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Abstract: Ecosystem productivity models rely on regional climatic information to estimate temperature
and moisture constraints influencing plant growth. However, the productivity response to these
environmental factors is uncertain at the global scale and has largely been defined using limited
observations from sparse monitoring sites, including carbon flux towers. Recent studies have shown
that satellite observations of Solar-Induced chlorophyll Fluorescence (SIF) are highly correlated
with ecosystem Gross Primary Productivity (GPP). Here, we use a relatively long-term global SIF
observational record from the Global Ozone Monitoring Experiment-2 (GOME-2) sensors to investigate
the relationships between SIF, used as a proxy for GPP, and selected bio-climatic factors constraining
plant growth at the global scale. We compared the satellite SIF retrievals with collocated GPP
observations from a global network of tower carbon flux monitoring sites and surface meteorological
data from model reanalysis, including soil moisture, Vapor Pressure Deficit (VPD), and minimum
daily air temperature (Tmin). We found strong correspondence (R2 > 80%) between SIF and GPP
monthly climatologies for tower sites characterized by mixed, deciduous broadleaf, evergreen
needleleaf forests, and croplands. For other land cover types including savanna, shrubland, and
evergreen broadleaf forest, SIF showed significant but higher variability in correlations between
sites. In order to analyze temperature and moisture related effects on ecosystem productivity, we
divided SIF by photosynthetically active radiation (SIFp) and examined partial correlations between
SIFp and the climatic factors across a global range of flux tower sites, and over broader regional
and global extents. We found that productivity in arid ecosystems is more strongly controlled by
soil water content to an extent that soil moisture explains a higher proportion of the seasonal cycle
in productivity than VPD. At the global scale, ecosystem productivity is affected by joint climatic
constraint factors so that VPD, Tmin, and soil moisture were significant (p < 0.05) controls over 60, 59,
and 35 percent of the global domain, respectively. Our study identifies and confirms dominant climate
control factors influencing productivity at the global scale indicated from satellite SIF observations.
The results are generally consistent with climate response characteristics indicated from sparse global
tower observations, while providing more extensive coverage for verifying and refining global carbon
and climate model assumptions and predictions.
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1. Introduction

Satellite observations have been used for studying global vegetation growth and seasonal
phenology, ranging from the use of vegetation greenness indices from optical-infrared (IR) sensors to
monitor photosynthetic canopy cover [1–4] to vegetation optical depth and backscatter retrievals from
microwave sensors to monitor canopy biomass changes [5,6]. In addition to remote sensing of canopy
physical properties, bio-climatic indices related to light, temperature, and water-related environmental
constraints to plant photosynthesis have also been used to predict vegetation growth and phenology
metrics including growing season timing and length [7–9]. These climate indices, in conjunction with
satellite observations of the vegetation Fraction of Photosynthetically Active Radiation (FPAR) and
other environmental inputs, have been used in process based models for estimating vegetation Gross
Primary Productivity (GPP) [10–12]. GPP is a fundamental indicator of ecosystem productivity and the
primary conduit for atmosphere carbon (CO2) uptake and sequestration through plant photosynthesis.
Remote sensing vegetation indices alone are unable to directly measure GPP, instead requiring the
use of models driven by environmental constraint factors such as daily minimum temperature (Tmin),
Vapor Pressure Deficit (VPD), and soil moisture (SM) for indirectly estimating and monitoring GPP
spatial and temporal variability [10,11].

Bioclimatic indices are an important component of Light Use Efficiency (LUE) based ecosystem
productivity models [10,13] and other land surface models [14]. These models use bioclimatic indices
to characterize the effect of environmental factors influencing plant photosynthesis and the net
ecosystem carbon flux. A well-known satellite LUE model product, the National Aeronautics and Space
Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) MOD17, uses
only VPD and Tmin to represent moisture and temperature related controls on GPP. The Terrestrial
Carbon Flux (TCF) model [11] underpins the NASA Soil Moisture Active Passive Level 4 Carbon
product (SMAP-L4C) [15], which provides regular global daily assessments of terrestrial carbon fluxes,
including GPP, and uses multi-sensor satellite observations and other operational data as primary
inputs. The TCF model uses a LUE approach driven by VPD and SM inputs that define respective
atmospheric moisture demand and soil water supply constraints to GPP, while Tmin is used to define
low temperature constraints to growth. In these LUE models, the global representation of bioclimatic
factors influencing productivity has largely been derived empirically using a limited number of
globally distributed carbon (CO2) flux towers [7,16–18]. The effectiveness of this approach is limited
by the number of available tower sites needed to parameterize and verify model defined response
characteristics for different biomes and plant functional types, which can be a major source of model
uncertainty [19,20].

