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Abstract

Committee Chair: Dr. Cara Nelson

Successful restoration of degraded forest landscapes requires reference models that
adequately capture structural heterogeneity at multiple spatial scales. Field-based
methods for assessing variation in forest structure are costly and inherently suffer from
limited replication and spatial coverage. LiDAR is a more cost-effective approach for
generating landscape-scale data, but it has a limited ability to detect understory trees.
Increased understandingof appropriate height cut-offs for trees to be reliably included in
LiDAR-based analysis could improve applications of LiDAR to assessments of landscape-
scale forest structure. Toward that end, | investigated the effect of varying tree-height
criterion (minimum height cutoffs of 6, 9, 12, 15, and 18 m) on the accuracy of LiDAR for
estimatingforest structure and spatial patternin forestsof the Sierra de San Pedro Martir
National Park, Baja, Mexico. In order to increase the utility of the analysis, LiDAR trees
were identified using a widely-available processing tool (FUSION’s TreeSeg). Accuracy was
measured as the similarity between field-measured and LiDAR-detected tree datasetsand
was assessed foroverall number of trees, spatial tree densitymaps, and a set of variables
related to forest structure and spatial pattern.|foundthatremovingtreeslessthan12m
in height increased correlation between LiDAR- and field-based spatial maps of tree
density and strongly reduced differences in estimates of forest structure and spatial
pattern. Although the frequency of small, medium, and large tree clumps was always
underestimated by LiDAR-detected trees, the 12 m minimum height cutoff detected more
of the large tree clumps than taller height cutoffs and provided estimates of forest
structure and spatial pattern that were more similar to those derivedfrom field data. The
12 m height cutoff also successfully captured structural variation across the study
landscape: canyons, shallow northerly, and shallow southerly slopes were structurally
similar, having larger and more abundant trees than steep northerly slopes, steep
southerly slopes, and ridges. Methods developed here should be useful to managers
interested in using LiDAR to characterize distributions of large, overstory trees without
the need forextensive complementary field data and specifically for the development of
landscape-scalereference models forforest management and restoration.



Introduction

Across the globe, forest management is increasingly focusing on restoration of highly degraded,
ecologicallyvulnerableforest types (Schoennageland Nelson2011). Successful forest restorationrequires
reference modelsthat adequately capture structural heterogeneity at multiple spatial scales(Hessburg et
al. 2015, Larson and Churchill 2012). Although current management recommendations call for planning
and implementing restoration activities at the landscape scale (North etal. 2009, 2012), thereisa lack of
information on best practices for reference model development at that scale. LiDAR (light detection and
ranging) allows for high-resolution characterization of forest structure over extensive areas (Stephens et
al. 2015, Kane et al. 2013); however, directly translating complex LiDAR data into management-relevant
descriptions of forest structure (i.e. size distributions and arrangements of individual trees and tree
clumps) is challenging. A primary limitation is that LiDAR does not reliably capture understory trees
(Falkowskietal. 2008, Kaartinen et al.2012). Although itiswell knownthat tall trees have higher detection
rates than short trees (Richardson and Moskal 2011), there is little information about appropriate
minimum height cutoffs for generating accurate structural estimates of taller trees. In this study, | assess
how varying the minimum tree height cutoff affects the accuracy of LiDAR for characterizing forest
structure in the Sierra de San Pedro Martir National Park, Baja, Mexico and determine whether the
application of the relevant tree-height cutoff captures structural variation across an extensive, relatively
undisturbed forested landscape.

Successful restoration depends on ecological reference models, which approximate the set of conditions
an ecosystem would be in if it had never been altered or degraded (McDonald et al. 2016). Creating
reference models forforestrestoration requires alarge number of replicates within and among stands in
orderto capture inherentvariability (SER 2016, Swetnam et al. 1999). Although recent field-based studies
of reference conditions have included within-stand (e.g. Lydersen et al. 2013) or among stand (e.g.
Sanchez Maedor et al. 2011, Abella and Denton 2009, Churchill et al. 2015) replication, none have used
both types of replication and all are based on relatively small sample areas (1-4 ha plot sizes) with limited
total spatial coverage (maximum =52 ha (Abellaand Denton 2009)). One reason for the lack of replication
is that investigators rely on field-measured stem maps to capture fine-scale heterogeneity (Larson and
Churchill 2012). Although field-measured stem maps provide precise location data for all individual trees,
they are expensive to sample. LiDAR, when used with Individual tree detection (ITD) processes, is 2 - 3
orders of magnitude less expensive than field-measured stem maps (Jeronimo 2015). ITD methods,
however, fail to detect overtopped (understory) trees and, therefore, the performance of ITD varies
among forest types based on stand density, structural complexity and dominant tree height (Vauhkonen
et al. 2012, Li et al. 2012, Kaartinen et al. 2012, Falkowski et al. 2008). There are other methods of
structural analysis using LiDAR, such as area-based methods, which quantify forest structure within
discrete unitsthat usually represent field plots orraster cells (Richardson and Moslak 2012). Area-based
methods, however, oftenrequire costly and time-consuming complementary field data, are incapable of
capturingfine-scale heterogeneity (i.e. the distribution of single trees), and have lower accuracy than ITD
approaches (Richardson and Moslak 2012, Breidenbach 2010, Kaartinen etal. 2012).

Identification of the locations of individual trees is critical for assessing forest spatial pattern (i.e. the
arrangement of individual trees relative to one another). In the past, reference models for restoration
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have included composition and structure but not spatial pattern, but today there is increasing recognition
of the importance of including spatial patternin these models, due to e merging ideasabout links between
pattern and ecosystem process (e.g. Churchill etal. 2015, Sanchez Maedor etal. 2011, Abellaand Denton
2009, Lydersenetal. 2013, Fry et al. 2014). Intact forests exhibit structural heterogeneity across multiple
spatial scales; this heterogeneity depends upon pattern and process feedbacks, in which climate and
disturbance effects are both reflected in and affected by current forest conditions (Larson and Churchill
2012, North etal. 2009, Hessburget al. 2015). For example, the spacing of treesand canopy openings in
fire-adapted forests reflects resource availability and the local historic fire regime; in turn, patterns of
trees and canopy openings affect resilience to future wildfires and pest outbreaks, as well as water and
carbon cycling rates and the population dynamics of dominanttree species (Kane etal. 2015, Larson and
Churchill 2012, North etal. 2009, 2012, Lydersenetal. 2014, Sanchez Maedoret al. 2011).

Because overstory spatial pattern varies among forest standsacross landscapes, itisnecessary to describe
pattern across the range of forest stands within a landscape (North et al. 2009). As aspect and slope
position change, so do significant controlson forest structure, including substrate characteristics (e.g. soil
depth, drainage, and erosion rates), disturbance histories (e.g. fire severity, time since last fire), and
climaticwaterbalance (e.g. actual evapotranspiration, water deficit) (Dobrowski2011, Meyer et al. 2007b,
Milodowski etal.2014, Kane etal. 2013). Numerous studies relating forest structure to local physiography
have been published to date (e.g. Taylorand Skinner 2003, Hessburgetal. 2007, Underwood et al. 2010,
Lydersen and North 2012, Kane et al. 2015); however, variation in forest structure and spatial pattem
across an extensive, modern reference landscape has not been quantified. Understanding how forest
structure and spatial pattern varies across reference landscapes will allow managers to tailor restoration
treatments to specificlandforms within their project areas (North etal. 2009, 2012).

Managers and scientists alike acknowledge the needfor structural reference models to inform restoration
activities in degraded, fire-dependent landscapes of western North America (North et al. 2009, 2012,
Hessburg et al. 2015, Franklin and Johnson 2012). Limited spatial coverage precludes the ability of field
data to capture landscape-scale structural variation, and LiDAR area-based methods fail to describe fine-
scale heterogeneity; LiDARITD approaches have the greatest potential to characterize structural variation
at multiple spatial scales in management-relevant terms. While mid- and under-story trees are the
primary source of ITD errors, reported detection rates for dominant trees are very high for a range of
forest conditions (Vauhkonen et al. 2012, Kaartinen et al. 2012, Falkowski et al. 2008) . Richardson and
Moskal (2011) produced accurate, unbiased density estimates of trees greater than 20 m tall using ITD.
These studies suggest that excluding trees below a specific height could significantly improve ITD-based
characterizations of overstory structure and spatial pattern, and highlight the need to formallyinvestigate
the effect of minimum height cutoffs on the accuracy of structure and spatial pattern estimates. In order
to maximize the accessibility of the approach, | used FUSION’s TreeSeg tool to detect individual trees;
FUSION is a free, commonly-used,and widely-available software package for LiDAR processing developed
by the USDA Forest Service. My specificresearch objectives were to:

1) Determine arecommended minimum tree height cutoff for using TreeSegto describe forest
structure over extensive areas by removing incrementally taller trees from comparisons of



LiDAR-detected and field-measured tree distributions. Specifically, | assessed how varying the
minimum tree height cutoff affects the accuracy of LiDAR (using FUSION’s TreeSeg tool) to
characterize number of trees; spatial tree density maps (at three resolutions); and estimates of
forest structure and spatial pattern.

