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  Cooperative breeding refers to the cooperative care of related, or even unrelated, young. 

Helpers can increase the survival or reproduction of the breeders in the group which increases 

helper fitness indirectly. We have a poor understanding of how mortality, particularly human 

harvest, affects cooperative breeders. Given their complex social structures, territorial defense 

that relies on group size, and persistent harvest regimes, gray wolves (Canis lupus) are an ideal 

species for studying the ecological relationships between mortality, group size and composition, 

and population growth in a cooperative breeder. 

  Chapter 1: How does group size affect vital rates of individuals and population growth? 

Furthermore, how do density and immigration of individuals into groups influence the effect of 

group size on population growth? I used historic data from Idaho and Yellowstone National Park 

as well as the scientific literature to populate a metapopulation model and explore the 

simultaneous influences of group size, density, and immigration on population growth.  

  Chapter 2: What is the effect of harvest on recruitment in a cooperative breeder? Are there both 

direct (i.e., mortality from harvest) and indirect effects (i.e., reduced survival because of breeder 

turnover, reduced group size) of harvest on recruitment? I used a natural experiment and genetic 

sampling to assess the influence of harvest on pup recruitment. I compared genotypes of sampled 

pups to harvested pups to determine whether harvest had both direct and indirect effects on 

recruitment.  

  Chapter 3:  How does mortality, in the form of persistent public harvest, affect group size, 

composition, and ultimately recruitment in a cooperative breeder? I genetically sampled wolves 

across a broad range of human-caused mortality in western North America. I used the resulting 

data to assess the influence of harvest on group size, group composition, breeder turnover, and 

ultimately recruitment. 

  Chapter 4: How do individual, group, and environmental factors influence helping behavior in a 

cooperative breeder? I used location data from satellite-collared wolves in western North 

America to explore the influences of sex, individual status within a group, group size, and 

predation risk on pup-guarding behavior. 
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Groups and mortality: their effects on cooperative behavior and population growth in a 

social carnivore 

Introduction 

Group living has evolved across a wide range of taxa and species. Not all group living species 

display cooperative breeding behavior, however. Cooperative breeding refers to the cooperative 

care of related, or even unrelated, young (i.e., helping; Solomon and French 1997). Helpers can 

increase the survival or reproduction of the breeders which increases helper fitness indirectly 

(Emlen et al. 1991). In mammals, both manipulative and observational studies have shown that 

the presence of helpers can be critical to fitness of the breeders in the group and persistence of 

the group as well (Solomon and French 1997; Courchamp et al. 2000; Courchamp and 

Macdonald 2001; Courchamp et al. 2002).  

Most studies of cooperative breeding in mammals have focused on Rodentia and 

Primates (Solomon and French 1997) and studies exploring the effects of human harvest on 

cooperative breeders are few. Harvest can have both direct and indirect effects on groups of 

cooperative breeders. Direct effects are when animals are harvested whereas indirect effects 

result from changes to group size or composition through harvest. For example, harvest can lead 

to reductions in group size which in turn can lead to indirect effects such as lower recruitment or 

an inability to successfully defend a territory (Courchamp and Macdonald 2001; Courchamp et 

al. 2002; Stahler et al. 2012; Cassidy et al. 2015).  

Studies across a broad range of species affirm that number of helpers is positively related 

to group fecundity (Tardif et al. 1984; Solomon and French 1997; Clutton-Brock 2006), 

however, group composition (i.e., the number of sex and age classes within a group) can also 

influence group success and ultimately population growth. Changes to group composition can be 
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subtle and may not change group size drastically but their effect can still be quite large. For 

example, modeling of African lion (Panthera leo) populations showed that the selective harvest 

of large males led to increased infanticide and reduced population viability (Whitman et al. 

2004). Additionally, female elephants (Loxodonta africana) in groups disrupted by poaching had 

lower reproductive success despite many of the surviving females being prime reproductive age 

(Gobush et al. 2008). Lastly, breeder mortality in groups of wolves (Canis lupus) led to reduced 

recruitment and higher group dissolution rates, although these were both mitigated somewhat by 

increased group size (Brainerd et al. 2008). Group composition may be influential in part 

because not all age and sex classes contribute (i.e. help) equally within a group. For example, 

nonbreeding (i.e., helper) gray wolves will guard offspring within packs foregoing what is 

presumably valuable foraging time for themselves. Wolves within a group vary widely in the 

amount of pup-guarding behavior they display, however (Thurston 2002; Ruprecht et al. 2012). 

Given the importance of pup-guarding to pup survival and fecundity in African wild dogs 

(Lycaon pictus; Courchamp et al. 2002), groups of wolves that contain multiple sex and age 

classes may be at an advantage because of this diversity.  

Given their complex social structures, territorial defense that relies on group size, and 

persistent harvest regimes, gray wolves are an ideal species for studying the ecological 

relationships between mortality, group size and composition, and population growth in a 

cooperative breeder. Wolves have evolved to live in groups and in the absence of harvest 

generally attain a pack structure containing 2-3 generations of offspring. If selection has favored 

breeding wolves that retain mature offspring and foster diverse group structures then population 

growth may be driven more directly by characteristics of groups rather than characteristics 

associated with individuals. This may be particularly true in saturated populations with high 
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levels of intraspecific competition. Thus, modeling the vital rates of groups should provide more 

useful insights into factors that drive population growth in this cooperatively breeding species. 

Furthermore, if group size and composition influence recruitment and survival (Solomon and 

French 1997; Brainerd et al. 2008) then management actions that affect such group 

characteristics may also affect individual behavior, group persistence, and ultimately population 

growth.  

Despite the influence that human-caused mortality has on group size and composition 

little work has been conducted on how population management affects groups of cooperatively 

breeding species. Furthermore, even though cooperative breeding species live and breed in 

groups I know of no study that has explored how vital rates of groups rather than individuals 

ultimately affect population growth. I have been collecting highly detailed data on groups of gray 

wolves in Idaho since before public harvest began (2008) and have continued to sample every 

year after harvest providing an ideal natural experiment for assessing the effects of human-

caused mortality on groups. Further, additional sampling in Alberta and Yellowstone National 

Park, WY (2012-2014) helped ensure I encompassed a range of human-caused mortality from 

heavily exploited to wholly protected. I used these data, along with detailed historic data 

collected by wolf managers in the northern Rocky Mountains of the U.S., to explore facets of 

cooperative breeding in a large carnivore. Specifically, I tested hypotheses about 1) the 

relationships between vital rates of groups, density, immigration, and population growth, 2) how 

harvest affects group size, composition and ultimately recruitment, and 3) how characteristics of 

groups affect helping behavior.  

Chapter 1: How does group size affect vital rates of individuals and population growth? 

Furthermore, how do density and immigration of individuals into groups influence the effect of 
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group size on population growth? I used historic data from Idaho and Yellowstone National Park 

as well as the scientific literature to populate a metapopulation model and explore the 

simultaneous influences of group size, density, and immigration on population growth.  

Chapter 2: What is the effect of harvest on recruitment in a cooperative breeder? Are 

there both direct (i.e., mortality from harvest) and indirect effects (i.e., reduced survival because 

of breeder turnover, reduced group size) of harvest on recruitment? I used a natural experiment 

and genetically sampled each wolf in 10 groups in Idaho to assess the influence of harvest on 

pup recruitment. I then compared genotypes of sampled pups to harvested pups to determine 

whether harvest had both direct and indirect effects on recruitment.  