The LUE approach for global operational modeling of GPP from NASA satellites was originally
developed in the 1990s [21], while recent enhancements include improved calibration, finer spatial
resolution observations, and representation of additional environmental controls on vegetation
growth [22]. Attempts have also been made to represent spatial heterogeneity in plant functional traits
influencing LUE and GPP within coarser biome type classifications [20,23]. These model enhancements
have benefitted from an increase in the number of tower monitoring sites, though the available tower
network is still very sparse over much of the globe [24].

Recent developments in satellite remote sensing include global observations of solar-induced canopy
fluorescence (SIF). The SIF retrieval represents electromagnetic energy emitted in the 650–800 nm spectral
range during plant photosynthesis [25], which has been shown to be proportional to GPP estimated from
tower carbon flux measurements representing major global biomes [26–30]. Approximately 1–2% of total
photosynthetically active radiation (PAR) absorbed by the canopy is emitted as SIF [31], which has been
found to have stronger correspondence with GPP than satellite vegetation greenness indices [26,32].
SIF is also positively related to LUE [29], and is expected to be sensitive to bioclimatic constraints
influencing plant photosynthetic activity. However, a large sensor footprint and coarse temporal
compositing of the satellite SIF observations is generally needed to enhance sensor signal-to-noise,
which constrains capabilities for finer landscape assessments. Despite this limitation, the satellite
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SIF record provides a close observational analog for GPP. SIF may also provide an effective global
observational benchmark for evaluating bioclimatic factors influencing vegetation growth and for
verifying LUE model parameterizations of these processes for improving GPP estimation accuracy
and performance [33].

To achieve the goal of documenting the bioclimatic factors and response patterns influencing
ecosystem productivity from the perspective of the global SIF observation record, we examined moisture
and temperature related controls influencing ecosystem productivity using global satellite based SIF
observations as a surrogate for GPP. A multi-scale analysis was used to investigate bioclimatic factors
influencing spatial and seasonal patterns in vegetation growth. The analysis included comparisons
between satellite SIF and stand level GPP observations from tower sites representing major global
biomes; seasonal assessments of SIF and selected bioclimatic factors for individual sub-regions, and a
global analysis of predominant bioclimatic control patterns influencing productivity. We also compared
global productivity response relationships indicated from the satellite SIF record against prescribed
LUE model parameterized relationships developed from sparse tower observations. Regression
analysis was used to assess relationships between SIF and GPP, and selected meteorological variables
frequently used in LUE models to define moisture and temperature related controls to GPP, including
VPD, Tmin, and surface to root zone (1m depth) soil moisture (SM). A generalized additive model
was used to define the best-fit curvilinear relationships between SIF and underlying environmental
constraints at the global scale.

2. Data and Methods

2.1. Datasets

Consistent global SIF observations have been acquired since 2007 from the GOME-2 sensor,
onboard the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
Meteorological Operational Satellites. The GOME-2 sensor includes four spectral channels ranging
from 240–790 nm, while channel four covers the SIF sensitive spectral region from 590–790 nm [25,34]
with an over-pass time of 9:30 a.m., near the peak of daily photosynthetic activity [35]. We used an
existing GOME-2 SIF (version 2.6 MetOp-A) global record composited to a monthly time step and
mapped to a 0.5 degree resolution global grid and WGS 1984 coordinate system [28,34]. The 2007–2015
SIF record was used to create a monthly SIF (Mw m−2 sr−1 nm−1) climatology by averaging nine
values for each month (Mw m−2 sr−1 nm−1) for each 0.5-degree grid cell over the global domain.
All the negative SIF values mostly over the water bodies were treated as no data value. The global
domain for this study encompassed all land areas except for regions with sparsely vegetated cover
defined by a MODIS IGBP land cover classification [36]. The resulting monthly SIF observations were
compared with collocated GPP observations obtained from local scale (~1 km2 footprint) tower carbon
flux measurements representing a range of global biomes.

