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ABSTRACT

Drought monitoring is important for characterizing the timing, extent, and severity of drought for effective

mitigation and water management. Presented here is a novel satellite-based drought severity index (DSI) for

regional monitoring derived using time-variable terrestrial water storage changes from the Gravity Recovery and

Climate Experiment (GRACE). The GRACE-DSI enables drought feature comparison across regions and pe-

riods, it is unaffected by uncertainties associated with soil water balance models and meteorological forcing data,

and it incorporateswater storage changes fromhuman impacts including groundwaterwithdrawals thatmodify land

surface processes and impact water management. Here, the underlying algorithm is described, and the GRACE-

DSI performance in the continental United States during 2002–14 is evaluated. It is found that the GRACE-DSI

captures documented regional drought events and shows favorable spatial and temporal agreement with the

monthly Palmer Drought Severity Index (PDSI) and the U.S. Drought Monitor (USDM). The GRACE-DSI also

correlates well with a satellite-based normalized difference vegetation index (NDVI), indicating sensitivity to plant-

available water supply changes affecting vegetation growth. Because the GRACE-DSI captures changes in total

terrestrial water storage, it complements more traditional drought monitoring tools such as the PDSI by providing

information about deeper water storage changes that affect soil moisture recharge and drought recovery. The

GRACE-DSI shows potential for globally consistent and effective drought monitoring, particularly where sparse

ground observations (especially precipitation) limit the use of traditional drought monitoring methods.

1. Introduction

Drought indices are convenient ways to characterize

drought because they compress the complexity of the

drought phenomenon into a single number. Commonly

used indices are generally sensitive to only a few hy-

drological components and cannot provide a complete

representation of the water deficit during drought. For

instance, the Palmer Drought Severity Index (PDSI)

is sensitive to atmospheric moisture demand and near-

surface soil moisture content, and has been frequently

used as a measure of meteorological and soil moisture

drought (Mishra and Singh 2010; Trenberth et al. 2014).

Observing all relevant hydrological variables (i.e., snow,

surface water, soil moisture, and groundwater) is impor-

tant for fully characterizing drought propagation and re-

covery, and associated ecosystem impacts (Van Loon

2015). Previous studies have used Gravity Recovery and

Climate Experiment (GRACE)-derived terrestrial water

storage (TWS) estimates to examine regional-scale
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droughts (Yirdaw et al. 2008; Chen et al. 2009; Leblanc

et al. 2009; Long et al. 2013; Castle et al. 2014; Cao et al.

2015) and to quantify drought-induced water storage

deficits (Thomas et al. 2014). The drought index for Texas

in McCandless (2014) combines TWS, precipitation, and

the satellite-based normalized vegetation difference in-

dex (NDVI) and it is sensitive to vegetation drought re-

sponse over semiarid areas. These methods are not

suitable for comparing drought features for different lo-

cations and time periods as they do not account for the

spatiotemporal variability of local hydroclimate. For ex-

ample, the same amount of water deficit may have a

larger impact on arid and humid biomes than on semiarid

and semihumid biomes (Vicente-Serrano et al. 2013). The

same amount of water deficit may also induce more se-

vere damage to vegetation during reproductive growth

stages than during green-up and senescence (Ji and Peters

2003). Houborg et al. (2012) accounted for these differ-

ences by deriving region-specific cumulative distribution

of dry andwet conditions fromGRACEdata assimilation

system, but this approach may not be readily useable

outside North America.

To overcome these limitations, we develop a new

standardized drought severity index (DSI) based solely

on GRACE TWS estimates, herein referred to as

GRACE-DSI. Here, we introduce the GRACE-DSI

algorithm, evaluate how it captures the space and time

evolution of documented regional drought events

during 2002–14, compare it with the PDSI and the U.S.