Chapter 3:  How does mortality, in the form of persistent public harvest, affect group 

size, composition, and ultimately recruitment in a cooperative breeder? I genetically sampled 670 

individual wolves across a broad range of human-caused mortality in Alberta, Idaho, and 

Yellowstone National Park. I used the resulting data to assess the influence of harvest on group 

size, group composition, breeder turnover, and ultimately recruitment. 

Chapter 4: How do individual, group, and environmental factors influence helping 

behavior in a cooperative breeder? I used location data from 92 satellite-collared wolves in 

Alberta, Idaho, Montana, and Yellowstone National Park to explore the influences of sex, 

individual status within a group, group size, and predation risk on pup-guarding behavior. 
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Abstract  

In cooperative breeders, large group size is often positively related to reproductive 

success as well as to territorial defense and persistence. We have a poor understanding, however, 

of how group size affects individual vital rates and population growth particularly as density and 

immigration vary. Conceivably, in suitable habitat and at low densities, individuals in small 

groups may be able to secure the resources they need just as well as individuals in large groups. 

Selection, however, has favored the evolution of relatively large family group sizes in many 

cooperatively breeding mammals. Thus, we can expect larger groups to have an advantage over 

smaller groups particularly as density and competition between groups increase. We 

hypothesized that 1) at low densities populations composed of small and large groups have 

similar growth rates, 2) at low densities populations of large groups grow slightly faster than 

populations of small groups when both have low levels of immigration, 3) at high densities 

populations composed of small groups have lower growth rates compared to populations 

consisting of mostly large groups presumably because of competition, 4) a lack of immigration 

exacerbates this effect at high densities.  



6 
 

 We tested our hypotheses by simulating metapopulation growth while allowing vital rates 

of individuals to vary as a function of group size. We estimated vital rates from gray wolves 

(Canis lupus) in Idaho and Yellowstone National Park, USA during 1996-2012. Group size had a 

positive effect on most individual vital rates. Group size also had positive effects on colonization 

rates of new groups and metapopulation growth in the absence of immigration. The benefits of 

living in a large group increased with density but generally declined as immigration increased. 

Abundance of individual wolves (not wolf groups) declined at high densities in all 

metapopulations however, metapopulations of large groups declined the least and were still able 

to increase the total number of groups by 20% over 5 years. We show that group size positively 

affects individual vital rates, group persistence, and metapopulation growth. The influence of 

group size on fitness and metapopulation growth weakens as immigration increases and density 

declines. Studies examining the importance of group size on fitness can benefit by 

simultaneously considering the influences of density and immigration because of their marked 

effects on metapopulation growth in cooperative breeders.  

Key words: Canis lupus; cooperative breeding; gray wolves; groups; metapopulation; 

population growth 

Introduction 

Cooperative breeding generally refers to the cooperative care of related or unrelated young 

(Solomon and French 1997). In mammals, both manipulative and observational studies have 

shown that the presence of nonbreeding helpers in a group enhances reproductive success, fitness 

of breeders, and persistence of the group (Solomon and French 1997; Courchamp et al. 2000a; 

Courchamp and Macdonald 2001; Courchamp et al. 2002; Clutton-Brock 2006).  
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 The benefits of living in a large group may be particularly marked for territorial 

carnivores. Large group size can increase hunting success (Fanshawe and Fitzgibbon 1993; Creel 

and Creel 1995; Carbone et al. 2005; MacNulty et al. 2014) although there can be intermediate 

group sizes that lead to maximum per capita benefits for group members (Creel and Creel 1995). 

Larger group size can also increase the ability to successfully defend a territory and offspring 

from predation (Creel and Creel 1995; Packer et al. 1990; Courchamp et al. 1999; Courchamp et 

al. 2002; Whitman et al. 2004; Cassidy 2013). Yet the benefits of larger group size may vary 

with conspecific density when resources are patchy and limited. For example, as density 

increases individuals in larger groups may be able to secure and defend high quality territories 

(i.e., those with abundant limiting resources) and provision and guard offspring more 

successfully than those in smaller groups (Courchamp et al. 1999; Ruprecht et al. 2012; Cassidy 

2013).  

In obligate cooperatively breeding species there can be a threshold for the minimum 

number of helpers required for group existence and population growth. Failure to maintain a 

threshold group size is one reason for the high frequency of group extinction observed in such 

species (Courchamp et al. 1999). When populations of other individuals are nearby, however, 

immigration can buffer the effects of mortality loss within groups (Courchamp et al. 1999). Field 

studies of cooperative breeders have shown that immigration does contribute to group 

persistence and population stability in harvested species (Adams et al. 2008; Rutledge at al. 

2010).  

In some populations, immigration mitigates the effects of mortality over relatively short 

timescales but such mortality may affect group social structure, learning, helping behavior and 

evolution over longer time periods (Haber 1996; Rutledge et al. 2010). Because of their 
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hierarchical structure and dependence on others in the group, mortality can affect group-living 

species in complex ways. For example, individuals in groups of African elephants (Loxodonta 

africana) that experienced higher rates of poaching, and particularly had lost older females, had 

lower reproductive rates despite the continued survival of reproductively prime females (Gobush 

et al. 2008). Additionally, the extinction rate for groups of cooperatively breeding gray wolves 

(Canis lupus) was 33-38% after breeder loss, but survival of the remaining pups was greater in 

groups that had more nonbreeding helpers (Brainerd at al. 2008; Borg et al. 2014). The effects of 

mortality in group-living species can be more than simply subtracting 1 animal from the group’s 

size; effects can depend on the status of the animal lost but also which individuals remain in the 

group. To gain a better understanding of the mechanisms affecting population dynamics of 

cooperative breeders we need to know how vital rates of individuals are affected by both density 

and group dynamics (Bateman et al. 2011). 

We wanted to know how group size affects individual vital rates and metapopulation 

growth in cooperatively breeding species. Furthermore, how do metapopulation density and 

immigration of individuals into groups influence the effect of group size on metapopulation 

growth? At low metapopulation densities and in suitable habitat, individuals in small groups may 

be able to secure the resources they need just as well as individuals in large groups. If true, such 

metapopulations should have stable or positive growth rates and immigration should increase the 

rate of growth regardless of the initial group size distribution in the metapopulation until the 

population reaches carrying capacity (K). Selection, however, has favored many cooperatively 

breeding species to live in relatively large, multi-generational family groups (Solomon and 

French 1997). Thus, at high metapopulation densities the benefits of living in a larger group 

should become more pronounced as competition for limited resources between groups increases. 
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Subsequently, metapopulations composed of small groups should have lower growth rates when 

habitat is saturated. Immigration of individuals into groups should bolster small groups and 

eventually lead to stable or positive growth rates for metapopulations composed of mostly small 

groups.  

Gray wolves are cooperative breeders who live in groups (i.e., demes) thus their 

populations can be viewed as metapopulations. Wolf populations can also be strongly influenced 

by immigration (Adams et al. 2008). Reintroductions to vacant habitat in the northern Rocky 

Mountains of the U.S. provide an ideal framework for assessing the relative influence of density 

on metapopulation growth. We simulated metapopulation growth in gray wolves using varying 

immigration rates, different initial group size distributions and individual vital rates that varied as 

a function of group size. We hypothesized that at low densities metapopulations composed of 

small and large groups would have similar growth rates. Low levels of immigration would make 

metapopulations of larger groups perform slightly better than those with small groups. At high 

densities, however, metapopulations composed of small groups would have lower growth rates 

compared to metapopulations consisting of mostly large groups. A lack of immigration would 

exacerbate this effect. We compared growth rates from simulations to those predicted by our 

hypotheses. We further assessed growth rates from our simulations by comparing them to growth 

rates observed during wolf recovery.  

