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Large-scale cropmonitoring andyield estimation are important for both scientific research andpractical applications.
Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in
data-sparse regions that lack reliable ground observations and reporting. The conventional approach of using visible
and near-infrared based vegetation index (VI) observations has prevailed for decades since the onset of the global
satellite era. However, other satellite data encompass diverse spectral ranges thatmay contain complementary infor-
mation on crop growth and yield, but have been largely understudied and underused. Herewe conducted one of the
first attempts at synergizingmultiple satellite data spanning a diverse spectral range, including visible, near-infrared,
thermal and microwave, into one framework to estimate crop yield for the U.S. Corn Belt, one of the world's most
important food baskets. Specifically, we included MODIS Enhanced VI (EVI), estimated Gross Primary Production
based on GOME-2 solar-induced fluorescence (SIF-GPP), thermal-based ALEXI Evapotranspiration (ET), QuikSCAT
Ku-band radar backscatter, and AMSR-E X-band passive microwave Vegetation Optical Depth (VOD) in this study,
benchmarkedonUSDAcounty-level crop yield statistics.WeusedPartial Least Square Regression (PLSR), an effective
statistical model for dimension reduction, to distinguish commonly shared and unique individual information from
the various satellite data and other ancillary climate information for crop yield estimation. In the PLSRmodel that in-
cludes all of the satellite data and climate variables from 2007 to 2009, we assessed the first twomajor PLSR compo-
nents and found that the first component (an integrated proxy of crop aboveground biomass) explained 82%
variability of modelled crop yield, and the second component (dominated by environmental stresses) explained
15% variability of modelled crop yield. We found that most of the satellite derived metrics (e.g. SIF-GPP, radar back-
scatter, EVI, VOD, ALEXI-ET) share common information related to aboveground crop biomass (i.e. the first compo-
nent). For this shared information, the SIF-GPP and backscatter data contain almost the same amount of information
as EVI at the county scale. When removing the above shared component from all of the satellite data, we found that
EVI and SIF-GPP do not providemuch extra information; instead, Ku-band backscatter, thermal-based ALEXI-ET, and
X-band VOD provide unique information on environmental stresses that improves overall crop yield predictive skill.
In particular, Ku-band backscatter and associated differences betweenmorning and afternoon overpasses contribute
unique information on crop growth and environmental stress. Overall, using satellite data from various spectral
bands significantly improves regional crop yield predictions. The additional use of ancillary climate data (e.g. precip-
itation and temperature) further improvesmodel skill, in part because the crop reproductive stage related to harvest
index is highly sensitive to environmental stresses but they are not fully captured by the satellite data used in our
study. We conclude that using satellite data across various spectral ranges can improve monitoring of large-scale
cropgrowth andyield beyondwhat canbe achieved from individual sensors. These results also inform the synergistic
use and development of current and next generation satellite missions, including NASA ECOSTRESS, SMAP, and
OCO-2, for agricultural applications.
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1. Introduction

Accurately estimating large-scale crop productivity has critical value
for scientific and societal benefits. For scientific research, knowing crop
productivity at large scales can contribute to better assessments and un-
derstanding of differences, or gaps, between actual and potential yields
(Lobell et al., 2009; Van Ittersum et al., 2013). Accurate large-scale yield
estimation also facilitates better understanding of how crop growth re-
sponds to environmental stress (Guan et al., 2016; Sibley et al., 2014),
and provides a valuable benchmark to improve and calibrate crop
models (Basso et al., 2013; Thorp et al., 2012) for better near-term
crop yield forecasts and long-term climate change projections. From
the practical and societal perspective, accurate crop yield estimation is
critical for economic planning and development (Carletto et al., 2015;
Whitcraft et al., 2015), and facilitates the price forecast of commodity
markets and international trades (Hoffman et al., 2015). It also helps
in the design and assessment of crop insurance (Sherrick et al., 2014),
food security monitoring and agriculturally-related humanitarian crises
(Ross et al., 2009; Thornton et al., 1997), and can potentially provide
better information for field-level management and decision-making
for individual farmers (Mulla, 2013).

Large-scale crop yield estimation often relies on satellite remote
sensing. Traditional approaches have primarily used optical and near-
infrared (NIR) remote sensing, such as through the use of vegetation in-
dices (VIs) that provide a general indicator of photosynthetic canopy
cover or leaf area index (Sellers et al., 1992). The Normalized Difference
Vegetation Index (NDVI) was one of the first VIs developed Tucker
(1979) and has been widely used for operational crop monitoring (e.g.
VegScape: https://nassgeodata.gmu.edu/VegScape/; GEOGLAM initia-
tive, http://cropmonitor.org/). However, VIs derived from visible and
near-infrared remote sensing data only utilize information from a
small portion of the electromagnetic spectrum, while other available
spectral bands have been comparatively less studied and may provide
unique and/or complementary information for crop assessments.

Remote sensing observations from current global earth observation
satellites encompass a diversity of spectral ranges, including visible, in-
frared, thermal andmicrowave wavelengths (Fig. 1). Besides the visible
and NIR based VIs, an emerging satellite product called solar-induced
fluorescence (SIF) is also derived from a narrow spectral window in
the NIR (Frankenberg, Butz, and Toon, 2011; Guanter et al., 2007;
Guanter et al., 2012, 2014; Joiner et al., 2011). SIF is the active emission
from plant chlorophyll in its photo-machinery (Porcar-Castell et al.,
2014; van der Tol et al., 2014), and SIF has been used as a proxy of

plant photosynthesis (Guan et al., 2016; Guanter et al., 2014). Moving
towards the thermal bands, land-surface temperature (LST) has been
used to estimate evapotranspiration (ET) (Anderson et al., 1997;
Anderson et al., 2007; Maes and Steppe, 2012), a critical variable that
may be correlated with crop growth for closed canopies and can also
be used to assess plant water stress (Anderson et al., 2013a). Longer
wavelength bands from passive microwave sensors detect natural mi-
crowave emissions of the land surface, vegetation and atmosphere;
the resulting brightness temperature (Tb) retrievals can be used with
microwave radiative transfer models to derive vegetation optical
depth (VOD) (Du et al., 2015; Jones and Kimball, 2010). VOD provides
a frequency dependent metric of canopy water content and biomass
changes (Guan et al., 2014; Jones et al., 2013; Liu et al., 2015; Liu et al.,
2011), and has also been used to infer plant water potential (Konings
andGentine, 2016). Activemicrowave sensors (i.e. Radars) are sensitive
to land surface dialectic properties, roughness, and vegetation proper-
ties (Ulaby et al., 1982). Microwave signals respond to vegetation in a
manner that depends on sensor wavelength or frequency, with lower
frequencymicrowave retrievals (e.g. C-band, either from passivemicro-
wave Tb or radar backscatter) generallymore sensitive to deeper canopy
biomass layers than higher frequency (e.g. Ku-, X-band) retrievals
(Ulaby, 1987). Very longwavelength (i.e. low frequency)microwave re-
trievals (e.g. L or P band) can penetrate low to moderate vegetation
cover and detect surface soil moisture (Jackson, 1993; Njoku et al.,
2003), whereas shorter wavelength (i.e. higher frequency) microwave
retrievals are more suitable for detecting canopy biomass, since these
frequencies are proportional to the size of vegetation scattering ele-
ments such as leaves and are primarily sensitive to the upper portion
of the canopy (Frolking et al., 2005; Guan et al., 2012; Guan et al.,
2013; van Emmerik et al., 2015). The above is a brief and inconclusive
synopsis of various information that can be detected from different
spectral bands.

Given thewidespread availability of global satellite data and diversi-
ty of potentially valuable information for agricultural monitoring, there
have been very limited studies so far devoted to clarifying and under-
standing the unique and additive value of different satellite data for es-
timating crop yield. Several guiding questions arise regarding the
potential integration and use of these data, including: (1) How much
common information is shared by various satellite and climate data
for monitoring crop yield? What unique information is contributed by
individual data? (2) Can a systematic approach be used to decouple
and distinguish commonly shared and unique information from various
satellite data? (3) And finally, how can we integrate different satellite

Fig. 1.Major satellite remote sensing data that are analyzed in the current study, which span a large range of the electromagnetic spectrum. The diagram shows a typical corn field during
the peak-growing season in the US Corn Belt, which usually has a closed canopy.
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data to optimize the estimation of crop productivity? In this study, we
analyze a diverse set of satellite data introduced above to quantify
their shared and unique contributions for estimating crop yields.
Though other satellite data may also be available and useful for
monitoring crop growth, e.g. Light Detection and Ranging (Lidar) or
hyperspectral data, here we only consider data that have relatively
long-term time series and provide consistent coverage over a broad re-
gion of the U.S. Corn Belt. We adopt a statistical inference approach
called “Partial Least Square Regression” (PLSR) to disentangle common-
ly shared and unique individual information from a number of predictor
variables that are highly correlated or collinear (see details in Section
2.3). Our study area encompasses the U.S. Corn Belt, which contributes
about 50% of global maize and 40% of global soybean production, and
is one of the most critical food production regions in the world.