Drought Monitor (USDM), and demonstrate its syn-

ergistic use with traditional drought monitoring tools

across the continental United States (CONUS). The

CONUS domain was selected owing to a dense surface

station network, reliable PDSI, and diverse climate and

vegetation conditions. We also compare the GRACE-

DSI against the NDVI from the Moderate Resolution

Imaging Spectroradiometer (MODIS) used as a proxy

for vegetation growth changes. Finally, we discuss the

merits of combining the GRACE-DSI with other da-

tasets for drought characterization and potential ap-

plications for monitoring water supply and ecosystem

interactions in other areas.

2. Data and methodology

a. Data

We use release-05 GRACE gravity solutions in the

form of spherical harmonic coefficients truncated to de-

gree 60, from the Center for Space Research at the

University of Texas, for the period April 2002–October

2014. The GRACE-derived C20 coefficients are replaced

with satellite laser ranging estimates (Cheng et al. 2013).

We include degree-1 coefficients calculated as in Swenson

et al. (2008). We correct the glacial isostatic adjustment

signal using A et al. (2013). To reduce correlated errors,

we filter each monthly field following Swenson andWahr

(2006).We smooth the Stokes coefficients using a 350-km

radius Gaussian averaging function (Wahr et al. 1998)

and calculate regular 18 3 18 latitude–longitude monthly

TWS mass anomalies relative to the 2002–14 mean.

We use the monthly self-calibrated PDSI from Dai

(2011) on a global 2.58 grid. The PDSI uses a two-layer

bucket model to assess soil water balance by accounting

for water supply and demand (Palmer 1965). Dai et al.

(2004) found good correlations of PDSI with soil mois-

ture observations over the United States, the former

Soviet Union, Mongolia, and China, and with stream-

flow over major global river basins.

We use remotely sensed monthly soil moisture (SM)

data from the European Space Agency Climate Change

Initiative (Liu et al. 2011, 2012). The SM record employs

passive and active microwave satellite data with im-

proved spatial and temporal coverage and resolution.

We use the cloud-free MODIS monthly Climate

Model Grid 0.058NDVI product (MOD13C2; Huete

et al. 2002) as a measure of vegetation activity. We only

use data from the growing season (April–October) to

avoid snow-related NDVI noise (Ji and Peters 2003;

Karnieli et al. 2010; Mu et al. 2013; A et al. 2015).

We use the USDM weekly shapefiles distributed by

the National Drought Mitigation Center (http://

droughtmonitor.unl.edu). The USDM integrates in-

formation from many existing drought indicators, in-

cluding the PDSI, along with local reports from state

climatologists and observers across the country. The

shapefiles are converted to monthly raster composites

in a 18 grid. For computational purposes, the USDM

drought classes are mapped to numerical values with

‘‘no drought’’ assigned a value of 0, D05 1 (abnormally

dry), D1 5 2 (moderate drought), D2 5 3 (severe

drought), D3 5 4 (extreme drought), and D4 5 5 (ex-

ceptional drought).

b. GRACE-DSI

For each 18 grid cell, we calculate the GRACE-DSI

as the standardized anomalies of GRACE TWS for

month j and year i, as GRACE-DSIi,j 5 (TWSi,j 2
hTWSji)/sj, with i ranging from 2002 to 2014,

where hTWSji and sj are the mean and standard de-

viation of TWS anomaly for month j, respectively. The

global GRACE-DSI follows a pseudo-standard normal

distribution. We classify the GRACE-DSI into five

drought categories (Table 1) by matching their ranking

percentiles to thresholds used by the USDM (i.e., 30%,

20%, 10%, 5%, and 2%) (Svoboda et al. 2002). For ex-

ample, the cumulative relative frequency for GRACE-DSI
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less than 22.0 is 2%; therefore, we set 22.0 as the up-

per cutoff value for exceptional drought. TheGRACE-

DSI detects both drought and abnormally wet events

(Table 1).

c. GRACE-DSI evaluation

Because of the truncation and smoothing applied to

reduce short scale errors, each GRACE-DSI grid cell

represents conditions averaged over a 350-km radius

footprint. For consistency, all datasets are processed as

the GRACE data—that is, converted in spherical har-

monic, truncated to degree 60, filtered, smoothed using a

350-km Gaussian averaging function, and converted in

the spatial domain on a 18 3 18 lat/lon grid. This process

preserves the time and spatial variability of the original

signal but reduces its amplitude (Velicogna and Wahr

2006). To minimize the impact of these changes on the

data comparisons, we standardize PDSI and SM data

relative to the GRACE-DSI period (2002–14), herein

referred to as PDSI-Z and SM-Z, andwe employ the same

drought classification scheme as for theGRACE-DSI (see

Text S1 in the online supplemental material).