2) Testthe ability of LIDAR-detected trees above the recommended minimum height cutoff to
capture structural variation across forested landscapesin orderto build reliable, large -scale
reference models. Specifically, | quantified structure and spatial pattern using LiDAR trees above
the recommended height cutoff within six distinct landforms (canyons, ridges, steep and shallow
northerly slopes, and steep and shallow southerly slopes) and tested for statistical differences
using multivariate and univariate analyses.

Methods

Study Area

This study was conducted inthe Parque Nacional Sierrade San Pedro Martir (SSPM) of Baja, Mexico (Fig.
1), whichis considered to be the most extensive remaining reference areaforfire-adapted dry forests of
western North America (Fry etal. 2014, Dunbar-Irwin and Safford 2016). Limited logging has occurred and
although fire suppression beganinthemid-1970s, this landscape has yet to exhibit the structural changes
evidentin mostotherfrequent-fireforestsof North America, probably because tree growth and mortality
rates are low (Dunbar-Irwin and Safford 2016, Stephens and Fry 2008). In particular, the park has been
proposed asasuitablereference areaforforestsof the easternSierra Nevada because of their high degree
of similarity (Minnich etal. 2000, Stephensand Fule 2005, Dunbar-Irwin and Safford 2016). In the SSPM,
Jeffrey pine (Pinus jeffreyi) is the dominant coniferand occurs in monocultures and with white fir (Abies
concolor) and sugar pine (Pinus lambertiana); other less common associates include incense cedar
(Calocedrus decurrens) and lodgepole pine (Pinus contorta) (Minnich 2000). Jeffrey pineis closely related
to ponderosapine, and replacesitindrier, colder, and/or pedologically challenging situations (Safford and
Stevens, in press). Soilsare predominantly granitic, and climateis Mediterraneanwithsummer monsoonal
influences; ecologically significant climate trends (e.g. mean minimum temperature in January, mean
maximum temperatureinJuly, average total precipitation)in the SSPMhave historically fallen within the
range of variation observedinthe eastern Sierra Nevada (Dunbar-Irwin and Safford 2016). The reference
fire regime inthe SSPMis also very similarto that described for the yellow pineand mixed conifer forests
in California, with amedian fire return interval of about 15 years (Stephens etal. 2003), comparedto 7-
12 years in California (van de Waterand Safford 2011); in both regions, intact fire regimes typically exert
low and moderate severity fire effects are usually observed when f (Rivera et al. 2016).

Objective 1 — Determining a Recommended Minimum Tree-height Cutoff

Identifying Tree Locations

Field Data: Tree diameter, height,and location (UTM coordinates)datawere measured in the field by Fry
and others (2014) using state-of-the art stem mapping techniques on two 4-ha plots located within the
SSPM LiDAR acquisition (Fig. 1). These precise, high-resolution datasets capture actual conditions and
were used as the standard for accuracy assessments of LiDAR-based structural analyses.



LiDAR Data: E W Wells Group, LLC collected discrete point-return LiDAR data over 6,440 hectaresinthe
SSPM on November 28™, 2015 (acquisition boundary shown in Figure 1), using a Leica ALS80 system
mounted on a Cessna 208B Caravan flying at 1800m altitude. The Leica ALS80system emitted 8 pulses/m?,
with an ability to receive unlimited return pulses; the acquisition achieved an average of 14.82first retums
and 3.34 ground returns per m2.

To determine individual tree locations, a tree segmentation process was run on a canopy height model
(continuous raster of the top layer of vegetation derived from the SSPM LiDAR point cloud) using FUSION'S
TreeSegtool (data processing performed by Dr. Van Kane).TreeSeg delineates distinct vegetation features
from the canopy height model and applies a watershed segmentation algorithm to identify the highest
point of each vegetation feature; high points are theninterpreted as individual trees (McGaughey 2016).
TreeSegis a free, widely-available tool in FUSION’s software package and the watershed segmentation
processiscommonly usedinlITD studies (Jeronimo2015). Forall trees detectedby TreeSeg, | used location
and height data to predict individual tree diameters. Predictions were based on a randomForest model
(pseudo-R?=83.7%) built with diameter, height, and location data from more than 3,000 field-measured
treeslocated across the study area (Liaw and Weiner2002).

Comparing Number of Remaining Trees, Spatial Maps, and Estimates of Structure and Spatial
Pattern

After extracting LiDAR-detected trees from within the Fry (field-measured) plots, | removed trees lessthan
6m,9m, 12 m, 15 m, and 18 m tall (i.e. increased minimum height cutoff of trees used in analyses) from
both field and LiDAR datasets. | compared the number of trees remaining, spatial tree density maps, and
structural estimates between these five pairs of datasets, with the expectation that agreement between
field and LiDAR data would improve as minimum height cutoff increased. There were onlytwo field sites;
theridge plot, on metamorphicsoils, supported nearly twice as many trees as the shallow southe rly (SHS)
plot. This extreme difference in stand density precluded a meaningful statistical comparison of the two
and as aresult, | analyzed the Fry plots separately.

Number of Remaining Trees: Because most understory trees will not be identified by TreeSeg or other
ITDs, we expect there to be fewer LiDAR-detected than field-measured trees within a given area (in this
case, the 4-ha Fry plots). Although increasing the minimum height cutoff will reduce the number of trees
remainingin both datasets, the extent of this reduction is probablydifferent for LiDAR and field tree lists,
and for low- and high-density stands. | tallied the number of field-measured and LiDAR-detected trees
remainingin datasets and the differences betweenthemastreesin lower height classes wereremoved.

Spatial Tree Density Maps: | converted point pattern maps made usingfield and LiDAR tree location data
into pairs of pointdensity rasters such that the value of each pixel corresponded to the number of trees
located within. | used the vegan package in R to apply partial Mantel tests to dissimilarity matrices
guantifying (Euclidean) pairwise distances between all pixel pairs in each raster. Partial Mantel tests
employ athird dissimilarity matrix of Euclidean pairwise distances between pixel coordinates; this matrix
controlsfor potential effects of spatial autocorrelation, animportant consideration when comparing two
maps of the same geographical area. For the tests, field- and LiDAR-based matrices were separately
regressed against the Euclidean distance matrix and the Mantel test score was calculated as the
correlation between residuals of the two regressions. Partial Mantel tests were repeated for all five field
and LiDAR pairsof 6 m,9 m, 12 m, 15 m, and 18 m tree datasets.




In addition to assessing the relationship between height and spatial correlation, | investigated the effect
of scale on agreementinthe location and number of trees between the two data sources by comparing
partial Mantel scores at different levels of pixel aggregation (i.e. area on the ground). Very fine spatial
scaleswere not assessed because alack of vertical alighment between tree bases (coordinates measured
at ground-level in the field) and crowns (coordinates measured by LiDAR from above) and spatial
measurement error of each leads us to expect that LiDAR-detected and field measured trees will often be
located 2m or more apart (Vauhkonenetal. 2012). Althoughincreasingthe spatial grain should improve
partial Mantel correlations, areas larger than the average size of tree clumps in Fry plots (48.6 to 316.2
m?; Fry etal. 2014) lack managementrelevance and were excluded from this analysis.

Estimates of Forest Structure and Spatial Pattern: For all field-and LIiDAR minimum height datasets, |
generated estimates of five stand-level structure variables and 23 spatial pattern variables. By graphing
the difference in estimates, | was able to visually assess the effect of minimumtree height on the accuracy
of LiDAR-based forest structure estimates.

Stand-level structure variables were calculated using all trees in each minimum height dataset and
included basal area (BA; summedarea of all tree cross-sections) per hectare, number of trees per hectare
(TPH), average tree diameter, average tree height, and mean clump size (MCS) (average number of trees
per clump). To assess spatial pattern, | identified tree clumps using Plotkin’s (2002) algorithm, which
assignstrees within a defined distance of each other (i.e. inter-tree distance) to the same clump. Clump
size classes (CSC’s) were defined as individual trees(trees lackingneighbors withinthe inter-tree distance),
small clumps (2-4 trees), medium clumps (5-9 trees), and large clumps (10 or more trees). The average
crown radius of mature ponderosa pine in western North America is 3 m; given the similarities among
SSPM forests and those of western North America, | selected 6 m as the constant inter-tree distance
(Lydersen et al. 2013; Churchill et al. 2015; Clyatt et al. 2015). Clumping analyses were carried outin R,
using spatstat (Baddeleyetal. 2015) and sp (Pebesma and Bivand 2005) packages. The variables analyzed
for each CSC were basal area (BA) perhectare, BA perclump, tree density (number of trees per hectare),
number of clumps perhectare (except forindividual trees); average diameter; and average height.