2. Materials and methods

In this section, we first describe the benchmark data (Section 2.1)
and different satellite and climate data used in our study (Section 2.2).
We then describe the methodology (i.e. PLSR, Section 2.3) and experi-
mental design (Section 2.4).

2.1. Benchmark data: Crop-yield based NPP (Y-NPP)

We use county-level crop yield and area statistics from the National
Agricultural Statistics Service (NASS) of the U.S. Department of Agricul-
ture (USDA) to derive county-level net primary production (NPP). We
convert the NASS crop yields to the area-weighted growing season
NPP at the county level using the following equation detailed in Lobell
et al. (2002) and Guan et al. (2016):

NPP g C�
m2

� � ¼
XN

i¼1

Yi∙MRYi∙ 1−MCið Þ∙0:45 g C
g

∙Harv Areai

HIi∙fAGi
=
XN

i¼1

Harv Areai

ð1Þ

where Yi is the reported yield of crop i, MRYi is the mass per unit of re-
ported yield for crop i,MCi is the cropmoisture content (i.e. the percent-
age of water in the total grainweight), Harv_Areai is the harvested area,
HIi is the Harvest Index, and fAGi is the fraction of NPP allocated above-
ground (fAG). The crop-type-specific values forMRY,MC, HI and fAG are
provided in Guan et al. (2016).

We use the above approach to unify various crop types into a consis-
tent productivitymetric (i.e. NPP).We only focus on counties where the
total crop fraction is N40% of the total area and the associated corn frac-
tion exceeded 20% of the area – this screening process narrowed our
study domain to essentially the core part of the Corn Belt (Fig. 2a and
b), which produced 73% of the total US corn production during the
2006–2010 period. Choosing only high crop fraction counties reduces
potential uncertainty due to assumptions of spatially consistent yields
(unit area crop productivity) within a given county, and also reduces
potential errors introduced by other natural vegetation types. Soybean
and corn account for N90% of all crops in our study area; therefore Y-
NPP is only calculated for these two crop types. We assume a constant
Harvest Index (HI) for each specific crop type in Eq. (1),which essential-
ly means that Y-NPP is a linear scaling of raw crop yield. The validity of
the constant HI assumption is further discussed in Section 4.

2.2. Satellite-based datasets and climate data

2.2.1. MODIS EVI
The Enhanced Vegetation Index (EVI) is derived from visible-NIR re-

mote sensing and is awidely-used VI based on the leaf red-edge spectral
feature in the red and NIR spectral bands. The EVI is similar to the NDVI,
but sensitive to higher canopy LAI and less affected by atmospheric
aerosol impacts (Huete et al., 2002). The formulation of the EVI is

(Huete et al., 2002):

EVI ¼ G
ρNIR−ρred

ρNIR þ C1 � ρred þ C2 � ρblue þ L
ð2Þ

where ρ is atmospherically corrected surface reflectance, L is the canopy
background adjustment addressingnonlinear radiant transfer through a
canopy for NIR and red spectra, and C1 and C2 are coefficients that adjust
for aerosol influences in the red band using blue band information
(Huete et al., 2002). EVI has a general linear relationship with fPAR at
the biome-specific level (Myneni et al., 2002) and can be used as a
proxy for unstressed canopy-level photosynthetic capacity (Sellers et
al., 1992). Here we use EVI from the NASA Terra MODIS MOD13C1
(Collection 5) record, with 16-day repeat and global 0.05° resolution.
The 16-day time series is interpolated to the daily step using a robust
smooth algorithm (Garcia, 2010) and then aggregated to the monthly
step for this study.

2.2.2. GOME-2 SIF-based GPP
We use a newly developed SIF-based GPP product (Guan et al.,

2016) derived from SIF retrievals near theλ=740 nmspectral window
from theGlobal OzoneMonitoring Experiment-2 (GOME-2) instrument
onboard the Eumetsat MetOp-A satellite. The SIF retrieval algorithm
(Joiner et al., 2013) disentangles three spectral components near the
peak of the far-red chlorophyll fluorescence emission feature: atmo-
spheric absorption (due to water vapor), surface reflectance, and fluo-
rescence radiance. To derive GPP from the raw GOME-2 SIF (version
26) record, we first scale the raw SIF retrieval to the electron transport
rate (ETR) of photosynthesis based on a derived relationship (Zhang
et al., 2014) calibrated using the SCOPE model at five eddy-covariance
flux tower sites in the U.S. Corn Belt (Guan et al., 2016); we then scale
ETR to GPP by taking into account the different photosynthetic path-
ways (C3 and C4) for cereal and broadleaf crops, and the temperature ef-
fect and operating CO2 concentration inside the leaf (Guan et al., 2016).
The resulting SIF-GPP record has been found to have better performance
in capturing spatial and temporal patterns of crop productivity com-
pared with other GPP observational benchmarks, including MODIS
(MOD17A2) and MPI-MTE products (Guan et al., 2016). The GOME-2
SIF-GPP gridded product extends from 2007 onward, with 0.5° spatial
gridding and monthly compositing interval for the study domain.

2.2.3. Thermal-based ALEXI ET
Weuse an advanced ET product derived using the Atmosphere-Land

Exchange Inverse (ALEXI) model (Anderson et al., 1997, 2007). ALEXI
uses the morning rise in surface radiometric temperature, remotely
sensed using geostationary satellites, as themajor inputs for estimating
ET. It employs a two-source (soil+ vegetation)model of the surface en-
ergy balance, with a simplemodel of atmospheric boundary layer (ABL)
development (McNaughton and Spriggs, 1986) to provide energy clo-
sure. In other words, ALEXI follows the principle that wetter landscapes
warm less rapidly during the morning hours. A previous study
(Anderson et al., 1997) demonstrates that use of a time-differential
temperature signal reduces the errors in absolute temperature re-
trievals, increasing the accuracy of ET estimation. Along with thermal
IR retrievals of land surface temperature, ALEXI also uses MODIS LAI as
input to guide soil/canopy partitioning. The reported errors in ALEXI-
ET at daily time steps are 10–20% across a broad range of vegetation
and climate conditions (Anderson et al., 2007; Cammalleri et al.,
2014). TheALEXI ET product has 4-km resolution andmonthly temporal
fidelity from 2001 onward for the conterminous US.

2.2.4. QuikSCAT Ku-band radar backscatter
QuikSCAT was a Ku-band (13.4 GHz, or 2.1 cmwavelength) satellite

radar scatterometer operating from 1999 to 2009, with two rotating
pencil beam antennas operating in H and V polarizations at incidence
angles of 55.8° and 46.8° (Long and Early, 2001). The Ku-band
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backscatter product (hereafter denoted as “Ku-band dB”) from
QuikSCAT has ascending (morning, c.06:00 local equatorial crossing
time) and descending (afternoon, c.18:00 local equatorial crossing
time) overpasses. The radar-backscatter is primarily sensitive to the
dielectric property and surface roughness of the landscape. Depending
on the wavelength and canopy density, short-wavelength radars (e.g.
Ku, X, or C-band) are relatively more sensitive to upper canopy water
content and biomass structure (Ulaby et al., 1982; van Emmerik et al.,
2015), whereas longer-wavelength radars (e.g. L-band) are sensitive
to a larger canopy volume and surface soil moisture under low to mod-
erate vegetation cover (Entekhabi et al., 2014; Njoku et al., 2003). It has

been found that morning and afternoon overpasses of the Ku-band
radar backscatter data from QuikSCAT may sense diurnal variations in
canopy water content; in the morning prior to active transpiration,
canopy water content is at a daily maximum level due to overnight
moisture replenishment from the soil rooting zone and xylem water
storage, while canopywater is at a dailyminimum in themid-afternoon
due to cumulative canopy water loss from daily transpiration (Frolking
et al., 2012; Saatchi et al., 2013). Thus the difference between morning
and afternoon radar backscatter may be related to canopy transpiration
and water stress (van Emmerik et al., 2015). Some empirical studies
support this hypothesis in the tropical forests (Frolking et al., 2012;

