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ABSTRACT 

 

Lucero, Jacob, Ph.D., Spring 2017   Organismal Biology, Ecology and Evolution 

 

A biogeographic perspective on the impacts and importance of rodent granivory on native vs. 

invasive plants 

 

Chairperson: Ragan M. Callaway 

 

One of the most well-known explanations for the success of invasive plants in novel 

environments is enemy release, which predicts that 1) invasive plants are limited by natural 

enemies in the native range but not the non-native range, and 2) native competitors in recipient 

communities remain limited by their natural enemies.  Despite considerable empirical attention, 

very few studies have tested these basic predictions, especially with respect to generalist 

herbivores.  We tested whether invasive cheatgrass (Bromus tectorum) has experienced enemy 

release from granivorous rodents – an important guild of generalists – using exclosures and 

experimental seed additions in western Asia (where cheatgrass is native) and the Great Basin 

Desert, USA (where cheatgrass is invasive).  Rodent exclusion improved cheatgrass 

establishment in western Asia but had no effect in the Great Basin (Ch. 1), and rodent exclusion 

in the Great Basin improved the establishment of a suite of native grasses but not cheatgrass (Ch. 

2).  Interestingly, rodent exclusion benefited native grasses to the same extent as eliminating 

cheatgrass competition (Ch. 3).  These results suggest that cheatgrass in the Great Basin has 

experienced enemy release from an important group of generalists, which may help explain its 

exceptional invasiveness.  In addition, seed predation from native rodents and competition from 

cheatgrass can present equally important barriers to the establishment of native grasses in the 

Great Basin. 
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ABSTRACT 

Perhaps the best-known explanation for the success of exotic, invasive plants in novel 

environments is enemy release.  This hypothesis predicts that invasive plants are more strongly 

limited by natural enemies in their native ranges than their non-native ranges.  Despite 

considerable empirical attention, very few studies have tested this basic prediction, especially 

with respect to generalist herbivores.  This knowledge gap is significant because escape from 

generalists is a crucial aspect of the enemy release hypothesis.  We tested whether invasive 

cheatgrass (Bromus tectorum) has experienced enemy release from an important guild of 

generalists (granivorous rodents) using experimental exclosures and seed additions in western 

Asia (where cheatgrass is native) and in the Great Basin Desert, USA (where cheatgrass is 

invasive).  If enemy release has occurred, native rodents should limit cheatgrass establishment 

more strongly in western Asia than in the Great Basin.  In addition, we examined the food 

preferences of native rodents in western Asia and the Great Basin with respect to seeds from 

cheatgrass and a suite of native grasses.  If enemy release has occurred, cheatgrass should 

disproportionately escape granivory relative to native grasses in the Great Basin but not in 

western Asia.  Rodent exclusion significantly improved cheatgrass establishment in western Asia 

but had no significant effect in the Great Basin, and cheatgrass disproportionately escaped 

granivory relative to native grasses only in the Great Basin.  These results suggest that invasive 

cheatgrass has experienced some degree of enemy release from a potent guild of generalists at 

the seed stage. 

Key words: biogeography, biological invasion, Bromus tectorum, cheatgrass, enemy release, 

generalists, granivory, small mammals  
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INTRODUCTION 

Perhaps the best-known explanation for the success of invasive plants in their non-native 

ranges is the enemy release hypothesis, formalized by Keane and Crawley (2002).  This 

hypothesis states that the translocation of plant species across oceans or continents 

geographically isolates them from their natural herbivores, resulting in relative freedom from 

top-down regulation.  In turn, such freedom allows exotics to proliferate and become invasive in 

their non-native ranges, where natives remain subject to regulation via herbivory.  This idea can 

be tested by excluding local herbivores in both the native and non-native ranges of an invader.  If 

enemy release occurs, herbivore exclusion should more strongly benefit populations of the 

invader in the native range, where enemies have high impacts, than the non-native range, where 

enemies have low impacts (Maron and Vila 2001, Keane and Crawley 2002).   

Many empirical studies have addressed the enemy release hypothesis, but very few have 

quantified herbivore impacts on invader abundance in both the native and non-native range.  

Instead, most studies have conducted biogeographic comparisons of herbivore loads and inferred 

enemy release when fewer herbivorous species attacked invaders in the non-native range than the 

native range (see review by Roy et al. 2011).  Such results may demonstrate biogeographic 

escape from natural enemies (e.g., Mitchell and Power 2003), but they do not show “release” 

because reduced enemy loads may or may not translate into improved vital rates for the invader 

(Beckstead and Parker 2003).  A salient example of “release” (sensu Maron and Vila 2001, 

Keane and Crawley 2002) is that of DeWalt et al. (2004).  Using paired control and fungicide 

treatments in both the native (Costa Rica) and non-native (Hawaii) ranges of invasive Clidemia 

hirta, DeWalt and colleagues showed that understory populations of C. hirta benefitted from 

fungus exclusion in the native range, but not in the non-native range.  Thus, understory 
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populations of C. hirta in Hawaii experienced biogeographic release from pathogenic fungi.  

Other robust experiments exist (e.g., Williams et al. 2010), but they are rare – an issue frequently 

noted in reviews (Torchin et al. 2003, Liu and Stilling 2006, Roy et al. 2011). 

Robust tests of enemy release are particularly scant in the context of generalist 

herbivores.  Although several experimental studies have considered release from generalists 

(Joshi and Vrieling 2005, Schaffner et al. 2011, Halbritter et al. 2012), we know of none that 

have employed experimental exclosures in a biogeographic setting sensu DeWalt et al. (2004).  

This knowledge gap probably stems from the widely-held notion that effective generalists are 

ubiquitous in both the native and non-native ranges of exotic plants (Parker and Hay 2005, 

Parker et al. 2006, Schaffner et al. 2011, Morrison and Hay 2011).  Because generalists consume 

multiple host species, they are not necessarily confined to the geographic distribution of any 

particular host.  Thus, translocated plants could potentially encounter potent generalists in any 

recipient community.  Indeed, generalists often do attack exotic plants in their non-native ranges 

(Parker and Hay 2005, Parker et al. 2006, Morrison and Hay 2011, Pearson et al. 2011), which 

can result in population-level suppression (Pearson et al. 2012, St. Clair et al. 2016).  However, 

generalist herbivory does not always suppress exotics (Orrock et al. 2008, Pearson et al. 2011, 

Maron et al. 2012, Connolly et al. 2014).  Thus, escape from generalists is an under-studied 

aspect of the enemy release hypothesis, despite its theorized importance (Keane and Crawley 

2002). 

Bromus tectorum (hereafter “cheatgrass”) invasion in the Great Basin Desert, USA, 

presents an excellent opportunity to test the enemy release hypothesis in the context of generalist 

herbivores.  Cheatgrass is an annual species that is native to western Asia and northern Africa, 

and was first noted in the Great Basin around the turn of the 20th century (Mack 1981).  Since 
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then, cheatgrass has expanded to dominate at least 650,000 km2 of perennial grassland and 

shrubland in the central Great Basin (Balch et al. 2013).  In both the native and non-native range, 

cheatgrass spreads exclusively via seed.  Importantly, cheatgrass seeds in both ranges are 

vulnerable to predation by granivorous rodents – generalists that can strongly impact the 

composition of local plant communities (Brown and Heske 1990, Howe and Brown 2000, Paine 

et al. 2016).  However, several studies have shown that native rodents in the Great Basin avoid 

cheatgrass seeds relative to seeds from native plants (Kelrick et al. 1986, Lucero et al. 2015).  

This suggests that cheatgrass in the Great Basin may disproportionately escape the effects of 

these generalists relative to native plants (but see St. Clair et al. 2016).  But testing whether such 

escape constitutes enemy release requires experimental exclusion of granivorous rodents in both 

the native and non-native ranges of cheatgrass (Maron and Vila 2001, Keane and Crawley 2002).   

Our objective was to explore whether cheatgrass experiences biogeographic release from 

generalist rodents at the seed stage.  To do this, we compared the effects of rodent granivory on 

cheatgrass establishment in western Asia and the Great Basin using experimental exclosures and 

seed addition plots.  If cheatgrass has experienced enemy release at the seed stage, rodents 

should limit cheatgrass establishment more strongly in western Asia than in the Great Basin.  We 

also examined the seed preferences of native rodents in western Asia and the Great Basin with 

respect to cheatgrass to help explain biogeographic differences in the effects of rodent granivory.  

We expected seed preference to follow rodent effects; if enemy release has occurred, cheatgrass 

seeds should disproportionately escape granivory in the Great Basin but not in western Asia. 
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METHODS 

Rodent effects 

 We examined rodent effects on cheatgrass establishment at four study sites in western 

Asia and five sites in the Great Basin.  In western Asia, study sites were in the Razavi Khorasan 

(n=2) and North Khorasan (n=2) provinces of Iran (Table 1).  In the Great Basin, study sites 

were in Idaho (n=1), Nevada (n=3), and Utah (n=1), USA (Table 1).  All study sites in Iran were 

separated by at least 20 km, and all sites in North America were separated by at least 80 km.  

These distances are orders of magnitude greater than individual rodents and plants typically 

disperse over short time periods (Harper et al. 1978, O’Farrell 1978, Jones 1989, Hayssen 1991, 

Rehmeier et al. 2004).  Thus, our study sites in each region were independent from each other.  

Finally, all sites were located in rural areas in communities dominated by native plants with <5% 

cover by invasive plants. 

 We measured the effects of rodent granivory at seven sampling stations per site, each 

separated by 50 m.  Each sampling station consisted of three exclosure treatments.  In the first 

treatment, we sowed 100 cheatgrass seeds into a functional “closed” exclosure that excluded 

rodents.  In the second treatment, we sowed 100 cheatgrass seeds into a non-functional “open” 

exclosure that admitted rodents.  In the third treatment, we installed a functional exclosure that 

excluded rodents but received no cheatgrass seeds.  This third treatment served as a “control” to 

monitor cheatgrass recruitment from seed banks.  Functional (i.e., “closed” and “control”) 

exclosures were constructed of 1 cm-mesh hardware cloth assembled into 30 cm (diameter) x 30 

cm (height) cylindrical cages with a floor and a roof.  Floors and roofs prevented granivores 

from burrowing under or climbing into exclosures.  These cages were installed by excavating 4 

cm of topsoil with a garden hoe and then placing cages in the excavated pits.  We secured cages 
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into place by pounding 13 cm (length) sod staples into the ground with a rubber hammer through 

the cage floor.  We then replaced the excavated soil, except for large rocks and plant material.  

Non-functional (i.e., “open”) cages were constructed and installed in a similar fashion, except for 

one 7 x 7 cm hole cut into the side of the cage at ground level to admit rodent granivores.  In 

cages that received seed additions (“open” and “closed” cages), we gently patted seeds ≈5 mm 

into the soil.  Burying seeds in this manner made them largely inaccessible to invertebrate and 

avian granivores because only rodents can locate buried seeds via olfaction (Kamil and Balda 

1985), and invertebrates do not dig for buried seeds (MacMahon et al. 2000).  In Iran, cheatgrass 

seeds were field-collected by hand during the summer of 2014.  In the Great Basin, cheatgrass 

seeds were field-collected by hand during the summer of 2010.   We illustrate this experimental 

design in Appendix S1: Fig. S1.   

We installed this experiment during August 2014 in both Iran and the Great Basin and 

left cages undisturbed until August 2015, when cheatgrass recruits were counted in all cages.  

Once counted, cheatgrass plants in the Great Basin were collected and destroyed to prevent the 

establishment of new populations.  Monitoring for potential cheatgrass recruits will continue in 

the Great Basin until at least 2020.  This protocol has successfully prevented cheatgrass invasion 

following other seed addition experiments in the Great Basin (Lucero et al. 2015). 

To quantify the effects of rodent granivory, we compared the average number of 

cheatgrass individuals established in closed and open cages that received seeds.  We employed 

linear mixed-effects models using the lme package in R (R Development Core Team 2013) to 

analyze our data.  We treated region (Iran vs. the Great Basin) as a fixed factor and study site 

within each region as a random factor.  Treating study sites as random factors statistically 

accounted for any biologically-relevant differences (e.g., rodent density, in situ germination 
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rates, percent plant cover, elevation, temperature, precipitation, etc.) potentially present among 

study sites.  If cheatgrass has experienced enemy release at the seed stage, rodent granivory 

should have a significant and negative effect on cheatgrass establishment in Iran (i.e., there 

should be significantly fewer cheatgrass recruits in open cages than closed cages), but rodent 

granivory should have no significant effect on cheatgrass establishment in the Great Basin (i.e., 

cheatgrass establishment in open and closed cages should be similar). 

Rodent seed preference 

To further explore biogeographic differences in the effects of rodent granivory, we 

examined the region-specific preferences of native rodents with respect to seeds from cheatgrass 

and seeds from other locally-native grasses using cafeteria-style feeding experiments.  We 

conducted these experiments at the same study sites used to determine rodent effects on 

cheatgrass establishment (see above), with the addition of three sites in the Nurata District of 

Uzbekistan (n=7 in western Asia, n=5 in the Great Basin).  Thus, except for Uzbekistan, our 

preference data potentially sampled the same rodents that drove the establishment experiments 

outlined above.  Exact locations of study sites for preference trials are shown in Table 1.   