Satellite based Photosynthetically Active Radiation (PAR) observations from the Cloud and
Earth Radiant Energy System (CERES, Ed3A) database [37] were used to account for the influence of
solar radiation on the 2007–2015 GOME-2 SIF record; the CERES database is derived from MODIS
observations from the Terra and Aqua satellites and has 1-degree spatial resolution and monthly
averaged temporal coverage. The CERES PAR data were resampled to the same 0.5 resolution and
projection format as the SIF record using nearest-neighbor resampling, and then temporally averaged
to produce a monthly climatology. We then divided the SIF monthly climatology for each grid cell by
the corresponding monthly mean PAR observations from CERES (Wm−2). The resulting PAR-adjusted
SIF metric (SIFP) was used to distinguish temperature and moisture related controls on productivity
apart from solar radiation. The SIFP observations were compared with mean monthly climate variables
obtained from global reanalysis data for selected tower site locations and over the larger global domain.
The monthly SIFP grid cells were also spatially averaged and compared with similarly averaged
monthly climate variables for selected global sub-regions (Figure 1).
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We used in situ GPP records from 67 global carbon flux tower sites to evaluate relationships
between the stand level tower GPP observations and coarser productivity and climate controls defined
from the satellite SIF observations and global reanalysis data. The tower site records were selected
from the 2015 FLUXNET synthesis [38] on the basis of representing major global biomes (Figure 1),
and having multi-year daily GPP records occurring after year 2007 to overlap with the GOME-2 SIF
record; the resulting tower sites selected for this investigation are summarized in Table S1. Gap-filled
daily tower data derived using seven different nighttime carbon flux partitioning methods [39] were
averaged to create a GPP mean monthly climatology for each tower site.

We used a global daily surface meteorology record for the 2007–2015 period obtained from
the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) global
reanalysis [40]. The MERRA2 meteorological parameters processed for this study included daily
minimum and mean air temperatures, dew point temperature, and root zone (integrated 0–1 m depth)
SM. The MERRA2 data were resampled from a native 0.5 × 0.65-degree global grid into a 0.5-degree
resolution geographic projection consistent with the GOME-2 SIF record. Atmosphere VPD was
derived from the daily air temperature and dew point data [41]. The daily meteorological parameters
were then averaged for each 0.5 grid cell to create a monthly climatology from the 2007–2015 MERRA2
record. The resulting VPD, Tmin, and SM monthly climatologies were used to investigate associated
ecosystem bioclimatic constraints to productivity for individual tower locations and sub-regions, and
the global domain following the same methods was used for SIF processing.
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Figure 1. Location of carbon flux tower sites used for comparison with GOME-2 SIF and MERRA2 data
records. Background land cover map represents IGBP land cover types from the MODIS MCD12Q1 [36]
land cover product. Dashed lines denote selected sub-regions used for evaluating spatially aggregated
relationships between PAR-adjusted SIF (SIFP) and underlying moisture and temperature control
factors influencing productivity.

2.2. Data Analysis

Linear regression analysis and the coefficient of determination (R2) metric were used to quantify
relationships between tower GPP and GOME2 SIF monthly climatology records (n = 12) at each tower
location. Regression analysis and the Spearman correlation metric (r-value) were used to quantify
the sign and strength of the relationships between SIFP and collocated Tmin, VPD, and SM records
from MERRA2; here, regression analysis was used to evaluate relationships between SIFP and each
climate variable while accounting for the influence of other covariates on the regression relationship.
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A climate aridity index (AI), defined as the ratio of annual precipitation to potential evapotranspiration
(P/PET) [42], was used to characterize general climate aridity over the global domain. The AI follows
United Nations Environmental Program (UNEP) defined aridity categories [36], including hyperarid
(AI < 0.03), arid (0.03 < AI < 0.20), semi-arid (0.20 < AI < 0.5), sub-humid (0.50 < AI <0.65), and humid
(AI > 0.65) categories. Partial correlations were determined between SIFp and each climate variable for
each tower site. The tower site results were then analyzed in two-dimensional climate space defined
by the global AI and mean annual temperature distributions. The resulting relationships were assessed
using a 95% (p < 0.05) significance threshold.