Fig. 2. (a) The extent of theUS cornproduction area,where the dark green shading refers to the “Major CornArea”, which includes 75% of the total US corn production based on 2006–2010
USDA statistics, and light green shading refers to the “Minor Corn Area”, which includes 24% of US corn production (Copyright: CTG Publishing under Creative Commons Attribution 3.0
Unported License). (b) Study area used here (core counties of the US Corn Belt, defined as thosewith total crop area fraction N40% and corn area fraction N20%) shown in yield-based NPP.
Based on (a), the current study includes the area that produced 73% of the total US corn production during 2006–2010. (c) Average seasonality of QuikSCATKu-band dB frommorning and
afternoon overpasses aggregated in absolute units (backscatter coefficient in dB). (d) Average seasonality of different satellite remote sensing data aggregated for the study, with all time-
series normalized from0 to 1 tomatch their minimumandmaximumvalues. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of
this article.)
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Madsen and Long, 2016; Saatchi et al., 2013), but no study has been
done for croplands. Here we use QuikSCAT Ku-band dB data from local
(6 AM/PM) morning and afternoon satellite overpasses (denoted as
dBmor and dBaft), as well as the difference between the two overpasses
(denoted as δ(dB)) to study their use for crop yield estimation. Since
the H- and V-polarization data from QuikSCAT show little difference
for our analysis, the V-Pol data are selected for the final investigation.
We use QuikSCAT data processed by the NASA Scatterometer Climate
Record Pathfinder (SCP) project located at Brigham Young University
(http://www.scp.byu.edu/). The QuikSCAT Ku-band dB data record ex-
tends from 1999 to 2009, with global coverage at 0.25° resolution and
3-day temporal fidelity, while the monthly average backscatter for
July is used in this study.

2.2.5. AMSR-E vegetation optical depth (VOD)
We use a recently developed satellite passive-microwave-based

vegetation optical depth (VOD) product (Jones and Kimball, 2012) de-
rived from daily brightness temperature retrievals (Tb) from the NASA
Advanced Microwave Scanning Radiometer for EOS (AMSR-E). The
VOD is a frequency-dependentmeasure of the vegetation canopy atten-
uation of land surface microwave emissions, that is sensitive to vegeta-
tion canopy biomass, structure andwater content (Jones et al., 2013; Shi
et al., 2008; Ulaby et al., 1982). The VOD has been used as an additional
canopy phenology measure that is sensitive to both photosynthetic and
nonphotosynthetic (e.g., woody) biomass (Guan et al., 2012; Guan et al.,
2014; Jones et al., 2011; Liu et al., 2015; Liu et al., 2013) and plant-level
water potential (Konings and Gentine, 2016). Here we use the near-
daily 10.7 GHz frequency (X-band) VOD retrievals at the constant inci-
dence angle of 55° from nadir from AMSR-E (2003−2011) (Du et al.,
2014). The 0.25° VOD record at the 3-day frequency is used here, and
a robust smoothing algorithm (Garcia, 2010) is applied to gap-fill miss-
ing values and smooth the VOD time series spanning the AMSR-E
record.

2.2.6. Climate data
We use the Parameter-elevation Relationships on Independent

Slopes Model (PRISM) dataset of temperature and precipitation across
the conterminous U.S. (Daly et al., 2008). The PRISM data is derived
using daily in situ observations from approximately 13,000 precipita-
tion stations and 9800 air temperature stations, which are spatially in-
terpolated using digital elevation data and empirical modeling to
derive climate fields at 30 s spatial resolution. We use the daily, 4 km
version of the PRISM data record aggregated to a monthly time step
for the analysis.

2.2.7. Data processing
All of the gridded satellite and climate data (Table 1) are processed

to extract county-level data based on a shapefile of U.S. county bound-
aries. The satellite and climate data used in this study cover various
time periods, which is discussed in the Experimental Design Section
2.4 below.

2.3. Partial Least-Square regression (PLSR)

We use PLSR in this study (Geladi and Kowalski, 1986; Wold et al.,
2001; Wu et al., 2016) to evaluate relationships between crop yield
and the satellite derivedmetrics/climate variables. The yield-based pro-
ductivity (Y-NPP) is the only response variable, and the various satellite
data (and climate variables in some cases) are used as predictor vari-
ables. PLSR, as a dimension reduction approach, is suitable for
distinguishing the shared and unique components among a large set
of potential predictor variables that are mutually correlated. PLSR is
similar to Principle Component Regression (PCR) – in that both ap-
proaches attempt to model a response variable from a large number of
predictor variables that are correlated or collinear. Both approaches
construct new predictor variables (known as “latent components” or
“latent variables”, hereafter termed “components”) as linear combina-
tions of the original predictor variables. However, they construct com-
ponents in a different fashion. The components constructed in PCR are
to maximize the variability in the predictor variables themselves, with-
out taking into account the response variable. Essentially this is the prin-
ciple components analysis for the predictor variables. However, the
components in PLSR are constructed to optimize the explained power
of each component in predicting the response variable(s); as a result,
PLSR often leads to models with fewer components than PCR, and in
many cases PLSR captures more variability in the response variable(s)
than the PCR. PLSR is considered more suitable than PCR in our case,
since a major goal of this study is to disentangle the unique contribu-
tions of the different satellite and climate inputs in predicting crop yield.

The following steps outline the PLSR implementation in our study.
First, each variable is normalized to a standardized anomaly. This is ac-
complished by pooling all county-level data points over all years in the
period of analysis, and computing the mean and standard deviation
(std) over the full pool. The normalization is then done by calculating
the followingmetric: (raw-mean)/std. In this way, the data are normal-
ized over the full spatial and temporal domain encompassed by the
study. This preprocessing step ensures that all variables have mean
zero and unit standard deviation, so that all of the fitted coefficients in
the PLSR are comparable.We then perform the following steps: (1) Out-
liers are identified and filtered following the Monte-Carlo sampling
method for outlier detection (Xu and Liang, 2001), which removes
~5% of the original data. (2) The filtered dataset is then randomly split
into training (70%) and testing (30%) datasets. (3) The number of com-
ponents is then selected by running a 10-fold cross-validation 100 times
with a different random split of the filtered dataset for each run. (4) The
trained regression coefficients are then applied to the testing dataset,
and the resulting model performance is assessed using the root mean
squared error (RMSE) (mean Euclidean distance between the predic-
tion and the observed crop yield), and R2 (the proportion of variability
in crop yield explained by model) metrics calculated with the test
data. The major uncertainty in the current PLSR protocol arises from
the randomness in splitting between training and testing data. However
we find that the regression coefficients derived from the different data

Table 1
Specifics of the satellite products and climate data used in this study.

Satellite/Climate data Spectral range Spatial
resolution

Temporal
resolution

Available
record

Reference

MODIS EVI Visible and NIR 0.05°(MOD) 16-day 2000–present Huete et al., 2002
GOME-2 SIF-GPP NIR (far-red chlorophyll fluorescence

emission)
0.5° (gridded) Monthly (gridded) 2007–present Guan et al., 2016; Joiner et al.,

2013
ALEXI-ET Thermal (Land Surface Temperature)

VIs and NIR (LAI)
4 km daily 2001–present Anderson et al., 1997; 2013b

QuikSCAT Ku-band backscatter Ku-band (13.4 GHz) 0.25° 3 days 1999–2009 Long et al., 2001; Guan et al.,
2012

AMSR-E VOD 10.7 GHz 0.25° 3 days 2002–2011 Jones and Kimball, 2012
PRISM precipitation and
temperature

N/A 4 km daily 1981–present Daly et al., 2008
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splitting schemes are consistent in terms of their general pattern and
relative magnitude. The R2 shows some sensitivity to the data splitting,
but this uncertainty is largely eliminated by conducting the 10-fold
cross-validations for 100 times.