We examined the seed preferences of native rodents at seven sampling stations per site, 

each separated by 50 m.  Each sampling station consisted of four feeding trays, constructed from 

150 x 25 mm petri dishes, ¾-filled with on-site soil filtered through a 500 μm sieve.  Trays were 

placed in a rectangular configuration on the ground roughly 7 cm apart from one another.  Each 

feeding tray received 3 g of seed from either cheatgrass or from one of three other locally-

common, native grasses.  Seed preference can depend on seed size; rodents often prefer large 

seeds over small ones (Pearson et al. 2011, Maron et al. 2012 and references therein).  To 

account for this, we offered seeds from native grasses that were smaller, similar to, or larger than 
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cheatgrass seeds.  Seeds in one native tray weighed more than those of cheatgrass, seeds in the 

second weighed less, and seeds in the third weighed approximately the same.  In Iran, we 

replaced the “small-seeded” species with a large-seeded species, and in Uzbekistan, the “similar-

sized” species was considerably larger than cheatgrass.  These deviations occurred because we 

could not find species with ideal seed sizes near the study sites.  Table 2 presents the species 

offered to rodents at each site, the weights of their seeds, and how seeds were acquired.   We 

incorporated all seeds into the filtered soil in feeding trays.  Burying seeds in this manner 

minimized access to invertebrates and birds (Kamil and Balda 1985, MacMahon et al. 2000).   

We left trays undisturbed in the field for 72 consecutive hours, after which they were 

collected and processed.  Data collection ended on Oct 15, 2013 in Iran; Oct. 22, 2013 in 

Uzbekistan; and Oct. 17, 2015 in the Great Basin.  We recovered seeds remaining in feeding 

trays by passing the trays’ contents (filtered soil, debris introduced by foraging rodents, 

remaining seeds) through a 500 μm sieve, through which soil passed easily but not seeds.  We 

removed dirt and/or organic debris associated with recovered seeds and then weighed the sample 

to the nearest 0.01 g.  We subtracted this weight from the original 3 g to determine the mass of 

seeds removed by rodents.  We log-transformed these data to improve normality.  We assumed 

that seed preference and seed removal were positively related (i.e., few remaining seeds 

indicated high preference).  We illustrate this experimental design in Appendix S1: Fig. S2.   

To compare the region-specific seed preferences of granivorous rodents, we employed 

three linear mixed-effects models (one for Iran, one for Uzbekistan, and one for the USA) using 

the lme package in R (R Development Core Team 2013).  We analyzed each country separately 

because seed mass for the different species we used varied inconsistently among countries (see 

Table 2).  Thus, treating seed mass as a covariate in a single analysis that incorporated seed 



11 
 

removal from all three countries could have produced spurious and/or exaggerated seed removal 

× country interactions.  Analyzing each country separately avoided this potential conflict.  

Within each country, we treated seed mass (i.e., species identity) as a fixed factor and study site 

as a random factor.  If patterns of rodent preference follow predictions made by seed size and the 

enemy release hypothesis, seed size should explain patterns of seed removal only for the native 

species.  Thus, for cheatgrass, seed size should explain patterns of seed removal in western Asia 

but not in the Great Basin. 

 

RESULTS 

Rodent effects 

Rodent granivory limited cheatgrass establishment in Iran but not in the Great Basin (Fig. 

1).  In Iran, cheatgrass recruited 25.53 ± 2.84 SE individuals in cages closed to rodents that 

received seeds but only 10.33 ± 3.31 SE individuals in cages open to rodents that received seeds 

(Z-value = -4.59, P < 0.001) (Fig. 1).  Thus, rodent granivory reduced cheatgrass establishment 

by 59.54% in Iran.  In the Great Basin, however, cheatgrass recruited 11.20 ± 0.36 SE 

individuals in cages closed to rodents that received seeds and 10.39 ± 0.40 SE individuals in 

cages open to rodents that received seeds (Z-value = -0.68, P = 0.77).  Thus, rodent granivory 

had no significant effect on cheatgrass establishment in the Great Basin.  

Our estimates of rodent effects on cheatgrass establishment were not driven by 

recruitment from seed banks.  Cheatgrass did not recruit appreciably from seed banks in either 

Iran or the Great Basin (Fig. 2).  On average, 2.53 ± 3.21 SE individuals recruited per control 

cage that received no seed additions in Iran, and 0.02 ± 0.40 SE individuals recruited per control 
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cage that received no seed additions in the Great Basin.  These means did not significantly differ 

(Z-value = -1.43, P = 0.15), and the 95% confidence intervals of both means (± 6.29 in Iran, ± 

0.78 in the Great Basin) included zero, suggesting that cheatgrass recruitment from control cages 

was not significantly different than zero in either Iran or the Great Basin.   

We observed a biogeographic bias in cheatgrass recruitment from cages closed to rodents 

that received seed additions.  More cheatgrass seedlings established in closed cages that received 

seeds in Iran (25.53 ± 2.84 SE) than in the Great Basin (11.20 ± 0.40 SE) (Z-value = -4.05, P < 

0.001).  Importantly, however, neither of these means had 95% confidence intervals that 

included zero (± 5.57 for Iran and ± 0.78 in the Great Basin), indicating that average 

establishment in closed cages that received seeds was greater than zero in both regions.  Thus, 

regardless of biogeographic biases in germination, rodents in both Iran and the Great Basin could 

have impacted cheatgrass establishment. 

Rodent seed preference 

Patterns of rodent preference generally followed predictions based on seed size and 

closely followed predictions derived from the enemy release hypothesis (Fig. 3).  In Iran, rodents 

did not discriminate between seeds from cheatgrass and seeds from other native grasses despite 

variation in seed mass.  On average, rodents removed 0.71 (± 0.14 SE) g of cheatgrass, 0.93 (± 

0.16 SE) g Echinochloa crus-galli, 0.82 (± 0.01 SE) g of Sorghum halepense, and 0.73 (± 0.04 

SE) g of Lolium rigidum (all Z-values between 0 and 0.02, all P > 0.05).  Thus, although rodents 

did not remove seeds as predicted by size, cheatgrass seeds in Iran did not disproportionately 

escape granivory relative to other native species.   
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In Uzbekistan, rodents responded to seed offerings more or less as predicted by seed size 

(Fig. 3).  On average, rodents removed 0.54 (± 0.13 SE) g of Poa bulbosa, 0.93 (± 0.13 SE) g of 

cheatgrass, 1.40 (± 0.16 SE) g of Hordeum leporinum, and 1.10 (± 0.18 SE) g of Eremopyrum 

bonaepartis.  Rodents preferred the largest seeds (E. bonaepartis) over the smallest seeds (P. 

bulbosa) (Z-value = -3.76, P < 0.01), and showed an intermediate preference for intermediately-

sized cheatgrass seeds.  Only H. leporinum seeds were preferred above cheatgrass (H. leporinum 

seeds are larger than cheatgrass seeds but smaller than E. bonaepartis seeds; Table 1) (Z-value = 

-2.90, P = 0.02).  Thus, cheatgrass seeds in Uzbekistan did not disproportionately escape 

granivory relative to other native species. 

Rodents in the Great Basin removed native seeds as predicted by size, but not cheatgrass 

seeds, which experienced less granivory than any native species, regardless of size (Fig. 3).  On 

average, rodents removed 2.38 (± 0.15 SE) g of Festuca idahoensis, 1.29 (± 0.41 SE) g of 

cheatgrass, 2.65 (± 0.11 SE) g of Pseudoroegneria spicata, and 2.86 (± 0.05 SE) g of 

Achnetherum hymenoides (all Z-values > 3.00, all P < 0.02).  Thus, even the relatively 

diminutive seeds of F. idahoensis were removed at almost twice the rate of cheatgrass seeds.   

 

DISCUSSION 

Our main finding was that rodent granivory significantly reduced cheatgrass 

establishment in western Asia, but had no significant effect in the Great Basin (Fig. 1).  In 

addition, cheatgrass disproportionately escaped granivory relative to native grasses in the Great 

Basin but not in western Asia (Fig. 3).  Our results suggest that cheatgrass has experienced some 
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degree of enemy release from a potent guild of generalists at the temporal and spatial scale of our 

study. 

Our main finding challenges the notion that native generalists have similar impacts on 

invasive plants in both native and non-native communities.  In their seminal articulation of the 

enemy release hypothesis, Keane and Crawley (2002) explicitly stated that biogeographic escape 

from generalists is an essential aspect of enemy release, and several authors have acknowledged 

the subject in reviews (Torchin and Mitchell 2004, Liu and Stilling 2006, Blumenthal 2006).  

However, Keane and Crawley (2002) also hinted that potent generalists could be everywhere.  If 

effective generalists are indeed ubiquitous, then biogeographic release from them would be 

unlikely.  This idea was supported in a global meta-analysis concluding that native generalists 

actually preferred exotic plants over natives and provided meaningful biotic resistance against 

plant invasions (Parker et al. 2006).  Other studies have illustrated the potential for native 

generalists to suppress exotic plants in recipient communities (Snyder and Ives 2003, Parker and 

Hay 2005, Joshi and Vrieling 2005, Schaffner et al. 2011, Pearson et al. 2012).  However, we 

now provide evidence that release from generalists can occur (Fig. 1), supporting Keane and 

Crawley’s (2002) original argument (see also Vermeij et al. 2009).  In addition to cheatgrass, 

many other invasive plants appear to be relatively free from generalist herbivory in their non-

native ranges (e.g., Cappuccino and Carpenter 2005, Orrock et al. 2008, Pearson et al. 2011, 

Maron et al. 2012).  These systems are ripe for generalist-specific, biogeographically-explicit 

tests of the enemy release hypothesis.   

Biogeographic escape from natural enemies is the conceptual foundation of biocontrol, 

but our results are not relevant to biocontrol.  Biocontrol practitioners seek to curtail plant 

invasions by introducing effective specialists, not generalists, from which invaders have escaped.  
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This practice has led to successful biocontrol in some systems without negative effects on natives 

(Debach and Rosen 1991).  In contrast, generalists have the potential to negatively affect non-

target native flora and fauna, which can seriously disrupt native communities (DeBach and 

Rosen 1991, Snyder and Ives 2001).  We do not advocate importing exotic generalists to control 

exotic invaders. 

The germination bias that we observed for cheatgrass in western Asia vs. the Great Basin 

is somewhat puzzling but does not influence our main finding.  On average, cheatgrass recruited 

approximately 56% better in Iran than in the Great Basin (P < 0.001).  If cheatgrass universally 

experienced such comparatively-poor establishment in the non-native range, one might wonder 

how it could ever establish self-sustaining populations, let alone become invasive (Puth and Post 

2005, Blackburn et al. 2011).  The germination bias in our study is probably an artifact of the 

different ages of cheatgrass seeds used in western Iran vs. the Great Basin.  In Iran, cheatgrass 

seeds were collected in 2014, but in the Great Basin, seeds were collected in 2010.  Although 

cheatgrass seeds can remain viable for up to 11 years in storage (Hulbert 1955), the seeds used in 

Iran may have been generally more viable than seeds used in the Great Basin because they were 

not as old.  Importantly, this does not affect our main finding of enemy release because 

establishment from closed cages that received seeds was significantly greater than zero in both 

ranges (avg. establishment from closed cages in Iran = 25.53 ± 2.84 SE; avg. establishment from 

closed cages in the Great Basin = 11.20 ± 0.40 SE).  Thus, rodents in both ranges had the 

opportunity to reduce cheatgrass establishment, but only rodents in Iran actually did so. 

Cheatgrass seeds escaped granivory relative to seeds from native species over a broad 

spatial scale in the Great Basin (Fig. 3).  This result is consistent with most other studies of seed 

preference using cheatgrass in North America (Kelrick et al. 1986, Ostoja et al. 2013, Lucero et 
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al. 2015).  Among these studies, our results are unique because we sampled rodent preferences 

across roughly 350,000 km2 – a spatial scale much broader than anything examined previously.  

However, regardless of scale, our preference results do not provide experimental evidence for 

enemy release.  Our preference results showed that cheatgrass seeds escaped granivory in the 

Great Basin relative to seeds from natives, but only our results from exclosures provided 

evidence for enemy release.   

Our preference results add to a growing body of evidence suggesting that native rodents 

in North America often prefer seeds from native plants over seeds from strong invaders (Orrock 

et al. 2008, Pearson et al. 2011, Maron et al. 2012, Connolly et al. 2014; but see Blaney and 

Kotanen 2001).  Such preferential foraging for native seeds has favored the establishment of 

invaders over natives in some systems (Pearson et al. 2011, Connolly et al. 2014), possibly 

exacerbating local invasions.  We do not know from our experiments if disproportionate 

avoidance of cheatgrass seeds translates into a recruitment advantage for cheatgrass relative to 

natives.  Testing this would require excluding rodents from experimental additions of seeds of 

natives and cheatgrass at the same time.  If rodent preference for natives resulted in a recruitment 

advantage for cheatgrass, then rodent exclusion should disproportionately benefit the 

establishment of native species (Connolly et al. 2014). 