An analysis was conducted to identify the pattern of influence and relative impact of each climate
variable in explaining spatial and seasonal variations in vegetation growth. Partial correlations were
analyzed between SIFP and the monthly climate variables for each global grid cell. The monthly SIFP

and climate variables were also spatially aggregated and analyzed for selected global sub-regions,
including northern arctic, southern USA, southern Africa, African Sahel, eastern Amazonia, and central
Australia (Figure 1).

A generalized additive model [43] was used to define the smoothed curvilinear relationships between
SIFP and each climate variable from the global record. The resulting productivity response to each
climate variable indicated from the SIFP record was then compared with prescribed parameterizations
of these response characteristics defined in the SMAP-L4C model product [15]. The SMAP-L4C global
product is produced operationally using a satellite data driven LUE model to estimate daily GPP
using MODIS vegetation and SMAP derived soil moisture observations as primary model drivers.
The L4C model incorporates daily SM, VPD, and Tmin to define environmental reductions in LUE
from prescribed optimal rates due to low soil moisture levels, excessive atmosphere moisture deficits,
and cold temperatures. The LUE reduction is defined as the product of dimensionless environmental
constraint factors ranging from 1 (no constraint) to 0 (fully constrained). Daily surface meteorological
inputs to the L4C model are derived using a similar GEOS-5 land model as MERRA2, while the L4C
response functions are calibrated from historical tower site observations representing major global
biomes and plant functional types. All analyses were conducted in the R programing environment [44].

3. Results and Discussion

3.1. SIF, GPP, and Climatic Factors at the Tower Scale

The GOME-2 SIF global climatology shows large spatial variability in seasonal cycles congruent
with general climate and latitudinal variations, indicating the influence of underlying environmental
controls on vegetation phenology and productivity (Figure 2). In the northern hemisphere, a relatively
abrupt and persistent SIF increase in early spring indicates the start of the growing season, consistent
with a relaxation of cold temperature constraints to growth following winter dormancy [26]. The start
and end of the growing season observed by satellite SIF is consistent with local flux carbon tower
measurements and also different from the traditional vegetation indices, including MODIS [26]. We also
note that the SIF data distinguish northern hemisphere cropland patterns and seasonality that are also
different from traditional vegetation indices records [27,35]. The SIF record also shows a large seasonal
amplitude and distinctive growing season over extratropical regions consistent with characteristic
seasonal variations in daylength, and suitable temperature and moisture conditions for growth [45].
The SIF record shows a relatively small but distinct seasonality in the tropics, which is larger in
sub-tropical savanna and grassland ecosystems, consistent with a regional gradient in water-related
environmental constraints to productivity [46,47]. To investigate and clarify relationships between SIF,
GPP, and underlying environmental control factors at the stand level, we compared the SIF monthly
climatology with corresponding GPP observations from selected tower sites representing a range of
global climate and land cover types (Table 1).
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Table 1. Average and standard deviation (SD) in correspondence (R2) between GOME-2 SIF and
collocated tower GPP observations (SIF.GPP) with annual air temperature and climate aridity (AI)
information for 67 tower sites stratified by their IGBP land cover class, including: EBF (Evergreen
Broadleaf Forest); ENF (Evergreen Needleleaf Forest); DBF (Deciduous Broadleaf Forest); MF (Mixed
Forest); OSH (Open Shrubland); WSA (Woody Savanna); SAV (Savanna); GRA (Grassland); WET
(Wetland) and CRO (Cropland).