Methods 

We used Program Vortex (Version 10; Lacy and Pollak 2014) to model wolf metapopulation 

growth (i.e., r = ln(λ)) over a 5-year time interval. We used 1,000 iterations for each model. We 

considered each group (i.e., wolf pack) to be a subpopulation within a larger metapopulation 

under 2 scenarios where n = 10 and n = 25 groups at t(0). We chose to model 10 groups because it 
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is the minimum recovery criteria for wolves in each of 3 states (Idaho, Montana, Wyoming) in 

the northern Rockies. Furthermore, the 3 states are to maintain at least 30 groups total for 

successful delisting, therefore we also modeled 25 groups while permitting 20% growth in the 

number of groups (i.e., n = 30). We varied group sizes at t(0) and conducted simulations using 3 

different group size distributions (Table 1); all small groups (n<4 wolves), approx. 50% small 

groups, and no small groups (n>8) wolves. We permitted colonization of 20% more groups via 

dispersal by seeding 2 and 5 additional groups to have 0 individuals at t(0) in each of the 2 

scenarios (n = 10 and n = 25, respectively). Each group reached carrying capacity (K) at 30 

individuals and K was implemented as a probabilistic truncation on survival across all age 

classes when group size was >30. The largest wolf group recorded in YNP was 37 animals 

although their association was brief; the largest group recorded in Idaho since 1995 was 26 

wolves. To reflect the demographic potential for growth of a population, Vortex calculates 

growth rates before truncation for K. To further assess the influence of K (i.e., density 

dependence), we performed focal simulations (n = 1,000) for metapopulations of 10 small and 10 

large groups at high densities with no immigration where we varied the mortality rate and 

variance for pups, litter size, and proportion of females that had litters when group size reached 

>15 and >20 individuals.  

Initial age distribution for each group was set to reflect the family structure commonly 

observed in wolf packs. For example, an adult breeding pair and their offspring from previous 

years where group size determines how many generations of offspring are present (Table 2). To 

assess the influence of initial age distribution on our simulations we performed focal simulations 

(n = 1,000 simulations) where we added 1 year and subtracted 1 year from the age of all 
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individuals in simulations of 10 small and 10 large groups without immigration and at high 

densities.  

Dispersal rates at low (1995-2002) and high wolf densities (2003-2008 only) were 

derived from wolves in the northern Rocky Mountains (NRM; Jimenez et al. In Revision). We 

allowed individuals between the ages of 1-7 to disperse and join other groups in the 

metapopulation when their group size >3. Lastly, we allowed immigration of wolves from 

outside the metapopulation. This outside source of immigrating wolves was an infinitely-sized 

population of individuals that were wholly separate from the metapopulation being modeled. 

These individuals were unaffected by group sizes and their contingent vital rates until they 

immigrated into the metapopulation. Immigrants joined groups when they entered the 

metapopulation. Immigration varied from none to low (1 adult individual into each group every 5 

years while alternating sexes between groups) to high (2 adult individuals, 1M and 1F, into each 

group every year). We considered a group extinct when only 1 individual remained. 

 We modeled reproduction as long-term polygyny where pairs remained mated until one 

died. We set the age of first reproduction at 3 for males and females (Fuller et al. 2003), assumed 

equal sex ratios in the offspring, and a maximum age of 10 and 11 for breeding in female and 

males, respectively (Kreeger 2003). Each female could have 1 litter per year with a maximum of 

8 pups. We allowed >1 breeding female in a group when the number of adult females >4. 

Maximum age for individuals was 14 years (Ausband et al. 2009). 

 Pup mortality rates, litter sizes, and the proportion of females with no litter were 

calculated using historic data for wolves in Idaho (1996-2002) and Yellowstone National Park 

(YNP; 1996-2012). We then estimated average reproductive vital rates for individuals in small 

(<4 adults) and large (>8 adults) groups. We considered 1996-2002 to be characterized by 
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relatively low wolf densities (Idaho and YNP data) and unsaturated habitat and 2003-2012 to be 

high wolf density characterized by saturated habitat and more stable territories (YNP data only). 

We incorporated the variance around these vital rates into our model to simulate environmental 

stochasticity in the metapopulation. Pup mortality rates were calculated to Dec 31 and then 

multiplied by the winter mortality rate provided in Smith et al. (2010) and Massey et al. 

(unpublished data) to obtain an annual mortality rate for pups at low and high densities, 

respectively. Mortality rates for yearlings and adults at low wolf densities were derived from 

Smith et al. (2010) and Massey et al. (unpublished data) at high wolf densities. We calculated the 

percentage the SD was of the reported survival rate in Smith et al. (2010) and Massey et al. 

(unpublished data) and allowed the mortality rate for pups to fluctuate by that amount. Yearling 

and adult mortality rates were allowed to vary by a percentage equivalent to 2 SE’s reported in 

Smith et al. (2010) and Massey et al. (unpublished data). We did not have separate estimates of 

mortality rates for yearling and adults in small versus large groups.  

Results 

No immigration 

Vital rates in Idaho and Yellowstone were lower for wolves in small groups than large groups 

and this difference was most pronounced at high wolf densities (Table 3). The only exception to 

this difference was pup mortality which was 7% lower in small groups at low densities. Wolves 

in both small and large groups experienced higher mortality rates at high metapopulation 

densities, but the difference in mortality rates and decreased litter sizes was more pronounced for 

wolves in small groups (Table 3). Probabilities of group extinction estimated through simulations 

were greater for small than large groups, particularly at high densities (Figs. 1A-B).  At low 

densities, metapopulations beginning with 10 and 25 groups grew to 12 and 30 groups, 
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respectively, regardless of the initial group size distribution. In metapopulations composed of 

small groups, colonization probabilities for new groups was 0.45 (SD = 0.05) whereas in 

metapopulations composed of large groups it was 0.90 (SD = 0.01) at low densities. At high 

densities, metapopulations initially consisting of all small groups failed to add groups to the 

metapopulation whereas those consisting of >50% large groups had a 20% increase in the total 

number of groups in the metapopulation over 5 years. Colonization probabilities for new groups 

was >5 times higher in metapopulations composed of large groups than small groups (0.63 vs. 

0.12, SD = 0.01, 0.02, respectively). All metapopulations declined at high densities in the 

absence of immigration although metapopulations with >50% large groups declined less than 

those initially consisting of all small groups (Figs. 3B). The net gain (Nt+5 – Nt) in number of 

individuals was greater, or net loss lower, when the metapopulation contained >50% large 

groups (Figs. 3A-B).  

 Our focal simulations using altered age distributions yielded similar patterns in number of 

groups present at t(5). Abundance of wolves at t(5) was different by 3-8 individuals compared to 

simulations using our initial age distributions (Table 2).  

Mortality rates of pups were higher and more variable, litter sizes were smaller, and the 

proportion of females with no litter was higher for wolves in small groups than large groups. 

Therefore, for focal simulations assessing the influence of K, we allowed vital rates to return to 

levels measured for small groups when group size was >15 and >20. Such simulations where K 

was reached, in part, when group size was >15 and >20 differed by 0.1-5.7 individuals compared 

to our simulations where K was reached at 30 individuals and survival was subsequently 

truncated. 

Low immigration 
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For simulated metapopulations under the influence of low rates of immigration, probabilities of 

group extinction were again greater for small than for large groups, particularly at high densities 

(Figs. 1A-B). At low densities, metapopulations beginning with 10 and 25 groups grew to 12 and 

30 groups, respectively, regardless of the initial group size distribution. In metapopulations 

composed of small groups, colonization probabilities for new groups was 0.71 (SD = 0.03) 

whereas in metapopulations composed of large groups it was 0.95 (SD = 0.01) at low densities. 