Objective 2 — Testing the Ability of LIDAR-Detected Trees Above a Minimum Height
to Capture Structural Variation

Landform Characterization

Using the Land Management Unit tool (North et al. 2012), | divided the study area into six landforms:
canyons, ridges, northerly and southerly slopes >30% steepness, and northerly and southerlyslopes <30%
steepness (Table 1; Figure 1). The 30% criterion was used because slopes steeper than this are often
subject to higher severity fires than shallow slopes and are liable to be structurally distinct; in addition,
thinning and other management activities are limited on steep slopes (North et al. 2012).

For four of the six landforms (ridges, canyons, and shallow northerly and southerly slopes), | extracted
contiguous areas greaterthan 10hain size. Toaccommodate processing limitations, | manually converted
these areas into polygons with smooth boundaries up to 90 hain size (Table 1; Figure 1). The othertwo
landforms (steepnortherly and southerly slopes) each comprise lessthan 5% of the study landscape; due
to limited representation, the minimum size for polygons of these landforms was reduced to 4ha.



Within each polygon, | used LiDAR-detected trees above the recommended height cutoff to calculate 5
stand-level averageand 23 spatial pattern variables (methods described above). In addition to multi- and
uni-variate statistical tests of differences among landforms, | constructed side-by-side boxplots depicting
variation in the distributions of variable estimates according to landform and produced tables reporting
the interquartilerange and means of all variables for each landform.

Multivariate Analyses

| assessed structural differences among landforms using non-metric multidimensional scaling (NMDS)
(McCune and Grace 2002). For this study, landforms were analogous to community types, sample areas
were analogous to sites, and the 28 structure variables were analogous to speciesin community ecology
studies, where NMDS is most commonly employed. | used the metaMDS function in the vegan package
(Oksanenetal. 2016) inR to carry out the ordination with jaccard as the distance measure, 500 random
starts, and a maximum of 200 iterations, then calculated and plotted the mean and the standard error of
the axis scores for each landform. In ordination plots, structurally similar landforms are clustered while
dissimilarlandforms are separated (McCune and Grace 2002).

To testfor significant differences amonglandforms based on all variables, | used the vegan package inR
to conduct a multi-response permutation procedure (MRPP) to compare variation within and among
groups (groups = landforms, weighted by sample size), using a city-block distance matrix to calculate the
weighted-mean within-group distance (8). The test randomly assigned observations to groups over 999
Monte Carlo permutations, calculatinganew 6 and comparingitto the observed 6 for each permutation.
Among-group differences are statistically significant if the observed 6 is lower than 6s of randomly
permuted groups. The MRPP test statistic A describes within-group homogeneity; a score of 1 indicates
all observationsingroups are the same, while a score of 0 indicates perfect heterogeneity within groups
(McCune and Grace, 2002).

Univariate Comparisons

Data were unbalanced, contained a mix of normal and non-normal distributions, and variances among
variables and groups of variables were unequal. | performed Dunnett’s modified Tukey-Kramer multiple
pairwise comparisons (DTK package in R ((Lau 2013)) on all variables. These pairwise comparisons
calculate confidence intervals for the difference between ranked means of all 15 landform pairs; if
confidence intervals did not contain 0, landform pairs were considered to be significantly different.

Results

Objective 1 — Determining a Recommended Minimum Tree Height Cutoff

Number of Remaining Trees: When no tree-height cutoff was applied, TreeSeg detected only 36% of the
trees on the ridge plot. In contrast, TreeSeg detected 72% of field-measured trees on the shallow
southerly (SHS) plot where tree density was much lower (757 vs. 1486 trees, respectively) (Table 2, Fig.
2).

In the denser ridge plot, increasing the minimum height cutoff by 3 m increments up to 15 m strongly
reduced the difference in number of field-measured and LiDAR-detected trees (963 vs. 29, Table 2); at
this height cutoff, the number of LiDAR-detected trees was 91% of the number of field-measured trees
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(Fig. 2). On the SHS plot, there was a similar trend through the 12 m height cut off, where the difference
in tree numbers was reduced from 211 to 14 and the number of LiDAR-detected trees was 97% of the
number of field-measured trees (Table 2, Figure 2).

Spatial Tree Density Maps: Regardlessof minimum tree-height cutoff, there was low agreement between
field and LiDAR density maps at the smallest spatial scale considered (9.77 m?; 3.125 x 3.125 m);
correlations coefficients were lower on the SHS than the ridge plot (< 0.06 and 0.23, respectively)
(Supplementary Appendix Fig. 1; p-value forall correlations =0.001). Aggregating pixelsinto largerareas
increased correlation scores on both plots (Supplementary Appendix Fig. 1). In 6.25 by 6.25 m areas
(39.0625 m?), correlation of local tree density estimates increased to almost 0.3 (fortrees> 15 m tall) on
the SHS plotand to justover 0.45 (fortrees>11 m) on the ridge plot; in 12.5 by 12.5 m areas (156.25 m?),
correlations reached 0.57 (trees> 15 m) on the SHS plot and 0.62 (trees > 14 m) on the ridge plot.
Correlation coefficients did notincrease when the height cutoff increasedfrom 15 to 18 m on either plot.

Estimates of Forest Structure and Spatial Pattern: Increasing the minimum height cutoff reduced
differences between LiDAR-and field-based estimates of spatial pattern (Fig. 3) and of stand-level forest
structure in particular (Fig. 4). Estimate discrepanciesremained large forthe 6and 9 m height cutoffs and
were generally much smaller for the low-density (SHS) than the high-density (ridge) plot (Fig.'s 3and 4).

The 18 m height cutoff minimized the differences between LiDAR-and field-based estimates of tree
density, mean clumpsize, and BA per hectare estimates on both plots (Fig. 4). However, no large clumps
were identified using LiDAR or field data on either plot atthe 18 m cutoff; large clumps were also absent
from LiDAR datasets at the 15 m cutoff, which negatively affected the accuracy of large clump metrics
(Fig. 3).

For some metrics, the 12 m height cutoff was most accurate, while for others, the 15 m cutoff was
superior. Inaddition, the direction and magnitude of estimate differences at 12 and 15 m height cutoffs
varied between plots (Fig. 3). For example, on the ridge plot, small clump density was slightly
overestimated at the 12 m cutoff but was underestimated to a larger degree at 15 m (0.6 and -2.6
clumps/ha, respectively) (Fig. 3a). In contrast, increasing the cutoff from 12 to 15 m on the SHS plot
changed the estimate difference from 2 to -0.6 small clumps/ha (Fig. 3a). Similar trends are evident for
estimates of the number of trees per hectare in each CSC; however, the density of individual trees was
overestimated and the average diameter and height of individuals was underestimated on both plots at
both height cutoffs (Fig. 3b, Supplementary AppendixFig. 2a, 2b). Although the difference in estimates of
BA/ha of each CSC were slightly lower at the 15 than the 12 m cutoff, BA per large clump (Fig. 3d) and
average diameterand height of treesinlarge clumps (Supplementary Appendix Fig. 2) forthe 15 m cutoff
were strongly underestimated relative to the 12 m datasets.

Estimate differences for nearly all structure and spatial variableson the SHS plot were minimally affected
by increasing the height cutoff from 12to 15 m, and at the 15 m cutoff, plot-level tree density on the SHS
plot was overestimated. Multiple lines of evidence suggest that a 12 m height cutoff is appropriate for
using LiDAR and ITD to characterize forest structure and spatial pattern in low-density, open-canopyforest
types such as those of the Fry SHS plots. For these reasons, | selected 12 m height cutoff in the
characterization of structural conditions across the referencelandscape.



Objective 2 — Testing the Ability of LiDAR-Detected Trees Above a Minimum Height
to Capture Structural Variation

Multivariate Analyses

Considering all variables simultaneously for trees > 12 m tall, there was significant variation among
landforms (A = 0.15; observed & = 76.07, less than the expected 6 of 89.04; p-value =0.001). Canyons,
shallow northerly slopes, and shallow southerly slopes clustered together. While not nearly as close
together, steep southerly slopes and ridges were separated along Axis 1from the otherlandforms, while
Steep northerly slopes were in between clusters of the otherlandforms (Fig. 5).

Univariate Analyses

Variables describing large clumps were not significantly different between any landform pairs (data not
shown). The number of medium clumps and number of trees in medium clumps was slightly but
significantly lower on steep and shallow southerly slopes than on steep northerly slopes, however, these
and other medium clump variables were generally not statistically different between landforms. Mean
clump size was only significantly different between steep northerly and steep southerly slopes (~ 0.42
more trees perclump on steep northerly than southerly slopes) (Table 3).