Cheatgrass seeds did not completely escape predation in the Great Basin.  On average, 

rodents in the Great Basin removed 1.29 (± 0.41 SE) g of cheatgrass seed per feeding tray; over a 

third of the cheatgrass seeds offered (Fig. 3).  This is consistent with several studies indicating 

that cheatgrass seeds are consumed by native rodents in North America (e.g., Flake 1973, 

Kritzman 1974, St. Clair et al. 2016), even if they are usually less-preferred than seeds from 

native species (Kelrick et al. 1986, Ostoja et al. 2013, Lucero et al. 2015). 
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So why did native rodents in the Great Basin limit cheatgrass establishment to a lesser 

extent than native rodents in western Asia?  One potential explanation is that native rodents in 

the Great Basin are less-effective granivores than rodents in western Asia.  To test this, we 

compared the average mass of seeds removed per feeding tray (all species combined) in Iran, 

Uzbekistan, and the Great Basin using a linear mixed-effects model with region (Iran vs. 

Uzbekistan vs. Great Basin) as a fixed factor and site within each region as a random factor.  If 

native rodents in the Great Basin are generally less-effective than rodents in western Asia, seed 

removal should be significantly lower in the Great Basin than in Iran or Uzbekistan.  This was 

not the case.  Rodents removed 0.80 g (± 0.09 SE) of seed per tray in Iran, 0.99 g (± 0.14 SE) in 

Uzbekistan, and 2.18 g (± 0.12 SE) in the Great Basin.  Thus, on average, rodents in the Great 

Basin removed over twice as much seed from feeding trays as rodents in either Iran or 

Uzbekistan (P < 0.01 for both Iran-Great Basin and Uzbekistan-Great Basin; Fig. 4).  This 

suggests that rodents in the Great Basin were probably more, not less, effective than rodents in 

western Asia. 

Instead, we propose that evolutionary naivety may leave native rodents in the Great Basin 

relatively under-equipped to exploit cheatgrass seeds.  It has long been appreciated that plants 

and herbivores can evolve in response to one another (Ehrlich and Raven 1964, Janz 2011).  In 

this context, herbivores – including polyphagous generalists like rodents – may be well-equipped 

to exploit the plant species with which they evolved, but under-equipped to exploit exotic plants 

with unfamiliar traits (Schaffner et al. 2011).  For example, Cappuccino and Carpenter (2005) 

have suggested that some invasive plant species in northeastern North America may 

disproportionately escape herbivory in recipient communities because they possess 

biogeographically-novel phytochemicals (i.e., “novel weapons”; Callaway and Aschehoug 2000) 
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that render them unpalatable to local consumers.  Initial observations suggest that novel weapons 

may also help cheatgrass seeds escape granivory in the Great Basin.  In the lab, we have noticed 

that the water-soluble leachates of cheatgrass seeds dye water a deep purple color.  Leachates 

from seeds of native species (including all species used in this study) have never produced this 

color, as far as we have yet observed (J.E. Lucero, R.M. Callaway, unpublished data).  Although 

preliminary, these observations hint that the water-soluble phytochemicals of cheatgrass seeds 

could be biogeographically novel.   

Cheatgrass seeds do not always escape the effects of rodent granivory in the Great Basin.  

Recently, St. Clair et al. (2016) reported that native rodents thwarted cheatgrass establishment 

following experimentally-induced disturbance events (fire) in a Great Basin ecosystem, resulting 

in meaningful biotic resistance.  Interestingly, the study of St. Clair et al. (2016) was conducted 

only ≈30 km from our study site near Vernon, UT (see Table 1 for exact location), where we 

observed no significant effects of rodent granivory on cheatgrass establishment (Appendix S1: 

Fig. S3).  What can explain such context dependence?   

Rodent impacts on cheatgrass establishment may depend on the local availability of 

more-preferred seed resources.  A number of independent studies, including ours (Fig. 3), report 

that native rodents in the Great Basin generally prefer seeds from native plants over seeds from 

cheatgrass (Kelrick et al. 1986, Ostoja et al. 2013, Lucero et al. 2015).  However, selective 

consumers become less choosy when preferred resources are scarce (Pulliam 1974).  For 

example, Krebs et al. (1977) showed that great tits (Parus major) increased consumption of 

inferior prey as the frequency of preferred prey decreased.  Similarly, native rodents in the Great 

Basin may suppress less-preferred cheatgrass only when more-preferred native species are 

locally rare.  The disturbance treatments imposed by St. Clair et al. (2016) virtually eliminated 
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native species from study plots, potentially leaving local rodents with few foraging alternatives 

to cheatgrass.  In contrast, our experiments occurred in habitats dominated by native species 

where preferred resources may have been relatively abundant (However, we note that spatial 

association with more-preferred native seeds can increase predation risk for cheatgrass seeds 

[Ostoja et al. 2013]).  Hence, the divergent outcomes reported in our study vs. the study of St. 

Clair et al. (2016) could result from stark differences in the local availability of more-preferred 

seed resources.  Accordingly, we recognize that our experiments may have produced different 

results had they been conducted at a time and/or place in which native seeds were extremely 

limited (e.g., during an exceptionally dry year or near a large-scale disturbance). 

Finally, we emphasize that biogeographic release from rodent granivory probably cannot 

entirely explain the invasiveness of cheatgrass in the Great Basin.  For an exotic plant to become 

invasive, it must be translocated to a novel environment, establish self-sustaining populations, 

successfully spread, and impact native populations (Puth and Post 2005, Blackburn et al. 2011).  

Biogeographic release from generalist rodents at the seed stage probably decreases local barriers 

to cheatgrass establishment and facilitates the local accumulation of cheatgrass propagules.  

However, many other factors operating at multiple temporal and spatial scales also influence the 

success of cheatgrass and other invasive plants in their non-native ranges (e.g., disturbance, 

propagule pressure, feedbacks with the abiotic environment, biotic interactions with native 

species, etc.; D’Antonio and Vitousek 1992, Mitchell et al. 2006, Catford et al. 2009, Blackburn 

et al. 2011).  These factors are by no means mutually exclusive, and some factors are probably 

more important than others under different conditions.  In order to explain the invasiveness of a 

particular invader, the relative importance (sensu Brooker et al. 2005) of these factors must be 

addressed by elucidating their individual and collective effects on the invader’s impacts in the 
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non-native range.  Experiments that assess the relative importance of multiple factors are rare 

(but see Williams et al. 2010, Orrock et al. 2015) but needed.  In this context, we suggest that 

biogeographic release from rodent granivory contributes to the success of cheatgrass in the Great 

Basin, but the importance of enemy release relative to other factors remains unclear.  
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TABLES 

 

Table 1.  Locations of study sites used to infer rodent impacts on plant establishment (“E”) and 

seed preference (“P”) with respect to cheatgrass (Bromus tectorum). 

 

Region Country Nearest 

town 

GPS coordinates Experiments 

conducted 

Western Asia Iran Shirvan 37°23'46.15"N, 58°11'37.15"E E, P 

  Shirvan 37°38'34.13"N, 57°39'24.38"E E, P 

  Mashhad 36°12'57.33"N, 60° 4'2.26"E E, P 

  Mashhad 36° 3'30.41"N, 59°39'8.79"E E, P 

     

 Uzbekistan Nurota 40°41'14.82"N, 65°36'36.16"E P 

  Nurota 41° 4'35.52"N, 63° 0'9.86"E P 

  Nurota 43°25'47.98"N, 64°37'27.36"E P 

     

North America USA Challis 44°12'8.65"N, 113°56'9.88"W E, P 

  Jackpot 41°55'28.70"N, 114°43'44.96"W E, P 

  McGill 39°58'26.51"N, 114°40'10.10"W E, P 

  Baker 39° 1'6.34"N, 114°25'53.44"W E, P 

  Vernon 40° 6'54.99"N, 112°32'4.37"W E, P 
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Table 2.  Species offered to rodents during preference trials, mass of their respective seeds (per 

seed), and mode of seed accession.  Species offered were consistent across all sites within each 

country.  We specify the number and location of study sites in each country in Table 1.  

“Purchased” seeds were field-produced and distributed by Granite Seed Co., Lehi, UT, USA. 

Region Country Species offered Seed 

mass 

Mode of accession 

Western Asia Iran Bromus tectorum 3.1 mg Field-collected 

  Echinochloa crus-galli 3.2 mg Field-collected 

  Sorghum halepense 3.8 mg Field-collected 

  Lolium rigidum 3.8 mg Field-collected 

     

 Uzbekistan Poa bulbosa 1.3 mg Field-collected 

  Bromus tectorum 3.1 mg Field-collected 

  Hordeum leporinum 3.9 mg Field-collected 

  Eremopyrum bonaepartis 4.2 mg Field-collected 

     

North America USA Festuca idahoensis 1.4 mg Purchased 

  Bromus tectorum 3.1 mg Field-collected 

  Pseudoroegneria spicata 3.2 mg Purchased 

  Achnatherum hymenoides 3.9 mg Purchased 
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FIGURE LEGENDS 

Fig. 1.  Mean number of cheatgrass (Bromus tectorum) individuals established in open (exposed 

to rodents) and closed (protected from rodents) cages that received seed additions in Iran vs. the 

Great Basin Desert, USA (“USA”).  Error bars show one standard error.  Means that do not share 

letters differ significantly (i.e., P < 0.05). 

Fig. 2.  Mean number of cheatgrass (Bromus tectorum) individuals established from seed banks 

in Iran and the Great Basin Desert, USA (“USA”).  Error bars show one standard error. 

Fig. 3.  Seed preferences of native rodents in Iran, Uzbekistan, and the Great Basin Desert, USA 

(“USA”).  Species offered to rodents in each region are arranged along x-axes in ascending order 

of seed weight (see Table 2 for species names and seed weights).  Error bars show one standard 

error.  Means that do not share letters differ significantly (i.e., P < 0.05).   

Fig. 4.  Average seed removal by native rodents per feeding tray (all species combined) in Iran, 

Uzbekistan, and the Great Basin Desert, USA (“USA”). Error bars show one standard error.  

Means that do not share letters differ significantly (i.e., P < 0.05).  
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SUPPLEMENTARY DOCUMENTS 

Supplementary documents may be found in the online version of this article in Appendix 

S1, which consists of three supplementary figures: Fig. S1, Fig. S2, and Fig. S3.    



35 
 

APPENDIX S1 

 

Fig. S1 

Fig. S1.  Experimental design employed at 7 sampling stations per site (n=4 sites in Iran, n=5 

sites in the Great Basin) to determine the region-specific impacts of rodent granivory on 

cheatgrass (Bromus tectorum – “Brte”) establishment.  Each sampling station consisted of three 

exclosure treatments.  In the first treatment, we sowed 100 cheatgrass seeds into a functional 

“closed” exclosure that excluded rodents.  In the second treatment, we sowed 100 cheatgrass 

seeds into a non-functional “open” exclosure that admitted rodents.  For the third treatment, we 

installed a functional exclosure that excluded rodents but received no cheatgrass seeds.  This 

third treatment served as a “control” to monitor cheatgrass recruitment from seed banks.  The 

difference in establishment between the open cage that received seeds and the closed cage that 

received seeds reflected the effect of rodent granivory.  If cheatgrass has experienced enemy 

release at the seed stage, rodent granivory should have a significant and negative effect on 

cheatgrass establishment in Iran but should have no significant effect in the Great Basin.  
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Fig. S2 

 

Fig. S2.  Experimental design used to determine region-specific preferences of native rodents 

with respect to seeds from cheatgrass (Bromus tectorum) and other locally-native grasses.  

Circles represent feeding trays (150 x 25 mm Petri dishes) offered at sampling stations.  Each 

feeding tray contained 3 g of seed from either cheatgrass (“Brte”) or a locally-common native 

grass.   Seeds from native grasses differed in size relative to cheatgrass.  One native had larger 

seeds (“larger native”), one had smaller seeds (“smaller native”), and one had similar-sized 

seeds (“similar native”) (see Table 2).  If patterns of rodent preference follow predictions made 

by seed size and the enemy release hypothesis, seed size should explain patterns of seed removal 

only for the native species.  Thus, seed size should explain patterns of cheatgrass removal in 

western Asia but not in North America.  
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Fig. S3 

 

Fig. S3.  Mean number of cheatgrass (Bromus tectorum) individuals established in cages 

protected from rodents that received seeds (“Closed”) and cages exposed to rodents that received 

seeds (“Open”) at our study site located near Vernon, UT, USA (see Table 1 in the main 

manuscript for exact location of study site).  Error bars show one standard error. 
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Native granivores limit the establishment of native grasses but not invasive Bromus tectorum 
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SUMMARY 

1.  Seed predation can structure communities by influencing the population growth, abundance, 

and distribution of plants.  However, granivory does not constrain all species equally because 

granivores forage selectively.  A number of recent studies have shown that native granivores 

prefer seeds from native plants over seeds from exotic invaders, even when seed traits are 

otherwise similar.  Selective foraging for native seeds could skew seedling establishment 

towards invaders, potentially facilitating invader dominance.  However, few studies have 

connected such biased granivory to differential patterns of seedling establishment. 

2.  Cheatgrass (Bromus tectorum) invasion in the Great Basin Desert provides an excellent 

opportunity to examine whether selective foraging for native seeds favours the establishment of 

an exotic invader.  Cheatgrass is native to Eurasia but highly invasive in the Great Basin.  

Previous work in the Great Basin has shown that cheatgrass seeds disproportionately escape 

rodent granivory relative to seeds from native grasses.  However, whether such selective 

granivory favours the establishment of cheatgrass over native grasses remains unclear. 