At high densities, metapopulations beginning with 10 and 25 groups grew to 12 and 30 groups 

only when the metapopulation initially consisted of >50% large groups. Colonization 

probabilities for new groups was higher in metapopulations composed of large groups than small 

groups (0.78 vs. 0.32, SD = 0.01, 0.05, respectively). Metapopulations containing >50% large 

groups had lower growth rates than metapopulations comprised of small groups at low densities 

but all metapopulations had similar growth rates at high densities (Figs. 2A-B). The net gain 

(Nt+5 – Nt) in number of individuals was generally greater when the metapopulation contained 

>50% large groups (Figs. 3A-B).  

High immigration 

Under the influence of high rates of immigration, probabilities of group extinction were low and 

similar among all simulated metapopulations (Figs. 1A-B). At both low and high densities, the 

number of groups in all metapopulations grew 20% through colonization of new groups. In all 

metapopulations, colonization probabilities for new groups was 1.0 (SD = 0.00). 

Metapopulations containing >50% large groups had lower growth rates than metapopulations 

composed of small groups (Figs. 2A-B). The net gain (Nt+5 – Nt) in number of individuals was 

greater for metapopulations initially comprised of small groups (Figs. 3A-B).  

Discussion 
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We show that group sizes within a metapopulation can affect population growth, but the strength 

of that effect depends on density and immigration. Group size had marked effects on individual 

vital rates, colonization of new groups, and ultimately metapopulation growth. The influence of 

group size on fitness and metapopulation growth weakened as immigration increased and density 

declined. We show marked effects of density and immigration on metapopulation growth in 

cooperative breeders who are reliant on limited, patchy resources. Thus, studies examining the 

importance of group size on fitness can benefit by simultaneously considering the influences of 

density and immigration.   

The distribution of group sizes as well as the interactions between groups in a 

metapopulation can influence population trajectory and thus management and conservation 

decisions. Our findings have implications for harvested cooperative breeders (e.g., gray wolves 

in the U.S.). For example, metapopulations at low densities containing small groups of generally 

fecund pairs, such as gray wolves, can harbor the potential for marked growth whereas a 

metapopulation of large groups has a higher total abundance, more nonbreeding individuals, and 

will not increase its per capita abundance as rapidly. At high densities, however, large groups can 

absorb increased mortality rates yet still colonize new groups even as overall individual 

abundance declines (r = -0.01). Metapopulations that began with as few as 5 large groups added 

more groups and had much lower group extinction probabilities than metapopulations with all 

small groups. A harvest regime that maintains >50% large groups could allow for replenishment 

of wolves to nearby areas where mortality is higher and related group sizes are smaller.  

When estimating vital rates empirically, we considered groups with >8 adults as large 

(range = 8-26). Very large groups could have decreased vital rates because there may be a 

threshold group size where some phenomena (e.g., daily caloric intake) are negatively influenced 
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by increasing group size (Creel and Creel 1995). Despite this potential negative bias in our 

empirical estimates, vital rates for individuals in groups with >8 adults were generally still higher 

than those estimated for individuals in small groups. Additionally, our results are likely 

optimistic for metapopulations of small groups because, although pup survival and female 

reproductive rates were lower for wolves in small groups, we did not have separate estimates of 

mortality rates for yearlings and adults in small and large groups.  

 Immigration from outside the metapopulation added individuals to groups and also 

established new groups. As predicted, immigration generally weakened the positive effect that 

large group size had on metapopulation growth. We hypothesized that the effect of immigration 

would be stronger for large groups but we found the opposite was true. We suspect that this 

could be because immigration of a few individuals into groups within a small metapopulation is 

a higher proportional contribution to that metapopulation than they would be to a relatively 

larger metapopulation. Although metapopulations of small groups grew faster, even with low 

immigration rates, metapopulations of large groups added more individuals (i.e., net gain, Nt+5 – 

Nt), had lower group extinction rates, and were generally less variable. We did not allow 

individuals to disperse from groups until group size was >3, thus small group sizes may have 

been bolstered somewhat and our results for metapopulations of small groups are slightly 

optimistic. High rates of immigration made metapopulations of both small and large groups 

perform equally well. Imposing carrying capacity when groups were >30 likely affected these 

results for metapopulations of large groups at low densities. Immigration, even low rates, 

strongly influenced both small and large group metapopulation growth rates at high densities. 

Courchamp et al. (1999) found that immigration lowered the extinction rate of groups but it 

required that dispersing individuals be available from nearby groups which may not always be 
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true. In some populations of social carnivores, (i.e., South Africa’s wild dogs, Mexican wolves; 

C. l. baileyi) there is no immigration or it is human-induced and quite low thus the effect of 

group size distribution on metapopulation growth is likely strong.  

 We modeled small metapopulations of cooperative breeders (n = 10 and 25 groups) over 

relatively short time intervals (5 years). While we permitted immigration we did not model the 

effect of wolves leaving the metapopulation (i.e., emigration) other than through death. We 

might expect, over longer time intervals than what we considered, that as populations persist 

group sizes would enlarge, breeding opportunities would be scarce, and some individuals would 

eventually emigrate from the metapopulation to attempt to find breeding opportunities elsewhere. 

Such emigration should weaken the ability of large groups to repopulate nearby smaller groups 

and as a result small group extinction rates would be higher than what we observed. 

Furthermore, the net gain in number of individuals and growth rate for metapopulations of large 

groups may decline although we indirectly accounted for the loss of some such individuals (i.e., 

emigrates) when we truncated survival as group sizes approached K.   

Group social structure (i.e., social learning, dominance hierarchies) may influence group 

success (Gobush et al. 2008). Our proposed model and subsequent analyses did not consider 

aspects of social behavior although any such effects should have been captured in our empirical 

estimates of vital rates. The link between complex factors such as group social structure and 

fitness has not been demonstrated for wolves. We posit that group size, immigration, and 

conspecific density have stronger influences than social structure on group success and 

ultimately metapopulation growth. For example, group extinction events can occur after the loss 

of even 1 important individual however, recruitment of young is generally greater and group 

extinction rates lower in large groups (Brainerd at al. 2008; Gobush et al. 2008; Borg et al. 



18 
 

2014). Given this, we expect larger groups would absorb changes to group social structure more 

readily than small groups.  

Wolves in small groups can have higher mortality rates (i.e., hazard ratios) than wolves in 

large groups, although perhaps only marginally so (Smith et al. 2010). We measured markedly 

higher vital rates for wolves living in large groups over those in small groups, however. An 

increased ability to successfully compete with conspecifics as well as other species may be one 

explanation for the markedly higher vital rates we measured for wolves living in large groups 

than small groups. Gray wolves in the northern Rocky Mountains coexist with conspecific 

competitors as well as other competitors such as grizzly bears (Ursus arctos), black bears (U. 

americanus), mountain lions (Felis concolor), and humans (Homo sapiens). The presence of 

natural enemies (Courchamp et al. 2000b) can increase the probability of extinction in group-

living species where minimum group size thresholds exist. Under the influence of competition 

from conspecifics and others, small groups of African wild dogs had difficulty provisioning 

young and also guarding them from predation (Courchamp et al. 2002). Ruprecht et al. (2012) 

found that gray wolves living in small groups spent more of their time guarding young than those 

living in larger groups. Ausband et al. (In Review) also found a strong influence of predation risk 

on guarding rates in wolves; where predation risk was high individuals spent more time guarding 

young. Adequately guarding and provisioning young in a predator rich environment may be 

difficult for small groups and could contribute to the depressed vital rates we measured for such 

individuals.   