2.4. Experiment design

In this study we use all satellite and climate data for the month of
July, which represents the peak growing season for the U.S. Corn Belt
as indicated from past studies (Lobell et al., 2013) and also clearly
shown in the seasonal cycles of the different satellite data records
(Fig. 2). In addition, July has been found to be the most critical period
for climate to affect crop yield (Lobell et al., 2013). Finally, using July
data also provides lead time for forecasting crop yield that is usually
harvested in October in the U.S. Corn Belt. When designing the experi-
ments for the PLSR analysis, we consider the following factors:

(FACTOR 1) Data availability: The satellite data used in this study
cover different periods. We therefore select two major periods for the
analysis: Period 1 (2007–2009) is relatively short in length but included
all of the satellite data examined; Period 2 (2002–2009) had a longer
duration which is more suitable for analyzing model predictive skill
and inter-annual variations, but it excludes the SIF-GPP record. Note,
that Period 1 (2007–2009) experienced relatively low inter-annual var-
iability in drought conditions across the Corn Belt, in comparison with
the longer timescale represented in Period 2 (2002–2009).

(FACTOR 2) Distinction between spatial and temporal patterns: We
consider three options, as illustrated in Fig. 3. Option 1 (“Raw”) uses all
raw data and treats each county-year record as an independent sample,
which essentially lumps both spatial and temporal variability. Option 2
(“Detrend”) first removes linear trends of the raw data (both yield and
predictor variables) at the county level (i.e. detrending) such that the
average of the county data is zero, and then treats each of the county-
year records as an independent sample. This option thus removes spa-
tial variability at the county level, while preserving temporal variability
in the data. Comparing results between Option 1 and 2 can reveal dis-
tinctions in explaining spatial and temporal variability. Option 3
(“Detrend + Mean”) first calculates the average of the raw county
data for each county, and then adds this county-specific average to the
“Detrend” data of Option 2. Option 3 thus does not have the multi-
year linear trend when compared with Option 1, but preserves the
between-county spatial pattern when compared with Option 2.

(FACTOR 3) Evaluating impacts from the different combinations of
satellite and climate inputs.We use the following four options to distin-
guish impacts of the different satellite and climate inputs on estimated
yield: Option 1: only using satellite data (“Satellite Only”); Option 2:
using both satellite data and climate data (“Satellite + Climate”); Op-
tion 3: using EVI data and climate data (“EVI + Climate”), and Option
4: only using climate data (“Climate Only”). Option 3 is based solely
on EVI since most conventional studies only use VIs in yield estimation

(Sibley et al., 2014; Tucker and Holben, 1980), while comparisons be-
tween Options 2 and 3 can reveal the potential added predictive
power of other satellite data in estimating crop yield. Our investigation
primarily examines the climate record for July, though theMay–July ag-
gregated climate is also tested but does not produce noticeable qualita-
tive differences from the July results.

The full implementation of the above options represents 24 (2 × 3
× 4) total experiments. We primarily focus on the Period 1 (2007–
2009) results because this period includes all of the satellite data exam-
ined. The Period 1 results are also found to be largely consistent with
those of Period 2 (2002–2009). The Period 2 temporal analysis results
are also presented due to the longer record, even though it excludes
the shorter SIF-GPP record. In the Results section, we use the following
naming convention for the different experiments: “FACTOR1, FACTOR2,
FACTOR3”. For example, the experiment denoted as “2002–2009. Satel-
lite Only.Raw” means that we are using only satellite data (FACTOR 3)
from the 2002–2009 period (FACTOR 1), and the Raw county level
data (FACTOR 2).

3. Results

3.1. Seasonal cycle of different satellite-based data

Fig. 2 shows the study area and spatially aggregated mean seasonal
cycles of all satellite data examined for the study area. All of the satellite
data shows a generally consistent pattern of a mid-summer peak during
the crop growing season for the U.S. Corn Belt (May-Sep), though with
some differences in temporal onset, rate of increase, peak timing and
rate of decrease among the different metrics. SIF-GPP slightly lags behind
EVI in the green-up stage and also drops earlier thanEVI in the senescence
stage, which is consistent with previous findings that crop greenness
(revealed by EVI) generally leads photosynthesis (revealed by SIF-GPP)
at the beginning of the growing season and lags photosynthesis in the se-
nescence stage over North America (Joiner et al., 2014).We also find that
ALEXI-ET increases earlier than the other metrics at the beginning of the
growing season when bare soil evaporation is expected to be the major
contributor of this signal. The ALEXI-ET drops earlier than the other met-
rics and closely tracks SIF-GPP, indicating that ET and photosynthesis are
synchronized during the latter portion of the growing season. The micro-
waveVOD and dB seasonal cycles both lag behind the othermetrics at the
end of the growing season, while VOD also lags at the beginning of the
growing season. This lagged response of the microwave data (both VOD
and dB) has also been reported for other ecosystems, including grassland
and shrublands of North America (Jones et al., 2012), tropical savannas
(Guan et al., 2014) and temperate forests (Jones et al., 2011). These stud-
ies found that VOD lags in spring to the rapid greening shown by VI, and
this is because that above ground biomass and water contents reflected
by VOD require time to accumulate and grow (Jones et al., 2012). The
reported delayed VOD decrease during Fall (relative to VI) is largely due

Fig. 3. A synthetic example to illustrate Options 1–3 for the “Distinction between spatial and temporal patterns” in Section 2.4 “Experiment design” for crop yield data in a specific county.
Option 1 uses raw county-level data (the red dashed line shows its linear fit), Option 2 removes the linear trend (the red dashed line shown in the 1st panel) from the raw data for each
county, and Option 3 adds the multi-year average from the raw county-level data to the Option 2 data.
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to residual biomass remaining during canopy senescence (Guan et al.,
2014; Jones et al., 2011; Saatchi et al., 2013). Both dBmor and dBaft show
similar seasonal cycles (Fig. 2c), though dBmor shows a larger magnitude
signal thandBaft. Previous studies have hypothesized that themorning/af-
ternoon difference in Ku-band dB indicates that plants replenish water
overnight and lose water over the day through transpiration (Frolking
et al., 2011; Saatchi et al., 2013), though this differencemay also reflect di-
urnal differences in canopy structure (e.g. leaf wilt) and dewfall
(Vereecken et al., 2012). The difference between dBmor and dBaft (i.e.
δ(dB)) also shows a clear seasonal cycle (Fig. 2c in gray), which is largely
following EVI and SIF during the growing season. The regionally aggregat-
ed pattern shown in Fig. 2 is consistent with the spatial pattern of the
peak month of the mean seasonal cycle for all the satellite data (Fig. S1),
indicating that the aggregated pattern that we discussed above is repre-
sentative for the study domain.

3.2. Exploratory data analysis

We first conduct the exploratory data analysis by looking at correla-
tions among all of the satellite/climate metrics and yield-based NPP
using the 2007–2009 raw data (Fig. 4). Below we summarize the find-
ings using single asterisk (⁎) and double asterisks (⁎⁎) to indicate a cor-
relation coefficient (r) with statistical significance levels of p-value b

0.01 and p-value b 0.001, respectively. No asterisk means the signifi-
cance level is above 0.01.

(1) SIF-GPP, EVI, dBmor and dBaft are highly correlated with each
other, with all correlation coefficients exceeding 0.69⁎⁎. These
four metrics are also highly correlated with Y-NPP (with all

correlations exceeding 0.62⁎⁎), while dBaft has the highest corre-
lation with Y-NPP (r = 0.66⁎⁎) relative to the other metrics ex-
amined.

(2) VOD and ALEXI-ET are relatively less correlated with the data of
the above group, but all of the correlation coefficients are still sig-
nificant and above 0.47⁎⁎. VOD and ALEXI-ET are also less corre-
lated with Y-NPP (r = 0.42⁎⁎ for VOD, and r = 0.47⁎⁎ for ALEXI-
ET). δ(dB) is even less correlated with other satellite data and
with Y-NPP than all other satellite-based measurements.

(3) Mean July temperature (T), in general, has a significantly nega-
tive correlation with all of the satellite data and Y-NPP, except
with ALEXI-ET. ALEXI-ET and T are positively correlated at a
high significance level (p b 0.001).

(4) Mean July precipitation (Precip) generally has a significant posi-
tive correlationwith EVI, ET, dBmor, dBaft, δ(dB) and Y-NPP. Precip
and T do not have a significant correlation in the study region.