We compare the spatial patterns of GRACE-DSI,

PDSI-Z, and USDM during the record-setting 2011–12

drought (Hoerling et al. 2014). We examine the temporal

correspondence between the GRACE-DSI and PDSI-Z

over the CONUS using correlation analysis. The USDM

is a discretemetric and does not characterize wetter-than-

average conditions, preventing a rigorous comparison

with GRACE-DSI through correlation analysis. Instead,

we map continuous GRACE-DSI to categorical series

following the classification scheme in Table 1 and convert

the positive side of GRACE-DSI to the no-drought cat-

egory. At each grid cell, we calculate the ratio of the

number of months for which both GRACE-DSI and

USDM have the same drought category, relative to the

total number of months. We rescale GRACE-like

processed USDM using the method described in

Landerer and Swenson (2012) and round the rescaled

value up to the nearest drought category.

We calculate the correlation coefficients between

GRACE-DSI and NDVI for each growing season

month separately, as the vegetation drought response

varies considerably within different phenological stages

and thus cannot be adequately represented by simple

correlation or time series comparison without account-

ing for the seasonal effect (Ji and Peters 2003, Karnieli

et al. 2010, A et al. 2015, Forkel et al. 2015).

In the GRACE-DSI algorithm, we normalize the

TWS deficit by the regional hydroclimatological vari-

ability to account for the fact that a TWS deficit of a

givenmagnitudemay indicate different drought levels in

an arid or humid region. To illustrate this, we show that

the same USDM-classified drought severity level cor-

responds to different TWS deficits depending on the

regional hydroclimatology. We focus on the 2011–12

drought and at each grid cell we define for each month

the corresponding drought category using the USDM

drought classification (D1-D4 drought categories). We

then categorize the months into four groups each cor-

responding to one of the drought classifications. For

each group, we identify the month when the maximum

TWS deficit occurred, and we calculate the corre-

sponding TWS standard deviations using the entire an-

alyzed period, 2002–14. We investigate the spatial

patterns of the maximum TWS deficit in relation to the

monthly TWS standard deviation and the regional pre-

cipitation climatology.

3. Results

The GRACE-DSI captures documented regional

drought events during the past decade in the CONUS

(see Text S2 and Fig. S1 in the online supplemental

material). We also find a remarkable agreement in

spatial pattern between the GRACE-DSI, PDSI-Z, and

USDMover different seasons and across a wide range of

land covers, despite the fact that vegetation, snow, and

other cold season land surface processes are not ex-

plicitly treated in the PDSI model (Dai 2013; van der

Schrier et al. 2013). In 2011, GRACE-DSI and PDSI-Z

capture similar drought and wet spatial extent across the

CONUS especially from February to August (Fig. 1).

The USDM does not provide wetter-than-average in-

formation and thus does not reflect the wetting pattern

in 2011. When dry weather conditions expand north-

ward after August (NOAA 2012), the PDSI-Z and

USDM detect dryness in the western Great Lakes, up-

per Mississippi Valley, parts of the northern plains, and

the far West, whereas the GRACE-DSI indicates

TABLE 1. Dynamic range and relative categories for wet (W) and

dry (D) conditions of GRACE-DSI and PDSI-Z. The drought

classification scheme is consistent with the USDM.