IGBP No. of Sites Mean Annual Temp (◦C) AI (P/PET) SIF.GPP (R2; %)

EBF 3 17 ± 7 1.07 ± 0.4 50 ± 32
ENF 11 8 ± 7 1.13 ± 0.4 83 ± 17
DBF 8 11 ± 6 0.98 ± 0.2 87 ± 12
MF 4 7 ± 3 1.18 ± 0.2 90 ± 16

OSH 3 4 ± 16 0.45 ± 0.2 59 ± 41
WSA 4 22 ± 6 0.50 ± 0.1 79 ± 15
SAV 6 23 ± 5 0.33 ± 0.2 62 ± 37
GRA 16 11 ± 7 1.04 ± 0.8 76 ± 27
WET 4 12 ± 11 0.85 ± 0.1 78 ± 14
CRO 8 11 ± 3 0.83 ± 0.3 82 ± 15

The tower site comparisons showed statistically significant correspondence (p < 0.05) between
the SIF and GPP observations at most sites, except for two low productivity grassland and savanna
sites in Australia where the average GPP was less than 2 g C m−2 day−1. On average, the SIF and
GPP correspondence was strongest for mixed forests, followed by deciduous broadleaf and evergreen
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needleleaf forests, and cropland sites (R2 > 80%). SIF and tower GPP correspondence was lower, but
still significant for the evergreen broadleaf forest (EBF) sites (R2 = 50%). The weaker SIF and GPP
correspondence at lower productivity and tropical EBF sites may reflect greater SIF uncertainty for
sparsely vegetated, low productivity sites [48] and tropical rainforest sites characterized by persistent
cloud cover [28]. On the other hand, weak vertical mixing of CO2 during the nighttime, especially in
tropical forests [49,50], may be a source of uncertainty in flux tower GPP derived using model based
gap filling methods. Relatively weak regression relationships in wet tropical forest areas may also be
an artifact of lower characteristic seasonal climate variability in these areas. Overall, the significant
and relatively strong correspondence between the SIF and tower GPP observations representing major
land cover types and biomes is consistent with previous studies showing that SIF is proportional to
GPP [26–30,33].

The partial correlations between the PAR adjusted SIF records (SIFp) and selected MERRA2 climate
variables (VPD, Tmin, SM) at the tower site locations are plotted in two-dimensional climate space
defined by mean annual temperature and climate aridity (AI) along with temperature and AI conditions
for all other grid cells within the global domain (Figure 3). Box plots showing the spatial distributions
of tower SIFP and climate correlations by land cover class are also shown. Most of the moisture-limited
sites are located in regions with mean annual temperatures above 20 ◦C, with low precipitation and high
potential evapotranspiration (AI < 0.5); the moisture limitations to SIFP at these sites were generally
represented by respective inverse or direct correlations with VPD and SM. However, the SIFP and SM
relationships were highly variable among tower sites. Soil moisture was directly correlated with SIFP

for semi-arid (0.2 < AI < 0.5) savanna (SAV) and woody savanna (WSA) sites, with average correlations
of 0.61 and 0.48, respectively. In contrast, relatively humid climate sites (AI > 0.9), including forest (EBF,
DBF, ENF, MF) and cropland (CRO) towers, show predominantly inverse correlations with soil moisture.
The weaker correlation between SIFP and soil moisture in forest ecosystems is consistent with reduced
water supply restrictions supporting greater vegetation growth in wetter climates. The reduced SM
dependence in forests may also reflect characteristic deeper rooting depths for trees [51] and additional
water storage capacity in woody biomass beyond root zone soil moisture. The relationship between
SIFp and soil moisture is highly variable for open shrubland (OSH), grassland (GRA), and wetland
(WET) sites, including both the sign and strength of correlations; these land cover types also showed a
large diversity in temperature and moisture conditions. For example, open shrubland covers much
of central Australia and is characterized by a warm and dry climate (AI < 0.5) where SIFP is directly
proportional to SM. In contrast, a major portion of northern taiga and tundra is also characterized as
OSH, but with a much colder climate, where SIFP is more strongly correlated with Tmin. The relatively
strong SIFP correlations with SM for arid sites also suggests that soil moisture imposes additional
constraints on productivity beyond VPD, and that including soil moisture as an additional control in
productivity models may enhance model GPP estimates in arid regions.