Wolf populations in the northern Rocky Mountains of the U.S. have increased 

dramatically during the last 3 decades, due in large part to reintroductions in Idaho and 

Yellowstone National Park in 1995-1996 (Bangs and Fritts 1996). Our simulations estimated 
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rapidly growing metapopulations of wolves at low densities regardless of initial group size 

distribution ( x (r) = 0.17, range = 0.06-0.40). Such estimated growth rates compare favorably to 

those reported during the early colonization period after wolf reintroduction in the Rockies and 

natural wolf recovery in the Midwest U.S. (USFWS et al. 2000; Beyer, Jr. et al. 2009; Van 

Deelen 2009; Wydeven et al. 2009). In recent years, as suitable habitat has become saturated, 

population growth in the northern Rockies as well as the Midwest U.S. has slowed (Beyer, Jr. et 

al. 2009; Van Deelen 2009; Wydeven et al. 2009; USFWS et al. 2010). At such high densities, 

our models predicted relatively stable to slightly decreasing metapopulations, particularly when 

group sizes within metapopulations were small. Beginning in 2009, wolves in Montana and 

Idaho have been harvested and group sizes have declined in recent years (IDFG 2014). Our 

simulations indicate that individual wolf abundance can decline yet the number of groups and 

distribution can increase in a metapopulation initially consisting of mostly large groups. Thus, 

population monitoring programs that focus on individual abundance may underestimate the 

abundance and distribution of groups when assessing population health.   
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Table 1. Initial subpopulation (i.e. group) size distribution of metapopulations used to model 

gray wolf population growth. 

Subpopulations 

n = 10 at t(0) 

   

Group size Number of 

subpopulations when 

all groups were small  

Number of 

subpopulations when 50% 

of groups were small  

Number of 

subpopulations when 

all groups were large  

2 3 2  

3 2 1  

4 5 2  

8  2 4 

10  2 3 

12  1 3 

Subpopulations 

n = 25 at t(0) 

   

2 7 4  

3 6 4  

4 12 5  
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8  4 9 

10  4 8 

12  4 8 
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Table 2. Initial age distribution of groups used to simulate wolf metapopulation growth. 

Age N = 2 N = 3 N = 4 N = 8 N = 10 N = 12 

1 0 1 2 4 4 4 

2 0 0 0 2 4 4 

3 2 0 0 0 0 2 

4 0 2 2 2 2 0 

5 0 0 0 0 0 2 
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Table 3. Vital rates and variances estimated from gray wolves in Idaho and Yellowstone 

National Park, USA. Vital rates were used to populate metapopulation model to simulate wolf 

population growth at low (1996-2002) and high densities (2003-2012).  

Low density     

Vital rate Group size <4 Variance Group size >8 Variance 

Mortality(pup) 0.28 0.02 0.35 0.09 

Mortality(adult) 0.23 0.02 0.23 0.02 

Prop. females breeding 1.0, F=1; 0.50, F=2; 

0.33, F=3; 0.25, 

F>4; 0.50, F>5 

N/A 1.0, F=1; 0.50, F=2; 

0.33, F=3; 0.25, F>4; 

0.50, F>5 

N/A 

Prop. females litter = 0 0.15 N/A 0.06 N/A 

Litter size 4.41 0.82 4.85 1.20 

Dispersal rate 0.12 N/A 0.12 N/A 

High density 

Mortality(pup) 0.45 0.25 0.38 0.15 

Mortality(adult) 0.28 0.02 0.28 0.02 

Prop. females breeding 1.0, F=1; 0.50, F=2; 

0.33, F=3; 0.25, 

N/A 1.0, F=1; 0.50, F=2; 

0.33, F=3; 0.25, F>4; 

N/A 
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F>4; 0.50, F>5 0.50, F>5 

Prop. females litter = 0 0.19 N/A 0.07 N/A 

Litter size 3.20 1.31 5.36 0.61 

Dispersal rate 0.09 N/A 0.09 N/A 
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Figure 1. Probability of group extinction from simulations of gray wolf metapopulation model at 

a.) low densities and b.) high densities using various initial group size distributions and 

immigration rates. Error bars represent SE. 

Fig. 1a                                                                      Fig. 1b 
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Figure 2. Stochastic growth rate (r) estimated from simulations of gray wolf metapopulation 

model at a.) low densities and b.) high densities given various initial group size distributions and 

immigration rates. Error bars represent SE. 

Fig. 2a 

 

Fig. 2b 
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Figure 3. Net gain (Nt+5 – Nt) in number of individuals from simulations of gray wolf 

metapopulation model at a.) low densities and b.) high densities using various initial group size 

distributions and rates of immigration. Error bars represent SD. 

Fig. 3a 

 

Fig. 3b 

 

 

 



34 
 

Title: Recruitment in a social carnivore before and after harvest 

Corresponding author: David E. Ausband, Montana Cooperative Wildlife Research Unit, Natural 

Sciences Room 205, University of Montana, Missoula, MT 59812, USA. E-mail: 

david.ausband@mso.umt.edu, Phone: 406.243.4329, Fax: 406.243.6064 

Carisa R. Stansbury, University of Idaho, Department of Fish and Wildlife Sciences 

Jennifer L. Stenglein, Wisconsin Department of Natural Resources 

Jennifer L. Struthers, Idaho Department of Fish and Game 

Lisette P. Waits, University of Idaho, Department of Fish and Wildlife Sciences 

Running Title: Recruitment before and after harvest  



35 
 

Abstract 

Knowledge about recruitment in a population can be critical when making conservation 

decisions, particularly for harvested species. Harvest can affect population demography in 

complex ways and this may be particularly true for cooperatively breeding species whose 

successful reproduction is often linked with complex social dynamics. We currently have a poor 

understanding of how harvest affects recruitment in cooperatively breeding species. We used 

noninvasive genetic sampling and a natural experiment to estimate recruitment in a population of 

gray wolves (Canis lupus) before and after harvest in the northern Rocky Mountains, USA 

(2008-2013). We hypothesized that recruitment would decline after hunting and trapping began 

and that the decline in recruitment would be attributable to the harvest of pups and not subtler 

mechanisms associated with group dynamics and reduced reproductive success. We collected 

fecal samples wolves in 10 packs for 6 consecutive years, extracted DNA, and genotyped 154 

individual pups across 18 microsatellite loci. Population harvest rates averaged 23.8% (SD = 

9.2). Our hypothesis that recruitment would decline was supported; survival from 3 – 15 months 

of age decreased from 0.60 (95% CI: 0.48-0.72) without harvest to 0.38 (95% CI: 0.28-0.48) 

with harvest and recruitment declined from 3.2 (95% CI: 2.1-4.3) to 1.6 (95% CI: 1.1-2.1) pups 

per pack after harvest was initiated. We cannot unequivocally dismiss other factors that could 

have reduced recruitment, however, an increase in recruitment when harvest temporarily ceased 

lends support to our conclusion that harvest reduced recruitment. We attributed just 18-38% of 

pup mortality directly to harvest and suggest that there are indirect effects of harvest on 

recruitment that may be associated with changes in group size and structure. Harvest models that 

do not include both direct and indirect effects of harvest on recruitment may underestimate the 

potential impact of harvest on population growth in social species. 
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Introduction 

Knowledge about recruitment (i.e., the number of surviving young to a given age) within a 

population can be critical when making conservation decisions, particularly for harvested 

species. Harvest can affect population demography in complex ways and this may be particularly 

true for cooperatively breeding species whose successful reproduction is often linked with 

complex social dynamics (Malcolm and Marten 1982; Whitman et al. 2004; Maldonado-

Chapparo and Blumstein 2008). Several studies have documented the positive influence of group 

size on survival and recruitment of young in group-living carnivores (Malcolm and Marten 1982; 

Courchamp and Macdonald 2001; Sparkman et al. 2011; Stahler et al. 2013). Decreases in group 

size can lead to a reduction in the ability to adequately guard and provision young (Courchamp, 

Rasmussen and MacDonald 2002).  

