench-

mark for evaluating model-based drought monitoring tools

while providing drought information even where sparse

ground observations may constrain other approaches.

The GRACE-DSI is sensitive to changes in the bulk

terrestrial water storage component of the hydrologic

cycle extending from a plant’s root-zone soil moisture to

deeper groundwater. In contrast, PDSI represents the

water balance of shallow soil depth, and SPEI-Z assesses

the climatic water balance (precipitation minus potential

evapotranspiration) over multiple time scales. We in-

terpret the differences between GRACE-DSI and those

traditional drought indicators in terms of which hydro-

logical component dominates the drought signal. For in-

stance, the low correlation between GRACE-DSI and

PDSI-Z in northern China is due to the difference in

trend between TWS and shallow water storage. The time

scales of maximum correlation between GRACE-DSI

and SPEI-Z indicate which component dominates the

hydrologic cycle: maximum correlation occurs with short-

time-period SPEI-Z when the hydrological cycle is

dominated by changes at shallow depth; maximum cor-

relation occurs with longer-period SPEI-Z when the hy-

drological cycle changes at depth. For eastern and

southeastern Australia, for instance, maximum correla-

tion between GRACE-DSI and SPEI-Z occurs on a

longer time scale because the Millennium Drought is

dominated by deep-water depletion. The synergistic use

of GRACE-DSI with other existing environmental data

and drought monitoring tools therefore has potential for

improving the characterization of drought (e.g., propa-

gation and recovery) and associated ecological impacts at

regional and global scales. In this paper, we demonstrate

that combing the GRACE-DSI with other satellite en-

vironmental records improves the characterization of the

2000s Australia Millennium Drought, as well as associ-

ated vegetation response to water supply changes at

surface and subsurface soil layers. A caveat to the appli-

cation of GRACE-DSI is that it should be used with

caution in glaciated areas where the GRACE-DSI might

contain ice mass change signals (Jacob et al. 2012).
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