In contrast, the remaining structure and spatial pattern variables were usually significantly different
between atleastfour (out of 15 total) landform pairs (Table 3). There were fewertrees and clumps, and
the trees were smaller on steepsoutherly slopesand ridges than on the otherfourlandforms (Fig.’s6and
7). Structure and spatial patternvariables were generally not different among canyons, shallow northerly
slopes, and shallow southerly slopes, orbetween ridges and steep southerly slopes. Forexample, BA/ha
of all trees pooled was 8.7 m? higher on canyons and shallow northerly slopes, 6 m? higher on steep
northerly slopes, and 7 m? higher on shallow southerly slopes than on steep southerly slopes. However,
BA/ha of all trees pooled was not statistically different between steep southerly slopes and ridges, or
among shallow slopes, canyons, and steep northerlyslopes (Table 3).

Structure on steep northerly slopes did not follow a regular pattern: in some cases, variable estimates
were statistically different from ridges and steep southerly slopes and not different from canyons and
shallow slopes, and in other cases the opposite was true. For example, the average height of individual
trees on steep northerly slopes was significantly lowerthan on canyons and shallow northerly slopes (by
2.4 and 2 m, respectively), was not different from shallow or steep southerly slopes, and was significantly
greaterthan onridges (by 2.3 m) (Table 3).

Discussion

My studyisone of the firstto quantify variationin forest structure across a modern reference landscape
at multiple spatial scales using widely-available methods. Despite LiDAR’s obviousbenefits, including high
resolution at multiple spatial scales, extensive spatial coverage, robust replication potential, and cost-
efficiency, managers and researchers have been reluctant to use it for structural characterizations of
complex, heterogeneous forests, because sub-dominant trees are rarely detected and there is low
confidencein ITD’s ability to approximate actual tree distributions (Kaartinen et al. 2012, Falkowski et al.
2008). However, my results bolster a growing body of literature supporting the reliability of ITD-based
stand-level structure and spatial pattern estimates when minimum height cutoffs are applied (Jeronimo
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2015, Richardson and Moslak 2012). By applying minimum height cutoffs to LiDAR-detected trees, |
captured fine-scale heterogeneity and accurately identified tree clumps of different sizes, structures that
can be linked to forest resiliency and the integrity of ecological processes (Larson and Churchill 2012,
Lydersen et al. 2013, Fry et al. 2014). In contrast to other LiDAR-based analyses, my approach provides
explicit descriptions of overstory tree arrangements and directly applies to the development of
management prescriptions (Kaartinen etal. 2012, Li etal. 2012). In addition, this method avoided biases
(e.g. limited spatial extent, lack of representation, low replication) of the field-based historic stand
reconstructions that are increasingly used for reference model construction (Stephens et al. 2015, Kane
etal.2014). Finally, myresultsindicate that considering landscape context is essential inthe development
of reference models for forest management and restoration, and that LiDAR can meet these needs if
inherent weaknesses are addressed.

ITD inaccuracies are well-documented and can be split into omission (failure to detect trees that are
actually present) and commission (detecting trees that are not actually present) errors (Breidenbach
2010). Omission rates increase significantly with relative tree height, canopy cover, stand density, and
tree clustering, and are often greater than commission error rates; in contrast, false tree detections
usually occur in low-density, open-canopy stands where older trees develop complex crown shapes with
several high points(Jeronimo 2015, Falkowskiet al. 2008, Vauhkonen et al. 2012). For example, Falskowski
et al. (2008) reported very low omission rates (4 — 8%) but increased commissionrates (12 — 17%) in
forests with low canopy cover (0 — 25%) relative to those with closed canopies. The same authors also
found that excluding sub-dominant trees from assessments of ITD accuracy reduces omission but
increases commission errors.

Inthis study, omission rates declined as the minimum height cutoffincreased,and the effect was stronger
on the ridge than on the SHS plot. Commission error was evident on the SHS plot once the height cutoff
exceeded 12 m; there were more LiDAR-detected than field-measured trees for 15 and 18 m cutoffs. For
thislow-density SHS plot, a 12 m height cutoff reduced omission errors while capturing more medium and
large clumps than the 15 m dataset; in addition, estimate differences were not strongly affected by
increasingminimum tree height from 12 to 15 m. The ridge and SHS plots varied starkly in terms of stand
density but canopy cover was not significantly different (Fry et al. 2014) and a large body of research
indicates that ITD will always perform poorlyin closed-canopy stands (Falkowski et al. 2008, Vauhkonen
et al. 2012). The 15 m cutoff may be more appropriate in higher density stands, however, it should be
applied cautiously with the understanding that medium and large clump frequencies may be significantly
underestimated and that successis unlikelyinforests with high canopy cover.

Along with density effects, the accuracy of stand-level versus spatial pattern and spatial tree density
estimates varied with minimum height cutoff. Stand-level estimates of tree density, size, and basal area
were most accurate fortrees greater than 18 m tall. Richardson and Moskal (2011) also produced reliable
density estimates for trees greater than 20 m tall using LiDAR and ITD. Increasing the height cutoff
improved agreement between field and LiDAR tree density spatial maps up to a point; however, the
effects of spatial scale were considerably stronger than those of minimum tree height, and the
correlations did notimprove whenthe height cutoffexceeded 15 m. It was surprising to find higher partial
Mantel correlations on the high-density ridge than the SHS plot. One possible explanation is that
differencesintree density were large but concentrated within few, relativelysmallareas on the ridge plot,
but were widespread and frequent on the low-density SHS plot, leading to common and consistent
disagreementsinlocal tree density.



The 18 m height cutoff was betterforstand-level characterizations, however, it was unable to accurately
describe spatial pattern, becauseiteliminated large clumpsfrom field and LiDAR datasets; s patial pattern
estimates for the 12 and 15 m cutoffs were clearly more accurate. However, omission errors limited
LiDAR's ability to produce reliable estimates of small, medium, and large clumps at all height cutoffs on
both plots. Even when datasets were trimmed and smaller tree size classes were removed, tall trees
growing underneath the dominant canopy were captured in field stem maps but not by the TreeSeg
algorithm. Onthe ridge plot, treesin smalland medium clumps were misclassified as individuals, inflating
LiDAR-derived estimates of individual tree BA/ha, as well as the number of individual trees. Similarly,
LiDAR overestimated the frequency (and consequently, BA/ha) of small clumps on the SHS plot because
understory trees of medium and large clumps measuredinthe field were not detected. Since the size of
many trees misclassified as individuals was actually constrained by close neighbors and clump
membership, the average diameterand height of individual trees was underestimated on both plots.

Despite these shortcomings, | found strong evidence that LIDAR, with an appropriate tree-height cut off
(in this case 12 m), can be used to accurately assess structural variation across the SSPM, a reference
landscape dominated by open-canopy forest types. Average canopy coverin my reference landscape was
25.3%, on the thresholdfor minimum omission ratesobservedby Falkowskietal. (2008). Canyons, shallow
northerly slopes, and shallow southerly slopes appeared structurally similarto one another, as did steep
southerly slopes and ridges; in contrast, steep northerly slopes exhibit structural distinctions. These
findings were corroborated by the univariate analyses, which detected significantly fewer, smaller trees
and clumps onsteep southerly slopes and ridges than on the otherfourlandforms. Previous studies inthe
Sierra Nevada and Klamath Mountains of the western US also have found that stand density, canopy
cover, and basal area tends to be greatest in canyons and lowest on ridges (Taylor and Skinner 2003;
Lydersen and North 2012; Underwood et al. 2010).

Variation among landforms can be attributed to topographical control over forest structure (and fire
regimes) in mountainous regions. Slope position, aspect, and steepness interact with climate to create
moisture and temperature gradients that significantly affect vegetation and fire behavior (Perry et al.
2011, Dillonetal.2011). In mountainous landscapes, topography also controls the fine-scale distribution
and combustibility of fuels; for example, ridges and steep slopes tend to have higherfire intensities, lower
moisture availability, and shallower soils than other landforms (Beaty and Taylor 2001, Urban et al. 2000).
Northerly aspects are more prone to high-severity fires because they support large fuel loadings, while
southerly aspects are more exposed to radiation and heat, which are associated with high fuel drying
rates, longerfire seasons, andincreased fire likelihoods (Holden et al. 2009, Dillon etal. 2011, Millerand
Urban 2000).

In the SSPM, structure and spatial pattern on shallow northerly and southerly slopes was not significantly
different. This region is drier than the western Sierra Nevada and the Klamath mountains, which may
dampen the usual effect of slope aspect such that water balance, vegetation, and disturbance history is
similaronshallow slopes of all aspects. However, on steep slopes, aspect does appearto be a significant
driverof structural variation. Forexample, median BA/haand TPH on steep northerly slopeswas 13.7 m?
and 56.3, comparedto 7.9m? and 36.6 on steep southerly slopes, respectively (Supplementary Appendix).