Some simulation studies have provided needed insights into how harvest affects population 

growth in social species. For example, Whitman et al. (2004) simulated selective harvest of 

trophy male African lions (Panthera leo) and found that resultant increases in infanticide rates 

lead to an increased risk of extinction. Maldonado-Chapparo and Blumstein (2008) found the 

selective harvest of females and reproductive suppression were influential factors affecting 

population growth in simulated populations of capybaras (Hydrochoerus hydrochaeris). 

Although we have a rich literature and theoretical basis for understanding cooperative breeding 

in mammals (Solomon and French 1997; Russell 2004) we currently have a poor understanding 

of how widespread public harvest affects recruitment in such social species.  

Estimating recruitment, or net production, in the wild can be challenging because young have 

often grown to adult size making accurate visual discrimination of age classes difficult. Despite 
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this difficulty, recruitment is a vital rate routinely used by wildlife managers (e.g., elk, Cervus 

elaphus; Peek 2003) and is required to assess the status of some endangered species in the United 

States (USFWS 1994, 1996a, 1996b). Furthermore, recruitment (along with survival and 

immigration) is a key component in determining whether harvest is an additional source of 

mortality or is compensated by increases in other population vital rates (Mills 2013). Recently, 

some have argued the relative contributions of recruitment and immigration to population growth 

as well as the overall effect of harvest on populations of social canids (Creel and Rotella 2010; 

Gude et al. 2012). Adams et al. (2008) stated that dispersal, resulting in both immigration and 

emigration, were key components to growth and persistence of a harvested population of gray 

wolves (Canis lupus) in Alaska. These studies did not assess recruitment within groups however, 

thus the effects of harvest on recruitment in groups of cooperatively breeding canids are not well 

understood.  

Wolves in the U.S. northern Rocky Mountains (NRM) were reintroduced in 1995-1996, with 

the exception of a small remnant population in northwest Montana (Bangs and Fritts 1996). 

Since reintroductions, the U.S. Fish and Wildlife Service (USFWS) and states in the NRM have 

documented recruitment in the population by reporting the number of breeding pairs each year 

(USFWS 1994). The USFWS defines a breeding pair as an adult male and female and >2 pups 

on 31 December of each year (USFWS 1994, 2009). Biologists in the NRM have largely used 

capture, radiotelemetry, and visual observations (aerial) to document the number of wolf 

breeding pairs annually (Bangs and Fritts 1996; Mitchell et al. 2008). Such an approach relies 

on: 1) having at least one member of a pack radiocollared, 2) the collared animal travelling with 

the pups and breeders at the time of the survey, and 3) weather conditions that permit visual 

observations. Each of these conditions may not always be met and can make estimates 
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inaccurate. Additionally, gray wolf pups are sufficiently large at eight months of age making 

accurate visual discrimination from an aircraft challenging for all but the most experienced 

observers. Recruitment could potentially be inferred using estimates from the literature. Studies 

reporting estimates of wolf pup survival, however, are typically based on samples of pups 

collared at 4-6 months of age (Hayes and Harestad 2000) and often in unharvested populations 

(Mech 1977; Smith et al. 2010) leaving a lack of knowledge about early pup survival (i.e., from 

den emergence to late summer). Biologists could potentially obtain visual counts of young at 

dens and compare them to late autumn/early winter counts via aerial telemetry (Mech et al. 

1998) although such estimates of recruitment can be skewed by incomplete counts either at the 

beginning or end of the time period. Alternatively, biologists could mark pups during denning 

season (April-May) when pups are very young and relatively immobile (Mills, Patterson, and 

Murray 2008). This procedure could provide early season estimates of reproduction but is only 

possible during a relatively short timeframe (i.e., 2-3 weeks), relies on knowledge of active den 

locations, and must be conducted at a time of year when wolves are most sensitive to disturbance 

(Frame, Cluff, and Hik 2005).  

Once reliable estimates of recruitment are obtained, however, one can begin to determine 

what factors are driving this important vital rate. For example, declines in prey abundance and 

outbreaks of disease have been shown to reduce recruitment in wolves (Harrington et al. 1983; 

Mech and Goyal 1993; Johnson, Boyd, Pletscher 1994). Additionally, reductions in group size 

can lead to decreased recruitment within groups of cooperatively breeding canids (Malcolm and 

Marten 1982; Courchamp and Macdonald 2001; Sparkman et al. 2011; Stahler et al. 2012). 

States in the NRM face the challenge of documenting recruitment (i.e., breeding pairs) in a 

recovered and harvested population of wolves. The USFWS first removed Endangered Species 
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Act protections for wolves in the NRM in 2008 but they were subsequently relisted that year. 

Wolves were delisted again in 2009 at which time states initiated harvest. Subsequent litigation 

and relisting precluded fall harvest in 2010. Congress removed Endangered Species Act 

protections for wolves in the NRM with the exception of Wyoming (USFWS 2011).  Idaho and 

Montana resumed public hunting in fall 2011 and Idaho instituted a trapping season in November 

2011. U.S. States in the NRM must document recruitment during the required five-year post-

delisting monitoring period. In a harvested population of wolves, however, traditional capture 

and radiocollaring techniques may lose effectiveness because marked animals are harvested 

requiring a nearly constant effort to capture and radiocollar new individuals. Furthermore, if the 

population is large, marking a sufficient number of individuals to generate reliable population 

metrics may not be feasible. Although required for the continued documentation of recovery 

goals, estimates of recruitment are also important for understanding the effects of the newly 

reinstated wolf harvest in the NRM.  

In this study we used an alternative approach for estimating recruitment based on 

noninvasive genetic sampling. We did not rely on radiocollared wolves but instead used genetic 

sampling to estimate first-year survival (from approx. 3 – 15 months of age) of wolf pups and 

recruitment. We then used a natural experiment and asked whether recruitment had changed in 

the wolf population after harvest was initiated. An increase in recruitment could occur at lower 

densities (Stahler et al. 2013) possibly because of increased food availability at lower densities 

as Knowlton (1972) determined for coyotes (Canis latrans). Alternatively, harvest may reduce 

recruitment through direct mortality or indirect effects that are more difficult to measure such as 

those associated with group size and composition (Courchamp and MacDonald 2001). We 

hypothesized recruitment (i.e., pup survival to 15 months) would decline after harvest was 
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initiated. We also hypothesized that the majority of pup mortality would be directly due to 

harvest. 

Materials and Methods 

We conducted annual surveys for wolves between mid-June and mid-August for six years 

(2008-2013) in two study areas in central Idaho, USA (Fig. 1).  The east study area was Idaho 

Department of Fish and Game (IDFG) Game Management Unit (GMU) 28 (3,388 km
2
) and the 

west study area was GMUs 33, 34, and 35 (3,861 km
2
).  Both areas were dominated by 

ponderosa pine (Pinus ponderosa), lodgepole pine (P. contorta), and spruce (Picea englemannii) 

mixed forests and sagebrush (Artemisia tridentata) steppe. Annual precipitation ranged from 89-

178 cm and temperatures range from -34° C in winter to 38° C in summer (Western Regional 

Climate Center 2012).   

