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Public harvest is a common method used to manage populations of wolves (Canis lupus) in 

North America. Although wolves appear resilient to the effects of harvest management the 

influences on demography and pack stability are uncertain. Packs generally drive population 

dynamics for wolves; thus, we were interested in how harvested populations were maintained 

and how harvest influenced the abundance and distribution of packs. We used noninvasive 

genetic data collected in Idaho, USA (2008–2014) and Alberta, Canada (2012–2014) to test 

whether immigration compensated for harvest mortality and helped maintain population 

densities. We further fit occupancy models to detection data derived from noninvasive genetic 

samples and hunter surveys from Alberta, Canada (2012–2014) to test the stability of pack 

abundance and distribution in a harvested population of wolves. We genetically identified 461 

unique wolves across our study areas; 762 hunters reported seeing live wolves in southwestern 

Alberta. We found our hypothesis that immigration did not compensate for harvest mortality was 

supported. Density of wolves in the U.S. population declined from 15.49 wolves/1000 km
2
 (95% 

credible interval [CRI]: 12.38–18.57) without harvest to 10.20 wolves/1000 km
2
 (95% CRI: 

7.47–12.90) with harvest, whereas the proportion of long-distance immigrants was low and did 

not change with harvest (ranged 0.01–0.02, SD = 0.1). Density and proportion of immigrants 

were similar among study areas where harvest occurred. We also found we could not reject our 

hypothesis that occurrence of packs was generally stable in a harvested population of wolves. 

The mean annual probability for wolf pack occupancy ranged 0.72–0.74 and the estimated 

distribution of wolf packs was consistent over time. Model selection indicated harvest did not 

have a strong effect on pack occurrence but that the probability of detecting a wolf pack was 

positively associated with the intensity of harvest for wolves. Although immigration did not 

appear to compensate for harvest mortality, pack occurrence remained generally stable over time, 

likely due to movement between packs from within the population. Harvest therefore appears to 

affect within-pack dynamics, but may not directly affect the number and distribution of packs 

across a population. 
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Chapter 1 

The influence of harvest varies within and across wolf packs in the Rocky Mountains 

This research began in 2012 when the Montana Cooperative Wildlife Research Unit (MCWRU) 

collaborated with Alberta Environment and Parks (AEP) to develop and test a monitoring 

program for wolves in southwestern Alberta. As we conducted noninvasive genetic surveys and 

worked with biologists in the region, we grew curious about the persistence of this population. 

Harvest pressure on wolves appeared high in southwestern Alberta; not all harvest of wolves was 

reported (Robichaud and Boyce 2010, Webb et al. 2011), AEP did not require hunting licenses or 

quotas for resident wolf hunters (Webb et al. 2011), and some counties in our study area offered 

bounties for wolves (Cardston County Council). Despite the high harvest pressure in 

southwestern Alberta (G. Hale, AEP, personal communication), our field surveys demonstrated 

wolf packs persisted during our 3-year study. We were therefore interested in how this 

population was maintained and how strongly harvest influenced the dynamics of the packs we 

were surveying.  

 Wolves are generally resilient to harvest (Ballard et al. 1987, Hayes and Harestad 2000, 

Adams et al. 2008, Webb et al. 2011) and numerous studies hypothesize that harvested 

populations are maintained by a combination of reproduction and immigration (e.g., Ballard et 

al. 1987, Hayes & Harestad 2000, etc.). Recent research has demonstrated, however, pup 

survival and recruitment were low in southwestern Alberta and have declined in other regions of 

the Rocky Mountains where harvest occurred (Ausband et al. 2015). Thus, changes in 

reproduction do not appear to compensate for harvest mortality in this region. Although 

populations of wolves may be able to compensate for harvest if natural mortality declines 

(Errington 1945, Anderson and Burnham 1976) there is limited empirical evidence that natural 
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mortality decreases in response to low or intermediate levels of harvest mortality (Adams et al. 

2008, but see Murray et al. 2010). Reduced emigration may also compensate for harvest (Adams 

et al. 2008).  Given the high harvest pressure in southwestern Alberta however, we hypothesized 

immigration was most important for maintaining population density and wolf packs in this 

region (Ballard et al. 1987, Potvin et al. 1992, Jędrzejewska et al. 1996, Larivière et al. 2000, 

Jędrzejewski et al. 2005).  

 It is difficult to evaluate compensatory responses to harvest without an experiment or a 

comparable unharvested population (Sandercock 2011). Wolves in southwestern Alberta have 

been harvested since the 1980s (Gunson 1992, Robichaud & Boyce 2010), but harvest of wolves 

in the northern U.S. Rocky Mountains was only recently initiated (U.S. Fish and Wildlife Service 

[USFWS] 2014). The MCWRU had conducted long-term noninvasive genetic sampling for 

wolves in central Idaho since 2007. This timeframe corresponded with when wolves were 

removed from the protection of the Endangered Species Act and public harvest was initiated in 

Idaho (Montana Fish, Wildlife and Parks [MFWP] 2010, Idaho Department of Fish and Game 

[IDFG] 2012, Rich et al. 2013, Ausband et al. 2014). We were therefore able to explicitly test 

whether immigration compensated for harvest mortality in central Idaho.  We could also 

compare the relationship between harvest and immigration in central Idaho to the relationship in 

southwestern Alberta to evaluate whether this relationship was consistent across harvested 

populations of wolves.  

In Chapter 2, we asked how immigration compensated for harvest mortality in 

populations of wolves managed with public harvest in the Rocky Mountains. We tested 3 

competing hypotheses that 1) immigration compensated, 2) immigration partially compensated, 

and 3) immigration did not compensate for harvest mortality. We used noninvasive genetic data 
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collected from 10 packs in central Idaho (2007–2014) and 3 packs in southwestern Alberta 

(2012–2014) to assess the relationship between harvest and immigration. Our hypothesis that 

immigration did not compensate for harvest mortality was supported. We found population 

density of wolves in central Idaho declined from 15.49 wolves/1000 km
2
 (95% credible interval 

[CRI]: 12.38–18.57) without harvest to 10.20 wolves/1000 km
2
 (95% CRI: 7.47–12.90) with 

harvest whereas the proportion of long-distance immigrants was low and did not change with 

harvest (ranged 0.01–0.02, SD = 0.1). The density and proportion of immigrants were similar 

among study areas where harvest occurred. 

 In addition to understanding whether compensatory immigration maintained harvested 

populations of wolves in the Rocky Mountains, we were also interested in the stability of wolf 

populations managed with public harvest.  Packs are the reproductive units of a wolf population 

and generally drive population dynamics (Peterson et al. 1984, Fuller et al. 2003); thus our 

research focused on the stability of packs. Frequent loss and reestablishment of packs across 

space and time (i.e., turnover of packs) may affect demography (Haber 1996, Grewal et al. 2004, 

Jędrzejewski et al. 2005, Brainerd et al. 2008). Furthermore, frequent changes in the abundance 

and distribution of packs may affect whether monitoring can provide adequate information 

necessary for managing populations of wolves. Setting harvest regulations and meeting 

population objectives for wolves may be more challenging if the abundance and distribution of 

wolf packs is highly dynamic due to harvest.  

In Chapter 3, we evaluated the effect of harvest on occurrence and turnover of packs in a 

population of wolves managed with heavy harvest in the Canadian Rocky Mountains. We tested 

two alternative hypotheses that 1) the abundance and distribution of wolf packs was highly 

dynamic due to harvest or 2) the abundance and distribution of wolf packs was generally stable 
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regardless of harvest.  We generated detection data for wolves based on noninvasive genetic 

samples and observations of live wolves made by hunters. We used occupancy models to 

estimate the annual abundance and distribution of packs in southwestern Alberta (2012–2014) 

and then tested the relative influence of harvest and environmental factors on pack occurrence 

and turnover. We also compared model estimates to wolf genotypes to assess turnover of packs 

and individuals within packs. We found the mean annual probability for wolf pack occupancy 

ranged 0.72–0.74 and the estimated distribution of wolf packs was consistent over time. Model 

selection indicated harvest did not have a strong effect on pack occurrence but that the 

probability of detecting a wolf pack was positively associated with the intensity of harvest for 

wolves. Whereas the abundance and distribution of packs appeared stable during our study, we 

observed frequent turnover of individuals within packs genetically sampled over consecutive 

years. 

 This research grew out of curiosity about a harvested population of wolves. Our 

observations from the field led us to ask questions about how heavily harvested populations were 

maintained and the stability of packs. Contrary to expectation, immigration does not compensate 

for harvest mortality in all populations of wolves, yet the abundance and distribution of packs 

can remain stable despite heavy harvest. Harvest therefore appears to affect within-pack 

dynamics, but may not directly affect the number and distribution of packs across a population. 

We hypothesize the level of harvest may affect social stability within packs, thus influencing 

compensatory immigration and adoption of unrelated adults, which in turn may affect the 

stability of pack occurrence in harvested populations. 
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Chapter 2 

Immigration does not compensate for harvest mortality of wolves in the Rocky Mountains 

ABSTRACT 

In some harvested populations, demographic processes may change in response to harvest 

mortality and obscure the effects of harvest on density. Gray wolves (Canis lupus) often appear 

resilient to harvest management, potentially because immigration compensates for harvest 

mortality and maintains population densities. We used noninvasive genetic samples to estimate 

the density and proportion of immigrants in a population of wolves before and after harvest was 

initiated in the northern U.S. Rocky Mountains (2008–2014) and in a population managed with 

harvest for decades in the Canadian Rocky Mountains (2012–2014). We tested three competing 

hypotheses that 1) immigration compensated, 2) immigration partially compensated, and 3) 

immigration did not compensate for harvest mortality. We also hypothesized that any 

compensatory relationship between harvest and immigration would be similar across populations 

where harvest occurred. We collected fecal samples from wolves in 13 packs for 3–7 consecutive 

years, extracted DNA and genotyped 426 unique wolves across 18 microsatellite loci. We 

classified individuals as residents (n = 370), neighbors (n = 3), short-distance immigrants (n = 

16), or long-distance immigrants (n = 23) based on genetic relationships among wolves in our 

samples. Our hypothesis that immigration did not compensate for harvest mortality was 

supported. Density of wolves in the U.S. population declined from 15.49 wolves/1000 km
2
 (95% 

credible interval [CRI]: 12.38–18.57) without harvest to 10.20 wolves/1000 km
2
 (95% CRI: 

7.47–12.90) with harvest, whereas the proportion of long-distance immigrants was low and did 

not change with harvest (ranged 0.01–0.02, SD = 0.1). Density and proportion of immigrants 

were similar among study areas where harvest occurred. We hypothesize available breeding 



10 

opportunities and the social structure of wolf packs may limit the compensatory response of 

immigration in some populations of wolves managed with low to moderate levels of harvest. 

KEY WORDS Canis lupus, compensatory immigration, gray wolf, harvest, noninvasive genetic 

sampling, Rocky Mountains 

INTRODUCTION 

Understanding the relationship between population growth and sustainable harvest is an 

important aspect of wildlife management. In some populations, growth and total mortality may 

not change with low levels of harvest due to compensatory changes in natural mortality. As 

harvest rates increase, however, changes in natural mortality may not be able to compensate for 

harvest mortality, at which point total mortality will increase and the population will decline 

(Errington 1945, Anderson and Burnham 1976, Allen et al. 1998). The effects of harvest are 

often context-dependent and can vary among species or even among populations of a single 

species (Fuller et al. 2003, Mills 2012, Minnie et al. 2016), creating uncertainty about the extent 

to which harvest and natural mortality are compensatory across a variety of harvested species 

(Allen et al. 1998, Pöysä et al. 2004, Sandercock et al. 2011, Wolfe et al. 2015).  

Managing carnivores with public harvest can be particularly challenging for this reason 

(Lieury et al.2015). If compensatory responses to harvest management occur, changes in natural 

mortality may obscure the effects of harvest on the growth or density of a population and negate 

management efforts (Ellison 1991, Sandercock et al. 2011, Williams et al. 2002, Wolfe et al. 

2015). It may be unclear which, if any, vital rates change in response to harvest or how best to 

manage harvest to meet population objectives (Herrando-Pérez et al. 2012, Wolfe et al. 2015).  

 In the Rocky Mountains, wolves (Canis lupus) are managed through public harvest to 

minimize the negative effects of predation on wild ungulates, mitigate conflicts with livestock, 
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and provide opportunities for hunting wolves (Idaho Legislative Wolf Oversight Committee 

[ILWOC] 2002, Montana Fish, Wildlife & Parks [MFWP] 2002, Bruskotter 2013). This is 

challenging both sociopolitically (Bruskotter 2013) and biologically, particularly because of the 

social nature of wolves. Wolves live in groups (i.e., packs) which generally comprise a dominant 

breeding pair and their offspring of multiple generations (Mech & Boitani 2003); the pack is the 

reproductive unit in a wolf population and drives population dynamics (Peterson et al. 1984, 

Fuller et al. 2003). Adult pack members defend a common territory, hunt cooperatively, and 

assist the breeding pair in raising pups (Packard et al. 2003). The effects of harvest mortality on 

wolf packs and populations vary depending on the age-class, social-rank, and dispersal-status of 

the individuals harvested and, thus, can be complex (Fuller et al. 2003, Brainerd et al. 2008, 

Murray et al. 2010, Sandercock et al. 2011). 

 Wolf populations appear resilient to the effects of low to intermediate levels of harvest, 

(i.e., hunting and trapping; Hayes and Harestad 2000, Adams et al. 2008, Webb et al. 2011). 