Fig. 5 shows the three-year-averaged (2007–2009) spatial pattern of
the different metrics, which provides a qualitative visual justification of
some of the above findings, for example, the similar spatial patterns
among SIF-GPP, EVI, dBmor, dBaft, ALEXI-ET and Y-NPP.

3.3. PLSR results

3.3.1. Interpreting the PLSR results
Here we first demonstrate how we interpret the PLSR results. Using

the “2007–2009. Satellite Only. Raw” (Fig. 6a and b) results as an exam-
ple, Fig. 6a shows the performance of the PLSR models with different

Fig. 4. Scatterplots between different variables including various satellite data, climate (precipitation and temperature for July), and crop yield-based July NPP for all counties examined for
the 2007–2009 period. Each dot in the scatterplot represents a single county-year record (July only). Three-year-aggregated (2007–2009) spatial patterns after the normalization are
shown in Fig. 5. Single asterisk (*) and double asterisks (**) denote statistical significance levels of p-value b 0.01 and p-value b 0.001, respectively; no asterisk indicates significance
levels above 0.01.
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Fig. 5. Three-year-averaged (2007–2009, July) spatial patterns after normalization (all of the data have a mean of zero and standard deviation of one; see details in Section 2.3) of the
satellite-based data, climate variables, and Y-NPP for all counties in the study region.
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numbers of components (i.e. R2 between the model prediction and
observation). Specifically, the 1st component is a vector derived as
a linear combination of the different satellite data such that the 1st
component can best explain the variance in crop yield (i.e. Y-NPP).
The 2nd component is a perpendicular vector to the 1st component,
and is the linear combination of the different satellite data that can
best explain the remaining variance in Y-NPP after removing the
part of Y-NPP explained by the 1st component. The same rule applies
to the 3rd component, which needs to be perpendicular to both the
1st and 2nd components, and so on for subsequent components. Since
each component is a linear combination of the different satellite data,
theweight of each data input in the linear combination is the coefficient
shown in Fig. 6b.

As expected, the R2 for the training data increaseswithmore compo-
nents until saturation, and it is always higher than the counterpart R2 for
the testing data. The R2 for the testing data increases from 0.48⁎⁎ for the
model with only one component to 0.55⁎⁎ for the model with three
components. The model performance slightly decreases (R2 = 0.54⁎⁎)
using additional components, indicating model overfitting of the train-
ing data when the number of components is more than three. The R2

for the testing data becomes stabilized when the number of compo-
nents is more than four. Thus the optimal PLSR model in this case has
three components.

Fig. 6b shows the regression coefficients of each predictor variable
for the model with only one component (in blue) and the optimal
model (in black), respectively. The red arrows in Fig. 6b show the

Fig. 6. The PLSR results for the two experiments, i.e. “2007–2009. Satellite Only. Raw” (6a, b) and “2007–2009. Satellite + Climate. Raw” (6c, d). The upper panels (6a, c) show the
performance of the PLSR models with different numbers of components (i.e. R2 between the model prediction and observation, with error bars showing the 95% confidence interval).
The bottom panels (6b, d) show the regression coefficients of each predictor variable for the model with only the 1st component (in blue) and the optimal model (in black),
respectively, with the red arrows showing the direction and magnitude of their difference for each predictor variable between the two models. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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magnitude and direction of change in the coefficients between the two
models. The regression coefficients for themodel with only one compo-
nent are all positive, which is explained in Section 3.3.3. However, the
regression coefficients for the optimal model (in this case the PLSR
model with three components) have clear differences from the model
with only one component: a few predictor variable coefficients increase
(EVI, SIF-GPP, dBmor, and dBaft), while others decrease and become neg-
ative (VOD, ET, and δ(dB)).

Understanding the meaning of each PLSR component and how they
can be reconstructed is essential to interpreting the PLSR results. The
first PLSR component is a linear combination of all of the predictor var-
iables weighted by the regression coefficients of the model with only
one component. The second PLSR component can be calculated as the
linear combination of all of the predictor variables but weighted by
the coefficient difference between the two-component PLSR model
and the one-component PLSR model. The same rule applies for other

PLSR components. Thus for Fig. 6b, the linear combination of all of the
predictor variables weighted by the red vector arrows is equal to the
sum of the 2nd and 3rd components, since the optimal model has
three components.

3.3.2. “Satellite Only” vs. “Satellite + Climate”
Fig. 6 shows the comparison of results from the two experiments:

“2007–2009. Satellite Only. Raw” (6a, b) vs. “2007–2009. Satellite+Cli-
mate. Raw” (6c, d). The only difference between these two experiments
is whether or not the climate information is used. Both experiments at-
tain the best performance using three components. Including climate
information improves the R2 performance to 0.61⁎⁎ (vs. 0.55⁎⁎ without
climate information involved) for the optimal models in the testing
data. The general trends of the regression coefficients for the one com-
ponent model are similar in both experiments (blue lines in Fig. 6b,
d). The regression coefficients for the optimal models also share similar

Fig. 7. Linear correlations between the first PLSR component (denoted as “Y1”) and the different predictor variables (1st column on both sides, in the orange box), and linear correlations
between the added values of other PLSR components (“Yopt - Y1”) and the different predictor variables (2nd column on both sides, in the gray box); “Yopt” refers to the predicted Y-NPP
from the optimal PLSR model, and “Yopt - Y1” refers to the extra information from other components when the contribution from the first component is removed. The results are from the
experiment: “2007–2009. Satellite + Climate. Raw”; Single asterisk (*) and double asterisks (**) denote statistical significance levels of p-value b 0.01 and p-value b 0.001, respectively.
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trends, except that the coefficients for ALEXI-ET in the optimal model
have opposite signs in the two experiments, as well as for dBmor. The co-
efficient change for ALEXI-ET is largely attributed to the positive corre-
lation between ALEXI-ET and T (Fig. 4); when T is incorporated in the
model (Fig. 6d), T largely absorbs the variability previously carried by
ET in the “Satellite Only” experiment (see more details in Section
3.3.3). The changes in coefficients from the one component model to
the optimal model (red arrows in Fig. 6c, d) also show similar trends
in direction, with the only exception for dBmor, which shows opposite
signs in the two models.

3.3.3. Shared and unique information from different predictor variables for
crop yield estimation

We now use the results from the experiment “2007–2009. Satellite
+Climate. Raw” (Fig. 6c, d) to distinguish both shared andunique infor-
mation from the different predictor variables. Fig. 6c shows that the sin-
gle component and optimal PLSR models explain 51% and 62% of the
variability in the response variable (i.e. Y-NPP), respectively. In other
words, the 1st component achieves 82% (=0.51/0.62) of the optimal
model performance, while additional components capture the remain-
ing 18% of the performance.

We calculate the 1st component (“Y1” in Fig. 7) and also the combined
2nd and 3rd model components (“Yopt-Y1” in Fig. 7, see their three-year
averaged spatial patterns in Fig. 8), and then correlate these components
with all of the predictor variables (Fig. 7). Our results show that the cor-
relation coefficients between the 1st component and predictor variables
closely correspond to the correlation coefficients between Y-NPP and
the predictor variables (Fig. 4, R2=0.95). This is expected as the 1st com-
ponent from the PLSR model is derived to maximize the explained vari-
ability in the response variables (i.e. “Y-NPP” in this case). A ranking of
the predictor variables from high to low correlation with the 1st compo-
nent ranges from: EVI (r = 0.93⁎⁎), dBmor (r = 0.90⁎⁎), SIF-GPP (r =
0.89⁎⁎), dBaft (r = 0.87⁎⁎), ALEX-ET (r = 0.75⁎⁎), VOD (r = 0.70⁎⁎), and
δ(dB) (r = 0.25⁎⁎). These results indicate that all of the satellite metrics
contain the information carried by the 1st component, though some sat-
ellite metrics contain more of this information than others. The 1st com-
ponent is also positively correlated with July precipitation (r = 0.24⁎⁎)
and negatively correlated with July temperature (r=−0.24⁎⁎). The rel-
atively higher correlation between the 1st component and EVI, dB and
SIF-GPPmetrics indicates that the 1st component is sensitive to cropland
aboveground biomass production.