Detailed field sampling and laboratory analysis methods have been published elsewhere 

(Ausband et al. 2010, Stenglein et al. 2010, 2011, Stansbury et al. 2014), and we provide a 

summary here.  We used radiotelemetry locations of wolves collared as part of annual state 

monitoring efforts to locate and sample rendezvous sites. In areas that did not contain 

radiocollared individuals as part of IDFG annual monitoring efforts we surveyed for wolves at 

historic and predicted rendezvous sites on approx. 15 July. We applied the predictive rendezvous 

site habitat model described by Ausband et al. (2010) and surveyed highly probable (≥70% 

suitability) rendezvous sites at dawn and dusk when wolves were active and likely to respond to 

howls (Harrington and Mech 1982).  After howling, two technicians separated and surveyed the 

site for 30-45 minutes looking for wolf signs. At occupied or recently occupied sites, we located 

the activity center and collected scat samples for 3-4 hours radiating out from the activity center 

on trails to ensure we collected scats from all available adults in the pack (Joslin 1967; Ausband 
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et al. 2010; Stenglein et al. 2010). We considered scats <2.5 cm diameter to be pup scats 

(Ausband et al. 2010; Stenglein et al. 2010) and those >2.5 cm to be adult wolf scats (Weaver 

and Fritts 1979). Pup counts using genotypes resulting from the 2.5 cm discrimination rule for 

pup vs adult scats were tested against pup counts from intensively monitored radiocollared wolf 

packs and were found to be accurate (Stenglein et al. 2010; Stansbury et al. 2014). This sampling 

approach generated 125-200 samples per pack and could provide genotypes for each animal in 

the pack (Stenglein et al. 2011). Each site was surveyed and sampled one time. After an active 

site was detected and sampled, we excluded other probable rendezvous sites within a 6.4 km 

radius to avoid duplicate sampling of packs (Ausband et al. 2010). We located and resampled 

each pack (n = 10) in the study areas every year. One pack had 2 years (2008 and 2009) removed 

from analyses because we were unable to locate the rendezvous site in 2009. 

We extracted DNA from samples using Qiagen stool kits (Qiagen Inc., Valencia, CA) in 

a room dedicated to low quantity DNA samples and using negative controls to monitor for 

contamination.  We initially screened all samples in a mitochondrial DNA species-identification 

test to remove non-target species and low-quality samples (De Barba et al. In Press). We used 

nine nuclear microsatellite loci and sex identification primers to identify individuals and gender 

as described in Stenglein et al. (2010). We generated an additional nine microsatellite loci on the 

best sample for each unique individual (i.e. for a total of 18 genotyped loci) and for samples that 

differed at only one locus out of initial nine loci to verify matches or mismatches (Stenglein et al. 

2011, Stansbury et al. 2014). We used an Applied Biosystems 3130xl capillary machine 

(Applied Biosystems Inc., Foster City, CA) ) to separate PCR products by size and verified peaks 

individually by eye with GENEMAPPER 3.7 (Applied Biosystems Inc., Foster City, CA).  We 

used Program Genalex v. 6.5 (Peakall and Smouse 2012) to match genotypes from scat samples 
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and we required >8 loci to confirm detections of the same individual. We initially amplified all 

samples twice and required successful amplification of alleles at >5 loci for the sample to 

continue for an additional 1–3 replications. We discarded samples that amplified at <5 loci. For 

each locus, we required >2 independent PCR amplifications for consensus of a heterozygote and 

>3 independent PCR amplifications for consensus of a homozygote. We included a negative 

control in all PCRs to test for contamination. We cross-checked all genotypes in program 

STRUCTURE  v.2.3.3 (Pritchard, Stephens, and Donnelly 2000) with reference samples of 

known wolves (n=66), domestic dogs (C. l. familiaris, n=17), and coyotes (C. latrans, n=40) at 

K=3 groups under the general admixture model, with a burn-in of 100,000, and 500,000 

additional Markov Chain Monte Carlo (MCMC) iterations and 10 iterations to estimate 

individual ancestry and remove samples highly probable as dogs or coyotes from the dataset.  

We used RELIOTYPE (Miller, Joyce, and Waits 2002) to test the accuracy of unique genotypes 

detected in only one sample (i.e. single captures) by ensuring the genotype attained a 95% 

accuracy threshold.  In 2008 and 2009 we analyzed all collected samples. After 2010, we 

analyzed 40 adult and 25 pup scats from each pack based in part on rarefaction results regarding 

sampling effort (Stenglein et al. 2011). We analyzed additional samples to obtain 10 more 

consensus genotypes if a pack had >2 individuals detected only once. The actual number of 

additional samples analyzed in such instances varied because of differences in nuclear DNA 

amplification success rates. 

We estimated population harvest rates using summer counts of wolves from ongoing 

population monitoring (USFWS 2010, 2012, 2013) and research (Ausband et al. 2010) and the 

spatial locations of harvested wolves in our study areas. To determine the percent of direct pup 

mortality due to harvest, we obtained tissue samples from harvested wolves and generated 
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genotypes for each across the same 18 microsatellite loci. We then matched genotypes of wolf 

pups sampled in summer to genotypes generated from harvested wolf pups using Program 

Genalex v. 6.5. We allowed for one allele mismatch between matching samples to account for 

allelic drop-out in noninvasive samples. 

We used the Kaplan-Meier survival model (Kaplan and Meier 1958) adjusted for a single 

time period to estimate wolf pup survival from 3-15 months (15 July(t) – 15 July(t+1)).  We let 

  be the number of genotyped pups in one year, and     be the number of genotyped pups that 

survived until the next year where   was the number of pups that died.  The first year survival of 

pups was            and we used Greenwood’s formula to estimate the variance       

            (Klein and Moeschberger 2003).  We estimated first-year pup survival by year, 

study area, and sex and determined that two survival estimates were different if the 95% 

confidence intervals did not overlap.  We calculated mean recruitment and standard error by year 

and study area.  We used a t-test to calculate the average difference in recruitment for years with 

harvest and years without harvest and paired by pack.     

Results 

We collected fecal samples from wolves at 117 potential or known to be occupied (via 

radiotelemetry) wolf rendezvous sites in 2 study areas during summers 2008-2013. We collected 

and successfully genotyped DNA from fecal samples of 154 wolf pups (Table 1) in 10 wolf 

packs. The probability of identity for siblings (i.e., chance that 2 individuals would have the 

same genotype) ranged from 3.54 x 10
-4

 to 1.18 x 10
-3

 across study areas. In 8 cases (5.2%) 

wolves detected as pups survived to the next year (determined from radiotelemetry and harvest), 

but were not detected during summer sampling; we updated their detection histories to represent 

the fact that they were alive and were simply not detected by our sampling. Average date of 
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sampling was 15 July and average time to sampling the following year was 361.6 (SE = 4.5) 

days. Harvest mortality rates were approximately 8.0% and 35.4% in 2009/2010, 22.0% and 

22.2% in 2011/2012, and 27.1% and 28.1% in 2012/2013 in the east and west study areas, 

respectively (Table 1). 

Wolf pups in the east study area had higher survival rates than the west study area even in 

years without harvest (0.77, SE = 0.08 vs. 0.47, SE = 0.08). The number of pups born was also 

slightly higher in the east study area (4.8, SE = 0.6) than the west study area (3.9, SE = 0.5). 