Adams et al. (2008) estimated wolf populations can sustain an average harvest rate of ≤ 0.29 and 

maintain stable densities. Above this rate, several studies found hunting and trapping can 

regulate wolf densities, leading to population declines (Peterson et al. 1984, Ballard et al. 1987, 

Person and Russell 2008). These studies suggest harvest mortality in wolf populations is 

compensatory up to a critical threshold (Anderson and Burnham 1976). Limited evidence exists, 

however, that natural mortality decreases in response to low or intermediate levels of harvest 

mortality (Adams et al. 2008, but see Murray et al. 2010), contradicting the compensatory 

mortality hypothesis.  

 Some studies posit compensatory changes in reproduction may better explain how 

populations of wolves sustain harvests with minimal long-term effects to population growth or 
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density (Fuller et al. 2003). Litter size or pup survival within packs may increase to compensate 

for harvest mortality (Mech 1970, van Ballenberghe et al. 1975), although this hypothesis has 

limited empirical support (Gasaway et al. 1983, Peterson et al. 1984, Ballard et al. 1987, Potvin 

et al. 1992). Peterson et al. (1984) hypothesized reproduction could increase because more small 

packs could reproduce in the same area as fewer large packs where harvest reduced mean size of 

packs and territories. A proportional increase of pups in a harvested population is more likely 

related to changes in the composition of a population (e.g., fewer adults and yearlings) however, 

than a compensatory response in reproduction (Gasaway et al. 1983). Reproductive success is 

lower in packs when breeder mortality occurs (Brainerd et al. 2008, Borg et al. 2015) which may 

also limit whether reproduction compensates for harvest. In addition, changes in size and 

structure of packs can indirectly affect the reproductive success of packs; smaller, less complex 

packs recruit fewer pups into the adult population, thus reproduction may not offset harvest 

mortality at all (Ausband et al. 2015).  

 Fuller et al. (2003) hypothesized compensatory relationships exist between dispersal and 

harvest, but few studies have evaluated dispersal as a compensatory mechanism for harvest 

mortality in wolf populations. Dispersal, i.e., the process of leaving a natal pack and joining 

another or establishing a new pack, is a common life-history trait of wolves and an important 

process for growth and persistence of wolf populations (Peterson et al. 1984, Fuller et al. 2003, 

Jimenez et al. 2017). This may be especially true in populations that are harvested (Fuller et al. 

2003, Adams et al. 2008). For example, Adams et al. (2008) found emigration can decline in 

response to harvest, effectively compensating for the effects of harvest mortality on the density 

of a wolf population.  
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Increased immigration may also be an important factor compensating for harvest 

mortality in populations of wolves. Packs may be more receptive to adopting immigrants where 

harvest rates are high (Grewal et al. 2004, Rutledge et al. 2010). Although targeted removal 

(Bjorge and Gunson 1985, Fuller et al. 2003, Bradley et al. 2015) and dissolution of packs in 

response to harvest (Jędrzejewska et al. 1996, Mech and Boitani 2003, Brainerd et al. 2008, 

Smith et al. 2016) can leave territories unoccupied, numerous studied documented rapid 

recolonization of vacant territories by local dispersers and immigrants (Ballard et al. 1987, Fuller 

1989, Potvin et al. 1992, Hayes & Harestad 2000, Scandura et al. 2011). Immigration may offset 

harvest mortality by quickly replacing individuals or packs lost to harvest, thus maintaining wolf 

densities (Ballard et al. 1987, Potvin et al. 1992). This may be particularly true when harvest 

rates vary across administrative and political boundaries (McCullough 1996); dispersal from 

lightly-harvested populations may sustain populations of wolves managed under heavier harvest 

(Forbes and Theberge 1996; Jędrzejewska et al. 1996, Jędrzejewski et al. 2005, Smith et al. 

2016). If harvest reduces emigration (Adams et al. 2008) or pup recruitment (Ausband et al. 

2015) rates however, fewer wolves may disperse or be available to offset harvest mortality, thus 

limiting any compensatory response (Small et al. 1991).  

Although numerous studies speculated compensatory immigration was important for 

maintaining harvested populations of wolves (Ballard et al. 1987, Potvin et al. 1992, 

Jędrzejewska et al. 1996, Jędrzejewski et al. 2005, Larivière et al. 2000), none explicitly tested 

whether immigration offset harvest mortality. Monitoring dispersal is inherently challenging 

(Nathan 2001) and evaluating whether a compensatory response to harvest occurs is difficult 

where wolves are already managed with harvest. Populations of wolves in the Canadian and 

northern U.S. Rocky Mountains, however, provide a unique opportunity to assess compensatory 
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immigration. Wolves in Idaho, USA were not harvested while listed as endangered under the 

Endangered Species Act (ESA), but have been harvested since delisting (U.S. Fish and Wildlife 

Service [USFWS] 2014). In contrast, wolves in Alberta, Canada were managed with harvest for 

decades (Gunson 1992, Robichaud & Boyce 2010). By comparing a population before and after 

harvest was initiated, we can explicitly test for a response of immigration to harvest. In addition, 

comparing immigration among harvested populations will also allow us to assess how general 

this response is across different harvested populations of wolves.  

 We evaluated how immigration compensated for harvest mortality in populations of 

wolves managed with public harvest in the Rocky Mountains. We focused on immigration into 

packs because packs are the reproductive units within a wolf population (Fuller et al. 2003). We 

assumed harvest pressure varied spatially because management goals and harvest regulations 

differed within and across state and provincial boundaries (ILWOC 2002, Idaho Department of 

Fish and Game [IDFG] 2015a, MFWP 2002; 2016), and thus tested three alternative hypotheses. 

We first hypothesized immigration fully compensated for harvest mortality. If true, we predicted 

wolf density would remain constant when harvest occurred but that the proportion of new 

immigrants associated with packs would increase. We next hypothesized immigration only 

partially compensated for harvest mortality. If true, we expected the density of wolves to 

decrease but the proportion of new immigrants associated with packs to increase when harvest 

occurred. We then hypothesized immigration did not compensate for harvest mortality. If true, 

we predicted the density of wolves to decrease and the proportion of new immigrants associated 

with packs to decrease or remain constant when harvest occurred. To assess the generality of 

immigration as a mechanism to offset harvest mortality, we hypothesized the relationship 

between harvest and compensatory immigration was similar across harvested populations of 
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wolves in the Rocky Mountains. If true, we predicted the patterns between density and 

immigration would be similar among study areas where harvest occurred. 

  To test these hypotheses, we used noninvasive genetic data collected in central Idaho 

prior to and after public harvest of wolves was initiated, and in southwestern Alberta where 

harvest of wolves occurred throughout our study. We compared the density and proportion of 

immigrants detected from years when harvest did and did not occur in central Idaho to test for 

compensatory changes in immigration. We then compared the density and proportion of 

immigrants detected from only years when harvest occurred in central Idaho and southwestern 

Alberta to test whether our predictions were generally consistent across study systems.  

STUDY AREA 

We conducted annual surveys for wolves in 2 study areas in central Idaho and 1 in southwestern 

Alberta. In Idaho, the east study area was IDFG (Game Management Unit (GMU) 28 (3,388 

km
2
), and the west study area was GMUs 33, 34, and 35 (3,861 km

2
; Fig. 1). The southwestern 

Alberta study area extended from the Canadian-US border to Trans-Canadian Highway 1, 

following the British Columbia border but excluded Banff National Park (12,020 km
2
; Fig. 1). 

Both Idaho study areas were dominated by ponderosa pine (Pinus ponderosa), lodgepole pine (P. 

contorta), and spruce (Picea engelmannii) mixed forests and sagebrush (Artemisia tridentate) 

steppe (IDFG 2015a). The western portion of southwestern Alberta study area was mountainous 

and dominated by Douglas fir (Pseudotsuga menziesii), lodgepole pine, and spruce mixed 

forests, that transitioned through aspen (Populus tremuloides) to agricultural land and fescue 

(Genus spp.) dominated grassland in the east (National Regions Committee 2006). 

 The USFWS reintroduced wolves to central Idaho in 1995 and 1996 as part of the 

Northern Rocky Mountain (NRM) Wolf Recovery Plan (USFWS 2014). The USFWS removed 
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wolves in the NRM from protection under the ESA twice between 2008 and 2010, during which 

Idaho initiated a brief public harvest in 2009. The Congress removed wolves in Idaho and 

Montana from protection under the ESA in 2011 at which time Idaho resumed public harvest 

(IDFG 2010, USFWS 2011). The annual harvest averaged 23.8% of wolves in central Idaho (SD 

= 9.2; Ausband et al. 2015). Public harvest of wolves occurred between 30 August and 30 June 

(IDFG 2015b).  

The Fish and Wildlife Division of Alberta Environment and Parks (AEP) has managed 

wolves in southwestern Alberta with public harvest since the 1980s after the population 

recovered from a rabies eradication program (Gunson 1992, Forbes & Boyd 1996, Robichaud 

and Boyce 2010). Regional biologists believed harvest pressure on wolves was high, although 

they did not know the annual harvest rate in our study area (G. Hale, AEP, personal 

communication); previous research north of our study area reported mean annual harvest rate 

was 0.34 (Webb et al. 2011). Harvest of wolves on public lands occurred between 1 September 

and 31 May and year-round on private and leased lands (Gunson 1992, Robichaud & Boyce 

2010, Alberta Government 2014a, b). 

METHODS 

Field Methods 

We collected noninvasive genetic data in central Idaho (2007–2014) in collaboration with IDFG 

and the Nez Perce Tribe and in southwestern Alberta (2012–2014) in collaboration with AEP. 

We followed data collection methods described by Ausband et al. (2010) and Stenglein et al. 

(2011).  

 We used resource selection function maps for each study area to identify predicted 

rendezvous sites (i.e., pup-rearing sites; Ausband et al. 2010, Ausband & Mitchell 2011) and 
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surveyed for wolves from mid-June through mid-August of each year. While surveying a site, we 

recorded the presence of live wolves and wolf sign and collected genetic samples from scat when 

detected (Ausband et al. 2010). We considered canid scats to be adult wolf if ≥ 2.5 cm in 

diameter and canid scats at active rendezvous sites to be wolf pup if < 2.5 cm in diameter 

(Weaver and Fritts 1979). We collected a small sample (pencil eraser sized) of each scat using 

sterilized forceps and stored it in DMSO/EDTA/Tris/salt solution buffer (Frantzen et al. 1998, 

Stenglein et al. 2010a). We recorded the geographic coordinate location of each scat sampled. In 

southwestern Alberta we surveyed predicted rendezvous sites in only the southern half of the 

study area due to budgetary constraints in 2012 (Fig. 2). We surveyed the full southwestern 

Alberta study area in 2013 and 2014. 

Laboratory Methods 

We analyzed genetic samples at the Laboratory for Ecological, Evolutionary and Conservation 

Genetics (LEECG) at the University of Idaho, Moscow, USA to determine the number of unique 

individuals sampled each year in each study area. We followed DNA extraction and analysis 

protocols described in detail by Stenglein et al. (2010b, 2011) and Stansbury et al. (2014). We 

screened samples with a mitochondrial DNA species-identification test to remove non-target 

species and low quality samples (De Barba et al. 2014, Stansbury et al. 2014). We genotyped the 

remaining samples for individual identification with polymerase chain reaction (PCR) using 9 

nuclear DNA microsatellite loci and up to 9 additional microsatellite loci for unique 

identification and to verify matches or mismatches (Stenglein et al. 2011, Stansbury et al. 2014). 

We evaluated presence of genotyping errors with Dropout (McKelvey and Schwartz 2005) and 

Micro-Checker (Van Oosterhout et al. 2004). We identified and sorted matching and unique 

genotypes with GENALEX (Peakall and Smouse 2006, 2012) and used RELIOTYPE (Miller et 
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al. 2002) to test the accuracy of single capture genotypes. We then analyzed the genotypes using 

STRUCTURE (Pritchard et al. 2000) to estimate percent coyote, dog and gray wolf ancestry and 

removed samples with highly probable coyote or dog ancestry (Stansbury et al. 2014). We 

examined allele frequencies and tested for isolation-by-distance (Mantel test) between study 

areas and between packs within study areas in GENALEX (Peakall and Smouse 2006, 2012).  

Pack Assignment 

Following methods described by Stansbury et al. (2016), we used geographic data of sampled 

scat locations to assign individual wolves to putative packs and to inform genetic analyses. Adult 

wolves in a pack periodically return to the rendezvous site to guard and provision pups (Packard 

2003). Thus, we assigned individuals to a common pack if they were sampled together at ≥ 1 

common locations. If an individual did not share a common location with other wolves we 

considered it a lone wolf. 

We used ML-RELATE (Kalinowski et al. 2006) to estimate pairwise relatedness among 

all individuals and assess relatedness within each pack. We considered an individual genetically 

related to other wolves in a putative pack if it had pairwise relatedness values at the parent-

offspring (PO) or full-sibling (FS) levels (r = 0.5) with ≥ 50% of the wolves it was sampled with 

(Stansbury et al. 2016). 

Because wolf packs are typically kin-based units (Mech and Boitani 2003, Rutledge et al. 