3.  We used experimental seed additions and exclosure treatments to compare the impacts of 

rodent granivory on the establishment of less-preferred cheatgrass and four species of more-

preferred native grasses at sites distributed across ≈350,000 km2 of the Great Basin. 

4.  Rodent granivory reduced the establishment of each species of native grass by at least 74% 

but had no effect on cheatgrass establishment.  These impacts were highly consistent across 

study sites, and our results were unaffected by seed bank dynamics or germination biases among 

species. 



40 
 

5.  Synthesis.  Our results suggest that selective foraging for native seeds may favour the 

establishment of cheatgrass over native grasses, potentially exacerbating one of the most 

extensive plant invasions in North America. 

Key-words: biological invasion, Bromus tectorum, community ecology, granivory, Great Basin, 

invasion ecology, selective predation, small mammals  
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 INTRODUCTION  

Seed predation can structure plant communities by imposing seed limitation on plant 

populations (Brown, Reichman & Davidson 1979; Louda 1989; Hulme 1998; Maron & Crone 

2006).  Seed limitation caused by granivory can restrict the population growth (Rose, Louda & 

Rees 2005), abundance (Maron & Kauffman 2006), and distribution (Louda 1982) of plants, 

which can produce dramatic consequences at the community level (Brown and Heske 1990; 

Brown & Howe 2000; Paine, Beck & Terborgh 2016).  Thus, granivory represents an important 

“filter” (sensu Weiher & Keddy 1999) in the organization of plant communities. 

However, granivory does not constrain all species equally.  Many seed predators are 

generalists that have strong preferences for the seeds of some species over others (e.g., Kelrick et 

al. 1986; Pearson, Callaway & Maron 2011; Lucero, Allen & McMillan 2015).  These 

preferences depend on seed traits such as size, caloric value, mineral nutrition, infection by 

endophytes, and physical/chemical defenses (Kelrick & MacMahon 1985; Kelrick et al. 1986, 

Reader 1993; MacMahon, Mull & Crist 2000).  Importantly, preferential granivory can skew the 

composition of plant communities towards less-preferred species that disproportionally escape 

predation.  For example, Brown & Heske (1990) famously showed that selective foraging by 

rodents for large seeds promoted the dominance of small-seeded competitors in a desert 

shrubland. 

Furthermore, granivory may not constrain native and exotic plants equally.  Many studies 

indicate that native, generalist granivores prefer seeds from native plants over seeds from 

invasive plants (Kelrick et al. 1986; Orrock, Witter & Reichman 2008; Pearson & Callaway 

2008; Ostoja et al. 2013; Lucero, Allen & McMillan 2015), even when seed size is similar 

(Pearson, Callaway & Maron 2011; Connolly, Pearson & Mack 2014; J. E. Lucero unpublished 
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data).  Just as selective foraging for large seeds can produce communities dominated by plants 

with small seeds (Brown & Heske 1990), selective foraging for native seeds could skew the 

composition of plant communities towards invaders.  For example, Pearson, Callaway & Maron 

(2011) showed that native rodents in the Northern Rockies, USA preferred seeds from native 

plants over similar-sized seeds from spotted knapweed (Centaurea stoebe), an exotic invader 

native to Eurasia.  Importantly, this pattern translated to differential establishment of seedlings in 

the field; rodent granivory limited the establishment of native plants but not knapweed.  

Furthermore, Maron et al. (2012) examined the impacts of rodent granivory on 20 native and 19 

exotic plant species that commonly co-occur in Rocky Mountain grasslands.  Using exclosures 

and experimental seed additions, Maron et al. (2012) found that rodents had stronger impacts on 

large-seeded natives than on large-seeded exotics, indicating that exotics were generally less 

affected by rodent granivory than natives. 

However, the population- and community-level impacts of native-biased granivory are 

not always clear because few studies have explicitly related biased granivory to its effects on 

vital rates that affect demography (e.g., establishment; but see Pearson, Callaway & Maron 2011; 

Connolly, Pearson & Mack 2014).  Quantifying demographic consequences is important because 

even strong selective granivory may not translate to impacts at the population level (Andersen 

1989), especially if plants are microsite- rather than seed-limited (Maron & Crone 2006).  Also, 

studies that do link granivore preferences to demographic consequences usually consider limited 

taxonomic and/or spatial scales.  Thus, the extent to which selective foraging for native seeds 

promotes exotic invasion remains largely unknown.   

Cheatgrass (Bromus tectorum) invasion in western North America provides an excellent 

opportunity to more fully examine whether granivory biased towards natives favours the 
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establishment of an exotic invader.  Cheatgrass is native to Eurasia, but has become a 

particularly problematic invader across much of western North America because of its strong 

impacts on fire regimes (Balch et al. 2013), nutrient cycling (Norton et al. 2008), native food 

webs (Lucero, Allen & McMillan 2015), and native biodiversity (Ostoja & Schupp 2009; 

Pearson et al. 2015).  Previous work has shown that cheatgrass in North America experiences 

biogeographic release (sensu Keane & Crawley 2002) from granivorous rodents; rodent 

granivory reduces cheatgrass establishment by over 60% in Iran (part of the native range) but has 

no significant impacts in the USA (part of the non-native range) (J. E. Lucero unpublished data).  

In addition, native rodents across much of western North America prefer seeds from native 

grasses over cheatgrass seeds (Kelrick et al. 1986; Lucero, Allen & McMillan 2015), regardless 

of seed size (Connolly, Pearson & Mack 2014; J. E. Lucero unpublished data).  This suggests 

that cheatgrass disproportionately escapes rodent granivory relative to native grasses in North 

America.  However, to our knowledge, only one study has assessed whether disproportionate 

escape from granivory favours cheatgrass establishment relative to native competitors (Connolly, 

Pearson & Mack 2014).  But this study only considered one species of native grass and was 

conducted over a relatively limited spatial scale.   

Our objective was to explore how disproportionate escape from rodent granivory might 

affect the establishment of cheatgrass relative to native grasses in the Great Basin, USA.  

Specifically, we compared the impacts of native rodents on the establishment of cheatgrass and 

four species of native grasses using experimental seed additions and exclosure treatments at sites 

distributed across ≈350,000 km2 of the Great Basin.  If granivory biased towards natives favours 

the establishment of cheatgrass, then rodents should limit the establishment of more-preferred 

natives to a greater extent than less-preferred cheatgrass. 
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MATERIALS AND METHODS 

We compared rodent impacts on the establishment of cheatgrass vs. native grasses at five, 

broadly distributed study sites.  Native grasses were Idaho fescue (Festuca idahoensis; “fescue” 

hereafter), bottlebrush squirreltail (Elymus elymoides; “squirreltail” hereafter), bluebunch 

wheatgrass (Pseudoroegneria spicata; “bluebunch” hereafter), and Indian ricegrass 

(Achnatherum hymenoides; “ricegrass” hereafter).  We selected these species because they 

commonly co-occur with cheatgrass in the Great Basin and because their seed masses form a 

continuum both above and below that of cheatgrass (see Table S1 in Supporting Information).  

Previous work has shown that native rodents prefer seeds of all four native species, regardless of 

size, over cheatgrass seeds (Kelrick et al. 1986; Lucero, Allen & McMillan 2015; J. E. Lucero 

unpublished data).  We collected cheatgrass seeds by hand during July 2010 in Rush Valley and 

Skull Valley, UT, USA; and native seeds were field-grown and collected by Granite Seed Co., 

Lehi, UT, USA.  Study sites were located near Jackpot, NV (41°55'28.70"N, 114°43'44.96"W); 

Elko, NV (41° 3'49.40"N, 115°49'44.02"W); McGill, NV (39°58'26.51"N, 114°40'10.10"W); 

Baker, NV (39° 1'6.34"N, 114°25'53.44"W); and Vernon, UT (40° 6'54.99"N, 112°32'4.37"W).  

All sites were located on public land managed by the US Bureau of Land Management and in 

plant communities dominated by native species with <5% cover by invasive plants.  All sites 

were separated by at least 120 km, which is orders of magnitude further than rodents and most 

local plants can typically disperse over short time periods (Harper et al. 1978; O’Farrell 1978; 

Jones 1989; Hayssen 1991; Rehmeier et al. 2004).  Thus, our study sites sampled independent 

communities, and our experiments have a broad scope of inference in space. 

We measured the impacts of rodent granivory at five sampling plots per site, each 

separated by 50 m.  Each sampling plot consisted of six stations.  Five of these stations consisted 
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of paired functional and “dummy” (i.e., non-functional) exclosures, and the sixth consisted of a 

single, unpaired functional exclosure (a control).  Functional exclosures prevented rodent access, 

and were constructed of 1 cm-mesh hardware cloth assembled into 30 cm (diameter) x 30 cm 

(height) cylindrical cages with a floor and a roof.  Floors and roofs prevented granivores from 

climbing into or burrowing under the cages.  To install cages, we excavated 4 cm of topsoil with 

a garden hoe and placed cages in the excavated pits.  We secured cages into place by pounding 

13 cm-long sod staples through cage floors and into the ground with a rubber hammer.  We then 

replaced excavated soil, except for large rocks and plant material.  Dummy exclosures were 

constructed and installed in a similar fashion, except for one 7 x 7 cm hole cut into the sides of 

cages at ground level to admit rodents.  We randomly assigned each pair of functional and 

dummy exclosures to a single grass species, and sowed each exclosure with 100 seeds from its 

assigned species (except the control).  Seeds were gently patted ≈5 mm into the soil.  Burying 

seeds in this manner made them largely inaccessible to invertebrate and avian granivores because 

only rodents can locate buried seeds via olfaction (Kamil & Balda 1985), and invertebrates do 

not dig for buried seeds (MacMahon, Mull & Crist 2000).  To monitor recruitment from seed 

banks, a single functional exclosure was installed as above, but with no experimental seed 

additions (i.e., the control).  This experimental design is depicted in Fig. S1. 

Cages and seed additions were installed during August 2014 and left undisturbed until 

August 2016, when recruits were counted in each cage.  After counting, all recruits were left in 

place to enable long-term monitoring.  However, we collected and destroyed all cheatgrass 

occurring < 2 m from experimental cages.  We will continue monitoring for potential cheatgrass 

recruits outside of cages to prevent the establishment of new cheatgrass populations.  This 
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protocol has successfully prevented cheatgrass invasion following other seed addition 

experiments in the Great Basin (Lucero, Allen & McMillan 2015). 

We quantified rodent impacts by comparing the average number of individuals 

established in paired functional vs. dummy exclosures.  At each sampling station, we defined the 

absolute impact of rodent granivory (𝐼𝑎) as the difference in establishment between paired 

dummy cages that were open to granivores (𝐸𝑜𝑝𝑒𝑛) and functional cages that were closed to 

granivores (𝐸𝑐𝑙𝑜𝑠𝑒𝑑) such that 𝐼𝑎 =  𝐸𝑜𝑝𝑒𝑛 − 𝐸𝑐𝑙𝑜𝑠𝑒𝑑.  Absolute impacts are sensitive to in situ 

germination rates, which could vary both within and among species due to microsite 

heterogeneity and species-specific differences in requirements for breaking seed dormancy 

(Allen et al. 2007; Meyer & Allen 2009).  To help mitigate any such germination biases among 

or within sites, we divided the absolute impact of rodent granivory at each station by the number 

of individuals established in that station’s fully protected cage treatment (𝐸𝑐𝑙𝑜𝑠𝑒𝑑).  This yielded 

a relative, germination-specific measure of rodent impacts at each sampling station: 𝐼 =

 
(𝐸𝑜𝑝𝑒𝑛− 𝐸𝑐𝑙𝑜𝑠𝑒𝑑)

𝐸𝑐𝑙𝑜𝑠𝑒𝑑
.  This relative measure can be interpreted as the percent change in establishment 

caused by rodent granivory.  If rodent granivory negatively impacts plant establishment, then 𝐼 

will be nonzero and negative. 

We employed linear mixed-effects models using the lme package in R (R Development 

Core Team 2013) to determine whether the impacts of rodent granivory differed among grass 

species.  We used Tukey contrasts to compare multiple means.  Our models treated species as a 

fixed factor and study site as a random factor.  Treating site as a random factor statistically 

accounted for any biologically-relevant differences (e.g., rodent density, in situ germination 

rates, percent plant cover, elevation, temperature, precipitation, etc.) potentially present among 

study sites.  We excluded from our analyses any stations with damaged or vandalized cages.  We 



47 
 

also excluded stations where no seedlings germinated in protected cages (i.e., stations where 

𝐸𝑐𝑙𝑜𝑠𝑒𝑑 = 0) because the formula 𝐼 =  
(𝐸𝑐𝑙𝑜𝑠𝑒𝑑− 𝐸𝑜𝑝𝑒𝑛)

𝐸𝑐𝑙𝑜𝑠𝑒𝑑
  does not permit division by zero.   If 

preferential granivory favours the establishment of cheatgrass over natives, then rodents should 

have stronger negative impacts on native grasses than on cheatgrass. 