In addition to conforming to previous assessments of structural variation by landform, my findings are
also consistent with thosefrom other characterizations of reference conditionsin yellow pine and mixed-
conifer forests of western North America. In my LiDAR estimates, average TPH and BA/ha across all
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landforms was 48 and 13.2 m?, respectively (Supplementary Appendix). Alsoin SSPM, Stephens and Gill
(2005) measured 145 TPH and 20 m%/ha BA ina locally intensive field-sampled dataset (all trees >2.5cm
dbh), and Dunbar-Irwin and Safford (2016) measured 187 TPHand 22.5 m?/hain aspatially extensive field-
sampled dataset (all trees>7.5cm dbh). Ina review of the natural range of variation (NRV) in yellow pine
and mixed conifer forests in the mountains of eastern California (southern Cascades, Modoc Plateau,
Sierra Nevada, White and Inyo Mountains), Safford and Stevens (in press) report an overall reference
average of 159 TPH (range of means from many studies for trees >10 cm dbh = 60-328), and an overall
reference average BA/ha of 35 m? (range 20-54); reference data were from early settlement estimates,
reference landscapes with intact fire regimes, and stand reconstructions. From the southwestern US,
Stoddard (2011) reportsa reference average BA/haof 16 m?, and Reynolds and others (2013) write that
historic TPH was 30-315 and 53-251 in ponderosa pine and mixed-conifer forests, respectively. Overall,
my SSPM estimates fall below the lower range of estimates from both SSPM itself and the largerregion.
This is due to the exclusion of trees below 12 m height and underlines the challenges of using LiDAR to
estimate standard forest structural conditions like TPHand BA, evenin relatively sparse canopy stands.

Management Implications

Characterizing forest structure and spatial patternin reference ecosystems for distinct landforms allows
managers to tailor their restoration prescriptions according to the physical location of project areas.
Restoring site-specific structure and spatial heterogeneity may increase landscape resiliency by re-
establishing feedbacks betweendisturbance and vegetation dynamics and other self-regulating processes
that may have been broken down by long histories of logging and fire-suppression (Larson and Churchill
2012; Parks et al. 2015). Landform classes used inthis study successfully divided the SSPMinto like units
that were structurally distinct, indicating that this strategyis aviable framework for management. A digital
elevation model is the only requirement for using the Landscape Management Tool to separate
landscapesintolandform classes; in addition, FUSION’s TreeSeg tool is widely available and this strategy
can be adopted by managers everywhere.

If managers are interested in using LiDAR and TreeSeg to describe current or reference structural
conditions, increasing the minimum height cutoff of LiDAR tree datasets can generate reasonable
estimates of overstory spatial pattern and forest structure. Most above-ground biomass in forests is
generally contained in dominant, overstory trees; large trees are also significant forest carbon sinks and
are crucial habitat components for a range of wildlife species (Jeronimo 2015). The arrangement of
overstory trees may be asignificant component of spatial heterogeneity in forested landscapes, and using
trees> 12 m tall, | was able to accurately describe thatarrangementand how it varies across landforms.
However, LiDAR-detected treeswill always underestimate the frequency of small, medium, and large tree
clumps. This limitation will be more pronounced in high-density stands and, therefore, my approach is
most suitable foruse in open-canopy, low-density forest types.

This research emphasizes the need for understanding structural variation at multiple spatial scales.
Landforms are structurally distinct and applying reference information from forests of one landformto
forests of anotheris unlikelyto achieve management goals. In addition, stand-level averagesare incapable
of describing structural heterogeneity and theirusein reference modelsshould be avoided. The approach
developed here overcomesmany important limitations of forest reference models and the resu lts may be
usedtoinformrestorationin dry fire-dependent forestsof western North America and similar forest types
across the globe.
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Tables

Canyon |Shallow M |Steep N |Ridge |Shallow §|Steep S
n 18 28 21 20 30 20
Mean Area (ha)| 39 43 11 20 38 13
Total Area (ha) 709 1136 226 508 1352 255

Table 1. Number of sampleareas (polygons), average size of sampleareas, and the total area sampledin
each landform. N stands for northerly, and S stands for southerly; shallow refers to slopes less than or
equal to 30%, and steep refers to slopes greater than 30%.

Mumber of Mumber of Difference in
Dataset Field Trees | LiDAR Trees Ntfmber of
(Percent of | (Percent of Field and
Total) Total) LIDAR Trees
Ridge
All Trees 1486 (100%) | 523 (100%) 963
Trees = 6m 931 (63%) | 476 (91%) 455
Trees = 9m 680 (46%) | 436 (83%) 244
Trees » 12m 481 (32%) | 384 (73%) 97
Trees = 15m 318 (21%) | 289 (55%) 29
Trees » 18m 213 (14%) | 150 (36%) 23
Shallow Southerly
All Trees 757 (100%) | 546 (100%) 211
Trees = 6m 574 (76%) | 470 (36%) 104
Trees > 9m 493 (65%) | 431(79%) 62
Trees » 12m 407 (54%) | 393 (72%) 14
Trees = 15m 345 (46%) | 360 (66%) -15
Trees = 18m 268 (35%) | 302 (55%) -34

Table 2. Change in number (and percent) of trees infieldand LiDAR datasets, and the difference in number of
trees between field and LiDAR datasets, as trees below specific height cutoffs areremoved. For example,
refer to the bottom row of the ridge table, which summarizes the number of trees remaininginfieldand
LiDAR datasets when trees less than 18m tall were excluded. 14% (213) of trees remaininthe field dataset
compared to 36% (190) of trees remaininginthe LiDAR dataset; at the 18m height cutoff, there were 23
more trees inthe field datasetthan the LiDAR dataset.




Table 3. a) DTK pairwisecomparisons of basal area per hectarevariables.

BA/ha of Individual Trees| BA/ha of Small Clumps | BA/ha of Medium Clumps | BA/ha (All Trees Pooled)

Significant?| Difference |Significant?| Difference | Significant? | Difference | Significant? |Difference
Shallow Mortherly - Canyon N 0.2 N 0.0 N 0.0 N 0.0
Steep Northerly - Canyon Y -2.3 N -0.4 N 0.2 N -2.6
Ridge - Canyon Y -3.9 Y -2.2 N -0.4 Y -6.6
Shallow Southerly - Canyon N -0.7 N -0.4 N -0.3 N -1.7
Steep Southerly - Canyon Y -4.6 Y -3.1 Y -0.7 Y -8.7
Steep Northerly - Shallow Northerly Y -2.5 N -0.4 N 0.2 N -2.7
Ridge - Shallow Northerly Y -4.1 Y -2.2 M -0.3 Y -6.6
Shallow Southerly - Shallow Mortherly] N -0.9 N -0.5 N -0.3 N -1.7
Steep Southerly - Shallow Northerly Y -1.8 Y -3.1 Y -0.7 Y -8.7
Ridge - Steep Northerly Y -1.6 Y -1.8 N -0.5 Y -3.9
Shallow Southerly - Steep Northerly Y 1.6 N 0.0 N -0.5 N 1.0
Steep Southerly - Steep Northerly Y -2.3 Y -2.7 Y -0.8 Y -6.0
Shallow Southerly - Ridge Y 3.2 Y 1.8 N 0.0 Y 4.9
Steep Southerly - Ridge N -0.7 N -0.9 N -0.3 N -2.1
Steep Southerly - Shallow Southerly Y -3.9 Y -2.7 Y -0.4 Y -7.0

Table 3. b) DTK pairwisecomparisonsofbasal area per clump variables.

Avg. BA of Indivduals | Avg. BA of Small Clumps|Avg. BA of Medium Clumps
Significant?| Difference |Significant?| Difference | Significant? | Difference
Shallow Northerly - Canyon N 0.01 N 0.05 N 0.00
Steep Northerly - Canyon Y -0.05 N -0.07 M -0.29
Ridge - Canyon Y -0.08 Y -0.14 Y -0.37
Shallow Southerly - Canyon N 0.00 N 0.04 M -0.07
Steep Southerly - Canyon Y -0.08 Y -0.13 N -0.36
Steep Northerly - Shallow Nartherly Y -0.06 Y -0.12 M -0.29
Ridge - Shallow Northerly Y -0.09 Y -0.19 Y -0.37
Shallow Southerly - Shallow Northerly] N -0.01 N -0.01 M -0.07
Steep Southerly - Shallow Nartherly Y -0.09 Y -0.18 Y -0.37
Ridge - Steep Mortherly N -0.03 N -0.07 M -0.09
Shallow Southerly - Steep Northerly Y 0.05 M 0.11 N 0.22
Steep Southerly - Steep Mortherly N -0.02 N -0.07 M -0.08
Shallow Southerly - Ridge Y 0.08 Y 0.18 Y 0.30
Steep Southerly - Ridge N 0.01 N 0.01 M 0.01
Steep Southerly - Shallow Southerly Y -0.07 Y -0.17 N -0.30
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Table 3 - continued. c) DTK pairwisecomparisons of tree density variables.