2010), we assumed wolves shared similar allele frequencies with pack members (Wayne and 

Vila 2003, Rutledge et al. 2010). We used STRUCTURE to estimate the number of genetic 

clusters (K), i.e., putative packs, across all study areas and estimated the probability (q-value or 

ancestral value) an individual descended from a given cluster based on similarities in their allele 

frequencies (Pritchard et al. 2000, Stansbury et al. 2016). We used a general admixture model in 
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STRUCTURE assuming correlated allele frequencies within populations but did not provide 

information about sampling locations; we ran 10 independent model-iterations using 100,000 

burn-in and 500,000 MCMC repetitions for K = 1–28. We used additional study area and year-

specific models in STRUCTURE to distinguish whether an individual was assigned to a pack 

because it was born into the pack or because it was a breeding adult in the pack; we reduced the 

number of possible clusters to K = 1–15 for these analyses. We then evaluated the most likely 

number of packs in each study area by comparing STRUCTURE-HARVESTER (Earl and 

VonHoldt 2011) estimates to the number of packs reported by IDFG, as well as the historic and 

current packs documented by AEP.  

 We used GENECLASS2 to probabilistically identify first-generation migrants in each 

study area (Piry et al. 2004) using the L_home test statistic (Paetkau et al. 2004). For each wolf, 

we tested the a priori hypothesis that it was sampled with its natal pack and thus shared similar 

allele frequencies with other wolves it was sampled with. To be consider a first-generation 

migrant, we required that probability to be ≤ 0.01 (p-value) based on 100,000 Monte-Carlo 

simulations with the Paetkau et al. (2004) resampling algorithm. We used the frequencies-based 

computation criteria (Paetkau et al. 1995) and assumed a default frequency for missing alleles 

(0.01).  

Finally, we considered wolves part of the same pack if we identified 2 genetically 

different groups of individuals, but they were all sampled at the same rendezvous site (Stansbury 

et al. 2016). This designation helped reduce the likelihood of overestimating pack abundance 

where breeder replacement or multiple breeders occurred in a single pack (Stansbury et al. 2016).  

Classification of Immigrants 
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We classified individual wolves as a resident, neighbor, short-distance immigrant, or long-

distance immigrant based on results from genetic analyses and location data of where individuals 

were sampled. We classified an individual as a resident if we could determine it was sampled 

with its natal pack (Appendix A). Neighboring packs tend to be related (Lehman et al. 1992, 

Mech and Boitani 2003, Wayne and Vila 2003, VonHoldt et al. 2008, Canigila et al. 2014) 

because packs often form by splitting, budding, or when wolves disperse to nearby areas (Mech 

and Boitani 2003, Wayne and Vila 2003, Grewal et al. 2004, Canigila et al. 2014). We therefore 

classified an individual as a neighbor if it was related to wolves within the study area it was 

sampled in but we could not definitively assign it to a natal pack (Appendix A). These 

individuals were lone wolves located on the periphery of the study area and were excluded from 

further analyses. We classified an individual as a short-distance immigrant if it met the genetic 

criteria for a resident or neighbor, but was sampled with a pack other than its natal pack in the 

same study area, i.e., it dispersed within its natal study area (Appendix A). We classified an 

individual as a long-distance immigrant if it assigned to a study area different from where it was 

sampled or the individual did not share genetic similarities to wolves from any of the three study 

areas (Appendix A). We only classified an individual as a short- or long-distance immigrant the 

first year it was detected with a wolf pack; we reclassified it as a resident in subsequent years. 

We classified lone wolves detected in the interior of each study area as a short- or long-distance 

immigrant that was not associated with a pack. We excluded all lone wolves from further 

analyses because we were interested in compensatory immigration within packs and because 

changes in sampling after 2009 reduced the likelihood of detecting lone wolves (Table 1). We 

excluded data collected the first year of sampling in each study area (2007 in central Idaho, 2012 

in southwestern Alberta) to avoid misclassifying wolves that may have immigrated prior to that 
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year but were classified as immigrants of that year given it was the first year of sampling. We 

used these data, however, to help determine whether individuals detected in 2008 (central Idaho) 

and 2013 (southwestern Alberta) were immigrants of that year. 

Minimum Density 

 Within each study area, we estimated the minimum density of wolves (wolves/1,000 km
2
) 

per year using the number of individuals sampled in each pack and year. If IDFG reported a 

pack, but we did not sample it that year, we excluded the mean area of a pack’s territory 

(approximately 686 km
2
; Ausband et al. 2014) from density estimates. Because sampling varied 

in southwestern Alberta in 2012 and 2013 we only estimated the minimum density of wolves in 

southwestern Alberta for 2014.  

Effect of Harvest on Density and Immigration 

We fit linear models (Table 2) using a Bayesian framework in JAGS (Plummer 2013) and 

program R 3.2.5 (R Core Team 2016) with the R2jags package (Su and Yajima 2015). We fit 

general linear mixed models (GLMM) to test for effects of harvest (Y/N) and study area on the 

minimum density of wolves and included a random effect for year. We used generalized linear 

models (GLM) to test for effects of harvest, study area, and survey effort (number of predicted 

sites surveyed per year) on the probability a short- or long-distance immigrant was detected with 

a pack, respectively (Table 2). We did not include a random effect in models testing for effects 

on immigration due to small sample sizes; variance on model estimates are therefore biased low. 

Models implicitly included a lag effect for harvest because annual public harvest occurred fall 

through winter of each year but genetic surveys occurred the following summer.  

To test our compensatory immigration hypotheses, we fit a group of models using only 

data from central Idaho and tested for an effect of harvest on density and immigration before and 
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after harvest was initiated. We then fit a separate group of models that only included data from 

southwestern Alberta and central Idaho in years when harvest occurred to test whether the 

relationship between harvest and compensatory immigration was similar across harvested 

populations of wolves in the Rocky Mountains.  

RESULTS 

Field Surveys 

From 2008–2014, we surveyed 406 and 631 predicted rendezvous sites in the east and west study 

areas in central Idaho, respectively (Table 1; Ausband et al. 2010). We located 53 active 

rendezvous sites and collected 7,876 genetic samples. In southwestern Alberta, we surveyed 622 

predicted rendezvous sites (2013–2014; Table 1). We located 12 active rendezvous sites and 

collected 1,270 genetic samples. The majority (85%) of samples were collected in active 

rendezvous sites across all study areas (Stansbury et al. 2014, Ausband and Bassing 2015).  

Classification of Unique Individuals 

Success rates for mtDNA species identification tests averaged 93.5% and individual 

identification success rates ranged 78 – 80% (Stansbury et al. 2016). The probability of identity 

for siblings ranged 3.54 x 10
-4

 – 1.18 x 10
-3

 across study areas (Ausband et al. 2015). Average 

error rates due to allelic drop-out and false alleles were 4.25% and 0.65%, respectively 

(Stansbury et al. 2016). The microsatellite analysis yielded 3,247 consensus genotypes between 

all three study areas. Of those, we identified 149 and 183 unique wolves in the east and west 

study areas in central Idaho, respectively (Table 1). We genetically recaptured 151 unique 

wolves ≥ 1 times across years in central Idaho. We identified 94 unique wolves in southwestern 

Alberta, 19 of which were genetically recaptured ≥ 1 times across years. On average, we detected 

44.56 (SD = 14.49) unique individuals per year.  
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 We classified almost all individuals (99.06%) sampled as either a type of resident or 

immigrant (2008–2014; Appendix A). Of those individuals, we assigned a majority (90.76%) to 

their natal pack following methods reported by Stansbury et al. (2016). Most wolves (87.68%) 

were residents and sampled with their natal packs (n = 370). Across all three study areas, we 

classified few wolves as potential immigrants (n = 39), of which16 were short-distance and 23 

long-distance immigrants (Appendix A). Thirteen of the short- distance and 9 of the long-

distance immigrants were associated with wolf packs across the three study areas (Fig. 2). We 

classified 2 wolves as both short-distance and long-distance immigrants in central Idaho. We 

considered one a lone, long-distance immigrant that eventually dispersed within the study area to 

fill a breeding vacancy within a pack. A second wolf joined a pack as a long-distance immigrant 

(non-breeder) and then dispersed locally to become the breeder in a different pack. Of the 

immigrants that joined a pack in central Idaho, most became a breeder within 1 year of joining (n 

= 12); in southwestern Alberta most immigrants associated with a pack joined as nonbreeding 

adults (n = 5). The sex ratio among all immigrants was 7:3 (M:F) and was more male-biased 

among immigrants that joined packs (18:5). We excluded lone wolves (n = 19) and neighbors (n 

= 6) from regression analyses. 

 We found limited evidence of isolation-by-distance among packs within each study area 

(Mantel r statistic ranged 0.10 – 0.23). The mean minimum density of wolves in central Idaho 

was 11.80 wolves/1000km
2
 (SD = 1.44) in the east study area and 13.12 wolves/1000km

2
 (SD = 

1.44) in the west study area. Minimum density estimates decreased over time in both central 

Idaho study areas (Fig. 3). The minimum density of wolves in southwestern Alberta in 2014 was 

8.34 wolves/1000km
2
 (SD = 2.86). 

Effects of Harvest on Density and Immigration 
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Harvest had a negative effect on the mean minimum density of wolves in central Idaho (Fig. 3; 

Table 2). The mean minimum density across both central Idaho study areas was 15.49 

wolves/1000 km
2
 (95% CRI = 12.38–18.57) when harvest did not occur and 10.20 wolves/1000 

km
2
 (95% CRI = 7.47–12.90) when harvest did occur (Fig. 4). Differences in the east and west 

study areas did not explain the variation in density of wolves over time (Table 2). Harvest did not 

affect the proportion of immigrants associated with wolf packs in central Idaho (Table 2). The 

mean probability that a wolf pack contained a short-distance immigrant was 0.01 (SD = 0.01) 

when harvest did not occur and 0.02 (SD = 0.01) when harvest did occur. The probability that a 

wolf pack contained a long-distance immigrant was 0.02 (SD = 0.01) when harvest did not occur 

and 0.01 (SD = 0.01) when harvest did occur (Fig. 5; Table 2). The proportion of short-distance 

and long-distance immigrants associated with a wolf pack did not differ by study area in central 

Idaho. We found no effect of survey effort between the Idaho study areas when we excluded lone 

wolves and neighbors from regression analyses (Table 2). The minimum density and probability 

a wolf pack contained an immigrant (short- or long-distance, respectively) when harvest 

occurred in central Idaho was not different from that in southwestern Alberta (Table 3). 

DISCUSSION 

In the Rocky Mountains, wildlife managers use public harvest of wolves to manage 

abundance and to mitigate human-wolf conflicts (ILWOC 2002, Bruskotter 2013). Studies have 

shown that wolves are resilient to harvest however (Hayes and Harestad 2000, Adams et al. 

2008, Webb et al. 2011), and have hypothesized immigration may maintain stable densities 

within a population despite heavy harvest pressure, negating management efforts (Fuller 1989, 

Mech 1989, Jędrzejewska et al. 1996, Larivière et al. 2000, Webb 2009). We found little 

evidence that immigration compensated for harvest mortality of wolves in central Idaho or 
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southwestern Alberta and therefore rejected our hypotheses that immigration fully or partially 

compensated for harvest mortality in the Rocky Mountains. Whereas previous studies found 

wolves generally dispersed from populations of higher density and immigrated into populations 

of lower density (Ballard et al. 1984, Jimenez et al. 2017) we found density and immigration 

were not directly related. In central Idaho, pack size and number of occupied territories 

decreased with harvest (IDFG 2014, Ausband et al. in review) but the proportion of long-distance 

immigrants associated with packs did not increase after harvest was initiated. The population of 

wolves in southwestern Alberta also had a low proportion of long-distance immigrants associated 

with packs even though it was a low-density population managed with public harvest for several 

decades (Gunson 1991). We conclude that immigration does not compensate for harvest 

mortality in all populations of wolves.  

Given the harvest rate (23.8%; Ausband et al. 2015) in central Idaho, we found wolf 

density decreased in response to harvest whereas the proportion of long-distance immigrants 

associated with packs remained constant regardless of harvest. Similarities between the 

proportion of long-distance immigrants associated with packs in southwestern Alberta and packs 

in central Idaho after harvest began suggest this pattern was not specific to just central Idaho. We 

therefore could not reject our hypothesis that immigration does not compensate for harvest 

mortality in the Rocky Mountains. Dispersal behavior of wolves may explain why. Dispersing 

wolves seek breeding opportunities which can be secured by either joining or establishing a pack 

(Fuller et al. 2003, Mech and Boitani 2003). Attempting to join a pack is risky due to the strong 

potential for aggression from resident members (i.e., intraspecific strife; Mech 1994), and 

dispersing wolves may prefer to form new packs (Jimenez et al. 2017). Where populations are 

expanding or recolonizing, immigrants can successfully establish their own packs and territories 
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(Mech and Boitani 2003); but in well-established or saturated populations, such as in the Rocky 

Mountains, an immigrant’s only option to find a breeding opportunity may be to join a pack 

(Mech and Boitani 2003). If breeder mortality from harvest is high in these populations 

immigration may compensate for harvest mortality primarily through breeder-replacement. In 

central Idaho, however, Ausband et al. (in review) found the frequency of breeder turnover did 

not increase after harvest was initiated. As a result, there are likely few opportunities for 

immigrants to compensate for breeder loss in this region, which may explain why the proportion 

of long-distance immigrants associated with packs did not change after harvest began. 

 The social structure of packs may further prevent immigrants from replacing nonbreeding 

pack members lost to harvest. Packs generally accept unrelated adult wolves (i.e., short- or long-

distance immigrants) when a breeding position is available or a breeder is overthrown (Packard 

2003, Stahler et al. 2002, Jędrzejewski et al. 2005, VonHoldt et al. 2008, Caniglia et al. 2014). 