 

RESULTS 

 Rodent granivory strongly limited the establishment of native grasses but had no 

significant effect on cheatgrass (Fig 1).   The effect of rodent granivory on plant establishment 

was -8.7± 13.4% SE for cheatgrass, -90.5±4.2% for fescue, -74.5±6.65% for squirreltail, -81.4± 

5.6% for bluebunch, and -94.5±4.1% for ricegrass.  The 95% confidence intervals around these 

means (± 26.16% for cheatgrass, ± 8.46% for fescue, ± 13.3% for squirreltail, ± 11.1% for 

bluebunch, and ± 8.16% for ricegrass) indicated that rodent impacts were not different from zero 

for cheatgrass, but were nonzero and negative for each native grass species.  Furthermore, the 

impacts of rodent granivory significantly differed between cheatgrass and each native species (P 

< 0.001 for each native-cheatgrass pairwise comparison; all Z-values > |5.96|).  Rodent impacts 

did not differ among native species, regardless of seed size (P > 0.48 for each native-native 

pairwise comparison; all Z-values < |1.00|).  These results were highly consistent across study 

sites.  Our analyses revealed no significant effect of site (P = 0.54) and no significant site × 

species interaction (P = 0.54) on establishment. 

The impacts of rodent granivory on plant establishment were not determined by seed 

bank dynamics.  No species recruited appreciably from seed banks (Fig. 2).  On average, 

cheatgrass, fescue, squirreltail, bluebunch, and ricegrass recruited 0.08 (± 0.06 SE), 0.00 (± 0.06 

SE), 0.12 (± 0.06 SE), 0.04 (± 0.04 SE), and 0.00 (± 0.06 SE) individuals per control cage, 
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respectively.  These means did not significantly differ (P > 0.25 for all pairwise comparisons; all 

t-values < 1.32).  Furthermore, the 95% confidence intervals around these means (± 0.12 for 

cheatgrass, ± 0.12 for fescue, ± 0.12 for squirreltail, ± 0.08 for bluebunch, and ± 0.12 for 

ricegrass) indicated that seed bank recruitment was not different from zero for any species.   

We observed a germination bias among plant species (Fig. 3).  The average number of 

individuals established in protected cages with seed additions (i.e., 𝐸𝑐𝑙𝑜𝑠𝑒𝑑; see Materials and 

Methods) was 2.28 (± 0.23 SE), 5.08 (± 0.75 SE), 3.30 (± 0.68 SE), 4.77 (± 0.89 SE), and 2.65 ± 

(0.63 SE) for cheatgrass, fescue, bluebunch, squirreltail, and ricegrass, respectively.  The 95% 

confidence intervals around these means (± 0.44 for cheatgrass, ± 1.47 for fescue, ± 1.33 for 

bluebunch, ± 1.74 for squirreltail, and ± 1.24 for ricegrass) indicated that establishment was 

greater than zero for all species.  Fescue and squirreltail exhibited higher germination rates than 

cheatgrass (P < 0.05 for both pairwise comparisons), but all native grasses germinated at equal 

rates (P > 0.05 for all native-native pairwise comparisons).   

 

DISCUSSION 

A number of studies have shown that native granivores prefer seeds from native plants 

over seeds from invaders (e.g., Kelrick et al. 1986; Pearson, Callaway & Maron 2011; Lucero, 

Allen & McMillan 2015), but few have taken the important next step of connecting biased 

granivory to vital rates that affect plant demography.  Thus, the population- and community-level 

impacts of biased granivory are usually unclear.  Previous work in the Great Basin has shown 

that native rodents distinctly prefer seeds from native grasses over seeds from cheatgrass 

(Kelrick et al. 1986; Lucero, Allen & McMillan 2015; J. E. Lucero unpublished data).  Here, we 

relate previously-reported patterns of seed preference to their impacts on plant establishment in 
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the field.  We found that native rodents strongly limited the establishment of more-preferred 

native grasses but had no effect on the establishment of less-preferred cheatgrass over a large 

part of the Great Basin (Fig. 1).  Our results showed no evidence of context dependence across 

this spatial gradient.  We conclude that disproportionate escape from rodent granivory may 

consistently favour the establishment of cheatgrass over native grasses, potentially exacerbating 

one of the most “significant” plant invasions in North America (D’Antonio & Vitousek 1992). 

Coupled with previous work, our results relate to the enemy release hypothesis of plant 

invasion (Maron & Vila 2001; Keane & Crawley 2002).  Perhaps the most famous explanation 

for the success of invasive plants in novel environments is enemy release, which suggests that 

translocation removes exotic plants from the negative effects of natural enemies in their native 

communities (Maron & Vila 2001; Keane & Crawley 2002).  Specifically, the enemy release 

hypothesis predicts that 1) native enemies strongly limit populations of invaders in their native 

range but not their non-native range, and 2) native enemies in recipient communities have 

stronger impacts on native competitors than on invaders (Keane & Crawley 2002).  Previous 

work in this system has shown that native rodents limited cheatgrass establishment by over 60% 

in Iran (part of the native range of cheatgrass) but had no effect in the Great Basin.  Thus, rodent 

granivory constrained cheatgrass establishment at home but not abroad (J. E. Lucero unpublished 

data).  We extend these results by demonstrating that native rodents in the Great Basin limited 

the establishment of native competitors but not cheatgrass (Fig. 1).  Taken together, these results 

strongly suggest that cheatgrass in the Great Basin has experienced enemy release (sensu Keane 

& Crawley 2002) at the seed stage, which may contribute to its exceptional invasiveness 

(Pearson et al. 2015) across much of western North America.  This finding is unique because 

empirical studies almost always consider the enemy release hypothesis in terms of specialist 
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herbivores, but not generalists such as our granivores (but see Vermeij et al. 2009; Schaffner et 

al. 2011).  Also, very few studies have employed experimental exclosures to measure the 

impacts of natural enemies in both the native and non-native ranges of a focal invader, sensu J. 

E. Lucero unpublished data (but see DeWalt, Denslow & Ickes 2004; Williams, Auge & Maron 

2010).  To our knowledge, cheatgrass is the only invader for which there is biogeographic 

evidence for enemy release at the seed/seedling stages. 

We conducted our experiments at sites distributed across ≈350,000 km2 of the Great 

Basin, but our results showed no evidence of context dependence in space (i.e., no significant 

effect of site and no significant site × species interaction).  This suggests that rodent impacts on 

plant establishment were highly consistent across study sites.  Such consistency is rather 

remarkable given the pervasiveness of context-dependent interactions in biological communities 

(Lawton 1999).  Of course, we do not suggest that our system is free from context dependence, 

as the foraging behaviour of polyphagous generalists can vary considerably based on the 

abundance, density, and identity of local food resources (e.g., Pulliam 1974; Charnov 1976; Holt 

1977; Barbosa et al. 2009; Ostoja et al. 2013).  A number of independent studies have shown that 

native rodents in the Great Basin generally prefer seeds from native plants over cheatgrass seeds 

(Kelrick et al. 1986; Ostoja et al. 2013; Lucero, Allen & McMillan 2015; J. E. Lucero 

unpublished data), but theory predicts that selective consumers should become less choosy when 

preferred resources are scarce (e.g., Pulliam 1974).  Thus, normally-selective rodents could more 

readily consume cheatgrass seeds during periods of resource scarcity.  Accordingly, if our study 

had been conducted at a time and/or place of extreme food limitation (e.g., during an 

exceptionally dry year or near a large-scale disturbance), we might have obtained different 

results (e.g., St. Clair et al. 2016). 
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Even though cheatgrass seeds escaped the impacts of rodent granivory during our study 

(Fig. 1), they did not necessarily escape consumption.  Cheatgrass seeds are often found in the 

stomach contents of North American rodents (e.g., Flake 1973), and several studies in the Great 

Basin have shown that rodents remove cheatgrass seeds from experimental seed depots, although 

native seeds are almost always preferred (e.g., Lucero, Allen & McMillan 2015).  Thus, it is 

plausible that rodents at our study sites consumed cheatgrass seeds to some extent, although we 

have no data to confirm this.  Again, we emphasize that our results speak only to the impacts of 

rodent granivory. 

It is surprising that rodent impacts were unrelated to seed size for native species.  

Pearson, Callaway & Maron (2011) and Connolly, Pearson & Mack (2014) showed that seed size 

and rodent impacts were positively related for native species in intermountain grasslands; rodents 

more strongly limited the establishment of large-seeded natives than small-seeded natives 

because rodents preferred large seeds over small ones (see also Maron et al. 2012).  The seeds of 

native species used in our study varied markedly in size (Table S1), and previous work has 

shown that native rodents in this system remove seeds from fescue, bluebunch, and ricegrass as 

predicted by size (J. E. Lucero unpublished data).  Thus, for native species, we expected rodent 

impacts and seed size to be positively related sensu Pearson, Callaway & Maron (2011) and 

Connolly, Pearson & Mack (2014).  We do not know why seed size accurately predicted removal 

but not establishment in this system; our results suggest caution when using seed size to predict 

rodent impacts on plant establishment. 

We do not infer that our study species were only seed- and not microsite-limited during 

our study.  Rodent granivory is an important barrier to seedling establishment in many plant 

communities (Brown, Reichman & Davidson 1979; Louda 1989, Brown & Heske 1990; Hulme 
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1998) because it can impose seed limitation on plant populations (Maron & Crone 2006).  

However, seedling establishment can also be highly constrained by suitable microsites (i.e., “safe 

sites”; Eriksson & Ehrlen 1992).  Whether plant populations are generally seed- or microsite-

limited has been hotly debated (see review by Eriksson & Ehrlen 1992).  The classic experiment 

used to detect seed vs. microsite limitation involves comparing establishment between paired 

plots that have and have not received experimental seed additions (Crawley & Ross 1990).  If 

seed addition improves establishment, then plants are seed-limited.  If seed addition does not 

improve establishment, then plants are microsite-limited.  Here, average establishment was not 

different from zero for any species in control cages, which received no seeds (Fig. 2).  

Conversely, average establishment was significantly greater than zero for all species in protected 

cages, which did receive seeds (Fig. 3).  Thus, seed additions improved plant establishment, and 

study species were seed-limited within experimental cages (Table S2).  However, our data 

cannot speak to seed vs. safe site limitation outside of experimental cages.  Disturbance can 

alleviate microsite limitation by ameliorating competition among seedlings (Jutila & Grace 2002; 

Mouquet et al. 2004), and all experimental cages were installed in disturbed soil (see Methods).  

Because no control or protected cage was installed into undisturbed soil, we cannot estimate the 

effects of disturbance on plant establishment.  Therefore, we do not know if adding seeds to 

undisturbed soil would have improved seedling recruitment, thus precluding tests of seed 

limitation outside of cages. 

Our results were not affected by seed bank dynamics or germination biases among plant 

species.  In nature, all species used in this study can recruit individuals from seed banks (Hassan 

& West 1986; Humphrey & Schupp 2001).  Extensive recruitment from seed banks could have 

complicated our ability to detect granivore impacts on experimentally-added seeds.  However, 
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recruitment from control cages was no different from zero for any study species (Fig. 2).  Thus, 

patterns of plant establishment in our study were driven by interactions between native rodents 

and experimentally-added seeds, not seeds from seed banks.  Also, our results were not 

determined by germination bias among species that we observed (Fig. 3).  We expressed rodent 

impacts at each sampling station (𝐼) in relative, germination-specific terms: 𝐼 =  
(𝐸𝑜𝑝𝑒𝑛− 𝐸𝑐𝑙𝑜𝑠𝑒𝑑)

𝐸𝑐𝑙𝑜𝑠𝑒𝑑
 

(see Materials and Methods).  Thus, the reported impacts of rodent granivory (Fig. 1) were 

“corrected” for each species’ in situ germination rate.  Furthermore, establishment from 

protected cages was greater than zero for all species, including cheatgrass (Fig. 3).  This 

indicates that native rodents had the potential to limit the establishment of all study species but 

only actually did so for native grasses.   

We have shown that rodent granivory differentially impacted native vs. cheatgrass 

establishment, but the effect of biased granivory on population growth (i.e., λ) remains unclear.  

Rodent impacts on establishment may well translate to impacts on λ because the transition from 

seed to seedling (i.e., establishment) is a particularly sensitive demographic transition in the life 

histories of many plants (e.g., Gross & Mackay 2014; Paine, Beck & Terborgh 2016), including 

cheatgrass (Griffith 2010).  However, we emphasize that plant invasion is ultimately a 

demographic phenomenon (Chesson 2000), and establishment is only one, albeit important, 

component of plant demography.  To unequivocally show that native-biased granivory promotes 

cheatgrass invasion, the effects of biased granivory should be related to differential patterns of λ 

among species.  Specifically, granivory should have stronger negative impacts on the λ of natives 

than on the λ of cheatgrass.  Our experimental design is appropriate to detect these effects.  We 

look forward to continued monitoring of experimental plots to evaluate changes in plant 

abundance (i.e., λ) over time. 
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SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article: 

 

Table S1 Seed mass (per seed) of grass species used in our experiments.   

Table S2 Results of a linear mixed-effects model used to determine whether seed 

additions improved establishment relative to control cages that received no seed 

additions. 

Figure S1 Experimental design used to determine the impacts of rodent granivory on the 

establishment of grass species used in our experiments.   