#Individual Trees/ha |# Trees in Small Clumps/ha|# Trees in Medium Clumps/hal# Trees/ha (all Trees Pooled)
Significant?| Difference| Significant? | Difference | Significant? Difference Significant? | Difference
Shallow Northerly - Canyon N -0.5 M -1.9 M -0.5 N -3.5
Steep Northerly - Canyon N -2.8 N 1.3 N 1.0 N -1.0
Ridge - Canyon Y -7.0 N -4.4 N -1.0 N -12.9
Shallow Southerly - Canyon N -2.0 N -2.9 N -1.4 N -7.1
Steep Southerly - Canyon Y -10.4 Y -8.5 N -2.3 Y -22.3
Steep Northerly - Shallow Mortherly N -2.3 N 3.3 N 1.5 N 2.4
Ridge - Shallow Mortherly Y -6.5 N -2.5 N -0.5 N -9.5
Shallow Southerly - Shallow Northerly| N -1.5 N -1.0 N -0.8 N -3.6
Steep Southerly - Shallow Nartherly Y -10.0 Y -6.6 M -1.8 Y -18.9
Ridge - Steep Northerly M -4.2 Y -5.8 M -2.0 Y -11.9
Shallow Southerly - Steep Nartherly M 0.8 Y -4.2 Y -2.4 M -6.1
Steep Southerly - Steep Northerly Y -7.6 Y -9.8 Y -3.3 Y -21.3
Shallow Southerly - Ridge Y 5.0 M 1.5 M -0.4 N 5.8
Steep Southerly - Ridge N -3.4 N -4.1 N -1.3 N -9.4
Steep Southerly - Shallow Southerly Y -8.4 Y -5.6 N -1.0 Y -15.2
Table 3d. DTK pairwise comparisons of average diameter variables.
Avg. DBH (cm) of Avg. DBH{cm) of Trees | Avg. DBH (cm) of Trees |  Awvg. DBH (cm) of All
Individuals in Small Clumps in Medium Clumps Trees Pooled
Significant? |Difference| Significant? [Difference| Significant? |Difference| Significant? |Difference
Shallow Northerly - Canyon N 1.1 N 2.2 N 0.4 N 1.6
Steep Mortherly - Canyon Y -5.3 N -3.7 N -4.6 N -4.5
Ridge - Canyon Y -8.2 Y -5.9 N -5.6 Y -6.9
Shallow Southerly - Canyon N -0.2 N 1.8 N -0.3 N 0.8
Steep Southerly - Canyon Y -7.3 Y -5.3 N -4.5 Y -6.1
Steep Northerly - Shallow Northerly Y -6.4 Y -5.9 N -5.0 Y -6.1
Ridge - Shallow Northerly Y -9.2 Y -8.1 Y -5.9 Y -8.4
Shallow Southerly - Shallow Northerly] N -1.2 N -0.4 N -0.6 N -0.7
Steep Southerly - Shallow Northerly Y -8.4 Y -7.5 N -4.9 Y -7.7
Ridge - Steep Northerly N -2.8 N -2.2 N -0.9 N -2.3
Shallow Southerly - Steep Northerly Y 5.2 Y 5.5 N 1.4 Y 5.3
Steep Southerly - Steep Northerly N -1.9 N -1.6 N 0.1 N -1.6
Shallow Southerly - Ridge Y 8.0 Y 7.7 N 5.3 Y 1.7
Steep Southerly - Ridge N 0.9 N 0.6 N 1.0 N 0.3
Steep Southerly - Shallow Southerly Y -7.1 Y -7.1 N -1.2 Y -6.9
Table 3e. DTK pairwise comparisons of average height variables.
Avg. Ht. (m) of Avg. Ht. (m) of Trees in | Avg. Ht. (m) of Treesin | Av. Ht. (m) of All Trees
Individuals Small Clumps Medium Clumps Pooled
Significant?|Difference] Significant? |Difference| Significant? |Difference| Significant? |Difference

Shallow Northerly - Canyon N -0.4 N 0.1 N -0.4 N -0.1
Steep Northerly - Canyon Y -2.4 N -1.7 Y -1.8 Y -2.0
Ridge - Canyon Y -4.7 Y -3.8 Y -3.5 Y -4.2
Shallow Southerly - Canyon N -1.0 N -0.2 N -0.8 N -0.6
Steep Southerly - Canyon Y -3.6 Y -2.8 Y -2.4 Y -3.1
Steep Northerly - Shallow Northerly Y -2.0 Y -1.8 N -1.4 Y -1.9
Ridge - Shallow Northerly Y -4.3 Y -4.0 Y -3.1 Y -4.1
Shallow Southerly - Shallow Northerlyl N -0.6 N -0.3 N -0.3 N -0.5
Steep Southerly - Shallow Northerly Y -3.2 Y -2.9 Y -2.0 Y -3.0
Ridge - Steep Northerly Y -2.3 Y -2.2 Y -1.7 Y -2.2
Shallow Southerly - Steep Northerly N 1.4 N 1.4 N 1.0 N 1.4
Steep Southerly - Steep Northerly N -1.2 N -1.1 N -0.6 N -1.1
Shallow Southerly - Ridge Y 3.7 Y 3.6 Y 2.8 Y 3.6
Steep Southerly - Ridge N 1.1 N 1.0 N 1.1 N 1.1 18
Steep Southerly - Shallow Southerly Y -2.6 Y -2.6 N -1.7 Y -2.5




Table 3 - continued. f) DTK pairwise comparisons of clump density variables and averageclumpsize.

Mumber of Small Number of Medium Mean Clump Size
Clumps/ha Clumps/ha {Average Number of
Significant?|Difference| Significant? |Difference| Significant? |Difference

Shallow Northerly - Canyon M -0.7 M -0.1 M -0.1
Steep Nartherly - Canyon N 0.4 N 0.2 N -0.1
Ridge - Canyon N -1.8 N -0.1 N 0.0
Shallow Southerly - Canyon M -1.1 M -0.2 M -0.4
Steep Southerly - Canyon hi -3.5 N -0.4 N -0.5
Steep Nartherly - Shallow Mortherly N 1.1 N 0.3 N 0.0
Ridge - Shallow Mortherly M -1.1 M -0.1 M 0.1
Shallow Southerly - Shallow Mortherly M -0.4 N -0.1 N -0.3
Steep Southerly - Shallow Mortherly Y -2.8 N -0.3 N -0.4
Ridge - Steep Mortherly hi -2.2 M -0.3 M 0.0
Shallow Southerly - Steep Mortherly M -1.5 Y -0.4 N -0.3
Steep Southerly - Steep Northerly Y -3.9 Y -0.6 Y -0.4
Shallow Southerly - Ridge M 0.7 M -0.1 M -0.3
Steep Southerly - Ridge M -1.7 N -0.2 N -0.5
Steep Southerly - Shallow Southerly Y -2.4 N -0.2 N -0.1

Table 3. Dunnett’s-modified Tukey-Kramer’s pairwise comparisonresults.Inthese tests, each of the six landforms were
compared to one another for a total of 15 pairwisecomparisons. Variable estimates from landforms on the rightside of
the “-“ symbol were subtracted from landformestimates on the left side;a negative difference means the variable
estimate was higher on the landformafter the “—“ symbol than the one before. Significantdifferences areindicated bya
bolded “Y” in the “Significance?” column and estimated differences are provided in the “Difference” column (significant
differences arealso bolded);these difference values arethe centers of 95% confidenceintervals.1f95% confidence
intervals contained O, differences invariables estimates were deemed non-significant(non-bolded tableentries). The
tableis splitinto sub-tables of six variablegroups:a) basal area per hectare variables; b) basal area per clump variables;
c) tree density variables;d) average diameter variables;e) average height variables;f) clump density variables and mean
clumpsize. There were no significantdifferences between any pairs of landforms for largeclump variables and these
were not includedinanysub-tables.
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Figures

CII 1.5 3| km

Figure 1. Location of the study area in Mexico (upper-left inset) and the SSPM LiDAR acquisition area (~6,500
hectares). Colored polygons represent landforms:canyon =blue; shallow northerly slopes =red; steep northerly
slopes = green; ridge= yellow; shallowsoutherlyslopes = purple; and steep southerly slopes = orange. Shallow
refers to slopes «30% in grade; steep refers to slopes » 30%; northerly refers to aspects from 316 — 135°; and
southerly refers to aspects from 136 —315°. The two hollowblack squares indicatethe location of the Fry plots;
the northernmost square bounds the ridge plot, and the southernmost square bounds the shallow southerly