Although there are examples of packs adopting unrelated nonbreeding adults (e.g., Rothmen and 

Mech 1979, Van Ballenberghe 1983, Lehman et al. 1992, Meier et al. 1995, Grewal et al. 2004, 

Jędrzejewski et al. 2005) we hypothesize it is uncommon when the social structure of a wolf 

pack is intact (i.e., the breeding pair persists; Mech and Boitani 2003). In our central Idaho study 

areas, for example, only 2 of the 14 immigrants that joined packs did not assume a breeding 

position within 1 year of joining (Ausband 2015); one of these immigrants ultimately left to fill a 

breeding vacancy elsewhere. Despite a 15% decline in mean pack size since harvest was initiated 

in Idaho (IDFG 2014), we found that immigrants did not frequently replace nonbreeding adults 

within packs. Thus, packs appear less likely to adopt unrelated adults when the pack social 

structure is intact (Rutledge et al. 2010) even if additional nonbreeding wolves would help 

maintain pack size and pup recruitment (Ausband et al. 2015). This may suggest that group 
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augmentation is not the primary evolutionary mechanism driving cooperative breeding in wolves 

(Clutton-Brock 2002).  

 Although we rejected our hypotheses that immigration compensates for harvest mortality 

in the Rocky Mountains, compensatory immigration may explain how populations of wolves 

persist in regions where harvest mortality is higher. When heavy harvest creates social 

instability, packs may be more receptive to adopting unrelated nonbreeding adults (Jędrzejewska 

et al. 1996; Grewal et al. 2004; Jędrzejewski et al. 2005; Brainerd et al. 2008; Webb et al. 2011). 

In addition, immigrants will establish packs where harvest creates territory vacancies (Bjorge 

and Gunson 1985, Fuller 1989, Hayes & Harestad 2000, Brainerd et al. 2008, Scandura et al. 

2011). In an extreme example of compensatory immigration, Larivière et al. (2000) reported 

harvest rates ranged from 0 to 193% of the annual wolf populations across 9 wildlife preserves in 

southern Quebec, Canada, but found that wolf densities were correlated with the previous year’s 

harvest in only 1 preserve. They hypothesized that strong immigration from adjacent areas 

(McCullough 1996), possibly source-sink dynamics (Delibes et al. 2001), maintained stable 

populations within preserves. Where harvest rates are high enough to exceed the estimated 

annual abundance of a population of wolves, immigration appears to be the dominant factor 

maintaining stable densities (Larivière et al. 2000).  

We hypothesize that the relationship between compensatory immigration and harvest 

exists on a continuum. When harvest mortality is low, the social structure of packs remains 

relatively intact. Packs are generally composed of closely related individuals (Rutledge et al. 

2010) with diverse age structures (Fuller et al. 2003) that maintain long-term territories (Mech 

and Boitani 2003), all of which likely limit the compensatory response of immigrants to harvest 

mortality at the pack level. Where harvest mortality is high, however, immigration may not be 
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limited by the social constraints of intact packs and may become an important compensatory 

mechanism in heavily harvested populations of wolves (Adams et al. 2008). Previous studies that 

hypothesized compensatory immigration maintained wolf densities reported higher harvest rates 

than what we observed in central Idaho or likely southwestern Alberta (e.g., Ballard et al. 1987, 

Potvin et al. 1992, Larivière et al. 2000, Jędrzejewski et al. 2005). These studies would fall 

toward the higher end of the spectrum we hypothesize for the compensatory relationship between 

immigration and harvest, which may explain why immigration appears to compensate in these 

populations but not in the Rocky Mountains. Alternatively, many of these studies focused on 

subpopulations within much larger wolf populations (e.g., Alaska, USA or northern Canada; 

Ballard et al. 1987; Hayes and Harestad 2000) whereas our study focused on a peninsular 

population (central Idaho; USFWS 2016) and one on the eastern-edge of wolf distribution in the 

Rocky Mountains (southwestern Alberta; Boitani 2003). Differences in human and wolf 

densities, availability of suitable wolf habitat (Ausband 2016), and whether studies took place in 

the interior or frontier of wolf distribution (Fuller et al. 2003) may further explain the variable 

relationship between compensatory immigration and harvest mortality across these populations 

(Ausband 2016).  

 The population of wolves in the Rocky Mountains likely falls along the lower end of our 

hypothesized continuum, although pack structure appeared less stable in southwestern Alberta 

than in central Idaho. Thus, even across the Rocky Mountains, gradations in the relationship 

between immigration and harvest may exist. We detected 8 immigrants associated with packs in 

southwestern Alberta compared to 3 in central Idaho during the last 2 years of our study (2013–

2014). In addition, most immigrants (n = 5) joined packs as nonbreeding adults in southwestern 

Alberta whereas most became breeders in central Idaho; packs in southwestern Alberta appeared 
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more receptive to adopting nonbreeding adults than in central Idaho (Grewal et al. 2004, 

Jędrzejewski et al. 2005). The majority (75%) of immigrants in southwestern Alberta where not 

long-distance immigrants however, and dispersed from nearby packs. Short-distance immigrants 

are already part of the population and their dispersal cannot directly help maintain population 

densities, but they likely help packs persist as harvest rates increase.  

 Although we focused on compensatory immigration at the pack level, immigrants 

unaffiliated with packs may also be important in harvested populations of wolves. Lone wolves 

are immigrants circulating within a population, seeking opportunities to join or form a pack 

(Mech and Boitani 2003). Lone wolves typically make up 10–15% of a wolf population (Fuller 

et al. 2003), thus immigrants unaffiliated with packs may provide a pool of individuals whose 

loss to harvest would have little consequence for packs or population dynamics (Fuller 1989, 

Fuller et al. 2003). Due to their naivety in novel environments (Peterson et al. 1984, Smith et al. 

2016) and vulnerability to anthropogenic-caused mortality (Person and Russell 2008), harvest 

may be biased towards lone wolves instead of resident pack members (Peterson et al. 1984, 

Adams et al. 2008, Webb 2009, Smith et al. 2010); continual replacement of lone wolves by new 

immigrants may compensate for harvest mortality across a population (Fuller et al. 2003). Most 

(82%) immigrants we detected in central Idaho 2008–2009 were lone wolves, suggesting a large 

pool of immigrants unaffiliated with packs may have existed in this region. We could not test 

whether their abundance represented a compensatory response to harvest however because 

changes in sampling after 2009 made lone wolves difficult to detect. In addition, unless we 

genetically recaptured lone wolves over multiple years, we could not differentiate true lone 

wolves, i.e., floating within the population, from dispersers traveling through the study area.  
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 We made several assumptions whose violations could affect our inferences. A 

misclassification of wolves (resident, neighbor, short-distance, or long-distance immigrant) could 

have biased the estimated proportion of immigrants in packs and our conclusion about the 

compensatory response to harvest. We required agreement between 4 metrics to classify wolves 

based on the genetic relationships among individuals in our samples. Several individuals we 

classified as immigrants (i.e., short- or long-distance) were also radio-collared and their 

dispersals were corroborated by IDFG biologists independent of our genetic methods. We 

excluded known misclassifications (n = 2) from analyses. Because most individuals met our 

classification requirements we are confident the probability undetected misclassifications 

occurred was low. Changes in prey density can affect density (Messier 1985, Fuller 1989, Fuller 

et al. 2003) and likely dispersal (Ballard et al. 1987, Thurber and Peterson 1993, Hayes and 

Harestad 2000) of wolves; however prey densities remained generally consistent in central Idaho 

during our study (Ausband et al. 2015). Prey data were not available for southwestern Alberta 

and we assumed prey density did not influence immigration in this region. Immigration also 

depends on population densities in other regions (McCullough 1985, Larivière et al. 2000) and 

immigration during out study could have been affected by changes in densities in source 

populations. We were unable to measure the density of wolves outside our study areas; however, 

because we did not observe a change in immigration after harvest was initiated in central Idaho, 

we do not believe variation in source populations had a strong influence in the relationship we 

observed between harvest and immigration. Although prey density or the density of wolves in 

other areas did not appear influential during our study future work should attempt to explicitly 

incorporate these into analyses.  

MANAGEMENT IMPLICATIONS 
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 Immigration is often assumed to be one of the primary mechanisms responsible for 

maintaining stable densities in harvested populations of wolves. Although this assumption is 

well-rooted in the literature, compensatory immigration does not necessarily occur in all 

populations of wolves that are harvested. Therefore, if the goal of management is to allow for 

population growth of wolves while having a public harvest, managers cannot assume 

immigration will offset the effects of harvest mortality. If, however, the goal is to reduce the 

density of wolves with public harvest, managers may not need to be as concerned that 

immigration will negate management efforts as previous research would suggest. Variation in the 

relationship between compensatory immigration and harvest mortality likely depends on the 

annual harvest rate, social behavior of wolves, and connectivity across populations. 

Understanding this variation will help managers better predict the effects of public harvest on a 

wolf population of interest and meet management objectives. 

Finally, we found harvest had a weak positive effect on short-distance immigrants but a 

weak negative effect on long-distance immigrants associated with wolf packs after harvest was 

initiated in central Idaho. The effects of harvest on immigration may have been difficult to detect 

because our analyses were based on a small sample of immigrants. Continued monitoring of 

immigrants as harvest management continues would strengthen our ability to determine whether 

harvest does effect immigration in the Rocky Mountains.  
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Figure 1. A) The east and west focal study areas in central Idaho, USA, 2008–2014, and B) the 

southwestern Alberta, Canada study area, 2012–2014.  
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Figure 2. The number of short-distance and long-distance immigrants associated with a wolf 

pack in central Idaho, 2008–2014. Immigrants not associated with a wolf pack, i.e., lone wolves, 

were not included.  
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Figure 3. Annual trends in density of wolves for the east and west study areas in central Idaho, 

2008–2014. Harvest occurred during autumn-winter of 2009-2010, 2011–2012, 2012–2013, and 

2013–2014. 
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Figure 4. Effect of harvest on mean density of wolves across both study areas in central Idaho, 

comparing the density of wolves in years when harvest did not occur (2008, 2010) to the density 

of wolves in years when harvest did occur (2009, 2011–2014).  
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Figure 5. Effect of harvest on the probability a short- or long-distance immigrant is associated 

with a wolf pack in central Idaho, 2008–2014, respectively. 
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Table 1. Summary of sampling and classification results of gray wolves in central Idaho, USA 

and southwestern Alberta, Canada, 2008–2014. For each year in each central Idaho (East and 

West) and southwestern Alberta (Alberta) study areas we report the number of predicted sites 

surveyed, number of rendezvous sites detected (Rend.), number of consensus genotypes (n), and 

the number of individuals classified as either a short-distance (SDI) or long-distance immigrant 

(LDI) associated with packs (in packs) and the total number detected (i.e., including lone wolves; 

All). 

Year 

Study 

area 

Sites 

surveyed 

Rend. 

sites 

detected 

Consensus 

genotypes 

(n) 

SDI in 

packs 

All 

SDI 

LDI in 

packs 

All 

LDI 

2008 East 148 3 36 0 0 0 2 

2008 West 173 5 46 0 1 0 3 

2009 East 149 4 54 0 0 2 7 

2009 West 166 6 50 0 0 1 4 

2010 East 3 3 39 0 0 2 2 

2010 West 41 5 63 1 2 0 1 

2011 East 4 3 50 1 1 0 0 

2011 West 25 5 64 1 1 0 0 

2012 East 20 3 34 0 1 0 0 

2012 West 47 6 48 2 2 1 1 

2013 East 47 2 33 1 1 0 0 

2013 West 78 3 26 1 1 0 0 

2013 Alberta 301 2 37 3 4 0 0 
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2014 East 35 3 31 0 0 0 0 

2014 West 101 2 26 0 1 1 1 

2014 Alberta 321 10 76 3 3 2 2 
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Table 2. Model structure and results from 3 separate regression analyses testing for effects of 

harvest (Y/N), study area (East and West), and survey effort (number of predicted sites surveyed 

per year) on the density of wolves (number of wolves/1000 km
2
), the probability a wolf pack 

contained a long-distance immigrant (LDI), and the probability a wolf pack contained a short-

distance immigrant (SDI) in central Idaho, 2008–2014.  Model deviance and standard error (SD), 

Deviance Information Criterion (DIC), fixed effect parameters, coefficient estimates and 

standard deviation (SD), and the lower and upper limits of the 95% credible interval (95% CRI) 

for each parameter are reported. 