 

As a service to our authors and readers, this journal provides supporting information 

supplied by the authors. Such materials may be re-organized for online delivery, but are not 

copy-edited or typeset. Technical support issues arising from supporting information (other than 

missing files) should be addressed to the authors. 
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FIGURES 

 

Fig. 1.  Mean impact of rodent granivory on the establishment of cheatgrass (Bromus tectorum, 

“Brte”), Idaho fescue (Festuca idahoensis, “Feid”), bluebunch wheatgrass (Pseudoroegneria 

spicata, “Pssp”), bottlebrush squirreltail (Elymus elymoides, “Elel”), and Indian ricegrass 

(Achnatherum hymenoides, “Achy”).  Error bars show one standard error.  Means that share 

letters do not significantly differ (i.e., P > 0.05). 
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Fig. 2. Mean establishment of cheatgrass (Bromus tectorum, “Brte”), Idaho fescue (Festuca 

idahoensis, “Feid”), bluebunch wheatgrass (Pseudoroegneria spicata, “Pssp”), bottlebrush 

squirreltail (Elymus elymoides, “Elel”), and Indian ricegrass (Achnatherum hymenoides, “Achy”) 

from seed banks.  Error bars show 95% confidence intervals, and no means differ from each 

other (P > 0.25 for all pairwise comparisons). 
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Fig. 3.  Mean establishment of cheatgrass (Bromus tectorum, “Brte”), Idaho fescue (Festuca 

idahoensis, “Feid”), bluebunch wheatgrass (Pseudoroegneria spicata, “Pssp”), bottlebrush 

squirreltail (Elymus elymoides, “Elel”), and Indian ricegrass (Achnatherum hymenoides, “Achy”) 

in protected cages that received experimental seed additions (i.e., average 𝐸𝑐𝑙𝑜𝑠𝑒𝑑 for each 

species; see Materials and Methods).  Error bars show 95% confidence intervals.  Means that 

share letters do not significantly differ (i.e., P > 0.05).  
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SUPPORTING INFORMATION 

Table S1.  Seed mass (per seed) of grass species used in our experiments.  Species are labelled 

as native (N) or invasive (I). 

 

Species Seed mass  

Festuca idahoensis (N) 1.4 mg 

Bromus tectorum (I) 3.1 mg 

Pseudoroegneria spicata (N) 3.2 mg 

Elymus elymoides (N) 3.5 mg 

Achnatherum hymenoides (N) 3.9 mg 

 

Table S2.  Results of a linear mixed-effects model (species as a fixed factor and study site as a 

random factor) used to determine whether seed additions in protected cages improved 

establishment relative to control cages that received no seed additions. 

Species 

Mean no. individuals 

established per 

control cage 

Mean no. individuals 

established per 

protected cage 

z-value P-value 

Festuca idahoensis 0.00 (± 0.06 SE) 5.08 (± 0.75 SE) -6.59 <0.01 

Bromus tectorum 0.08 (± 0.06 SE) 2.28 (± 0.23 SE) -3.31 <0.03 

Pseudoroegneria spicata 0.04 (± 0.04 SE) 3.30 (± 0.68 SE) -5.23 <0.01 

Elymus elymoides 0.12 (± 0.06 SE) 4.77 (± 0.89 SE) -7.82 <0.01 

Achnatherum hymenoides 0.00 (± 0.06 SE) 2.65 (± 0.63 SE) -3.93 <0.01 
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Fig. S1.  Experimental design used to determine the impacts of rodent granivory on Idaho fescue 

(Festuca idahoensis, “Feid”), cheatgrass (Bromus tectorum, “Brte”), bluebunch wheatgrass 

(Pseudoroegneria spicata, “Pssp”), bottlebrush squirreltail (Elymus elymoides, “Elel”), and 

Indian ricegrass (Achnatherum hymenoides, “Achy”) in the Great Basin, USA.  The seed mass 

(per seed) and provenance of these species are reported in Table S1.  We sowed one hundred 

seeds of each species into randomly-ordered, paired functional (solid rectangles) and non-

functional (dashed rectangles) rodent exclosures.  The difference in seedling establishment 

between paired exclosures reflected the impact of rodent granivory on a particular species. To 

monitor recruitment from seed banks, we installed a single functional exclosure that received no 

seed additions (“Control”).  This setup was replicated five times per site at five sites that were 

broadly-distributed across ≈350,000 km2 the Great Basin. 
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ABSTRACT 

Seed predation and resource competition are fundamental biotic filters that affect the assembly of 

plant communities, yet empirical studies rarely assess their relative importance.  Here, we used 

rodent exclosures and experimental seed additions to compare how rodent granivory and 

resource competition affected the net establishment of an exotic invader (Bromus tectorum) and 

two native bunchgrasses (Pseudoroegneria spicata and Elymus elymoides) in the Great Basin 

Desert, USA.  Rodent granivory limited the establishment of both native grasses but not B. 

tectorum.  Competition from B. tectorum limited the establishment of both native grasses, but 

neither native grass reciprocated a significant competitive effect on B. tectorum.  Interestingly, 

rodent granivory and competition from B. tectorum limited the establishment of native grasses to 

the same extent, indicating that these biotic interactions were equally important barriers to the 

local establishment of P. spicata and E. elymoides. 

 

Key words: biological invasion, Bromus tectorum, cheatgrass, competition, granivory, Great 

Basin, importance, invasive species, restoration, seed predation  
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INTRODUCTION 

Seed predation and resource competition can determine the identity and abundance of species 

in plant communities.  Seed predation can regulate communities by imposing seed limitation on 

some plant populations but not others (Hulme 1998, Brown and Heske 1990, Howe and Brown 

2000, Maron and Crone 2006), and competition is thought to be a pervasive organizer of plant 

assemblages (Keddy and Shipley 1989, Shipley and Keddy 1994, Aschehoug and Callaway 

2015, Aschehoug et al. 2016).  In addition, seed predation and competition along gradients and 

across ecotones can strongly constrain the abundance and distribution of species (Louda 1982, 

Gurevitch 1986, Pennings and Callaway 1992, Callaway et al. 1996).  Thus, seed predation and 

competition are fundamental biotic filters (Diamond 1975, Weiher and Keddy 1999, Vellend 

2010) that affect the assembly of plant communities.  

However, the relative importance (Welden and Slauson 1986, Brooker et al. 2005, Kikvidze 

et al. 2011) of these fundamental filters is less clear because empirical studies typically consider 

the effects of seed predation or competition alone (but see Inouye et al. 1980, Louda et al. 1990).  

Considering the effects of single interactions affords insight into their intensity, but the 

importance of an interaction is tractable only by examining its effects relative to the effects of 

other interactions in simultaneous, coordinated experiments (Welden and Slauson 1986, Brooker 

et al. 2005, Kikvidze et al. 2011).   

Elucidating the relative importance of seed predation and resource competition may be 

especially important for managing native species in communities invaded by exotic plants.  

Biological invasions by exotic plants disrupt native communities at tremendous ecological (Liao 

et al. 2008, Vila et al. 2011) and economic (Duncan et al. 2004) costs.  Interestingly, both seed 

predation and resource competition could exacerbate exotic invasions by disproportionately 
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limiting the abundance of native plants.  Native granivores in various ecosystems tend to 

constrain the establishment of native species to a greater extent than they constrain strong 

invaders (Orrock et al. 2008, Pearson et al. 2011, Maron et al. 2012, Connolly et al. 2014), which 

may hasten the local extinction of natives (Dangremond et al. 2010).  In addition, the superior 

competitive ability of invasive plants relative to natives is probably the most widely cited 

explanation for the decline of native species in invaded communities (reviewed by Levine et al. 

2003).  Although both seed predation and resource competition can strongly limit the abundance 

of native plants in invaded communities, the relative importance of these interactions is rarely 

evaluated (but see Inouye et al. 1980, Louda 1990).  Understanding which biotic filter limits 

native abundance the most could help managers prioritize conservation efforts.  For example, if 

seed predation limits the establishment of native plants more than competition from invaders, 

manipulating plant-granivore interactions may be a better management strategy than culling 

invaders.   

The Great Basin Desert, USA, is an excellent system for evaluating the relative importance 

of the effects of seed predation from native granivores and competition from invasive plants on 

the establishment of native species.  In the Great Basin, invasive cheatgrass (Bromus tectorum; 

an exotic annual native to Eurasia), native bluebunch wheatgrass (Pseudoroegneria spicata; 

“bluebunch” hereafter), and native bottlebrush squirreltail (Elymus elymoides; “squirreltail” 

hereafter) commonly co-occur, but cheatgrass invasion is displacing native flora and fauna at an 

alarming rate (Mack et al. 1981, Knapp 1996, Ostoja and Schupp 2009, Hall 2012, Balch et al. 

2013, Freeman et al. 2014, Pearson et al. 2016).  Seeds from cheatgrass, bluebunch, and 

squirreltail are all vulnerable to predation by native, granivorous rodents, but rodents prefer 

seeds from native grasses to cheatgrass seeds (Kelrick et al. 1986, Ostoja et al. 2013, Connolly et 
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al. 2014, Lucero et al. 2015).  In addition, cheatgrass, bluebunch, and squirreltail compete 

directly for limiting resources, but cheatgrass is a superior competitor and displaces natives, 

especially at the seed/seedling stage (Melgoza and Nowak 1991, Humphrey and Schupp 2004, 

Vasquez et al. 2008, Parkinson et al. 2013).  Thus, both rodent granivory and resource 

competition may favor the establishment of cheatgrass over bluebunch and squirreltail.  

However, the relative importance of these interactions is unknown.  

We used rodent exclosures and experimental seed additions to compare the effects of rodent 

granivory and resource competition on the net establishment of cheatgrass, bluebunch, and 

squirreltail across a ≈80,000km2 portion of the Great Basin.  We predicted that 1) rodent 

granivory would significantly limit the establishment of bluebunch and squirreltail but not 

cheatgrass; and 2) cheatgrass would impose strong competitive effects on bluebunch and 

squirreltail, but natives would reciprocate weak competitive effects on cheatgrass.  We assessed 

the relative importance of rodent granivory and resource competition by comparing the intensity 

of their respective effects on seedling establishment, but we had no clear, a priori expectations 

for which interaction would be stronger. 

 

METHODS 

Plant materials and study area 

We evaluated how rodent granivory and resource competition affected the establishment 

of cheatgrass, bluebunch, and squirreltail using seed additions and rodent exclosures at seven 

study sites distributed across ≈80,000km2 of the Great Basin.  We collected cheatgrass seeds by 

hand in July 2010 in Rush Valley and Skull Valley, UT, USA; and bluebunch and squirreltail 
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seeds were field-grown and collected by Granite Seed Co., Lehi, UT, USA.  Study sites were 

located near Jackpot, NV (41°55'28.70"N, 114°43'44.96"W); the O’Neil Basin, NV 

(41°35'32.69"N, 114°48'36.16"W); Elko, NV (41° 3'49.40"N, 115°49'44.02"W); McGill, NV 

(39°58'26.51"N, 114°40'10.10"W); Baker, NV (39° 1'6.34"N, 114°25'53.44"W); Winnemucca, 

NV (40°54'47.00"N, 117°23'56.96"W); and Vernon, UT (40° 6'54.99"N, 112°32'4.37"W).  All 

sites were located on public land managed by the US Bureau of Land Management and in plant 

communities dominated by native species (most notably big sagebrush; Artemisia tridentata) 

with <5% cover by invasive plants.  All sites were located in well-delineated drainages and were 

separated by at least 35 km, which is farther than granivorous rodents and most plants can 

typically disperse over short time periods (Harper et al. 1978, O’Farrell 1978, Jones 1989, 

Hayssen 199, Rehmeier et al. 2004).  Thus, our study sites sampled independent communities.   

Experimental design 

Each study site consisted of five subplots, each separated by 50m.  Each subplot was 

outfitted with nine sampling stations.  Eight of these stations received experimental seed 

additions, and one station – the control – received no seed additions.  This control was used to 

monitor seedling establishment from seed banks.  Each station was randomly assigned to one of 

nine treatments, and each treatment was used only once per subplot.  For convenience, we will 

hereafter refer to these treatments using the letters a-i).  Although each letter corresponds to only 

one treatment, we emphasize that the spatial arrangement of these treatments varied randomly 

from subplot to subplot.  The treatments were: a) 100 bluebunch seeds sown into a functional 

rodent exclosure, b) 100 bluebunch seeds sown into a non-functional rodent exclosure, c) 100 

squirreltail seeds sown into a functional rodent exclosure, d) 100 squirreltail seeds sown into a 

non-functional rodent exclosure, e) 100 cheatgrass seeds sown into a functional rodent exclosure, 
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f) 100 cheatgrass seeds sown into a non-functional rodent exclosure, g) 50 bluebunch and 50 

cheatgrass seeds sown together into a functional rodent exclosure, h) 50 squirreltail and 50 

cheatgrass seeds sown together into a non-functional rodent exclosure, and i) a control that 

received a functional rodent exclosure but no seed additions (Fig. 1).  Therefore, total seed 

density remained constant (100 seeds) across all stations that received seeds, but the frequency of 

particular focal species fluctuated between 100 seeds in stations a-f) and 50 seeds in stations g-

h).  Sown seeds were patted ≈5 mm into the soil.  Burying seeds in this manner made them 

largely inaccessible to invertebrate and avian granivores because only rodents can locate buried 

seeds via olfaction (Kamil and Balda 1985), and invertebrates do not dig for buried seeds 

(MacMahon et al. 2000).   