Category Description GRACE-DSI and PDSI-Z

W4 Exceptionally wet 2.0 or greater

W3 Extremely wet 1.60 to 1.99

W2 Very wet 1.30 to 1.59

W1 Moderately wet 0.80 to 1.29

W0 Slightly wet 0.50 to 0.79

WD Near normal 0.49 to 20.49

D0 Abnormally dry 20.50 to 20.79

D1 Moderate drought 20.80 to 21.29

D2 Severe drought 21.30 to 21.59

D3 Extreme drought 21.60 to 21.99

D4 Exceptional drought 22.0 or less
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above- or near-normal underlying TWS in these regions.

In 2012, a strong heat wave hit the CONUS (Wang et al.

2014). The PDSI-Z and USDM indicate severe drought

conditions for all of 2012. In contrast, the GRACE-DSI

shows a persistent water storage surplus throughout the

year in the Northwest.

We compare GRACE-DSI and PDSI-Z monthly time

series at six drought locations representing different land

cover and climate zones (Fig. 2). While we find overall

favorable correspondence between GRACE-DSI and

PDSI-Z across the CONUS, the two indices also provide

complementary information regarding surface and total

water supply conditions. In California (location 4), both

indices capture the water deficit during 2007–09 and the

exceptional drought starting in 2012 (Fig. 2e). In late 2014,

the PDSI returns to normal values after a short-term

rainfall increase (NOAA2015), while theGRACE-DSI is

still indicative of exceptional drought conditions, in

agreement with the ongoing groundwater crisis and the

extraordinary cumulative precipitation deficit (Famiglietti

2014; Savtchenko et al. 2015).

The monthly GRACE-DSI and PDSI-Z correlation is

significant (p , 0.01) over the entire CONUS (Fig. 3a).

The correlation is strongest in the South and Southeast

and has relatively smaller magnitude over the north-

western plains, consistent with the spatial and temporal

comparisons in Figs. 1 and 2. To investigate the relatively

lower correlation in the northwestern Plains, we compare

FIG. 1. Spatial comparison of monthly GRACE-DSI, PDSI-Z, and USDM during 2011–12. Months with missing GRACE data are

skipped. Color bar shows the drought/wetting categories defined in Table 1. PDSI-Z andGRACE-DSI use the same classification scheme.

The drought classification scheme is consistent with the USDM. Note that USDM does not provide wetter-than-average information.
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FIG. 2. (a) Land cover map of the CONUS from MODIS land cover type (MCD12Q1) (Friedl et al. 2010). (b)–(g) Time series of

GRACE-DSI (red) and PDSI-Z (black) at six locations shown in (a), respectively: (358N, 828W); (328N, 998W); (358N, 1128W); (378N,

1208W); (458N, 1058W); and (418N, 928W). In (b)–(g), dots are index values and lines are smoothed values using a quadratic polynomial

filter with a 13-month window.

15 AUGUST 2017 ZHAO ET AL . 6301



both indices with the satellite SM record and water table

measurements from three wells in the USGS groundwa-

ter climate response network (http://groundwaterwatch.

usgs.gov) (Fig. 3a). These locations are not impacted by

pumping or injection, have 10 years of measurements,

and the well records are good representatives of regional

groundwater variability in the Missouri watershed

(Reager et al. 2015). The GRACE-DSI and PDSI-Z

show overall consistent temporal variations, but with a

time lag and a shift inmagnitude (Figs. 3b–d). In 2004–08,

following the 2000–04 drought (Schwalm et al. 2012), the

PDSI-Z indicates an overall wettingwith episodic dryness

consistent with the SM variations, whereas the GRACE-

DSI indicates drier-than-normal conditions in alignment

with observed negative anomalies in groundwater level

during this time period despite the difference in spatial

scale of GRACE-DSI and well measurements. This is in

agreementwith a previous study (Anderson et al. 2013) of

the northwestern Plains Snake River subarea, where

long-term hydrological drought persisted during 2004–08

as shown by the USDM despite increasing surface SM

and decreasing evapotranspiration deficit from tempo-

rary surface wetting.

Following the warming trend in early 2012 (Wang

et al. 2014), the PDSI-Z decreases and reaches ex-

ceptional drought in the summer while SM declines later

and remains above normal until spring (Figs. 3b–d).