Model
 

Response
a 

Deviance 

(SD) DIC
b 

Parameter
c 

Estimate 

(SD) 

Lower 

95% 

CRI 

Upper 

95% 

CRI 

Harvest
d
 
 

Density 31.75 (3.28) 37.1     

    Intercept 15.49 (1.57) 12.34 18.57 

    Harvest
 

-5.29 (2.08) -9.39 -1.14 

Area
d
  Density 79.05 (2.89) 83.2     

    Intercept 11.55 (1.62) 8.31 14.77 

    Area 1.86 (2.28) -2.70 6.36 

Harvest
 

LDI 45.14 (2.01) 47.2     

    Intercept -4.22 (0.46) -5.20 -3.40 

    Harvest -0.17 (0.65) -1.50 1.10 
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Area
 

LDI 44.75 (1.87) 46.5     

    Intercept -4.01 (0.43) -4.91 -3.24 

    Area -0.69 (0.68) -2.08 0.61 

Effort
 

LDI 45.11 (2.39) 47.90     

    Intercept -4.30 (0.52) -5.41 -3.37 

    Effort -7.98 (0.01) -0.01 0.01 

Harvest
 

SDI 47.52 (2.23) 50.0     

    Intercept -4.43 (0.50) -5.49 -3.53 

    Harvest 0.25 (0.65) -1.00 1.51 

Area
 

SDI 47.69 (2.15) 50.0     

    Intercept -4.41 (0.51) -5.52 -3.52 

    Area 0.20 (0.66) -1.08 1.54 

Effort
 

SDI 46.71 (2.32) 49.40     

    Intercept -3.50 (0.47) -4.47 -2.63 

    Effort -0.02 (0.01) -0.04 0.00 

  
a
 Model type depended on response variable where general linear mixed models were used if 

density (wolves/1000 km
2
) was the response variable and logistic regression models were used 

when the response variable was whether a wolf pack contained a long-distance immigrant (LDI) 

or a short-distance immigrant (SDI), respectively.  
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b
 DIC values are only comparable among models with the same response variable. 

c
 No harvest = indicator variable for harvest covariate; East study area = indicator variable for 

study area covariate. 

d
 Models included a random effect for year.  
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Table 3. Model results from 3 separate regression analyses testing for differences in mean 

minimum density of wolves (number of wolves/1000 km
2
), the probability a wolf pack contained 

a long-distance immigrant (LDI), and probability a wolf pack contained a short-distance 

immigrant (SDI) across three study areas (East and West in central Idaho and southwestern 

Alberta) for only years when harvest occurred, 2009 and 2011–2014.  Model deviance and 

standard error (SD), Deviance Information Criterion (DIC), fixed effect parameters, coefficient 

estimates and standard deviation (SD), and the lower and upper limits of the 95% credible 

interval (95% CRI) for each parameter are reported. 

Response
a
 

Deviance 

(SD) DIC
b
 Parameter

c
 

Estimate 

(SD) 

Lower 

95% CRI 

Upper 

95% CRI 

Density
d 

48.52 (3.63) 55.2 

    

   

Intercept 9.97 (1.97) 5.96 13.84 

   

West 0.37 (2.79) -5.22 5.21 

   Alberta -3.61 (4.39) -12.32 5.90 

LDI 37.84 (2.19) 40.20 

    

   

Intercept -3.90 (0.54) -4.98 -2.98 

   

West -0.57 (0.80) -2.23 0.92 

   Alberta -0.28 (0.81) -1.98 1.24 

SDI 58.63 (2.36) 61.40 

    

   

Intercept -3.99 (0.52) -5.08 -3.04 

   

West 0.19 (0.70) -1.20 1.55 

   Alberta 0.97 (0.65) -0.25 2.27 



57 

  
a
 Model type depended on response variable where general linear mixed models were used if 

density (number of wolves/1000 km
2
) was the response variable and logistic regression models 

were used when the response variable was whether a wolf pack contained a long-distance 

immigrant (LDI) or a short-distance immigrant (SDI), respectively.  

b
 DIC values are only comparable among models with the same response variable. 

c
 No harvest = indicator variable for harvest covariate; East = indicator variable for study area 

covariate. 

d
 Density model included a random effect for year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

Chapter 3 

Stable abundance and distribution of packs in a harvested population of wolves 

ABSTRACT 

Harvest can influence the demography of wild populations in a variety of ways. For gray wolves 

(Canis lupus), harvest should affect the abundance and distribution of packs, but the frequency of 

change in pack occurrence (i.e., turnover) and relative effect of harvest compared to 

environmental factors is unclear. We used noninvasive genetic sampling, hunter surveys, and 

occupancy models to evaluate the effect of harvest on occurrence and turnover of packs in a 

population of wolves managed with heavy harvest in the Canadian Rocky Mountains, 2012–

2014. We tested two alternative hypotheses that 1) the abundance and distribution of wolf packs 

was highly dynamic due to harvest or 2) the abundance and distribution of wolf packs was 

generally stable regardless of harvest. We found the mean annual probability for wolf pack 

occupancy ranged 0.72–0.74 and the estimated distribution of wolf packs was consistent over 

time, 2012–2014. Our top model indicated wolf pack occupancy was positively associated with 

forest cover and the probability of detecting a wolf pack was positively associated with the 

intensity of harvest for wolves in that area. We observed frequent turnover of individuals within 

packs genetically sampled consecutive years but not of entire packs. Because turnover of packs 

occurred infrequently during our study, we could not reject our hypothesis that occurrence of 

packs was generally stable in a harvested population of wolves. Packs in southwestern Alberta 

were connected to the larger Canadian Rocky Mountain wolf population and we hypothesize 

short-distance dispersal from nearby packs outside our study area helped promote pack stability. 

Our results suggest that heavy harvest is unlikely to have strong effects on the abundance and 
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distribution of wolf packs when populations are well-connected, but that harvest appears to 

strongly influence turnover of individuals within packs.  

KEY WORDS Canis lupus, distribution, gray wolves, harvest, noninvasive genetic surveys, 

occupancy model, wolf pack  

INTRODUCTION 

Public harvest is commonly used to manage wildlife populations and mitigate human-wildlife 

conflicts. Harvest can affect the demography of wild populations in numerous ways, such as alter 

the age and sex structures (Ginsberg & Milner-Gulland 1994, Milner et al. 2007), reproductive 

rate (Knowlton 1972, Ausband et al. 2015), and ultimately growth (Pauli and Buskirk 2007) of a 

population. Understanding how populations respond to harvest can help wildlife managers 

evaluate the efficacy of management and inform future decisions (Williams et al. 2002, Mills 

2012).  

Populations of gray wolves (Canis lupus) are managed with harvest across most of their 

range in North America (Boitani 2003). Because of the social behavior of wolves, the response 

of wolf populations to harvest may be more complex than for other exploited species (Rutledge 

et al. 2010). Wolf packs are the reproductive units in a wolf population and drive population 

dynamics (Fuller et al. 2003); the effects of harvest at the pack-level will affect individual pack 

members (Brainerd et al. 2008) and potentially the larger population (Haber 1996).  

Harvest should affect the abundance and distribution of wolf packs in a population 

(Jędrzejewska et al. 1996, Fuller et al. 2003) but the demographic consequences of this 

relationship are poorly understood. Loss of wolves in a pack can create social instability, leading 

to pack dissolution and territory abandonment (Meier et al. 1995, Jędrzejewska et al. 1996, 

Brainerd et al. 2008, Smith et al. 2016), and entire packs may be removed through lethal control 
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actions to reduce predation on livestock (Bradley et al. 2015). Frequent loss of packs to harvest 

can lead to decreased population growth, reproductive success, or relatedness within and among 

packs (Grewal et al. 2004, Jędrzejewski et al. 2005, Brainerd et al. 2008), which may have long-

term effects for populations managed with heavy harvest (Haber 1996, Brainerd et al. 2008). 

Alternatively, packs that persist provide a source of dispersing wolves to recolonize vacant 

territories (Bjorge and Gunson 1985, Ballard et al. 1987, Hayes and Harestad 2000, Mech and 

Boitani 2003, Brainerd et al. 2008); thus, the loss and reestablishment of packs across space and 

time (i.e., turnover of packs) may have little effect on demography if dispersers can quickly 

recolonize unoccupied territories (Larivière et al. 2000, Fuller et al. 2003).  

Frequent changes in abundance and distribution of packs may complicate management of 

harvested populations of wolves even if there are few demographic consequences. Social 

instability and turnover of packs can change boundaries (Jędrzejewska et al. 1996, Haber 1996, 

Mech and Boitani 2003), size (Peterson et al. 1984), or use (Haber et al. 1996) of territories. 

Such changes may affect the quality or quantity of data collected because tracking frequent 

changes in pack occurrence can be challenging; this may ultimately affect a manager’s ability to 

assess the status of a population, set harvest limits and seasons, or achieve population objectives 

for wolves. Frequent turnover of packs may also alter the rate of wolf-livestock conflicts. Hayes 

et al. (1991) found predation rates on wild prey increased for colonizing pairs and packs severely 

reduced after lethal removal; this behavior could extend to predation on livestock as well. If non-

depredating packs dissolve in response to harvest, surviving or colonizing wolves may begin to 

prey on livestock (Bjorge and Gunson 1985, Harper et al. 2008). In addition, studies found lethal 

removal, particularly of entire packs, reduced the likelihood of future depredations locally 

(Bjorge and Gunson 1985, Bradley et al. 2015) but did not reduce them population-wide (Harper 
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et al. 2008). Frequent turnover of packs may therefore affect conflicts with livestock depending 

on the frequency of pack replacement (Bradley et al. 2015) and individual traits of wolves 

recolonizing vacant territories (Bjorge and Gunson 1985). Understanding the frequency of 

turnover of packs and associated factors will help monitoring efforts provide accurate and 

sufficient information to managers, and help managers mitigate conflicts and meet population 

objectives for wolves.  

Studies in Idaho and Montana showed the abundance and distribution of wolf packs was 

primarily associated with habitat features and prey densities (Rich et al. 2013, Ausband et al. 

2014). These studies were largely conducted in the absence of harvest however, prior to removal 

of wolves from protection under the Endangered Species Act (Montana Fish, Wildlife and Parks 

[MFWP] 2010, Idaho Department of Fish and Game [IDFG] 2012, Rich et al. 2013, Ausband et 

al. 2014). Public harvest has since became increasingly liberalized in Idaho and Montana 

(MFWP 2015b, Ausband 2016) but the relative influence of harvest on the occurrence and 

turnover of wolf packs in the Rocky Mountains is unclear.  

Unlike in Idaho and Montana where harvest management was only recently implemented 

(U.S. Fish and Wildlife Service [USFWS] 2009), wolves in the Canadian Rockies have been 

managed with public harvest for decades (Boitani 2003). In southwestern Alberta for example, 

harvest mortality was consistently high for wolves, although the exact harvest rate was unknown 

because not all public harvest was reported (Robichaud and Boyce 2010, Webb et al. 2011, G. 

Hale, Alberta Environment and Parks [AEP], personal communication). Because wolves in 

southwestern Alberta have been managed with public harvest since the 1980s (Gunson 1992) the 

likelihood of detecting any potential relationship between harvest and occurrence of wolf packs 

is higher than in Idaho and Montana, where public harvest only recently began. Evaluating the 
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effect of long-term heavy harvest on pack turnover in this region can therefore help inform 

management of harvested populations of wolves throughout the Rocky Mountains. 

 We tested two hypotheses to evaluate the effect of harvest on occurrence and turnover of 

packs in a population of wolves managed with heavy harvest in the Canadian Rocky Mountains. 

We hypothesized that the abundance and distribution of wolf packs was highly dynamic due to 

harvest and predicted that pack occupancy changed frequently in association with harvest of 

wolves in southwestern Alberta. Alternatively, we hypothesized that the abundance and 

distribution of wolf packs was generally stable regardless of harvest and predicted infrequent 

changes in occupancy associated with harvest of wolves in southwestern Alberta.  We then 

evaluated the relative importance of harvest compared to environmental factors that have already 

been shown to explain pack occupancy in the Rocky Mountains to determine the dominant 

factors driving pack abundance and distribution in a harvested population of wolves.  

 We used occupancy models to estimate the abundance and distribution of wolf packs in 

southwestern Alberta and evaluate the frequency with which pack occurrence changed. 

Occupancy models use detection/non-detection data to estimate the probability landscape patches 

(i.e., sample units) are occupied by a species of interest given imperfect detection of that species 

(i.e., occupancy; MacKenzie et al. 2002). Previous occupancy-based studies found close 

agreement between independent model and radiotelemetry-based estimates of occupancy, 

abundance, and distribution of wolves, demonstrating the ability of occupancy modelling 

frameworks to monitor wolves across broad-spatial scales (Rich et al. 2013, Ausband et al. 

2014). As a result, wildlife management agencies in Idaho and Montana currently use occupancy 

models to monitor wolves (Rich et al. 2013, Ausband et al. 2014, IDFG 2015, MFWP 2015a); it 

would be beneficial, however, to evaluate whether occupancy-based monitoring can provide 
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information to managers about pack dynamics (e.g., turnover) in a harvested population of 

wolves. Accordingly, we generated occupancy models using detection data collected from 

noninvasive genetic surveys and observations of wolves made by hunters and then tested for 

changes in occupancy across space and time. We then estimated and compared the effects of 

harvest and environmental factors on the probability of occupancy to evaluate the relative 

influence of harvest on abundance and distribution of packs. Finally, as an independent test of 

whether occupancy models could measure the frequency of turnover of packs, we compared site-

specific estimates of occupancy to individual wolf genotypes derived from the genetic data. This 

allowed us to compare predicted changes in occupancy to the dynamics of genetically marked 

wolf packs and evaluate the efficacy of using occupancy models to monitor the frequency of 

turnover of packs in a harvested population of wolves. 

METHODS 

Study Area 

Southwestern Alberta was the southeastern extent of gray wolf distribution in the Canadian 

Rocky Mountains (Gunson 1991, Boitani 2003). Our study area encompassed 30,000 km
2
, 

extending from the Canadian-United States border north to the Brazeau River but excluded Banff 

and Jasper National Parks (Fig. 1). Our study area was mountainous in the west along the British 

Columbia border, dominated by Douglas fir (Pseudotsuga menziesii), lodgepole pine (Pinus 

contorta), and spruce (Picea engelmannii) mixed forests, that abruptly transition through aspen 

(Populus tremuloides) stands to fescue (Festuca spp.) dominated grassland and agricultural land 

in the east (National Regions Committee 2006, Desserud et al. 2010). Our study area was 

predominantly public Crown land under the jurisdiction of the Alberta provincial government but 

included Waterton Lakes National Park. Oil and gas extraction, timber harvest, outdoor 
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recreation, and livestock and crop production occurred throughout the study area, except for 

within Waterton Lakes National Park (National Regions Committee 2006). 