Functional exclosures prevented rodent access, and were constructed of 1 cm-mesh 

hardware cloth assembled into 30 cm (diameter) × 30 cm (height) cylindrical cages with a floor 

and a roof.  Floors and roofs prevented rodents from climbing into or burrowing under the cages.  

To install cages, we excavated 4 cm of topsoil with a garden hoe and placed cages in the 

excavated pits.  We secured cages into place by pounding 13 cm-long sod staples through the 

cage floors and into the ground with a rubber hammer.  We then replaced excavated soil.  

Dummy exclosures were constructed and installed in a similar fashion, except for one 7 × 7 cm 

hole cut into the sides of cages at ground level to admit rodents.   

Measuring the effects of seed predation and competition 

Cages and seed additions were installed in October 2015 and were left undisturbed until 

August 2016, when established seedlings were counted in each cage.  After counting, all 

seedlings were left in place for long-term monitoring.  However, we removed all cheatgrass 

occurring < 2 m from experimental cages.  We will continue monitoring for potential cheatgrass 
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recruits outside of cages to prevent the establishment of new cheatgrass populations.  This 

protocol has successfully prevented cheatgrass invasion following other seed addition 

experiments in the Great Basin (Lucero et al. 2015). 

We calculated the effects of rodent granivory on focal species by subtracting the number 

of seedlings established in functional exclosures from the number established in non-functional 

exclosures.  See Table 1 for formulae.  In our calculations, reductions in seedling establishment 

caused by granivory produced negative numbers.  Our calculations of granivore effects were not 

confounded by seed density or frequency because stations a-f) received 100 seeds each.  Based 

on the literature cited in the introduction, we predicted that the mean impact of rodent granivory 

in monocultures would be non-zero and negative (i.e., statistically significant) for native grasses 

but would not be different from zero (i.e., statistically insignificant) for cheatgrass. 

We assessed the effects of competition reciprocated between native grasses and 

cheatgrass by comparing the establishment of focal species growing alone in monocultures to the 

establishment of focal species growing with neighbors in polycultures.  We did not examine 

competitive interactions between bluebunch and squirreltail as these natives were not sown 

together.  Because focal species growing in monocultures were sown at twice the rate as focal 

species growing in polycultures, we adjusted the number of seedlings established in polycultures 

using the multiplier φ (defined further below).  Table 1 presents formulae for how this was done.  

In our calculations, competitive interactions produced negative numbers (but facilitative 

interactions would have produced positive numbers).  Based on the literature, we predicted that 

cheatgrass would impose strong competitive (non-zero and negative) effects on bluebunch and 

squirreltail, but that bluebunch and squirreltail would reciprocate weak (not significantly 

different from zero) effects on cheatgrass. 
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To estimate the effects of competition, we used the multiplier φ to correct for the 

differential frequency of seeds sown into monocultures (stations a-f) vs. polycultures (stations g-

h.)  The frequency of focal plants sown into monocultures was equal to 1.0 (100 seeds from focal 

species X ÷ 100 seeds total), but the frequency of focal plants sown into polycultures was equal 

to 0.5 (50 seeds from focal species X ÷ 100 seeds total).  Thus, focal species in polycultures 

were sown at a 50% lower rate than focal species in monocultures.  In order to compare the 

establishment of focal species between mono- and polycultures, we adjusted the number of 

seedlings established in polycultures using φ.  We defined φ as: 

𝜑 =
1

𝜌
 

where 𝜌 is the expected percent reduction in seedling establishment given a 50% reduction in 

sowing rate.  For example, a 50% reduction in sowing rate could correspond to a 50% reduction 

in establishment.  If so, φ = 2.0 because 
1

0.5
 = 2.0.  In this case, a lower sowing rate does not 

change the per-capita probability of establishment.  This could occur if the strength of 

intraspecific competition among seedlings was relatively low, even at high sowing rates.  

Alternatively, a 50% reduction in sowing rate could correspond to only a 40% reduction in 

establishment.  If so, φ = 2.5 because 
1

0.4
 = 2.5.  In this case, a lower sowing rate improves the 

per-capita probability of seedling establishment.  This could occur if decreased sowing rates 

alleviated per-capita seedling mortality from strong intraspecific competition.  Finally, a 50% 

reduction in sowing rate could correspond to a 60% reduction in establishment.  If so, φ = 1.66 

because 
1

0.6
 = 1.66.  Here, a lower sowing rate decreases the per-capita probability of seedling 

establishment.  This could occur if density-mediated Allee effects affected establishment. 
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  In summary, φ = 2 when a reduced sowing rate has no effect upon the per-capita 

probability of establishment, φ > 2 when a reduced sowing rate has a positive effect upon the 

per-capita probability of establishment, and φ < 2 when a reduced sowing rate has a negative 

effect upon the per-capita probability of establishment.  Previous work has shown that 

cheatgrass, bluebunch, and squirreltail in the Great Basin are seed-limited (i.e., seed addition 

results in increased establishment) at sowing rates equal to the 100% sowing rate experienced by 

focal plants in monocultures (JE Lucero unpublished data).  Therefore, seed limitation is also 

likely at the lower sowing rate experienced by focal plants in polycultures.  In addition, we are 

aware of no evidence suggesting that the establishment of cheatgrass, bluebunch, or squirreltail 

experiences positive density-dependence under field conditions.  Thus, we believe that the most 

accurate value of φ is likely to be ≥ 2.0.  However, because we cannot be certain of the true 

value of φ, we used a range of values for φ that formed a continuum above and below 2.0 (φ = 

2.5, 2.0, 1.5).  The multiplier φ was not used to calculate the impacts of rodent granivory in 

monocultures. 

Statistical analysis 

We employed three linear mixed-effects models (one each for φ = 2.5, 2.0, and 1.5) using 

the lme package in R (R Development Core Team 2013) to compare the effects of rodent 

granivory and resource competition experienced by each species (we reemphasize that the value 

of φ did not influence our calculations of granivore effects; see above).  All models used Tukey 

contrasts to compare multiple means, and all models treated species as a fixed factor and study 

site as a random factor.  Treating site as a random factor accounted for any biologically relevant 

differences (e.g., rodent density, in situ germination rates, percent plant cover, elevation, 

temperature, precipitation, etc.) potentially present among study sites. 
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RESULTS 

Effects of seed predation and competition 

Rodents significantly limited the establishment of bluebunch and squirreltail, but not 

cheatgrass (Figs. 2-3).  Per 707 cm2 sampling station, bluebunch recruited 8.64 ± 1.84 

individuals in the absence of granivores but only 3.28 ± 1.80 individuals in the presence of 

granivores (Z value = -5.82, P < 0.001); and squirreltail recruited 6.07 ± 1.80 individuals in the 

absence of granivores but only 1.46 ± 1.80 individuals in the presence of granivores (± 95 % CI) 

(Z-value = -5.01, P < 0.001).  Thus, rodent granivory reduced bluebunch and squirreltail 

establishment by 62.01% and 71.00%, respectively.  However, rodent granivory caused no 

significant change in cheatgrass establishment.  Cheatgrass recruited 9.21 ± 1.80 individuals in 

the absence of granivores and 9.67 ± 1.80 individuals in the presence of granivores (± 95 % CI) 

(Z-value = 0.51, P = 0.99).  P-values for all pairwise comparisons of granivore effects are shown 

in Supplementary Table 1. 

Cheatgrass imposed strong competitive effects on both bluebunch and squirreltail, but the 

competitive effects of native grasses on cheatgrass were insignificant (Figs. 2-3).  Per 707 cm2 

sampling station and for φ = 2.0, cheatgrass competition reduced bluebunch establishment from 

8.64 ± 1.84 to 2.35 ± 1.80 individuals (± 95 % CI) (Z-value = -6.83, P < 0.001); and cheatgrass 

competition reduced squirreltail establishment from 6.07 ± 1.80 to 2.03 ± 1.82 individuals (± 95 

% CI) (Z-value = -4.34, P < 0.001).  Thus, for φ = 2.0, cheatgrass competition reduced 

bluebunch and squirreltail establishment by 72.80% and 66.56%, respectively.  Conversely, 

neither native species imposed a significant competitive effect on cheatgrass.  For φ = 2.0, 

competition from bluebunch “reduced” cheatgrass establishment from 9.21 ± 1.80 to 9.17 ± 1.80 

individuals (± 95 % CI) (Z-value = -0.04, P = 1.00), and competition from squirreltail “reduced” 
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cheatgrass establishment from 9.21 ± 1.80 to 9.11 ± 1.82 individuals (± 95 % CI) (Z-value = -

0.11, P = 1.00).  P-values for all pairwise comparisons of competitive effects are shown in 

Supplementary Table 1. 

Altering the value of φ (φ = 1.5, φ = 2.0, φ = 2.5) slightly affected the magnitude of 

competitive effects, but did not change whether these effects differed significantly from zero 

(Table 2) or from each other (Supp. Table 1).  Thus, moderate (± 25%) changes of the value of φ 

did not qualitatively affect our results. 

Seed bank dynamics 

The effects of seed predation and resource competition were not determined by 

recruitment from seed banks.  No species recruited significantly from the seed bank (Fig. 4).  On 

average, cheatgrass, bluebunch, and squirreltail recruited 0.08 ± 0.12, 0.04 ± 0.08, and 0.11 ± 

0.12 individuals per control cage, respectively (± 95% CI), and seed bank recruitment was not 

different than zero for any species.  These means did not significantly differ from each other (P > 

0.25 for all pairwise comparisons). 

 

DISCUSSION 

Our most interesting result was that rodent granivory limited the establishment of native 

grasses to the same extent as resource competition from cheatgrass (Figs. 2-3).  This suggests 

that these biotic filters presented equally important (sensu Welden and Slauson 1986, Brooker et 

al. 2005, Kikvidze et al. 2011) barriers to the local establishment of bluebunch and squirreltail at 

the temporal and spatial scale of our experiment.  Many studies have shown that cheatgrass is a 

strong competitor against native species (Melgoza and Nowak 1991, Humphrey and Schupp 
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2004, Vasquez et al. 2008, Parkinson et al. 2013), and others have documented the potential for 

rodent granivory to limit native establishment (Orrock et al. 2009, Pearson et al. 2011, Maron et 

al. 2012), but to our knowledge, this is the first study to show that these filters can be equally 

important. 

This main result has practical implications.  The conservation and restoration of native 

species in wildlands infested by invasive plants is a high priority for many land managers (e.g., 

Rowe 2010).  One common practice for increasing the abundance of native plants and expanding 

native communities is restoration seeding, in which seeds of desirable natives are sown into 

degraded habitats (Whisenant 1999).  One of the most expensive steps in restoration seeding is 

procuring seeds (Frischie and Rowe 2012).  Accordingly, land managers try to maximize the 

establishment of seeded species.  However, granivory (Orrock et al. 2009) and competition from 

invaders (Davies 2010) can hamper these efforts, which may undermine the effectiveness of 

restoration seeding.  Land managers can ameliorate the effects of granivory by increasing 

seeding density (Orrock et al. 2009) or by treating target seeds with chemicals like capsaicin that 

reduce palatability (Hemsath 2007).  Competition from invaders can be moderated by mowing, 

burning, tilling, or applying herbicides before seeding (Fritschie and Rowe 2010).  Although 

these practices may be costly (especially increasing seeding density), our results (Figs. 2-3) 

suggest that land managers in the Great Basin may need to place equal emphasis on mitigating 

the effects of rodent granivory and cheatgrass competition in order to maximize the 

establishment of native bunchgrasses during restoration.     

Our finding that rodent granivory limited the establishment of native grasses but not 

cheatgrass corresponds with a number of recent studies.  Reports from Mediterranean (Orrock et 

al. 2008), coastal (Dangremond et al. 2010), intermountain, (Pearson et al. 2011) and Palouse 
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grasslands (Connolly et al. 2014) demonstrate that native rodents can limit the establishment of 

native species to a greater extent than strong invaders.  However, very few studies have 

evaluated the long-term, demographic consequences of this pattern (but see Dangremond et al. 

2010).  Thus, it remains generally unclear whether selective granivory for native species actually 

influences the trajectory of plant invasions. 

Several studies have shown that native rodents in the Great Basin selectively forage for 

native seeds over cheatgrass seeds (Kelrick et al. 1986, Ostoja et al. 2013, Lucero et al. 2015), 

but the reasons why remain unclear.  Kelrick and MacMahon (1985) showed that cheatgrass 

seeds are lower in soluble carbohydrates than seeds from similarly sized natives, indicating poor 

nutritional quality.  Other studies have invoked the mechanical structure of cheatgrass seeds, 

positing that persistent awns may increase handling time (Kelrick et al. 1986, Ceradini and 

Chalfoun 2017).  Furthermore, native rodents in the Great Basin may be underequipped to 

exploit cheatgrass seeds if they contain phytochemicals that are biogeographically novel (i.e. 

“novel weapons”; Callaway and Aschehoug 2000, Cappucino and Carpenter 2005).  These 

alternatives are not mutually exclusive and remain mostly unexplored (but see Kelrick and 

MacMahon 1985). 

Importantly, cheatgrass in the Great Basin does not always escape the negative effects of 

rodent granivory.  Recently, St. Clair et al. (2016) showed that rodents inhibited the 

establishment of cheatgrass in the wake of small-scale disturbances from fire, resulting in 

meaningful biotic resistance (we found no evidence for such biotic resistance here; Figs. 2-3).  