The GRACE-DSI decreases later than the PDSI-Z

and by a smaller amount, which is consistent with the

near-normal to positive groundwater levels throughout

2012.

We evaluate the agreement between GRACE-DSI,

PDSI, and USDM in terms of drought severity classifi-

cation. We calculate the percentage of the number of

months for which theUSDMandGRACE-DSI (Fig. 4a),

USDM and PDSI-Z (Fig. 4d), and USDM and PDSI

(Fig. 4g) display the same drought category. We repeat

the same calculation with the USDM index biased by one

(Figs. 4b,e,h) and two drought categories (Figs. 4c,f,i) to

determine the percentage of the total number of months

for which GRACE-DSI, PDSI-Z, and PDSI underesti-

mate the USDM drought classification by one or two

categories respectively (note that the original no-drought

observations remain the same). We find that the

GRACE-DSI, PDSI-Z, and original PDSI all tend to

underestimate USDM-classified drought by one to two

categories in the western United States (Fig. 4).

The GRACE-DSI and NDVI correlation (Fig. 5) is

stronger and more widespread during June–September

than at the beginning (April–May) or the end (October)

of the growing season. At lower latitudes, the correla-

tion becomes significant earlier and extends later in the

year compared to higher-latitude areas.

Figure 6 shows the spatial distribution of the maxi-

mum TWS deficit for each USDM-classified drought

category during 2011–12 and the correspondingmonthly

TWS standard deviation. We find that it takes a larger

TWS deficit to reach the sameUSDM-classified drought

FIG. 3. (a) Temporal cross-correlation coefficient between monthly GRACE-DSI and PDSI-Z during study

period. (b)–(d) Times series of GRACE-DSI (red), PDSI-Z (black), satellite-retrieved SM-Z (green), and stan-

dardized groundwater depths (blue) for locations 1 to 3 in (a). Geographic coordinates for locations 1, 2, and 3 are

(45.098N, 112.648W), (47.378N, 111.198W), and (44.308N, 103.448W), respectively. All lines are smoothed values

using a quadratic polynomial filter with a 13-month window.
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category in the East, where the climate is humid and the

TWS variability is large, than in the West where the

climate is drier and the TWS variability is small. This

spatial pattern agrees with the east–west decreasing

gradient in long-term mean and variability of annual

precipitation (Fig. S2), illustrating that it is important to

normalize TWS deficit with regional hydroclimatological

variability in the GRACE-DSI algorithm for drought

severity categorization and drought comparison across

space and time.

4. Discussion

TheGRACE-DSI is based on direct measurements of

soil water balance that account for water supply and

demand, which enables a globally consistent hydrologi-

cal drought monitoring. The GRACE-DSI differs from

Thomas et al. (2014) and other indices using GRACE

alone because it accounts for the regional variability in

TWS that directly affects the characterization of drought

(Fig. 6). For instance, Thomas et al. (2014) observe a

peak TWS deficit of 66 km3 in southeastern United

States in November 2007 and a peak TWS deficit of

68 km3 in Texas in January 2013, both of which equal

about a 9-cmwater-equivalent deficit. The January TWS

variability is larger in Texas than November TWS vari-

ability in southeastern United States, which means that

Texas naturally experiences a wider range of dryness

and wetness in January than the southeastern United

States in November. Therefore, the GRACE-DSI ranks

the same 9-cm water-equivalent deficit one to two cat-

egories milder in Texas than in the southeastern United

States (Figs. 2b,c). This result agrees with the USDM

classification of these two drought events (Fig. S3).