(SHS) plot.
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Figure 2. Effect of minimum height cutoff (x-axis) on the percent of field-measured trees detected from LiDAR by TreeSeg on
the high-density ridge (blue) and low-density shallow southerly (orange) plot. Above the 12m cutoff, LiDAR overestimated
actual tree numbers on the shallow southerly plot, and agreement in tree number between data sources on the ridge plot
was maximized at the 15m cutoff.
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Figure 3. Difference between field and LiDAR estimates of: number of small clumps (2-4 trees, red), medium clumps
(5-9 trees, green), and largeclumps (>10 trees, yellow) per hectare (panel A); number of trees per hectare as
individuals (blue) orinsmall, mediumand large clumps (panel B); basal area per hectare of all clump sizeclasses
(panel C); and basal area of each clump sizeclass(panel D). The ridge plot (R) is shown on the left and the shallow
southerly (SHS) ploton the right. Negative bars indicatethatthe LiDAR estimate was lower than the field estimate.
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Figure 4. Difference between field and LiDAR estimates of the number of trees per hectare for all trees pooled (panel
A); mean clump size (average number of trees in clumps) (panel B); and basal area per hectare of all trees pooled
(panel C). Negative bars indicatethat the LiDAR estimate was lower than the field estimate.
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Figure 5. NMDS ordination considering the relationshipamongsixlandforms (canyon =blue, shallow
northerly =red, steep northerly = green, ridge = yellow, shallowsoutherly = purple, and steep southerly =
orange) inordination spacebased on 25 stand-level and spatial pattern structure variables. NMDS Axis 1
accounts for primary sources of variation (a combination of variables) amonglandforms, and Axis 2
represents secondary sources of variation amonglandforms. Horizontal lines representstandard error of
NMDS Axis 1 scores and vertical lines representstandard error of NMDS Axis 2 scores.
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Figure 6. Boxplots of spatial pattern variables for sixlandforms by clump sizeclass (individual trees lack close neighbors, small
clumps have 2-4 trees, medium clumps have 5-9 trees, and large clumps have 10 or more trees). Canyons (blue), shallow
northerly slopes (red),and shallowsoutherly slopes (purple) tend to have more, taller trees than ridges (yellow) and steep
southerly slopes (orange) across clump sizes; spatial pattern on steep northerly slopes (green) is often similar to canyons and
shallowslopes butcanalsobesimilartoridges and steep southerly slopes. A) basal area per hectare (m?2); B) basal area per
clump (m?); C) number of trees per hectare; D) number of clumps per hectare (does not includeindividuals); E) average
diameter (cm); and F) average height (m).
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Figure 7. Boxplots of stand-level structurevariables (all trees pooled, regardless of membership in clumps) for six
landforms. Canyons (blue), shallow northerly slopes (red), and shallow southerly slopes (purple) tend to have more,
taller trees than ridges (yellow) and steep southerlyslopes (orange); stand-level structureon steep northerly slopes
(green) is often similar to canyons and shallowslopes butcanalsobesimilartoridges and steep southerlyslopes.A)
basal area per hectare (m2); B) number of trees per hectare; C) average diameter (cm); and D) average height (m).
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Figure 1. Correlation between LiDAR- and field-based spatial maps of tree density as a function of minimum tree height at
three grainsizes:3.125 by 3.125 m (9.77 m?), 6.25x 6.25 m (39.0625m?), and 12.5 x 12.5m (156.25m?) for the ridge (R)

and shallowsoutherly (SHS) plots.
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Figure 2. Difference in tree size estimates (average diameter and average height). Negative bars indicatethatthe
LiDAR estimate was lower thanthe field estimate and positivebars indicatethat the LiDAR estimate was greater than
what was observed in the field.Panel A shows the difference in estimates of average diameter of individual trees
(blue), small clumps (2-4 trees, red), medium clumps (5-9 trees, green), and large clumps (10+ trees, yellow); the
ridge plot(R) is shown on the left and the shallow southerly plot (SHS) on the right. Panel B is the same except it
shows the difference in estimates of average height. The difference in average diameter when all trees are pooled is
shown on the leftin panel C and the difference inaverage height for all trees pooled is shown on the right in panel D.




Canyons

Individuals
Baha BAftree #itrees/ha | Av. Diam (cm) | Av. Height {m)
Minimum 2.8 0.2 126 511 161
25th percentile 7.7 0.3 244 58.2 2149
Median g5 0.3 300 615 231
Mean 3.8 0.3 27.8 60.6 227
75th percentile| 10.2 0.3 31.7 63.8 242
Maximum 115 o4 345 = ) 257
small Clumps
Baha BAftree #itrees/ha #clumps/ha | Av. Diam (cm) | Av. Height (m)
Minimum 249 05 0.2 4.2 495 16.0
25th percentile 5.7 0.6 1749 7.6 552 215
Median 5.6 0.7 230 9.7 58.4 220
Mean B4 0.7 227 g4 58.2 218
75th percentile 7.3 0.8 28.6 117 Bl.7 232
Maximum 3.9 04 3049 125 a7.0 245
Medium Clumps
Baha BAftree #itrees/ha #clumps/ha | Av. Diam (cm) | Av. Height (m)
Minimum 0.3 1.2 10 0.2 48.3 171
25th percentile 0.6 15 2.6 04 534 207
Median 10 16 34 0.6 57.1 214
Mean 11 16 4.3 0.7 574 214
75th percentile 12 14 5.1 1.0 62.8 225
Maximum 2.7 21 111 18 69.0 245
Large Clumps
Baha BAftree #itrees/ha #clumps/ha | Av. Diam (cm) | Av. Height (m)
Minimum 0.0 10 0.0 0.0 348 157
25th percentile 0.0 2.2 0.1 0.0 475 1849
Median 0.1 2.8 0.5 0.0 528 196
Mean 0.3 2.8 1.2 0.1 523 201
75th percentile 0.3 3.6 16 0.1 57.2 223
Paximum 19 50 9.0 0.4 771 256
All Trees Pooled
Ba‘ha | #trees/ha |Av. Diam. (cm) | Av. Height (m) [MCS (av. # trees/clump)
Mininnumnm 59 2648 499 16.2 16
25th percentile| 15.2 46.0 559 217 19
Median 17.2 591 595 225 21
Mean 165 56.0 59.2 222 2.4
75th percentile| 185 BB.6 62.5 236 2.3
Maximum 211 76.6 68.1 249 7.1
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Shallow Northerly

Individuals
Ba/ha Bajtree #trees/ha Av_Diam (cm) [Av. Height (m)
Minimum 4.1 0.2 13.2 51.2 18.8
25th percentile 77 0.3 259 591 208
Median 8.8 0.3 27.8 2l.9 223
Mean 39 0.3 274 Bl.7 224
75th percentile 10.2 0.4 30.2 od. G 24.0
Maximum 126 0.4 336 59.6 2519
small Clumps
Bafha BA/Stree #trees/ha #clumps/fha |Av. Diam (cm)| Av. Height (m)
Minimum 21 0.5 5.3 2.7 482 182
25th percentile 5.3 0.7 18.0 7.5 577 204
Median B.2 0.8 220 9.1 610 216
Mean 6.4 0.7 207 8.7 o0.4 215
75th percentile 7.5 0.8 242 10.2 o4 2 237
Maximum 9.8 049 277 11.7 g7.1 251
Medium Clumps
Ba/ha Bajtree #trees/ha #clumps/ha |Av. Diam (cm)| Av. Height (m)
Minimum 0.2 11 09 0.2 463 176
25th percentile 0.7 15 2.8 0.5 541 1949
Median 11 16 3.7 0.7 S84 209
Mean 11 16 3.8 0.6 57.8 210
75th percentile 14 145 4.5 0.8 2l.7 222
Maximum 2.4 2.3 100 16 599 237
Large Clumps
Ba ha BA/Stree #trees/ha #clumps/ha |Av. Diam (cm)| Av. Height (m)
Minimum 0.0 16 0.0 0.0 375 134
25th percentile 0.0 2.4 0.0 0.0 487 184
Median 0.1 3.1 0.4 0.0 585 191
Mean 0.1 3.4 0.7 0.0 55.2 201
75th percentile 0.2 4.0 0.7 0.1 805 221
Maximum 0.7 7.4 55 0.2 7759 28.6
All Trees Pooled
Ba/ha |#trees/halAv. Diam. (cm)| Av. Height (m) |MCS (av. # trees/clump)
Minimum B.5 2089 50.0 1745 16
25th percentile 144 47 4 58.0 206 149
Median 163 565 B1.3 219 20
Mean 166 526 B0.7 220 2.3
75th percentile 19.3 586 gd.1 23.8 2.2
Maximum 23.0 65.8 27.5 248 3.1
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Steep Northerly