What can explain the divergent results reported by St. Clair et al. (2016) vs. those presented here 

(Figs. 2-3)?  We suggest that rodent impacts on cheatgrass establishment may depend on the 

relative availability of more-preferred seeds from native species.  As mentioned, rodents in the 
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Great Basin generally prefer seeds from native plants to seeds from cheatgrass (Kelrick et al. 

1986, Ostoja et al. 2013, Lucero et al. 2015).  However, selective consumers become less choosy 

when preferred resources are scarce (Pulliam 1974).  For example, Krebs et al. (1977) showed 

that great tits (Parus major) increased consumption of inferior prey as the frequency of preferred 

prey decreased.  Similarly, native rodents in the Great Basin may suppress less-preferred 

cheatgrass only when more-preferred native species are locally rare.  The disturbance treatments 

imposed by St. Clair et al. (2016) virtually eliminated native species from study plots, potentially 

leaving local rodents with few foraging alternatives to cheatgrass.  In contrast, we conducted our 

experiments in habitats dominated by native species where preferred resources from natives may 

have been relatively abundant.  Hence, the divergent outcomes reported in our study (Figs. 2-3) 

vs. that of St. Clair et al. (2016) could result from large differences in the local availability of 

more-preferred seeds from native species.  Accordingly, we recognize that our experiments may 

have produced different results had they been conducted at a time and/or place in which native 

seeds were extremely limited (e.g., during an exceptionally dry year or near a large-scale 

disturbance). 

In polycultures, cheatgrass imposed significant competitive impacts on native grasses that 

were not reciprocated.  This result coincides with many experimental accounts.  Competition 

experiments often reveal strong negative effects of invaders on the growth, reproduction, and 

resource allocation of natives (reviewed by Levine et al. 2003), but natives rarely reciprocate 

such strong effects on invaders.  This competitive asymmetry is well-documented with respect to 

cheatgrass vs. native plants in the Great Basin (Melgoza and Nowak 1991, Vasquez et al. 2008, 

Parkinson et al. 2013), especially at the seed/seedling stage (Humphrey and Schupp 2004).  In 
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general, the competitive superiority of invasive plants relative to natives is probably the most 

widely invoked explanation for the local extirpation of natives by invaders (Levine et al. 2003).  

Our calculations of the effects of competition were robust to moderate (± 25%) 

perturbations of the value of φ.  Altering the value of φ did not change whether or not the 

magnitude of competitive interactions differed significantly from zero (Table 2) or from each 

other (Supp. Table 1).  In other words, if a competitive effect was significant (non-zero) when φ 

= 2, it remained significant when φ = 1.5 and φ = 2.5.  Similarly, if competitive effects 

significantly differed from each other when φ = 2, they remained different when φ = 1.5 and φ = 

2.5 (Supp. Table 1). 

Associational effects could dampen the strong impacts of rodent granivory and cheatgrass 

competition reported here.  Associational effects arise when consumer effects on focal plants 

depend upon the presence or identity of neighboring plants (see reviews by Barbosa et al. 2009, 

Underwood et al. 2014).  For example, proximity to palatable neighbors may increase predation 

risk for focal plants (e.g., White and Whitham 2000, Palmer et al. 2003, Rand 2003, Orrock et al. 

2015), resulting in “associational susceptibility.”  Alternatively, proximity to unpalatable 

neighbors might decrease predation risk for focal plants (e.g., Atsatt and O’Dowd 1976, 

Callaway et al. 2005, Baraza et al. 2006, Atwater et al. 2011, Axelsson and Stenberg 2014), 

resulting in “associational resistance.”  Because seeds from cheatgrass, bluebunch, and 

squirreltail are all vulnerable to rodent granivory, rodents could potentially mediate associational 

effects among these grasses at the seed stage (Ostoja et al. 2013).  A recent meta-analysis has 

shown that when mammalian herbivores (like rodents) mediate associational effects between 

differentially palatable plants (like cheatgrass, bluebunch, and squirreltail), palatable plants often 

experience associational resistance (a positive [+] effect), but unpalatable plants experience no 
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significant associational effects (a neutral [0] effect) (Fig. 3b in Barbosa et al. 2009).  If this 

general trend applies to interactions in this system, proximity to unpalatable cheatgrass should 

result in associational resistance for both bluebunch and squirreltail, but these natives should 

reciprocate no associational effects upon cheatgrass.  The resulting indirect commensalism [+/0] 

(Dethier and Duggins 1984, Menge 1995) could at least partially counteract the negative impacts 

of granivory and resource competition experienced by bluebunch and squirreltail in the absence 

of associational effects (Figs. 2-3).   

There are several important caveats to consider for our experiments.  For one, our 

calculations of competitive effects are estimates and not direct measures because of the 

parameterization of φ.  However, our use of φ accounted for the differential frequency of focal 

plants sown into experimental treatments in a novel and relatively simple way, and our results 

coincide well with the literature.  Also, our calculations of competitive effects only considered 

the impacts of moderate (± 25%) perturbations of the value of φ.   Although moderate 

perturbations did not qualitatively affect our results (Table 2, Supp. Table 1), more dramatic 

perturbations might.  In addition, we do not know how the effects of resource competition and 

rodent granivory interact because we employed no experimental treatments in which competition 

and granivory could affect seedling establishment simultaneously.  Finally, we showed that 

rodent granivory and cheatgrass competition were equally important barriers to the establishment 

of native grasses, but we acknowledge that there are many other abiotic and biotic processes that 

could be just as or more important.  For example, drought (Brown et al. 1979), disturbance 

(Stylinski and Allen 1999), and pathogens (Beckstead et al. 2010) can all limit the establishment, 

growth, and fitness of each species we tested.  Evaluating the relative importance of any biotic or 

abiotic filter (Diamond 1975, Weiher and Keddy 1999) can be challenging because it requires 
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simultaneous, coordinated experiments, but such studies can lend valuable insight into the 

processes that drive community-level patterns (Welden and Slauson 1986, Brooker et al. 2005, 

Kikvidze et al. 2011).  
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TABLES 

Table 1.  Description of calculations for the effects of rodent granivory (“P”) and plant-plant 

competition (“C”) on the net establishment of cheatgrass (“ch”), bluebunch wheatgrass (“bb”), 

and bottlebrush squirreltail (“sq”) in the Great Basin Desert, USA.  Abbreviations in the “Biotic 

interaction” column are also used in Table 2, Figs. 2-3, and in Supp. Table 1.  Letters a-i) in the 

“Formula for quantification” column correspond to the sampling stations depicted in Fig. 1.  The 

multiplier φ was used to correct for the differential frequency of focal plants sown into stations 

a-f) vs. stations g-h) (see Methods).  

Biotic 
interaction 

Description of biotic interaction 
Formula for quantification  
(see Fig. 1) 

P (ch) Effect of predation on ch when ch occurs alone (f – e) 

P (bb) Effect of predation on bb when bb occurs alone (b – a) 

P (sq) Effect of predation on sq when sq occurs alone (d– c) 

   

C (ch→bb) Competitive effect of ch on bb (φ · gbb – a) 

C (bb→ch) Competitive effect of bb on ch (φ · gch – e) 

C (ch→sq) Competitive effect of ch on sq (φ · hsq – c) 

C (sq→ch) Competitive effect of sq on ch (φ · hch – e) 

  



94 
 

Table 2.  Mean effects (± 95% CI) of resource competition (“C”) on the establishment of 

cheatgrass (“ch”), bluebunch wheatgrass (“bb”), and bottlebrush squirreltail (“sq”) in the Great 

Basin Desert, USA, given φ = 1.5, 2.0, and 2.5 (see Methods for definition of φ).  Abbreviations 

used in the “Competitive interaction” column are defined in Table 1.  Effects with P ≤ 0.05 are 

shown in bold. 

Competitive 
interaction  

Mean impact of biotic interaction 

  φ = 1.5   φ = 2   φ = 2.5 

C (ch→bb)  -6.92 (2.52)  -6.29 (1.82)  -5.65 (2.32) 

C (bb→ch)  -0.37 (0.67)  -0.04 (1.80)   0.31 (0.82) 

C (ch→sq)  -4.67 (2.09)  -4.03 (1.82)  -3.61 (2.15) 

C (sq→ch)  -0.48 (0.78)  -0.10 (1.82)   0.13 (0.98) 
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LIST OF FIGURES 

Fig. 1.  Experimental design used to assess the relative importance of rodent granivory vs. 

resource competition as barriers to the establishment of cheatgrass (“ch”), bluebunch wheatgrass 

(“bb”), and bottlebrush squirreltail (“sq”) in the Great Basin Desert.  Stations a-i) collectively 

comprised one subplot, five subplots comprised a study site, and we employed seven study sites 

(n=7).  The spatial arrangement of stations a-i) varied randomly from subplot to subplot.  Solid 

circles represent functional exclosures that excluded rodents, and dashed circles represent 

“dummy” exclosures that admitted rodents.  Numbers within circles show the number of seeds 

sown from each species.  Station i) was a control that received no seed additions and was used to 

monitor establishment from seed banks (see Fig. 4).   

Fig. 2.  Mean effects (±95% CI) of rodent granivory (“P”) and resource competition (“C”) on the 

establishment of cheatgrass (“ch”), bluebunch wheatgrass (“bb”) and bottlebrush squirreltail 

(“sq”) in the Great Basin Desert, given φ = 2.0 (φ defined in Methods).  The effect of a biotic 

interaction is defined as the difference in the number of seedlings established in the interaction’s 

presence vs. absence (see Methods).  Abbreviations for biotic interactions are defined in Table 1.  

Moderate (± 25%) perturbations to the value of φ did not change whether these effects differed 

significantly from zero (Table 2), or from each other (Supp. Table 1).  

Fig. 3.  Interaction webs that show the effects of biotic interactions between a) granivorous 

rodents (“P”), bluebunch wheatgrass (“bb”), and cheatgrass (“ch”); and b) granivorous rodents, 

bottlebrush squirreltail (“sq”), and cheatgrass on the establishment of seedlings in the Great 

Basin Desert, for φ = 2.0 (φ defined in Methods).   Arrows indicate the direction of biotic 

interactions and are labelled with the interaction’s mean effect (± 95% CI) on seedling 

establishment.  Abbreviations for biotic interactions are defined in Table 1.  Interactions with 
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effects that differed significantly from zero appear in black, and interactions with effects that did 

not differ significantly from zero appear in grey.  Moderate (± 25%) perturbations to the value of 

φ did not change whether the effects of biotic interactions differed significantly from zero (Table 

2) or from each other (Supp. Table 1). 

Fig. 4. Mean establishment of cheatgrass (“ch”), bluebunch wheatgrass (“bb”), and bottlebrush 

squirreltail (“sq”) from seed banks (± 95% CI).  
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Fig. 1 
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Fig. 2 
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Fig. 3. 
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Fig. 4 
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SUPPLEMENTARY MATERIALS 

Supp. Table 1.  P- values for pairwise comparisons of the effects of rodent granivory (“P”) and 

competition (“C”) on the establishment of cheatgrass (“ch”), bluebunch wheatgrass (“bb”), and 

bottlebrush squirreltail (“sq”) in the Great Basin Desert, given φ = 1.5, 2.0, and 2.5 (see Methods 

for definition of φ).  Table 1 defines abbreviations in the “Pairwise comparison” column.  P-

values were obtained with linear mixed-effects models that treated species as a fixed factor and 

study site as a random factor.  P-values ≤ 0.05 are shown in bold. 

Pairwise comparison φ  = 1.5 φ  = 2 φ  = 2.5 

C (ch→bb)  -  C (bb→ch) <0.01 <0.01 <0.01 

C (ch→sq)  -  C (bb→ch) <0.01 <0.01 <0.01 

C (ch→sq)  -  C (ch→bb) 0.35 0.43 0.52 

C (sq→ch)  -  C (bb→ch) 1.00 1.00 1.00 

C (sq→ch)  -  C (ch→bb) <0.01 <0.01 <0.01 

C (sq→ch)  -  C (ch→sq) <0.01 <0.01 <0.01 

P (bb)  -  C (bb→ch) <0.01 <0.01 <0.01 

P (bb)  -  C (ch→bb) 0.77 0.98 1.00 

P (bb)  -  C (ch→sq) 1.00 0.92 0.70 

P (bb)  -  C (sq→ch) <0.01 <0.01 <0.01 

P (ch)  -  C (bb→ch) 0.99 1.00 1.00 

P (ch)  -  C (ch→bb) <0.01 <0.01 <0.01 

P (ch)  -  C (ch→sq) <0.01 <0.01 <0.01 

P (ch)  -  C (sq→ch) 0.98 1.00 1.00 

P (ch)  -  P (bb) <0.01 <0.01 <0.01 

P (sq)  -  C (bb→ch) <0.01 <0.01 <0.01 

P (sq)  -  C (ch→bb) 0.32 0.71 0.96 

P (sq)  -  C (ch→sq) 1.00 1.00 0.97 

P (sq)  -  C (sq→ch) <0.01 <0.01 <0.01 

P (sq)  -  P (bb) 0.99 0.99 0.99 

P (sq)  -  P (ch) <0.01 <0.01 <0.01 
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