The GRACE-DSI provides consistent and comple-

mentary information to the PDSI that strengthens the

FIG. 4. (a) The ratio of the number of months for which GRACE-DSI and USDM yield the same drought category to the total number

of months considered. (b) As in (a), but with the USDM series biased by one category milder (i.e., USDM-1) at every grid cell. (c) As in

(b), with theUSDMseries biased by two categories milder (i.e., USDM-2). Note that the no-drought categoryminus one or two categories

is still considered no-drought. (d)-(f) As in (a)–(c), but replacing GRACE-DSI with PDSI-Z. (g)–(i) As in (a)–(c) but replacing GRACE-

DSI with the original PDSI.
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analysis of drought conditions. The GRACE-DSI is

sensitive to terrestrial water storage changes, whereas

the PDSI is responsive to surface SM and atmospheric

moisture deficits (Dai 2011). The GRACE-DSI can lag

the PDSI by 1 month in detecting drought onset and

recovery (e.g., Fig. 2g), which is consistent with the

different response time of near-surface conditions and

overall water storage (Van Loon 2015). During the 2012

drought in the northwestern Plains, the PDSI decreased

earlier than SM probably because of warming-induced

atmospheric moisture stress as the PDSI is sensitive to

air temperature (Hu and Willson 2000). In contrast, the

GRACE-DSI decreases later than SM, indicating more

rapid depletion of surface SM than deeper groundwater.

An apparent drought recovery is also detected by both

GRACE-DSI and PDSI in spring 2013, consistent with

previous studies (Hoerling et al. 2014; Wang et al. 2014).

During the analyzed period, GRACE-DSI and PDSI

also detect different trends in the northwestern Plains

associated with changes in overall and shallow-depth

water balance, respectively (Figs. 3b–d).We find that for

location 1 (Fig. 3b), for instance, their temporal corre-

lation increases from 0.25 (p, 0.01) to 0.44 (p, 0.001)

after prewhitening (Text S3 in the online supplemental

material, Fig. S4). For the rest of the CONUS, correla-

tion between prewhitened GRACE-DSI and PDSI time

series is significant but generally of smaller magnitude

compared to those shown in Fig. 3a, indicating that both

drought indices capture consistent trends.

The GRACE-DSI and PDSI-Z both underestimate

the severity of USDM-classified drought by one to two

categories in the western United States (Fig. 4). The

mismatch pattern between the original PDSI (normal-

ized using 1950–79 as the baseline period) and USDM is

consistent with the patterns between PDSI-Z and

USDM and between GRACE-DSI and USDM. This

indicates that the short normalization baseline period

(2002–14) in GRACE-DSI and PDSI-Z does not ac-

count for their differences with USDM. Instead, the

composite nature of USDM and the inclusion of sub-

jective information from local experts might account for

its mismatch with GRACE-DSI and PDSI (Anderson

et al. 2011; Hao and Singh 2015).

The favorable GRACE-DSI and NDVI correspon-

dence indicates that GRACE-DSI is sensitive to water

supply constraints influencing vegetation growth. The

correlation is higher in the middle of the growing season

than during green-up and senescence when solar radia-

tion and temperature are important factors controlling

vegetation growth (Ji and Peters 2003; Karnieli et al.

2010; Forkel et al. 2015). TheGRACE-DSI also captures

the characteristic latitudinal shift of the vegetation–

moisture relationship (Karnieli et al. 2010, Yi et al.

2010), whereby the NDVI correlation weakens from

lower to higher latitudes due to increasing cold temper-

ature and energy constraints on vegetation growth. Sim-

ilar correlation patterns are also found between the

PDSI-Z and NDVI (Text S4, Fig. S5).

The 2002–14 period may be too short to characterize

the full range of dryness and wetness for which a cli-

matology of at least 30 years is desired. We use Levene’s

test (Levene 1960) to evaluate the difference in PDSI

variability of the 13-yr (2002–14) period from a 33-yr

(1982–2014) climatology. We find that in 40% of the

FIG. 5. Monthly GRACE-DSI and MODIS NDVI correlation coefficients during the growing season (April–October). Correlation

coefficient higher than 0.5 is significant at 90% confidence level.
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CONUS, the standard deviations of PDSI are different

between the two periods (p , 0.1); these regions have

experienced a narrower range of wetness and dryness in

2002–14 than in 1982–2014.We calculate the root-mean-

square error between PDSI-Zs referenced to those two

periods. We find that, using the 13-yr climatology, we

underestimate the drought by one category in 40% of

the CONUS due to the fact that the 2002–14 period is

drier than 1982–2014 (Fig. 7a). Therefore, we infer that

using the 13-yr period to calculate GRACE-DSI does

not affect drought category characterization in the ma-

jority of the CONUS.