The SAV and WSA sites showed a negative relationship between SIFp and VPD, but the correlation
was 17% weaker than the relationship between SIFp and SM. Tower sites in colder climate areas
generally showed a positive correlation with VPD. Among the EBF sites analyzed, the tropical rain
forest site showed positive SIFp correlations with both VPD and Tmin, consistent with minimal
moisture constraints to plant growth and the near-exponential relationship between temperature and
atmosphere moisture holding capacity. Other EBF sites located in more arid regions showed a negative
SIFP relationship with VPD and Tmin.

Among the land cover types examined, the MF, ENF, and DBF sites showed the strongest correlations
with minimum temperature. These forest sites were generally located in northern hemisphere temperate
and boreal climate zones with lower mean annual temperatures and where plant productivity has large
characteristic seasonality ranging between winter lows with strong cold temperature constraints on
biological processes, to active growth conditions under warmer temperatures in spring and summer.
Overall, these results indicate that SIF is not only proportional to vegetation productivity, but also reflects
the effects of seasonal moisture and temperature constraints on photosynthetic activity.
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Figure 3. Partial correlations between SIFp and moisture and temperature variables affecting
productivity (VPD, SM, Tmin) for selected global carbon flux tower sites. The Spearman correlation
coefficients for each tower site are superimposed on global climate space defined by mean annual
temperature and climate aridity (AI). The AI and annual temperature distributions of all grid cells
within the global domain are also plotted, where darker and lighter shading denotes respective higher
and lower cell densities. The boxplots show the spatial variability in tower site SIFP correlations for
VPD (SIFp.VPD), SM (SIFp.SM), and Tmin (SIFp.Tmin) by land cover class. Only tower sites with
statistically significant correlations (p < 0.05) were used in the analysis (2, 6, and 3 sites did not show
statistically significant correlation with VPD, SM, and Tmin, respectively).

3.2. Regional Scale Analysis of Bioclimatic Factors

We analyzed partial correlations between spatially averaged monthly SIFP and climate records
within six sub-regions (Figure 1) representing a range of global climate and land cover diversity.
The partial correlation results for the six sub-regions are presented in Figure 4. The AI was used to
show the proportional area of each region characterized by different climate aridity categories [52].
The direction and strength of the correlations between SIFP and the different climate variables for
each sub-region varied in accordance with regional differences in vegetation and climate conditions,
consistent with the tower site results. The SIFp.SM relationship is congruent with climate aridity and
showed direct correspondence in dry biomes, inverse relationships in humid biomes, and intermediate
(+/−) correlations in areas with a seasonal dry climate. In Arctic tundra, characterized by an extended
winter cold season, SIFp follows Tmin and VPD seasonal cycles, but it is inversely correlated with SM.
In central Australia, which has a relatively warm and arid climate, SIFp follows the seasonal cycle in SM
and shows inverse and relatively weak correlations with VPD and Tmin, despite having similar IGBP
land cover conditions as tundra. In the southern US, which has a predominantly semi-arid climate, SIFP

is significantly correlated with multiple climate variables, but is directly proportional to soil moisture
during the growing season. In the semi-arid African Sahel, soil moisture has a dominant influence on
SIFP and is the most significant variable controlling productivity. SIFp has a positive but relatively weak
correlation with Tmin and a negative correlation with VPD, which is of secondary importance after
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soil moisture in influencing productivity in the Sahel. In southern Africa, which is also predominantly
semi-arid, productivity is still strongly and directly proportional to soil moisture, while the other
climate variables have a significant but weaker influence on productivity. In eastern Amazonia, SIFP

shows enhanced productivity from July to October, consistent with increasing photosynthetic activity
during the dry season [53,54]; in this humid tropical region, SIFp is directly proportional to VPD and
negatively correlated with SM and Tmin.
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3.3. Climatic Factors at the Global Scale