Individuals
Baha Baftree #trees/ha [ Av. Diam (cm)| Av. Height (m)
rInimum 43 0.2 168 459 185
25th percentile 5.5 0.2 221 524 197
Median 0.3 0.3 26.5 55.7 204
Mean 8.5 0.3 25.0 55.2 204
75th percentile 7.1 0.3 275 57.7 211
Maximum 29 0.3 330 239 222
Small Clumps
BASha BAftree #trees/ha #clumps/ha | Av. Diam (cm) [Av. Height {m)
Finimum 3.3 0.4 150 6.7 421 177
25th percentile 56 0.5 198 51 503 193
Median .2 0.6 250 103 551 203
Mean 2.0 0.6 24.0 9.9 545 201
75th percentile 2.9 0.7 271 11.0 58.8 20.8
Maximum 9.0 0.9 30.5 125 g3.4 228
Medium Clumps
BASha BAftree #trees/ha #clumpsfha | Av. Diam (cm) |&v. Height {m)
Minimum 0.0 0.7 0.0 0.0 40.8 1649
25th percentile 0.6 11 3.4 06 467 181
Median 13 14 4.5 0.8 517 195
Mean 13 13 5.3 049 528 196
75th percentile 17 17 7.2 1.2 57.8 210
Maximum 3.0 2.1 10,0 17 £8.8 218
Large Clumps
BA/ha BA/tree #trees/ha #clumps/ha | & Diam (cm) |Av. Height (m)
Minimum 0.0 19 0.0 0.0 47 .0 170
25th percentile 0.0 2.1 0.0 0.0 48 6 181
Median 0.0 2.7 0.0 0.0 533 196
Mean 0.2 2.7 0.6 0.1 541 193
75th percentile 0.2 31 0.7 0.1 584 199
Maximum 12 39 4.6 0.4 gd.7 225
All Trees Pooled
BA/ha |#trees/ha | Av. Diam. (cm) | Av. Height (m)|MCS (av. # trees/clump)
Minimum 7B 372 440 18.0 1.7
25th percentile | 12.1 505 508 193 2.0
Median 137 56.3 547 20.2 2.3
Mean 1389 550 546 202 2.3
75th percentile| 159 624 58.4 206 2.5
Maximum 211 B7.5 B4 .2 225 3.3
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Ridge

Individuals
BAha BAStree #itrees/ha |Av. Diam (cm)| Av. Height {m)
Minimum 18 0.2 8.0 41.7 16.2
25th percentile 3.7 0.2 185 48.4 173
Median 53 0.2 225 531 178
Mean 4.9 0.2 208 524 18.0
75th percentile 6.2 0.3 245 553 190
Maximum 7.8 0.3 303 B15 206
small Clumps
Ba/ha Batree #trees/ha #clumps/ha | &v. Diam (cm) | Av. Height (m)
Minimum 14 0.4 54 2.2 421 163
25th percentile 3.1 0.5 15.3 6.5 48.2 17.2
Median 4.2 0.5 1849 3.0 525 1749
Mean 4.2 0.5 182 7.6 524 18.0
75th percentile 5.3 0.5 218 9.1 555 18.6
Maximum T.0 0.8 291 115 615 1949
Medium Clumps
Bafha Baftree #trees/ha | g clumps/ha | &v. Diam (cm) | Av. Height (m)
Minimum 0.1 0.8 0.5 0.1 405 159
25th percentile 0.3 11 19 0.3 47 .4 17.0
Median 0.6 1.2 2.8 0.5 507 17.3
Mean 0.8 1.3 3.3 0.6 519 1749
75th percentile 11 1.3 4.6 0.8 538 188
Maximum 2.1 2.1 9.2 15 700 222
Large Clumps
Baha BAftree #itrees/ha | g clumps/ha | Av. Diam (cm) | Av. Height (m)
Minimumnm 0.0 0.9 0.0 0.0 345 142
25th percentile 0.0 1.7 0.0 0.0 415 1419
Median 0.1 2.4 0.3 0.0 497 163
Mean 0.1 2.5 0.7 0.1 493 16.7
75th percentile 0.2 2.5 1.0 0.1 557 173
Maximum 0.7 7.1 4.4 0.3 677 224
All Trees Pooled
Basha | #trees/ha | Av. Diam. (cm) |Av. Height (m)|{MCS (av. # trees,/clump)
Minimum 3.8 166 422 1.4 1.7
25th percentile 7.2 35.1 48.5 17.1 18
Median 103 46.2 532 1749 2.1
Mean 949 431 52.3 18.0 2.3
75th percentile 131 504 55.0 18.6 24
Maximum 15.8 67.0 0l.G 20.2 7.8
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Shallow Southerly

Individuals
Ba/ha BA/ftree #trees/ha | Av. Diam (cm) [ &v. Height (m)
PAinimum 3.7 0.2 153 47 4 16.8
25th percentile 7.0 0.3 217 58.3 2002
Median 7.6 0.3 26.2 60.3 216
Mean 8.1 0.3 25.8 604 217
75th percentile 9.3 0.4 30.1 645 23.8
Maximum 12.0 0.4 331 701 256
Small Clumps
Ba‘ha Baftree #trees/ha | #clumps/ha [Av. Diam (cm)| Av. Height (m)
Minimum 17 0.4 0.8 3.1 45.8 171
25th percentile 4.6 0.6 155 6.8 56.0 198
Median 6.0 0.7 18.8 8.1 g0.2 213
Mean 548 0.7 198 83 g1 216
75th percentile 64 0.8 231 9.7 od 6 231
Maximum 94 10 30.8 13.0 704 256
Medium Clumps
Ba‘ha BAStree #itrees/ha | #clumps/ha [Av. Diam (cm)| Av. Height (m)
Pinimumn 0.1 0.7 0.3 0.1 38.1 151
25th percentile 0.6 14 2.0 0.3 53.2 192
Median 0.7 16 3.0 0.5 58.1 20.8
Mean 0.8 16 3.0 0.5 57.1 206
75th percentile 09 19 3.6 0.6 B2.B 221
Maximum 16 2.3 B.7 11 B7.2 261
Large Clumps
Ba‘ha BA/ftree #trees/ha | #clumps/ha [&v. Diam (cm)| Av. Height (m)
Finimum 0.0 18 0.0 0.0 427 146
25th percentile 0.0 2.3 0.0 0.0 47 .8 19.3
Median 0.0 29 0.0 0.0 53.2 199
FfMean 0.1 29 0.4 0.0 541 20.3
75th percentile 0.1 3.3 0.7 0.1 50.1 222
Maximum 0.5 5.6 2.5 0.2 08.6 25.8
All Trees Pooled
Ba‘ha | #trees/ha [Av. Diam. (cm)| Av. Height (m) |MCS (av. # trees/clump)
Pinimum 5.5 254 46.7 169 14
25th percentile 124 431 55.8 199 158
Median 148 4.4 20.6 214 2.0
Mean 149 48.9 20.0 2156 2.0
75th percentile 175 57.8 gd 6 233 21
Maximum 237 690 700 255 3.5
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Steep Southerly

Individuals
Ba ha BA/tree #trees/ha  |&v. Diam (cm)|av. Height (m)
Minimum 09 0.2 3.4 455 159
25th percentile 249 0.2 123 49 4 18.3
Median 45 0.2 186 520 193
Mean 41 0.2 17.4 533 191
75th percentile 5.5 0.3 23.1 57.0 200
Maximum B5.8 0.3 2810 Bl1.2 218
small Clumps
BA ha BA/tree #trees/ha | #clumps/ha [Av. Diam (cm)| Av. Height {m]
Minimurmm 0.7 05 2.8 12 47.3 15.0
25th percentile 2.1 0.5 9.0 4.0 500 184
Median 3.1 05 143 5.2 520 1493
Mean 3.3 0.6 142 2.0 529 19.0
75th percentile 4.2 0.6 193 2.4 56.1 199
Maximum g.2 0.7 27.2 11.0 00.1 214
Medium Clumps
Ba/ha Ba/ftree #treesfha | #clumps/ha |Av. Diam (cm)| Av. Height (m]
Minimum 0.0 0.6 0.0 0.0 397 154
25th percentile 0.1 11 0.3 0.1 4819 17.2
Median 0.3 1.2 11 0.2 526 17.9
Mean 0.4 1.3 2.0 0.4 5249 190
75th percentile 0.6 14 245 0.5 55.8 20.8
Maximum 11 2.1 7.4 14 704 237
Large Clumps
Bafha BA/tree #trees/ha | #clumps/ha [Av. Diam (cm)| Av. Height (m)
Minimum 0.0 13 0.0 0.0 40.8 152
25th percentile 0.0 1.7 0.0 0.0 44 .8 17.1
Median 0.0 2.0 0.0 0.0 48.8 190
Mean 0.0 2.0 0.1 0.0 48.8 19.0
75th percentile 0.0 2.3 0.0 0.0 52.8 209
Maximum 0.4 2.7 15 0.2 56.8 22.8
All Trees Pooled
BAfha | #trees/ha |Av. Diam. (cm)|Av. Height (m)|MCS (av. # trees/clump)
Minimum 1.7 6.5 47 .4 1e.5 15
25th percentile 53 212 49 4 184 16
Median 7.5 36.6 518 1594 18
Mean 7.8 337 531 191 19
75th percentile 106 435 56.8 200 2.1
Maximum 142 80.6 B60.3 215 25
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