Because of the relatively short data record, using all

availableGRACE solutions to estimate themonthly TWS

climatologymean and standard deviation inGRACE-DSI

calculation is currently optimal. This limitation may

change the characterization of past drought events when

new GRACE solutions become available. To understand

how the baseline affects the GRACE-DSI results, we

calculate seven alternativeGRACE-DSI records using the

TWS mean and standard deviation calculated from

baseline lengths ranging from 6-yr (2002–07) to 12-yr

(2002–13) sequentially. The spatial patterns of these al-

ternative GRACE-DSI records are very similar in the

CONUS. Figures 7b and 7c show the area-weighted an-

nual spatial correlation coefficients (R) andNash–Sutcliffe

efficiency coefficients (NS; Nash and Sutcliffe 1970) be-

tween these alternative GRACE-DSIs and the 2002–14

baseline GRACE-DSI over the CONUS. When there are

at least 9 years of GRACE record, the GRACE-DSI does

not change significantly over longer baseline periods. In

other words, the characterization of a drought event in

2010 using the 2002–10 baseline would not change signif-

icantly when the GRACE-DSI is updated four years later

using the 2002–14 baseline. The GRACE-DSI can even-

tually be normalized to a fixed baseline when theGRACE

record will expand to a climatological length.

5. Conclusions

We present a novel drought severity index (DSI) de-

rived solely from GRACE satellite observations. The

FIG. 6. (a)–(d) The maximum TWS deficit observed in regions where D1–D4 drought, respectively, has been reported by the USDM in

2011. (e)–(h) The TWS standard deviation for the calendar month when the maximumTWS deficit is observed in 2011, as seen in (a)–(d).

(i)–(l) As in (a)–(d), but for 2012. (m)–(p) As in (e)–(h), but for 2012.
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large footprint of GRACE-DSI makes it useful for re-

gional- to global-scale hydrological drought assessment.

We demonstrate that the GRACE-DSI complements

traditional drought metrics such as the PDSI by pro-

viding complementary information about deeper water

storage changes which affect soil moisture recharge and

drought recovery. This is of potential use in drought

propagation research, the knowledge of which is im-

perative to the prediction of hydrological drought (Van

Loon 2015). This is also of potential use in developing

and improving composite and multi-indicator drought

models (AghaKouchak et al. 2015), such as the USDM,

with which the GRACE-DSI has good spatial agree-

ment in drought detection. In addition, the GRACE-

DSI includes moisture variations from the plant root

zone and the correspondence between GRACE-DSI

and MODIS NDVI over the CONUS manifests spatial

and seasonal characteristics of water supply constraints

influencing vegetation growth. The GRACE-DSI can

therefore be useful to study water–plant relations. The

GRACE-DSI also captures human impacts on drought

and water resource management, which makes it ad-

vantageous to study drought in the Anthropocene

(Sivapalan et al. 2012; Van Loon et al. 2016). Combing

GRACE-DSI with traditional drought metrics might

enable a partition of drought impact into natural and

anthropogenic components. The GRACE-DSI is also

of use to the hydrologic modeling community because

it provides an independent observation benchmark

for evaluating model-based drought monitoring tools.

Currently, GRACE rapid solutions are generated

using the L1B data product within 24 h of data ac-

quisition, but with limited data availability. For the

GRACE Follow-On mission scheduled for launch

between December 2017 and January 2018, this

product will become a standard level 3 product,

thereby providing near real-time information for op-

erational drought monitoring.
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FIG. 7. (a) In the gray regions, PDSI-Z underestimates drought by one category when using the 2002–14 climatology rather than

the 1982–2014 climatology. (b) The area-weighted annual spatial correlation coefficients between the 2002–14 baseline GRACE-

DSI and seven alternative GRACE-DSI calculated from varying baselines. (c) As in (b), but for the Nash–Sutcliffe efficiency

coefficients.
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