Rendezvous Site Surveys and Genetic Analyses 

We surveyed for wolves in southwestern Alberta for 3 years (2012 – 2014). We collected DNA 

from wolves in collaboration with AEP, following methods described by Ausband et al. (2010) 

and Stenglein et al. (2011). We used a predictive habitat model to identify potential wolf 

rendezvous sites (i.e., pup-rearing sites used in summer; Ausband et al. 2010, Ausband and 

Mitchell 2011) and conducted noninvasive genetic surveys between mid-June and late-August of 

each year (Ausband et al. 2010, Ausband and Bassing 2015). We recorded the presence and 

geographic location of wolf sign and collected a genetic sample from scat when detected 

(Ausband et al. 2010, Stenglein et al. 2010b; 2011). We classified canid scats as adult wolf if ≥ 

2.5 cm in diameter and canid scats in active rendezvous sites as wolf pup if < 2.5 cm in diameter 

(Weaver and Fritts 1979). We collected a small sample (pencil eraser sized) from the side of 

each scat using sterilized forceps and stored it in DMSO/EDTA/Tris/salt solution buffer 

(Frantzen et al. 1998; Stenglein et al. 2010a). Due to budgetary constraints, we surveyed for 

wolves across the southern third of our study area in 2012 and the southern half of our study area 

in 2013 and 2014 (Ausband and Bassing 2015).  

We analyzed fecal samples at the Laboratory for Ecological, Evolutionary and 

Conservation Genetics (LEECG) at the University of Idaho, Moscow, USA to identify 

individuals sampled each year. We followed DNA extraction and analysis protocols described by 

Stenglein et al. (2010b, 2011) and Stansbury et al. (2014). We used a mitochondrial DNA 

species-identification test to screen and remove non-target species and low quality samples (De 

Barba et al. 2014, Stansbury et al. 2014). We genotyped the remaining samples with PCR using 9 
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nuclear DNA microsatellite loci and up to 9 additional microsatellite loci to identify individuals 

and verify matches or mismatches (Stenglein et al. 2011, Stansbury et al. 2014). We used 

GENALEX (Peakall and Smouse 2006, 2012) to identify and sort matching and unique 

genotypes and RELIOTYPE (Miller et al. 2002) to test the accuracy of single capture genotypes. 

We used STRUCTURE (Pritchard et al. 2000) to estimate percent coyote, dog and gray wolf 

ancestry of each genotype and removed samples with highly probable coyote or dog ancestry 

(Stansbury et al. 2014). 

Hunter Surveys 

We surveyed registered ungulate hunters for observations of live wolves made during the 

hunting season through an online hunter reporting form used by AEP at the end of each hunting 

season (Rich et al. 2013, Ausband et al. 2014, Ausband and Bassing 2015). Ungulate hunting 

seasons occurred from 1 September – 20 January of the next year (Alberta Government 2014) 

and hunters reported observations made within each week of the hunting season (Ausband and 

Bassing 2015). We surveyed hunters who hunted in the southern half of our study area after the 

2012 season and the entire study area after the 2013 and 2014 seasons.  

 We excluded hunter observations when only single wolves were reported, only wolf sign 

(i.e., tracks or howling) was reported, inadequate location data were reported, or an observation 

was made outside the hunting season (Rich et al. 2013, Ausband et al. 2014). We truncated 

hunter survey data to include only observations of wolves made September – December to avoid 

violating the assumption of population closure (MacKenzie et al. 2002). We then estimated point 

locations for hunter observations of wolves based on the centroid of the Section, Township, 

Range, and Meridian reported for each sighting using program R 3.2.5 (R Core Team 2016).  

Detection Histories and Covariates 
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We used observation data from both survey methods to generate detection histories of wolf packs 

in southwestern Alberta following methods described by Rich et al. (2013) and Ausband et al. 

(2014). We arbitrarily superimposed a grid of 1,000 km
2
 cells across the study area; each cell 

represented a sample unit. The size of cells was based on the estimated average territory size of 

wolf packs (Rich et al. 2013, Ausband et al. 2014) in southwestern Alberta based on limited GPS 

collar location data (A. Morehouse, University of Alberta, unpublished data) and published 

estimates from wolf packs within the southwest and west central regions of Alberta (Webb 2009, 

Hebblewhite 2006, N. Webb, [AEP], personal communication). We plotted observations from 

both survey methods across the gridded study area in program R 3.2.5 (R Core Team 2016) to 

generate detection histories for each year (i.e., 3 primary sampling periods, 1 Jun – 31 Dec). 

Each annual detection history consisted of 9 sampling occasions; 1 based on the unique 

genotypes observed through rendezvous site surveys (Ausband et al. 2014), and 8 from hunter 

surveys where we consolidated weekly observations of wolves into 2-week sampling periods. To 

account for potential false-positive detections in our data (Royle and Link 2006, Miller et al. 

2011), we allowed for multiple detection states (i.e., uncertain and certain) in the hunter survey 

data (Miller et al. 2011, Miller et al. 2013, Ausband et al. 2014). We then relaxed this 

requirement because analyses indicated little evidence of false-positive detections in our dataset. 

For both survey methods, we assumed detecting a pack in one sample unit was independent of 

detections in other sample units, the probability of detecting wolves was not correlated between 

survey methods, and the population was closed to changes in pack occupancy during each 

primary sampling period (i.e., no colonization or local extinction of packs from Jun – Dec each 

year; MacKenzie et al. 2002, 2003, 2006). 
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We assessed the relationship of 6 environmental and management covariates and 2 

survey effort covariates on wolf pack occupancy and detection (Table 1). We estimated and 

categorized harvest intensity of wolves (i.e., low, medium, or high) based on the area-weighted 

reported number of wolves trapped in Registered Fur Management Areas (RFMA) and shot in 

Wildlife Management Units (WMU) each year (wolves harvested/km
2
; 2011–2014). We tested 

for immediate and one-year lag effects (Robichaud and Boyce 2010) of harvest intensity on 

occupancy and detection probabilities of wolves. We estimated and categorized area-weighted 

density of reported cattle (i.e., low, medium, or high density/km
2
) using a combination of 

reported stocking rates for non-overlapping grazing allotments and leases on public (AEP) and 

private lands (Agriculture and Agri-Food Canada). We calculated percent forest cover from the 

ABMI Wall-to-wall Land Cover Map (2010) based on 30 m
2
 spatial-resolution Landsat satellite 

imagery (Alberta Biodiversity Monitoring Institute 2012) in each sample unit. We derived mean 

ruggedness (TRI; terrain ruggedness index) for each sample unit from 25 m
2
 resolution digital 

elevation models (DEM; AEP). We also tested whether the proportion of a sample unit in the 

study area predicted occupancy of wolf packs in southwestern Alberta (Rich et al. 2013). We 

evaluated the relationship between survey effort and detection probability by calculating the 

number of predicted rendezvous sites surveyed and estimating the area-weighted number of 

hunter days in each WMU (hunter days/km
2
) per year for each sample unit as measures of 

rendezvous site survey and hunter effort, respectively (Rich et al. 2013, Ausband et al. 2014). 

We centered and scaled all covariates based on their individual means and standard deviations 

per year. Finally, we tested for collinearity among the covariates and excluded highly correlated 

covariates (r ≥ |0.6|; Zuur et al. 2010).  

Occupancy Models 
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We fit dynamic (multi-season) and single season occupancy models (Table 2) using a Bayesian 

framework (Royle and Kéry 2007, Kéry and Schaub 2012) in JAGS (Plummer 2013) and 

program R 3.2.5 (R Core Team 2016) with the R2jags package (Su and Yajima 2015) to test for 

changes in occupancy of wolf packs in southwestern Alberta. We allowed both parameterizations 

of the model to account for false-positive detections in the data (Miller et al. 2011); based on 

initial model results, we refit the models assuming no false-positive detections in the data (Table 

2). We then tested the effects of environmental, management, and detection effort on abundance 

and distribution of packs using the best performing parameterization of the model (Table 2, 3). 

We tested covariates on detection probability, allowing detection probability to vary by survey 

method, and then used the best supported model for detection probability to test hypothesized 

effects of covariates on occupancy. We retained only models that successfully converged to 

compute the Watanabe-Akaike information criteria (or Widely Applicable Information Criteria; 

WAIC) for model comparison and selection (Watanabe 2010; Gelman et al. 2014; Hooten and 

Hobbs 2015) using the loo package (Vehtari et al. 2016). We considered models within 10 

ΔWAIC and considered covariates in each model supported if the 95% credible interval (CRI) 

posterior distributions did not include 0 (Kéry 2010). We ran 3 independent chains of 300,000 

Markov chain Monte Carlo iterations, discarding the first 150,000 iterations, with a thinning rate 

of 4 for all models.   

Estimating Mean Pack Size and Turnover of Packs 

We estimated number of packs and abundance of wolves for each year based on area occupied 

and the mean territory and pack size in southwestern Alberta (MFWP 2014). We assumed mean 

territory size was 1,000 km
2
, minimal overlap between territories, and territory and pack size did 

not change per year (Rich et al. 2013, Ausband et al. 2014). We use the lme4 package (Bates et 
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al. 2015) in Program R (R Core Team 2016) to estimate mean pack size based on the number of 

unique individuals genetically assigned to packs in southwestern Alberta each year. Following 

methods described by Stansbury et al. (2016), we assigned an individual to a putative pack if it 

was sampled at ≥ 1 common locations with other wolves and STRUCTURE (Pritchard et al. 

2000) analyses estimated it shared common ancestry (q ≥ 0.7) with wolves it was sampled with, 

or ML-RELATE (Kalinowski et al. 2006) analyses estimated it was related to ≥ 50% of the 

wolves it was sampled with at the parent-offspring or full-sibling (r ≥ 0.5) level. If an individual 

did not meet the genetic requirements but was sampled at ≥ 1 common locations with other 

wolves it was also assigned to the pack. We compared putative pack assignments to pack 

pedigree analyses (Ausband 2015) to evaluate pack membership for each pack in each year and 

determined if whole pack turnover occurred (i.e., entirely new individuals assigning to a pack 

each year). We only considered packs in years when the active rendezvous site was detected (i.e., 

did not include partially sampled packs).  

RESULTS 

Rendezvous Site and Hunter Surveys 

We surveyed 1,042 predicted rendezvous sites in southwestern Alberta from 2012–2014 (mean = 

347, SD = 64). We located 15 active rendezvous sites and collected 1,709 genetic samples (Table 

4). The majority (85%) of the genetic samples were collected in active rendezvous sites. We 

identified 129 unique genotypes, 20 of which we genetically recaptured ≥ 2 times across years. 

On average we identified 53 (SD = 21) unique wolves per year (Table 4).  

 We received 8,327 responses to our hunter surveys, 2012–2014 (mean = 2776 

hunters/year, SD = 518; Table 4). Of those responses, 762 hunters reported seeing ≥ 2 live 

wolves during the ungulate hunting season, 2012–2014 (mean = 254 hunters/year, SD = 97). 
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Forty-nine hunter observations of ≥ 2 live wolves did not provide adequate data for analyses and 

were excluded. Between 10 and 15% of the reported observations of wolves were made on 

private land, 2012–2014.  

Occupancy Models 

Precision of model estimates and convergence success indicated the single season 

parameterization of models best described occupancy of wolf packs in southwestern Alberta 

(Table 2). The dynamic parameterization of the model did not fit our data as well as the single-

season parametrizations. Model estimates were more variable than single-season estimates and 

precision of transition probabilities (e.g., colonization) were highly variable. Dynamic models 

indicated the mean probability an unoccupied sample unit would become occupied (i.e., 

colonization) was low whereas the mean probability an occupied sample unit remained occupied 

the next year (i.e., patch survival) was high (Table 2).  

The probability of detecting a wolf pack was generally consistent across years and 

increased with harvest intensity (Table 5, 6). We were more likely to detect a wolf pack through 

rendezvous site surveys than hunter surveys (Table 5). The mean probability of falsely detecting 

a wolf pack in an unoccupied sample unit was 0.00 (annual 95% CRIs ranged 0.00–0.03) when 

false-positives detections were accounted for in the single season occupancy model (Table 2). 

The mean probability of falsely detecting a wolf pack in an unoccupied sample unit ranged 0.00–

0.02 over the 3-year study period when false-positives detections were accounted for in the 

dynamic model (Table 2).  

The mean annual probability a sample unit was occupied by a wolf pack (i.e., occupancy) 

ranged 0.72–0.74 over the 3-year study period (Table 5). Probabilities of occupancy were 

generally highest in the north and through the center of the study area where the Rocky 
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Mountains transition into foothills (Fig. 2). The estimated distribution of wolf packs was 

consistent over time, with little variation in the probability of occupancy for individual sample 

units, 2012–2014 (Fig. 2; Table 5, 6). On average, we estimated 23.41 (95% CRI: 20.32–26.34) 

wolf packs occupied approximately 23,406 km
2
 (95% CRI: 20,322–26,338 km

2
) each year in 

southwestern Alberta. Pack size averaged 6.76 (95% Confidence Interval [CI]: 5.53–9.45) 

wolves across years. Based on the estimated number of packs and mean pack size, we estimated 

160 (95% CRI: 123–186), 156 (95% CRI: 126–183), and 160 (95% CRI: 129–187) wolves 

occupied southwestern Alberta in 2012, 2013, and 2014, respectively. The top model indicated 

the probability a sample unit was occupied by a wolf pack was positively related to forest cover 

and the probability of detecting a wolf pack with either survey method was positively related to 

harvest intensity (Table 6).  