The combined 2nd and 3rd model component (“Yopt-Y1” in Fig. 7)
has a small or insignificant correlation with EVI (r = −0.05), SIF-GPP
(r = 0.04), dBmor (r = −0.02), but has stronger correspondence with
VOD (r = −0.34⁎⁎), ET (r = −0.18⁎⁎), dBaft (r = 0.29⁎⁎), δ(dB) (r =
−0.46⁎⁎), Precip (r = 0.41⁎⁎), and T (r = −0.31⁎⁎). In brief, the above
results indicate that when the 1st component is removed, EVI, SIF and
dBmor provide little extra information in terms of estimating crop

yield; however, the other satellite metrics and climate variables all pro-
vide non-trivial contributions to “Yopt-Y1”. Specifically, we find that this
relationship explains why the regression coefficients change from the
single componentmodel to the optimalmodel (Fig. 6d) – the change di-
rections of the red arrows are consistent with the signs of the correla-
tion coefficients between “Yopt-Y1” and the different predictor
variables, while themagnitudes of the red arrows are also highly corre-
lated with the magnitudes of the above regression coefficients (R2 =
0.83⁎⁎). The interpretation of the combined 2nd and 3rd component is
less intuitive than that of the 1st component, but some plausible expla-
nations can be given based on existing knowledge and literature. In the
U.S. Corn Belt during July (usually the key reproductive stage), higher
precipitation usually leads to higher crop yields, while higher tempera-
tures generally lead to yield declines (Guan et al., 2016; Lobell et al.,
2013; Schlenker andRoberts, 2009); these characteristics are confirmed
in the current study by the positive correlation between Precip and
“Yopt-Y1”, and negative correlation between T and “Yopt-Y1”. Due to
the relatively high correlation between ALEXI-ET and T (r = 0.28⁎⁎,
Fig. 4) during this study period (2007–2009), ALEXI-ET tends to show
similar information as T for “Yopt-Y1”. The positive correlation between
dBaft and “Yopt-Y1” may indicate that dBaft contains better information
about water content in the aboveground biomass (van Emmerik et al.,
2015) and associated plant water stress (Konings and Gentine, 2016).
Thus, higher dBaft indicates higher plant water content and less water
stress, which can translate to higher crop yields. Though VOD and
δ(dB) both have a significant negative correlation with “Yopt-Y1”, the
specific processes behind these relationships remain elusive and require
further research. In general, the combined 2nd and 3rd component con-
tains information that ismore related to the environmental stresses that
crop experiences.

Fig. 9 further encapsulates the above interpretations by showing the
PLSR loadings for the 1st and 2nd components of the PLSR model. PLSR
loadings refer to the projection of each predictor variable to the PLSR
components. Since the different PLSR components are perpendicular
to each other, Fig. 9 only shows the first two components, which com-
bined achieve 95% of the optimal model performance. The 2nd compo-
nent shown here contains 85% of the information in “Yopt-Y1” (the
combined 2nd and 3rd component) shown above, so the 2nd compo-
nent can largely represent the information of “Yopt-Y1”. We find that
EVI, SIF-GPP, and dBmor all have similarly large loadings in the direction
of the 1st component, but contribute little to the dimension of the 2nd
component. dBaft, VOD and ET all have a significant contribution to
both “Y1” and “Yopt-Y1”. However, δ(dB), Precip and T primarily contrib-
ute to the dimension of the 2nd component (i.e. “Yopt-Y1”). Based on the
previous analysis and interpretation, we argue that the 1st component
primarily contains information about crop aboveground biomass,
while the 2nd component primarily includes information about envi-
ronmental stresses.

Fig. 8. (a) The three-year-averaged spatial pattern of the 1st component (“Y1”), (b) the predicted response variable from the optimal model (“Yopt”), and (c) the combined 2nd and 3rd
component (“Yopt-Y1”) for the experiment of “2007–2009. Satellite + Climate. Raw”.
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3.3.4. “Raw” (spatial + temporal) vs. “Detrend” (temporal only) vs.
“Detrend + Mean”

Next, we compare the performances of the PLSR models in order to
explain spatial and temporal patterns of the observed crop yield. In ac-
cordance with the experimental design (Fig. 3), “Raw” data contains

both spatial and temporal variability, “Detrend” only contains temporal
variability information, and “Detrend+Mean” removes the multi-year
linear trend from the “Raw” data. Since data for the “2007–2009” period
is too short for analyzing temporal characteristics and trends, we use
the “2002–2009” data record here, which does not include the SIF-GPP
data. However, as we have shown that SIF-GPP contains similar infor-
mation as EVI for explaining county-level crop yields in the current
study (e.g. Fig. 9), omission of the SIF-GPP may be largely mitigated by
the use of EVI in the longer record.

The top row in Fig. 10 shows that the R2 of the “Raw” experiment is
higher than “Detrend”, indicating that it is usually more difficult to cor-
rectly predict inter-annual yield variability than between-county yield
variability. The R2 of “Raw” is lower than “Detrend + Mean”, meaning
that the multi-year linear trend matters and that removing this trend
leads to a higher R2 of the predictive model. Fig. S2 shows the time
trend of the satellite-based data used here, and we observe that dBaft
and ALEXI-ET show a more negative trend in most counties, while EVI,
dBmor, VOD and δ(dB) do not show clear trend patterns. How these dif-
ferent trends affect the resultsmay beworth further investigation, but is
beyond the scope of the current study. However, the regression coeffi-
cients for “Raw” have a very similar trend as “Detrend+Mean”, indicat-
ing that the multi-year linear trend may not affect the relative
contributions of different predictor variables. The regression coefficients
in the “Detrend” and “Raw” experiments have some similarities, e.g. EVI,
T, δ(dB) and dBaft have large absolute magnitudes in regression coeffi-
cients for both experiments, indicating that these predictor variables
are effective in explaining both temporal and spatial variability in crop
yield. However, there are also clear differences in the regression coeffi-
cients between the “Raw” and “Detrend” results. Specifically, Precip has

Fig. 10. The PLSR results for the three experiments using the data from: “2002–2009. Satellite+Climate”. (6a, b) “Raw”; (6c, d) “Detrend”; and (6e, f) “Detrend+Mean”. The upper panels
(6a, c, e) show the R2 of the PLSR models with different numbers of components, and errors bars show the 95% confidence interval. The bottom panels (6b, d, f) show the regression
coefficients of each predictor variable for the model with only the 1st component (in blue) and for the optimal model (in black), respectively, with the red arrows showing the
direction and magnitude of their difference for each predictor variable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 9. PLSR loadings for different predictor variables for the 1st component (x-axis) and
the 2nd component (y-axis) resulting from experiment: “2007–2009. Satellite
+ Climate. Raw”. Based on the results, we interpret the 1st component as primarily
related to “crop aboveground biomass”, and the 2nd component primarily relating to
“environmental stress”.
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relatively more importance in the “Detrend” than in the “Raw” experi-
ment, which confirms that precipitation is among the major factors
causing inter-annual variability in crop yield (Urban et al., 2015).

Fig. 11 shows the PLSR loadings for the “Raw”, “Detrend” and
“Detrend + Mean” experiments using the “2002–2009” data period.
We argue that the interpretation of the 1st and 2nd components in
Fig. 9 still holds in Fig. 11, i.e. the 1st and 2nd components represent
crop aboveground biomass and environmental stress factors, respec-
tively. The PLSR loading patterns are generally consistent between
Fig. 11a (“2002–2009.Satellite + Climate.Raw”) and Fig. 9 (“2007–
2009. Satellite + Climate.Raw”), though one major difference is that
Precip changes from the upper-right quadrant in Fig. 9 to the lower-
right quadrant in Fig. 11a. This means that though precipitation is still
positively correlated with the 1st component (i.e. “aboveground bio-
mass”), precipitation imposes different impacts on the 2nd component
for the two data periods. Precipitation is positively correlated with the
2nd component for the “2007–2009” period, but negatively correlated
for the longer “2002–2009” period. July 2003 represented an extreme
rainfall month for the study area, with up to 6 standard deviations
above the multi-year average in some counties for July precipitation.
These extremely high precipitation events have been documented
(http://mrcc.isws.illinois.edu/cliwatch/0307/030724.htm), and are
known to lead to severe yield loss (Pantaleoni et al., 2007). Due to the
nature of PLSR as a linear model, these extreme events heavily skew
the results and lead to a negative correlation between precipitation
and the 2nd component for the “2002–2009” record. This is further con-
firmed by excluding 2003 from the “2002–2009” data period, which
produces positive correlation between precipitation and the 2nd com-
ponent, similar to the results in Fig. 9. However, the final Precip regres-
sion coefficients of the optimal models for the three experiments
(“Raw”, “Detrend” and “Detrend + Mean”) are all positive, indicating
that the Precipitation contribution to the 1st component is more domi-
nant than its contribution to the other components.