The global analysis of monthly climatology relationships reveals significant SIFP correlations with
VPD, Tmin, and SM over approximately 60, 59, and 35 percent of the global domain, respectively
(Figure 5). In many areas, SIFP was significantly correlated with more than one climate variable. In most
northern temperate, boreal, and Arctic ecosystems, Tmin had a dominant influence on productivity
consistent with a shorter growing season and colder mean annual temperatures at higher latitudes.
VPD had a secondary and positive influence on SIFP in these areas due to the large seasonal temperature
cycle at higher latitudes and close relationship between temperature and VPD. VPD and Tmin had
primary and secondary influences on SIFP in wet tropical areas, with a general tendency toward greater
VPD control in wetter tropical areas of Southeast Asia relative to the African Congo and Amazonia,
which have relatively longer dry cycles [46]. The larger VPD influence on SIFP in wet tropical areas is
consistent with the direct role of the atmospheric moisture deficit in driving water movement through
the soil-plant-atmosphere system via evapotranspiration, and by consequence canopy-atmosphere
CO2 exchange, when water supply is non-limiting. However, the correlations were relatively weak
due to the characteristic smaller seasonal climate cycle in the tropics.

Soil moisture had a dominant influence on SIFP over arid climate zones and other areas with
marked seasonal dry cycles, including the southwest US, east Africa, southern Eurasia, the Indian
subcontinent, and central Australia. In Australia, soil moisture was the dominant control on SIFP.
In Africa, soil moisture was a dominant control on productivity over 15.7% more area than VPD.
The global patterns in relative influence of the different climate factors on SIFP are also consistent
with the tower site (Figure 2) and aggregated regional summaries (Figure 3). These results confirm the
importance of soil moisture related water supply controls on productivity in addition to atmospheric
moisture demand constraints represented by VPD, particularly in semi-arid and arid climate zones
extending over more than 30 percent of the global domain.
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and VPD, SM, and Tmin monthly climatology records. Gray and white areas denote open water, barren
land, and permanent ice, and snow areas are excluded from the study domain.

3.4. Comparing SIF and LUE Model Derived Bioclimatic Controls

A generalized additive model (GAM) [55] was fit to the SIFp data using each climate variable
from the global record. The GAM adds smoothed non-parametric functions to the parametric part
of a generalized linear model [55], allowing for greater flexibility and improved fit compared to
generalized linear model [56]. A similar additive model approach was used to define the global
relationship between each climate variable and the dimensionless (0–1) LUE model environmental
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response metric defined from the SMAP-L4C product [15]. The LUE model response functions for
Tmin, VPD, and SM are prescribed for up to eight different plant functional types using a global
land cover classification and general biome properties lookup table calibrated from sparse tower
observations. The additive model results capture the smoothed response curves determined from
the individual monthly SIFP and model LUE response characteristics from every 0.5 degree grid cell
within the global domain as defined from the MERRA2 climate record.

The resulting SIFP and LUE model global climate response relationships are presented in Figure 6.
The SIFp results indicate that productivity is directly proportional to VPD up to a level of approximately
1000 Pa, but with a rapid productivity decline at higher VPD levels until approximately 4000 Pa; a slight
positive SIFp response to more extreme VPD levels represents a small number of arid grid cells and
may reflect greater SIF uncertainty in these sparsely vegetation areas. SIFp is directly proportional
to SM until the soil water content reaches approximately 70% of saturation, followed by a small
productivity decline with higher moisture levels. The apparent SIFP decline under wet soil conditions
generally occurs in northern latitude boreal and tundra wetland complexes and may reflect greater
soil nutrient limitations to plant growth under characteristically colder and wetter soil conditions in
these areas [57]. The global SIFp record shows a strong positive relationship with Tmin, consistent
with stronger cold temperature constraints to productivity at lower temperatures. The slope of the
SIFP and Tmin relationship is also shallower below approximately 0.0 ◦C, indicating slowed biological
processes and reduced vegetation activity under freezing temperatures. Overall, the resulting global
response curves also indicate that VPD, SM, and Tmin respectively explain 42.7, 20.2, and 41.3 percent
of SIFP variability (p < 0.001), respectively.
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Figure 6. Global SIFP and LUE model defined relationships with VPD, SM, and Tmin monthly
climatology records; (a) Smoothed best-fit environmental response curves derived using a generalized
additive model showing the relationship between SIFp (y axis, normalized between 20th and 90th
percentiles) and each climate variable (x axis) defined from all 0.5 degree global grid cells. Bars on
the top of the plots show the relative distributions of global grid cells; (b) additive model best-fit
environmental response curves defined from the SMAP-L4C LUE model, where the dimensionless
LUE scalars range between fully constrained (0) and no constraint (1) on estimated productivity [15].