 We detected few instances of whole-pack turnover but frequent turnover of individuals 

within 3 different packs sampled consecutive years, based on genetic analyses. We detected 

turnover in 1 pack when a group of wolves (n = 12) were genetically sampled in 2012 but not 

detected genetically again while an entirely new group of wolves (n = 9) were detected in the 

same area the next year. We detected turnover of breeders in 6 pack-years; dispersers from other 

packs replaced 4 breeders, a subordinate pack member replaced 1 breeder, and 1 breeder’s 

replacement was unknown but the pack successfully reproduced that year.  

DISCUSSION 

Harvest of wolves has been a common management practice in the Canadian Rocky Mountains 

(Gunson 1991, Boitani 2003, Robichaud and Boyce 2010, Webb et al. 2011), but the relationship 

between harvest and dynamics of pack occurrence was unclear. Harvest may lead to frequent 

changes in abundance and distribution of packs which may affect demography (Jędrzejewska et 
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al. 1996, Haber 1996) or the ability of managers to monitor packs, meet population objectives for 

wolves, set harvest regulations, and reduce conflicts with livestock. Understanding the frequency 

of turnover and the relative effect of harvest on pack occurrence will therefore allow managers to 

evaluate the efficacy of harvest and inform decisions for wolf management. 

We found little evidence occupancy of wolf packs changed frequently in southwestern 

Alberta, thus we rejected our hypothesis that the abundance and distribution of packs was highly 

dynamic in a heavily harvested population of wolves. Despite intensive harvest occurring during 

our study (mean = 114.75 harvested wolves reported per year, SD = 56.94) we found there was a 

low probability the occupancy state of an individual sample unit changed over time.  In addition, 

most packs genetically sampled during consecutive years persisted even when some individuals 

were likely lost to harvest. Because turnover of packs occurred infrequently during our study, we 

could not reject our hypothesis that abundance and distribution of packs would remain generally 

stable in a harvested population of wolves.  

Contrary to expectations, our best supported models did not include harvest on 

occupancy. Models that did include harvest suggested a weak negative relationship between 

harvest intensity and occupancy of wolf packs but this relationship was uncertain (95% CRIs 

contained 0 and models converged poorly). This suggests that public harvest had little influence 

on the abundance or distribution of wolf packs in southwestern Alberta. Human density and 

anthropogenic disturbances (e.g., road or building density) have been negatively associated with 

habitat selection and use by wolves at fine spatiotemporal scales (i.e., within kilometers or hours; 

Whittington et al. 2005, Hebblewhite and Merrill 2008, Llaneza et al. 2012) but our results 

suggest human activity, specifically public harvest, may not be strong enough to influence 

occurrence of wolf packs in southwestern Alberta over several years. In addition, most packs 
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likely experienced some harvest mortality each year (Webb et al. 2011); if harvest was not heavy 

enough to frequently remove or dissolve packs, packs likely persisted because surviving 

members could maintain their territories. Alternatively, if harvest generally targeted dispersing 

wolves over residents (Peterson et al. 1984, Person and Russell 2008) harvest of wolves may 

have had relatively little effect on established packs. 

Even under heavy harvest management, environmental factors had a stronger influence 

than harvest on the distribution and abundance of wolf packs in southwestern Alberta. Similar to 

Rich et al. (2013), we found forest cover was positively associated with the probability of 

occupancy. High forest cover may provide security habitat for wolves inhabiting human-

dominated landscapes (Llaneza et al. 2012) and may be associated with the distribution of wild 

prey (Llaneza et al. 2012, Kittle et al. 2015) in southwestern Alberta. Prey availability generally 

determines wolf distribution and densities (Fuller 1989, Boitani 2003, Fuller et al. 2003) and was 

strongly predictive of wolf occupancy in Idaho and Montana (Rich et al. 2013, Ausband et al. 

2014). We were unable to estimate prey density or distribution in southwestern Alberta but 

research in the U.S. Rocky Mountains found elk (Cervus elaphus) selected for forests and 

shrublands over grasslands as snowpack decreased (Proffitt et al. 2011); wild ungulates may 

prefer forested habitats to grasslands and agricultural lands during summer and fall in 

southwestern Alberta. In addition, previous research documented wild prey densities were 

highest at lower elevations in the foothills of west central Alberta (Webb 2009) which 

corresponded with the highest probabilities of occupancy in our study. 

Once harvest reaches a certain intensity however, logically it should have a strong 

negative effect on the occurrence of wolf packs (Ballard et al. 1987). Thus, at some point the 

relative effect of harvest should become more important for determining the abundance and 
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distribution of packs than our results suggest. This may be particularly true for colonizing 

populations and ones on the edge of their range that are at low densities or poorly connected to 

other populations (Fuller et al. 2003, Brainerd et al. 2008). Comparing packs in southwestern 

Alberta to ones in Idaho and Montana may illustrate this relationship between harvest and 

connectivity. Wolves in southwestern Alberta exist on the eastern edge of wolf distribution in the 

Canadian Rocky Mountains (Gunson 1991, Boitani 2003) but were genetically connected to 

wolves in British Columbia (Cullingham et al. 2016) and likely northern Alberta (Gunson 1991). 

Although we found little evidence of long-distance immigration into this region (Chapter 1), 

short-distance dispersal from nearby packs outside our study area likely occurred, thus 

promoting pack persistence in southwestern Alberta. Conversely, wolves in Idaho and Montana 

are part of a relatively isolated, peninsular population (USFWS 2016). Anecdotal evidence 

suggests numerous packs in central Idaho, for example, have dissolved since harvest was 

initiated but some territories were not recolonized and remain unoccupied (IDFG 2012, 2016). 

Because this population is not as well connected to others, metapopulation theory suggests 

harvest may have a stronger negative effect on the abundance and distribution of packs in Idaho 

and Montana than what we observed in southwestern Alberta (Levins 1969, Hanski 1991). 

Harvest appeared to have a stronger effect on turnover of individuals within packs (Webb 

et al. 2011) compared to turnover of entire packs. We genetically identified 129 unique wolves in 

the southern half of our study area but recaptured only 20 in more than 1 year and only 4 in all 3 

years; hunters and trappers reported harvesting 71 wolves in the same area during our study. We 

observed frequent turnover of breeders in packs genetically sampled consecutive years and packs 

appeared more receptive to adopting nonbreeding adults than in other portions of the Rocky 

Mountains (Chapter 1). Although frequent breeder loss may lead to pack dissolution (Brainerd et 
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al. 2008) we found little evidence of this in southwestern Alberta, and we hypothesize rapid 

replacement of breeding adults may explain how packs appeared to persist despite frequent 

turnover of individuals. Most breeding adults were replaced by local dispersers or by an 

individual within the pack. In addition, most harvest coincided with the breeding season and the 

pulse in dispersal typical for wolves in the Rocky Mountains (i.e., late winter – early spring; 

Mech and Boitani 2003, Webb et al. 2011, Jimenez et al. 2017). Replacement of breeding adults 

can occur rapidly under these conditions (Rothman and Mech 1979, Fritts and Mech 1981, 

Stahler et al. 2002, Mech and Boitani 2003), thus breeder turnover may have occurred quickly, 

preventing the destabilizing effects of breeder loss on the pack (Ballard et al. 1987). This also 

demonstrates pack stability and occupancy were generally maintained from within the 

population, contrary to the hypothesis that harvested populations of wolves are often sustained 

by immigrants dispersing into the population (Ballard et al. 1987, Haight et al. 1998, Hayes and 

Harestad 2000, Fuller et al. 2003).  

Interestingly, we found detection probability was positively associated with harvest of 

wolves. Contrary to concerns that harvest may reduce density (Gasaway et al. 1983, Fuller 1989) 

or influence behaviors (Gunson 1992, Webb et al. 2009) of wolves to the point that detecting 

wolf packs was more difficult than in unharvested populations, we found detection probability 

was highest in areas where heavy harvest occurred. We hypothesize that this is because harvest 

intensity may be positively associated with density of wolves. Because abundance can strongly 

affect detection probability (Royle and Nichols 2003, MacKenzie et al. 2006), surveys may be 

more likely to detect wolf packs in sample units where wolf densities, and associated harvest 

intensity, are highest. Alternatively, we hypothesize harvest intensity may reflect areas of higher 

quality habitat that attract wolves regardless of mortality risk (i.e., attractive sinks; Delibes et al. 
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2001, Novaro et al. 2005). Even if harvest removes a high proportion of wolves in these areas, 

dispersers may quickly backfill and maintain local wolf densities enough that the probability 

surveys will detect wolves is still high. 

Occupancy models have been shown to be suitable for monitoring the abundance and 

distribution of wolves (Ausband et al. 2014), even in harvested populations. We found harvest 

did not affect our ability to detect wolf packs and survey methods yielded sufficient detection 

data to estimate the annual abundance and distribution of wolf packs in southwestern Alberta.  

We made several assumptions in our study that, if violated, could have affected our 

ability to detect turnover or evaluate the influence of harvest on the occurrence of packs. We 

assumed we would be able to detect turnover of packs using occupancy models. If a wolf pack 

recolonized a vacant territory faster than the rate at which sampling occurred (i.e., rescue effect; 

Brown and Kodrick-Brown 1977), sample units would appear continuously occupied over time 

and we would have failed to detect turnover of packs. We detected one instance of whole-pack 

turnover with genetic analyses that was not detected by the occupancy models; the time within or 

between primary periods may be biologically irrelevant in a heavily harvested population of 

wolves and unsuitable for testing our hypotheses about turnover of packs. Genetic analyses and 

occupancy model estimates were generally consistent, however; thus, the data suggest occupancy 

was generally stable during our study. We also assumed the number of wolves reported 

harvested by hunters and trappers accurately reflected harvest in southwestern Alberta. Because 

not all public harvest of wolves was reported (Gunson 1992, Robichaud and Boyce 2010, Webb 

et al. 2011) and was reported by WMU (not precise harvest locations; AEP), our estimated 

intensity of wolf harvest may have biased the estimated relationships between harvest, 

occupancy, and detection of wolves. Previous research and documentation of wolf distribution 



77 

and harvest in this region (Robichaud and Boyce 2010, Webb et al. 2011), however, suggest the 

estimated relationships are reasonable.  

MANAGEMENT IMPLICATIONS 

Understanding whether harvest affects pack occupancy and turnover can help managers evaluate 

whether monitoring is accurately tracking population trends, thus providing reliable information 

necessary for meeting population objective, managing depredations, and setting harvest 

regulations. Our results suggest that heavy harvest is unlikely to have strong effects on the 

abundance and distribution of wolf packs when populations are well-connected, but might in 

peninsular populations. Harvest does appear to strongly influence turnover of individuals within 

packs but local dispersal may stabilize pack dynamics and occupancy. Annual monitoring using 

occupancy models is reliable for estimating the number and distribution of wolf packs at broad 

spatial scales, even in harvested populations of wolves, but may not be reliable for estimating the 

frequency of turnover of packs if changes in occupancy occur faster than an annual time-step. If 

managers are interested in monitoring turnover of packs in heavily harvested populations of 

wolves we recommend reducing the duration of time between primary sampling periods to 

increase the likelihood of observing changes in occupancy probabilities, if they occur.  
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Figure 1. Study area of southwestern Alberta, Canada 2012–2014. 
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Figure 2. Distribution of the probability sample units were occupied by wolf packs in 

southwestern Alberta, Canada, 2012–2014. Occupancy estimates were based on a model that 

included the effects of forest cover on the probability of occupancy and intensity of wolf harvest 

on detection probabilities. 
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Table 1. Mean (standard error) values for covariates included in occupancy analysis of wolf 

packs in southwestern Alberta (2012–2014), and predicted relationships between covariates and 

the probability a wolf pack occupied a sample unit (𝝍) and was detected (p) by either 

noninvasive genetic or hunter surveys. 

 Annual mean (SE) 

 Predicted 

relationship 

Model Covariate 2012 2013 2014  𝝍 p 

Forest cover (%) 0.45 (0.32) 0.45 (0.23) 0.45 (0.32)  +  

Mean ruggedness (TPI) 4.39 (2.90) 4.39 (2.90) 4.39 (2.90)  –  

Wolves harvested
a 

2.23 (2.65) 2.35 (2.50) 0.47 (0.64)  –/+ – 

Wolves harvested previous year
a 

2.12 (2.08) 2.23 (2.65) 2.35 (2.50)  – – 

Reported cattle density  

(no. cattle/km
2b

) 18.93 (31.41) 20.12 (32.00) 16.61 (24.40) 

 

–/+  

Rendezvous sites surveyed
c
 8.40 (20.40) 6.02 (10.76) 6.40 (10.72)   + 

Hunter effort  

(hunter days/km
2
)
d 

0.54 (0.80) 0.94 (0.68) 0.96 (0.64) 

 

 + 

Proportion of sample unit in 

study area 0.60 (0.32) 0.60 (0.32) 0.60 (0.32) 

 

 + 

  
a
Reported number of wolves harvested per sample unit. Values were then area-weighted and 

categorized as low medium, or high density. 

b
Reported cattle density was categorized as low, medium, or high density. 

c 
Number of predicted rendezvous sites surveyed for noninvasive genetic observations of wolves. 
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d 
Number of reported days spent hunting by big game hunters, area-weighted by size of sample 

unit. 
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Table 2. Model type, parameters, and annual estimates (95% Bayesian Credible Intervals) used 

to test changes in abundance and distribution of wolf packs in southwestern Alberta (2012–

2014), where the probabilities a sample unit was occupied, became colonization, and remained 

occupied (i.e, survival) by a wolf pack were estimated over time (2012–2014). We tested the 

probability a wolf pack was detected when not present (FP = false-positive detection) by 

estimating the probabilities of detecting (p11), falsely detecting (p10), and detecting with 

certainty (b) a wolf pack in each sample unit for both single-season and dynamic occupancy 

models. 