3.3.5. Added value of other satellite data beyond EVI for crop yield
estimation

Fig. 12 shows the R2 performance of themodels derived using differ-
ent combinations of predictor variables and the “2007–2009.Raw” data
inputs. We find that only using July Climate information (i.e. “Climate
Only”) explains just ~5% of the total crop yield variability. Adding EVI
with Climate (i.e. “EVI + Climate”) achieves higher performance (R2

= 0.4⁎⁎) for the testing data, demonstrating the added value of EVI rel-
ative to the “Climate Only” inputs. Only using satellite data inputs (i.e.
“Satellite Only”) attains higher model performance (R2 = 0.5⁎⁎) for
the testing data. Combining all of the satellite and climate data produces
the best performance (R2 N =0.6⁎⁎) among all of the models for both
training and testing data. These results indicate that other satellite
data beyond EVI provide added value in explaining crop yield variabili-
ty, with significantly higher R2 performance using “Satellite + Climate”
than “EVI + Climate” inputs. Furthermore, comparing the “Satellite
Only” and “Satellite+Climate” results indicates that the use of only sat-
ellite data could not explain all of the observed crop yield variability,
while the additional use of climate information significantly improves
model performance. Using the “2002–2009” data period for both
“Raw” and “Detrend” cases generates similar results as Fig. 12 and are
thus not shown here. It is worth noting that the current approach (i.e.
PLSR) is primarily used to study the shared and unique contributions
of the different data (including satellite and climate data), while the
PLSR method has limitations for achieving higher model performance
in yield estimation, as discussed in Section 4.

Fig. 11. PLSR loadings for different predictor variables for the 1st component (x-axis) and
the 2nd component (y-axis) of the three experiments using the data from: “2002–2009.
Satellite + Climate”. (a) “Raw”; (b) “Detrend”; and (c) “Detrend + Mean”.
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4. Discussion

4.1. Benefits of a multi-sensor approach

Visible-NIR based VI metrics have been the dominant approach for
operational crop monitoring since the start of the global satellite era
(Kogan, 1994; Tucker, 1979), thoughmore than a decade of other satel-
lite observations using other spectral wavelengths have also been ac-
quired, including thermal and microwave observations. One reason for
the dominance of visible-NIR VIs is that these indices have a relatively
long-term record, large signal-to-noise ratio and high spatial resolution.
In contrast, other satellite data have been underutilized and
understudied for monitoring crop growth and estimating yield. This
study represents one of the first efforts to integrate available satellite
data spanning visible, NIR, thermal and microwave spectral ranges for
studying large-scale crop yield. Understanding and demonstrating the
shared and unique information gained from the different satellite data
also contributes to better planning of new satellite missions or the con-
tinuation of existing missions.

We find that rich information about crop growth can be revealed by
other satellite data from spectral ranges extending beyond visible and
NIR spectra.Most importantly, our results indicate that the different sat-
ellite data share similar information that the visible-NIR based EVI
carries at large scales. In our case, SIF-GPP, Ku-band dB, X-band VOD
and thermal-based ET all share information related to aboveground can-
opy biomass (Fig. 6); these data also share similar seasonality congruent
with the crop growth cycle (Fig. 2). Both SIF-GPP and Ku-band dB (in-
cluding both morning and afternoon overpass retrievals) are found to
carry similar information as the EVI (Fig. 6).When excluding this shared
information component from all of the satellitemetrics, the EVI and SIF-
GPPmetrics are found to contain little additional information, while the
Ku-band dB, VOD and thermal-based ETmetrics reveal other unique in-
formation discussed below. We thus suggest to continue taking advan-
tage of the visible-NIR VI record, while incorporating other satellite
metrics that contain additional unique information.

The most surprising performance in our study comes from the Ku-
band dB backscatter data. Being originally developed for monitoring
ocean wind fields (Naderi et al., 1991), Ku-band dB from SeaWinds on
QuikSCAT has only been used in terrestrial vegetation applications in
limited cases [e.g. Frolking et al., 2011; Guan et al., 2012; Saatchi et al.,
2013]. Our study suggests that the Ku-band dB from both morning
and afternoon overpasses contains rich information on crop growth,
similar to the primary information that the EVI carries, which is related
to aboveground biomass. However, the Ku-band dB data also contains
additional unique information that is associated with crop yield,
which may be attributed to higher microwave sensitivity to canopy
water content and less signal saturation at higher biomass levels than
the visible-NIR based EVI (Ulaby et al., 1982). When combining the

shared and unique information from these metrics, dBaft has an even
higher correlation with yield-based NPP than EVI at the county scale.
The observed favorable performance of the radar backscatter data for
crop monitoringmay not be universal, and should be highly dependent
onwavelength/frequency, aswell as other sensor characteristics includ-
ing overpass time and incidence angle. The Ku-band (13.4 GHz) fre-
quency is expected to be most sensitive to the top-of-canopy for a
fully developed corn crop, while lower microwave frequencies (e.g. C-
band or L-band) may contain more information from deeper canopy
layers and surface soil moisture (Ulaby et al., 1982), especially prior to
canopy closure. We find that C-band dB data from the Advanced
Scatterometer (ASCAT) on the European Space Agency's METOP-A sat-
ellite was less sensitive to crop growth and more sensitive to soil mois-
ture in our study area (results not shown) than the Ku-band dB data
from QuikSCAT, which is consistent with theoretical understanding
(Ulaby et al., 1982; van Emmerik et al., 2015).

The Ku-bandmorning and afternoon overpass dB data (i.e. dBmor and
dBaft) share much overlapping information, but also have unique differ-
ences. The two metrics both show a seasonal cycle similar to EVI and
SIF-GPP, while their difference (i.e. δ(dB) = dBmor - dBaft) also shows a
similar seasonal cycle (Fig. 2). Previously, Frolking et al. (2011) and
Saatchi et al. (2013) hypothesized that the Ku-band morning and after-
noon dB difference (i.e. δ(dB)) is a potential indicator of water loss from
the landscape: plants absorb water from deep soil overnight, and have a
higherwater content in themorning; and over the course of a day, plants
transpirewater and top soil also evaporateswater,which leads to a lower
landscape water content in the afternoon. Based on this reasoning, δ(dB)
is expected to be correlated with ET, which is marginally confirmed by
the relatively weak correlation between δ(dB) and thermal-based
ALEXI-ET (r = 0.18⁎⁎, Fig. 4). ALEXI-ET, as one available ET product
among many, may have its own uncertainty and bias. Meanwhile the
nuances and rich information of δ(dB) for croplands has not been fully
studied before. We find that δ(dB) contains little information related
to the 1st component representing aboveground crop biomass, but it
has a significant negative contribution to the secondary component
representing environmental stress (Figs. 7 & 9).

Our work confirms the findings from previous studies (Anderson et
al., 2011, 2007; Otkin et al., 2013) that thermal-based ET data contain
useful information on crop yield. Over the relatively moisture stress-
free conditions encountered in Period 1 (2007–2009), we find that
ALEXI-ET conveys two primary levels of information: (1) vegetation
aboveground biomass (Fig. 9); and (2) spatio-temporal information
on temperature (Fig. 3). During this period, ET is driven primarily by at-
mospheric demand rather than soil moisture, and atmospheric demand
is a function of air temperature. This relationship between ALEXI-ET and
temperature leads to an apparent negative relationship between the
secondary component of ALEXI-ET (after removing the aboveground
biomass information) and crop yield.When temperature is not included
in the PLSR for Period 1 (Fig. 6a, b), ALEXI-ET essentially contributes in-
formation related to temperature, andwhen temperature is also includ-
ed in the PLSR (Fig. 6c, d), the contribution of ALEXI-ET is close to zero,
as most ALEXI-ET information that is related to temperature has been
represented directly by temperature. However, for Period 2 (2002–
2009), which includes significant drought events in some parts of the
Corn Belt, the loading for ET in the PLSR remains sizable even when
air temperature is included (Fig. 10), indicating that it is conveying use-
ful independent information regarding moisture stress conditions.