The L4C results are generally consistent with the SIFP response characteristics (Figure 6b),
confirming global model parameterizations defined from sparse tower observations. However, there
were also notable differences between the SIFP and L4C derived curves. Unlike SIFP, the L4C results
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do not show a positive productivity response to VPD under smaller humidity deficits; the lack
of a positive VPD response is consistent with model LUE parameterizations that only define VPD
restrictions on growth [13]. The L4C soil moisture response shows reduced sensitivity under higher soil
moisture levels, but without a decreasing productivity response under wetter soil extremes. The lack of
productivity decline under wet soil conditions may be due to a paucity of tower observations in wetland
sites, which are needed to define model response characteristics. The greater divergence between
SIFP and L4C response characteristics generally occurs at the margins of the global distributions and
reflects greater uncertainty due to a smaller population sample size and fewer available tower site
observations for model parameterization.

3.5. Study Limitations and Future Directions

The methods and results from this study were constrained by several factors including the use of
spatially coarse SIF and meteorological data, and global relationships defined by a monthly climatology.
Our study also assumes that SIF is a linear approximation of GPP, which has been demonstrated from
previous field, airborne, and satellite-based studies [28,58–60]. While our results confirm the linear
correspondence between SIF and GPP for the global scale and monthly climatology examined, the
mechanisms of the linear SIF-GPP relationship are still an ongoing study topic and may vary at finer
spatial and temporal scales.

Improving the understanding of processes affecting relationships between SIF and GPP would
be valuable for further improving vegetation productivity modeling in the context of our study.
Further research is also needed to clarify the effects of temporal trends and inter-annual climate variability
on ecosystem productivity. Additionally, climate parameters from global reanalysis are associated with
uncertainties, while potential environmental lag effects on plant growth, and other influences beyond
temperature and moisture were not addressed in this study. Nevertheless, the satellite SIF record provides
the means for global verification and potential refinement of model assumptions and environmental
response characteristics developed from sparse tower observations.

4. Conclusions

In this study, we conducted a global assessment of bioclimatic controls affecting ecosystem
productivity using both globally comprehensive productivity observations from satellite SIF retrievals
and in situ GPP observations from sparse tower sites representing a diverse set of global biomes.
Moisture and temperature related controls influencing productivity were defined using VPD, SM, and
Tmin from global reanalysis data. The satellite based SIF observations were adjusted by PAR (SIFP) to
distinguish temperature and moisture related controls on productivity apart from solar radiation effects.
Our results show that the satellite SIF observations provide an effective proxy for ecosystem GPP and
can be used with other ancillary information to clarify environmental controls driving spatial and
seasonal variations in global vegetation growth. The SIF observations also provide an independent
assessment and confirmation of prescribed environmental response characteristics used in global
productivity model assessments.

Satellite remote sensing based vegetation greenness indices have been used to monitor global
vegetation cover and productivity for more than three decades. However, satellite data driven
productivity models generally require additional information to define environmental restrictions on
vegetation activity and growth. The effect of bio-climatic factors on plant phenology and productivity has
been empirically analyzed before, but has been limited to a relatively small number of in situ observation
sites such as carbon flux towers. Our study results indicate large regional and seasonal variations
in ecosystem productivity that are strongly influenced by underlying moisture and temperature
related controls. Soil moisture provides effective information on water supply related controls to
productivity that extend beyond atmosphere moisture demand drivers and constraints represented by
VPD, particularly in drier climate zones. Our findings also suggest that despite large variability in the
SIFp response to environmental controls in different ecosystems, the mean response characteristics
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indicated from the global satellite record were largely consistent with LUE model defined response
characteristics used in the SMAP-L4C carbon product and defined from sparse tower observations.
The satellite based SIF observations from GOME-2 were found to be an effective surrogate for GPP
and sensitive to environmental factors influencing ecosystem productivity as derived from the global
reanalysis data. The satellite SIF observations appear to provide an effective means for verifying model
assumptions and representations of critical environmental response characteristics that may lead to
better understanding and more reliable model predictions.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/6/530/s1, Table
S1: List of all the fluxnet sites used for the analysis.
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