  
 

Estimate (95% CRI) 

Model FP
a
  Parameter

b
 2012 2013 2014 

Single No     

  Occupancy 0.68 (0.46 – 0.89) 0.70 (0.54 – 0.84) 0.71 (0.55 – 0.86) 

  Detection, gen. 0.59 (0.29 – 0.86) 0.49 (0.25 – 0.74) 0.55 (0.31 – 0.78) 

  Detection, hunt 0.28 (0.12 – 0.37) 0.27 (0.21 – 0.34) 0.26 (0.20 – 0.32) 

Single Yes     

  Occupancy 0.67 (0.45 – 0.90) 0.68 (0.52 – 0.83) 0.70 (0.54 – 0.85) 

  Detection (p11) 0.30 (0.22 – 0.39) 0.29 (0.23 – 0.35) 0.28 (0.22 – 0.34) 

  Detection (p10) 0.01 (0.00 – 0.01) 0.00 (0.00 – 0.03) 0.00 (0.00 – 0.01) 

  Detection (b) 0.57 (0.42 – 0.72) 0.56 (0.45 – 0.66) 0.62 (0.51 – 0.72) 

Dynamic No     

  Occupancy 0.88 (0.64 – 0.99) 0.64 (0.46 – 0.81) 0.68 (0.53 – 0.83) 

  Colonization 0.31 (0.01 – 0.99) 0.17 (0.01 – 0.52) – 

  Survival 0.70 (0.48 – 0.92) 0.97 (0.87 – 0.99) – 
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  Detection, gen. 0.51 (0.23 – 0.80) 0.60 (0.30 – 0.87) 0.63 (0.37 – 0.85) 

  Detection, hunt 0.11 (0.06 – 0.16) 0.16 (0.11 – 0.21) 0.15 (0.11 – 0.20) 

Dynamic Yes     

  Occupancy 0.64 (0.44 – 0.83) 0.63 (0.47 – 0.78) 0.69 (0.55 – 0.82) 

  Colonization 0.20 (0.01 – 0.55) 0.26 (0.03 – 0.53) – 

  Survival 0.87 (0.62 – 0.99) 0.94 (0.80 – 0.99) – 

  Detection (p11) 0.30 (0.22 – 0.39) 0.30 (0.24 – 0.37) 0.28 (0.22 – 0.33) 

  Detection (p10) 0.00 (0.00 – 0.01) 0.02 (0.00 – 0.06) 0.00 (0.00 – 0.01) 

  Detection (b) 0.57 (0.42 – 0.72) 0.58 (0.47 – 0.69) 0.62 (0.51 – 0.72) 

  
a 
Indicates whether we accounted for potential false-positive detections in the data. 

b 
We estimated detection probability separately for different survey methods when we assumed 

false-positive detections did not occur. Different survey methods included: gen. = noninvasive 

genetic surveys for wolves, and hunt = hunter observations of live wolves made during the 

ungulate hunting season. 
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Table 3. Single-season occupancy models tested to estimate abundance and distribution of wolf 

packs in southwestern Alberta where 𝝍 = occupancy, p = detection probability, Watanabe-

Akaike information criteria (WAIC), standard error (SE) of WAIC value, and change in (Δ) 

WAIC. We evaluated covariate effects on detection probability and then used the most supported 

parameterization of detection probability to evaluate covariate effects on occupancy probability. 

We considered models within 10 ΔWAIC values of the top model for inference. 

Parameter 

of interest Model
a 

WAIC SE ΔWAIC 

Occupancy 𝝍 (forest)  p (harvest) 232.8 1050.7 0 

Occupancy 𝝍 (forest + harvest) p (harvest) 449.4 993.2 216.6 

Occupancy 𝝍 (lag-harvest) p (harvest) 921.5 1336.8 688.7 

Occupancy 𝝍 (harvest) p (harvest) 1307.1 1188.4 1074.3 

Occupancy 𝝍 (ruggedness) p (harvest) 1313.8 1031.0 1081.0 

Occupancy 𝝍 (livestock) p (harvest) 2301.7 1733.4 2068.9 

Occupancy 𝝍 (harvest + 

livestock) 

p (harvest) 

3310.6 1377.1 3077.8 

Detection 𝝍 (.) p (harvest) 442.9 1470.7 0 

Detection 𝝍 (.) p (hunter effort) 447.3 1477.6 4.4 

Detection 𝝍 (.) p (.) 520.9 1458.5 78 

Detection 𝝍 (.) p (lag-harvest) 588.3 1501.9 145.4 

Detection 

𝝍 (.) 

p (rend. effort + 

hunter effort) 619.6 1502.3 176.7 

Detection 𝝍 (.) p (rend. effort) 755.4 1527.3 312.5 
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a 
Forest = percent forest cover; ruggedness = mean Terrain Ruggedness Index (TRI); harvest = 

density of reported number of wolves harvested in current year (wolves/km
2
), categorized as 

low, medium, or high density; lag-harvest = density of reported number of wolves harvested in 

previous year (wolves/km
2
), categorized as low, medium, or high density; livestock = density of 

reported livestock per year (reported cattle/km
2
), categorized as low, medium, or high density; 

rendezvous effort = number of rendezvous sites surveyed per sample unit; hunter effort = hunter 

survey effort per sample unit (hunter days/km
2
). 

 
b,c 

Rendezvous effort and hunter effort were tested on respective detection parameters only. 
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Table 4. Results from surveys of wolf rendezvous sites and hunters for observations of wolf 

packs in southwestern Alberta, Canada, where the total number of predicted and active wolf 

rendezvous sites surveyed, unique genotypes identified from genetic samples, online responses 

from ungulate hunters, and observations of ≥ 2 live wolves made by hunters are reported, 2012–

2014. 

Year 

No. sites 

surveyed 

No. active 

sites detected 

No.  

samples 

collected  

No. unique 

genotypes 

detected 

No. hunter 

responses
a
 

No. hunter 

observations 

≥ 2 wolves 

2012 420 3 439 45 2227 189 

2013 301 2 441 37 2844 372 

2014 321 10 829 76 3256 408 

  
a 
Included hunters that responded NO to question: did you hunt in the study area?. 
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Table 5. Estimates for the mean probabilities (95% Bayesian Credible Interval) a sample unit 

was occupied by a wolf pack and a wolf pack was detected through rendezvous site surveys and 

hunter surveys in southwestern Alberta, 2012–2014. 

  Estimated probability (95% CRI) 

Year Occupancy Rendezvous detection Hunter detection 

2012 0.74 (0.56 – 0.89) 0.61 (0.31 – 0.86) 0.30 (0.21 – 0.40) 

2013 0.72 (0.57 – 0.86) 0.53 (0.27 – 0.77) 0.27 (0.21 – 0.33) 

2014 0.74 (0.59 – 0.89) 0.56 (0.32 – 0.78) 0.25 (0.19 – 0.31) 
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Table 6. Parameter estimates (95% Bayesian Credible Interval) for occupancy analysis of wolf packs in southwestern Alberta, 2012–

2014. The model included 2 survey methods: rendezvous site surveys (Rend.) for noninvasive wolf DNA and surveys for observations 

of wolves made by hunters during the ungulate hunting season. We estimated annual probabilities of occupancy and detection within a 

single model. 

  

Coefficient (95 % CRI) 

Parameter Variable 2012  2013  2014 

Occupancy
a 

Intercept 1.29 (0.20 – 2.71)  1.15 (0.25 – 2.56)  1.30 (0.34 – 2.90) 

 

Forest cover 1.29 (0.46 – 2.30)  1.29 (0.46 – 2.30)  1.29 (0.46 – 2.30) 

Detection
b 

  

 

 

 

 Rend. surveys Intercept 0.19 (-1.14 – 1.60)  -0.17 (-1.29 – 0.95)  0.16 (-0.84 – 1.21) 

 

Medium harvest
c 

0.23 (-0.21 – 0.67)  0.23 (-0.21 – 0.67)  0.23 (-0.21 – 0.67) 

 

High harvest
c 

0.48 (-0.05 – 1.01)  0.48 (-0.05 – 1.01)  0.48 (-0.05 – 1.01) 

Hunter surveys Intercept -1.15 (-1.66 – -0.67)  -1.32 (-1.79 – -0.89)  -1.21 (-1.57 – -0.87) 

 

Medium harvest
c
 0.23 (-0.21 – -0.67)  0.23 (-0.21 – 0.67)  0.23 (-0.21 – 0.67) 

 

High harvest
c
 0.48 (-0.05 – -1.01)  0.48 (-0.05 – 1.01)  0.48 (-0.05 – 1.01) 

  
a 
Probability a wolf pack occupied a sample unit. 
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b 
Probability a wolf pack was detected in an occupied sample unit. 

c
Effect of medium and high harvest of wolves were compared to the effect of low harvest of wolves. 
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APPENDIX A. Sampling location data and genetic criteria used to classify wolves in central Idaho (2008–2014) and southwestern 

Alberta (2013–2014). Individuals were classifications as either a resident, neighbor, short-distance immigrant (SDI), or long-distance 

immigrant (LDI) based on sampling location (Location), pairwise relatedness estimates (Relatedness), genetic cluster analyses 

(Assignment), and first-generation migrant tests (Migrant test). These criteria were also used to identify an individual’s most likely 

origin when possible. The number of individuals classified in each category are reported for wolves in central Idaho (No. Idaho) and 

southwestern Alberta (No. Alberta), as well as the identification number of each individual (UI ID).  

Classification Location Relatedness
a 

Assignment
b 

Migrant test
c 

Likely origin No. Idaho No. Alberta
d
 UI ID

e 

Resident Sampled with focal 

pack 

r ≥ 0.5 q ≥ 0.7 P > 0.01 and highest 

probability with focal pack 

Born to focal pack 285 85  

Neighbor Not sampled with 

other wolves; 

Sampled on periphery 

of study area 

r < 0.5 q < 0.5 P ≤ 0.01 with focal pack and 

highest probability with a 

different local pack 

Born to neighboring pack 3 0 115, 116, 209 

SDI Sampled with focal 

pack and/or within 

territory of focal pack 

r ≥ 0.5 with 

different 

local pack 

q ≥ 0.7 with 

different local 

pack 

P ≤ 0.01 with focal pack and 

highest probability with a 

different local pack 

Born to different local 

pack 

7 3 52, 61, 63, 299, 

301, 371, 558, 

1075, 1093 

SDI Sampled with focal r < 0.5 q < 0.5 P ≤ 0.01 with focal pack and Born to neighboring pack 1 1 80, 642 
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pack highest probability with a 

different local pack 

SDI Sampled with focal 

pack and/or within 

territory of focal pack 

r < 0.5 with 

most of 

pack 

0.5 < q < 0.7 

w/ local pack 

P ≤ 0.01 with focal pack and 

highest probability with a 

different local pack or no 

other likely natal pack 

identified 

Born to neighboring pack 2 0 398, 706 

LDI Sampled with focal 

pack and/or within 

territory of focal pack 

r ≥ 0.5 with 

pack in 

different 

study area 

q ≥ 0.7 with 

pack in 

different 

study area 

P > 0.01 with pack in 

different study area highest 

probability 

Born to pack in different 

study area 

3 0 204, 279, 354 

LDI Sampled with focal 

pack and/or within 

territory of focal pack 

r < 0.5 q < 0.5 P ≤ 0.01 with focal pack and 

no likely alternative natal 

pack identified highest 

probability with focal pack 

Unknown origin but 

genetically different from 

all packs in all study areas 

3 1 207, 1058 

LDI Sampled with focal 

pack and/or within 

territory of focal pack 

r < 0.5 q < 0.5 P ≤ 0.01 with focal pack and 

highest probability with pack 

in different study area 

Born to neighboring pack 

in different study area 

9 1 106, 107, 179, 

180, 203, 329, 

990, 157, 158, 
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1078 

LDI Sampled with focal 

pack and/or within 

territory of focal pack 

r < 0.5 q < 0.5 0.01 < P < 0.1 and highest 

probability with a focal pack 

in a different study area 

Unknown origin but 

genetically different from 

all packs in study area 

where it was sampled 

6 0 82, 120, 121, 174, 

208, 330 

LDI Sampled with focal 

pack and/or within 

territory of focal pack 

r < 0.5 0.5 < q < 0.7 

with pack in 

different 

study area 

P ≤ 0.01 with focal pack and 

highest probability with a 

different pack in diff. study 

area or no other likely natal 

pack identified 

Born to neighboring pack 

in different study area 

2 0 175, 173 

  
a
 Pairwise relatedness between an individual and others it was sampled with (r-value). 

b
 Assignment probability to the pack an individual was sampled with (q-value). 

c
 Probability the pack an individual was sampled with is the natal pack of that individual. 

d 
Three individuals (UI ID: 630, 632, 1074) did not fit into the short-distance immigrant categories but due to sampling locations and 

genetic ties to other individuals that were classifiable as short-distance immigrants we included them in regression analyses.  

e
 Identification numbers for residents were not included due to the large number of resident wolves detected.
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