4.2. Implications and limitations of the methodology

The utility of different spectral wavelength remote sensing data ap-
pears to depend onwhether one is attempting to track primarily spatial
or temporal crop yield variability. We use three levels of data in our
PLSR analysis: “raw” data contains information of spatial, inter-annual
variations and time trend; “detrend” data removes the spatial pattern
and time trend, and only contains inter-annual variations; “detrend

Fig. 12. Comparison ofmodel performance derived using different data combinations (see
FACTOR 3 in Section 2.4) using the July data from: “2007–2009. Raw”. The error bars
denote one standard deviation of the derived R2 for the 100 PLSR simulations derived
using different splitting of training and testing data.
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+mean” data contains spatial and inter-annual variations, but removes
the time trend. Little difference is found between the “raw” and
“detrend+mean” results (based on the 2002–2009 study period), indi-
cating that temporal trends over this period may not be a significant
contributor of model variability. However, the “raw” and “detrend”
data show some difference in the PLSR results. The better model perfor-
mance using “raw” data than “detrend” data confirms findings from
previous work (Guan et al., 2016; Lobell et al., 2015) that found
predicting inter-annual variability is usually more challenging than
predicting the spatial pattern of yield. It is encouraging to see that EVI,
T, δ(dB) and dBaft are useful predictors for capturing both spatial and
temporal patterns.

The PLSR fundamentally is a linearmodelwhich does not account for
potential non-linear relationships between predictor and response var-
iables. This has been shown in the precipitation example (Fig. 10 and
Section 3.3.4). We only use July data to predict the final crop yield in
the current study, while using data from other periods may further
improve model performance, which will be explored in future work.
However, the current PLSR results provide an improved understanding
of the relative value and impact of the different satellite data, which can
serve as a guide for choosing the optimal combination of data for esti-
mating crop yields. More sophisticated machine learning algorithms
(e.g. neural network) can then be used to achieve thebestmodel perfor-
mance (You et al., 2017).

Our current study focuses on county-level crop yield estimation for
two practical reasons: (1) the USDA NASS benchmark yield data is
only available at county level; and (2) most of the satellite datasets
we used are only available at relatively coarse spatial resolution (e.g.
GOME-2 SIF has a 30–40 km, while QuikSCAT and AMSR-E data are
gridded to 0.25° resolution), except for EVI and ALEXI-ET. The U.S.
Corn Belt is an ideal study region due to a high spatial fraction of
croplands dominated by only two crop types (corn and soybean). Our
current study area covers the counties that produced 73% of the total
US corn production, and thus nationally representative. However, we
caution that applying the current methods to regions beyond this
study area (e.g. going to the “Minor Corn Area” in Fig. 2a) faces greater
challenges, as the assumption that the coarse-resolution satellite pixels
(~N10 km) include mainly homogeneous croplands no longer holds.
The utility of relatively coarse resolution satellite observations is expect-
ed to be degraded overmore spatially heterogeneous croplands, such as
small-holder farmlands in Africa and Asia, due to the inability of these
sensors to resolve field-level biomass and yield characteristics. Howev-
er, other satellite sensors may provide more effective information in
these areas due to their finer spatial footprint observations, including
satellite sensors in visible and NIR (e.g. Landsat, Sentinel-2), thermal
(e.g. ECOSTRESS, GOES-R), and high frequency (C-band) synthetic aper-
ture radar (e.g. Sentinel-1). Effectively integrating multi-sensor infor-
mation for crop monitoring and yield estimation will be useful across
spatial scales.

4.3. Role of climate information in crop yield modeling

We find that including climate information (i.e. precipitation and
temperature) along with satellite data can further improve model
predictive power for crop yield. Our results indicate that most of the
satellite data selected for this study are highly sensitive to changes in
aboveground biomass, but crop yield ultimately depends on grain
weight. Current satellite technology is mostly unable to detect changes
in grain biomass, which is largely obscured by the canopy during the de-
velopment stage. Crop yield represents only a portion of the above-
ground biomass, and this ratio (crop yield:aboveground biomass) is
denoted as the “Harvest Index” (HI). The HI represents the translocation
of carbohydrate, from either new photosynthesis or the existing crop
biomass, to crop grain. The HI is determined by two main phases: the
flowering period which determines grain number, and the grain-filling
period which determines individual grain size. The rich agronomy

literature has shown that processes in these phases are highly sensitive
to heat and drought stresses (Hay, 1995; Lobell et al., 2014). This also
explains why July precipitation and temperature have significant re-
spective positive and negative effects on crop yield in our results. The
above reasoning means that although current satellite sensors are sen-
sitive to aboveground biomass, additional HI information is needed to
estimate crop yield. Our approach empirically demonstrates the neces-
sity of including climate data for estimating HI and higher order crop
yield information. Similar approaches have been implemented to
model the HI either implicitly or explicitly in other studies (Leroux et
al., 2015; Lobell et al., 2015).

4.4. Broader implications for current and future satellite missions and
applications

Finally, the current study provides implications for effective utiliza-
tion and development of existing and future satellite missions for crop-
land applications. The excellent performance of Ku-band backscatter
data identified here motivates further use of satellite scatterometer
data, such as RapidSCAT on the International Space Station (Madsen
and Long, 2016; Rodriguez, 2013), which unfortunately ceased operat-
ing in August 2016. Further use of SIF data for crop monitoring may be
catalyzed by the NASA OCO-2 satellite that was launched in July 2015
(Frankenberg et al., 2014) and the incoming FLEX mission by the Euro-
pean Space Agency planned for launch by 2022 (Rascher et al., 2015).
The NASA AMSR-E sensor ceased functioning in September 2011,
while the JAXA AMSR2 follow-on sensor provides a continuing VOD
global data record extending from May 2012 to present (Du et al.,
2014). The NASA SMAP radiometer is capable of generating an L-band
(1.41 GHz) VOD retrieval for bothmorning and afternoon satellite over-
passes (Konings et al., 2016), which may also be useful for crop moni-
toring. The combined use of VOD retrievals at different spectral
frequencies, including L-band SMAP retrievals vs C– and X-band
(6.93GHz, 10.65GHz) retrievals fromAMSR-2 (Du et al., 2014)may pro-
vide enhanced delineation of vegetation phenology, biomasswater con-
tent variations and water use within different canopy layers and the
underlying soil. The NASA ECOSTRESS mission (Hook, 2015) has a
planned launch in late 2017 and will capture the approximate diurnal
temperature cycles over weekly periods covering most U.S. croplands;
these observations are expected to provide unprecedented information
on ET for monitoring crop growth. Other spectral indices, such as the
Photochemical Reflectance Index (PRI) (Gamon et al., 1997; He et al.,
2016) and Land Surface Water Index (LSWI) (Xiao et al., 2005), have
been demonstrated to contain distinctive vegetation information and
should be examined in context with other potentially synergistic satel-
lite information in future studies.

5. Conclusion

Here we present one of the first attempts to synergize multiple sat-
ellite data spanning a diverse spectral range (fromvisible, near-infrared,
thermal to microwave) into a coherent framework to estimate crop
yield over the U.S. Corn Belt. Our PLSRmethodology successfully distin-
guishes both commonly shared and unique information from the differ-
ent satellite sensor data (see Fig. 9 for a summary of different data).
Most of the satellite data examined (e.g. SIF-GPP, dB, EVI, VOD, ALEXI-
ET) share common information related to aboveground biomass; for
this shared information, SIF-GPP anddBaft data are found to contain sim-
ilar information as the EVI. Once the above shared component from all
of the satellite data is removed, we find that the EVI and SIF-GPPmetrics
provide little additional explanatory information at the county level; in-
stead, the Ku-band dB and δ(dB) data, thermal-based ALEXI-ET, and
AMSR-E X-band VOD metrics all provide unique information that im-
prove the overall model predictive skill for crop yield at the county
level. Our findings support efforts for utilizing a wide spectral range of
satellite data for cropland vegetation monitoring, while climate data
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also has value for crop yield estimation, in part to capture variations in
HI that are not observable from current satellite data. It is worth noting
that our results have not yet optimized the predictive skills of the
models for estimating crop yield. The modeling framework developed
here provides a means to identify useful predictor variables for captur-
ing the spatiotemporal variability of crop yield,which provides a path to
fully integrating these data using more powerful machine learning ap-
proaches (e.g. deep learning techniques) for optimizing crop yield
prediction.
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