Across all years, the east study area (0.58 [95% CI: 0.46 – 0.70]) had 20% higher survival than 

the west study area (0.38 [95% CI: 0.27 – 0.48]).  Average recruitment in the east study area was 

2.9 (95% CI: 1.9 – 3.8) pups compared to 1.5 (95% CI: 0.8 – 2.0) pups in the west study area.  

The average number of pups alive on 15 July was 4.0 (SE = 0.68) in years with harvest 

and 4.8 (SE = 0.65) in years without harvest. There was no difference in pup survival by sex 

(males: 0.46 [95% CI: 0.35 – 0.57], females: 0.48 [95% CI: 0.37 – 0.59]. On average, pup 

survival was 0.60 (95% CI: 0.48 - 0.72) in years without harvest and 0.38 (95% CI: 0.28 - 0.48) 

in years with harvest (Table 1, Figs. 2, 3).  For a given pack, recruitment of pups fell from an 

average of 3.2 (95% CI: 2.1 – 4.3) pups surviving to 15 months in years without harvest to 1.6 

(95% CI: 1.1 – 2.1) in years with harvest (P = 0.017; Figs. 4, 5).  Approximately 95% of 

harvested wolves in our study areas had tissue samples collected and DNA extracted. The 

proportion of pup mortality that was directly attributable to hunting and trapping increased each 

year and ranged 18-38% (    27.4%; SE = 6.0%; Table 1). 

Discussion 

We failed to reject our hypothesis that survival and recruitment of young would decline after 

harvest was initiated, although we cannot unequivocally dismiss other possible factors that could 
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have also reduced recruitment. During years with harvest survival decreased the least in 2009-

2010; the year with the lowest quotas and lowest overall harvest mortality rates, particularly in 

our east study area (8%). Some of the decrease we estimated in recruitment can be attributed to 

decreased reproduction in years of harvest (4.0 vs. 4.8) but not all of the decrease can be 

accounted for this way. Current levels of recruitment are unlikely to compensate for mortality in 

other age classes of wolves in the pack and thus we predict pack sizes will continue to decline 

(IDFG 2014). Immigration into our study areas particularly the west study area, may be required 

if the management goal were to maintain current population size and levels of harvest. 

Immigration can play a large and important role in population persistence in some wolf 

populations (Adams et al. 2008), but we currently do not have estimates of immigration into our 

study areas. Future work could attempt to estimate immigration rates in the population using our 

sampling approach to determine the number of unrelated wolves adopted by packs each year 

(Rutledge et al. 2010). The resulting immigration rates would allow for the development of 

population models that include empirically-based estimates of both recruitment within packs and 

immigration into packs. Such a model could assess population viability over time in light of 

continued harvest. Currently, average pup survival to 7.5 months is 0.57 (0.32
(½)

) and managers 

could use this to estimate recruitment (i.e., the number of breeding pairs) on 31 Dec assuming a 

constant mortality rate and the harvest levels we observed.   

We rejected our hypothesis that most pup mortality would be directly due to harvest. The 

relatively low proportion of pup mortality that could be attributed to harvest (approx. 27%) 

suggests effects on recruitment beyond simply the number of young harvested. Harvest can 

decrease recruitment and group size simultaneously thus it is difficult to disentangle the direct 

(i.e., pups harvested) and indirect effects (i.e., fewer helpers leading to decreased recruitment) of 
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harvest. Harvest can reduce group size which in turn may reduce recruitment but harvest would 

still remain the ultimate cause of the decline in recruitment. Decreases in group size can lead to a 

reduction in pup-guarding ability (Courchamp, Rasmussen and MacDonald 2002) and increased 

predation of young and reductions in provisioning rates, particularly at low prey densities 

(Harrington, Mech, and Fritts 1983). Average group size has decreased since harvest began in 

Idaho (IDFG 2014) and this may have had indirect effects on survival and recruitment of young. 

Although harvest and group size can be correlated, disentangling the effects of harvest on group 

size and composition and how they in turn affect recruitment is fertile ground for future research. 

Harvest models that do not include both direct and indirect effects of harvest on recruitment may 

underestimate the potential impacts of harvest on population growth in social species. Several 

studies have documented the positive influence of group size on pup survival and recruitment in 

group-living carnivores (Malcolm and Marten 1982; Courchamp and Macdonald 2001; 

Sparkman et al. 2011; Stahler et al. 2013).  

In addition to detecting declines in recruitment after harvest, we also found differences in 

survival and recruitment between study areas. Food availability may explain differences in 

survival and recruitment between the study areas. We did not have prey abundance estimates for 

our east study area but it is possible that prey exists at higher densities in the east than the west 

area. Litter sizes in the east study area were slightly higher (4.8, SE = 0.6) than the west study 

area (3.9, SE = 0.5) suggesting that prey and subsequent reproductive output was greater in the 

east study area. We considered 2 other potential influences to explain differences in survival and 

recruitment between the 2 study areas; poaching and intraspecific (i.e., wolf on wolf) mortality. 

Wolves in the west study area may have experienced increased poaching mortality because of 

their relatively close proximity to a large urban area with a high human density (Boise, ID). 
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Using data from 98 radiocollared wolves in our study areas, we found no evidence that poaching 

rates were higher in the west (11.0%) than east (12.5%) study area. We did, however, find some 

evidence of intraspecific mortality in the west (6.1%) yet no evidence in the east study area. 

Wolves in the west study area congregate along a river corridor that is elk range in winter. 

Monitoring flights have found wolf packs just 1.6-3.2 km apart in the west study area while on 

the winter range (J. Struthers, IDFG, unpublished data). We did not observe such high densities 

and potential for intraspecific killing in the east study area (J. Husseman, IDFG, unpublished 

data). The available data suggests a small difference in intraspecific mortality rates, but does not 

fully explain differences in survival and recruitment between the study areas.  

Generally, fecal DNA of carnivores degrades rapidly in the natural environment (Piggott 

2004, Santini et al. 2007, Murphy et al. 2007); however, we have found that some scats may 

contain DNA that persists longer in our environment than previously thought (D. Ausband, 

unpublished data). If DNA does persist >1 year in our study areas it may have biased our 

survival rates higher than the true value. Lastly, not detecting an animal at year 2 (i.e., false 

negative) may negatively bias our survival estimates, although Stenglein et al. (2011) 

demonstrated that each animal in a pack can be detected with our sampling technique. By 

sampling packs multiple years we found false negatives (i.e., alive at 15 months but not detected) 

5% (n = 154) of the time allowing us to correct these animals’ detection histories. Despite the 

demonstrated low probability that we missed individuals more often at year 1 such a bias would 

be found in all years of our data. Thus, although our survival estimates would be biased low, our 

results and conclusions would remain unchanged.  Jimenez et al. (In Review) estimated that 4% 

of wolves in the NRM during 1993-2008 disperse in their first year. Therefore, our data may 

include animals that dispersed from their natal pack in their first year and did not die. The 
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number of such animals would be quite low (~1 wolf in our sample each year), however, and 

would not likely affect our survival rates appreciably. 

We documented a correlation between harvest and recruitment. Control sites would be 

necessary to unequivocally exclude other variables that may have reduced recruitment, however, 

there is no such area available in Idaho because harvest is statewide. While declines in prey 

abundance and disease outbreaks have been shown to reduce recruitment in wolves (Harrington 

et al. 1983; Mech and Goyal 1993; Johnson, Boyd, Pletscher 1994) neither were observed during 

our study (USFWS 2010, 2011, 2012, 2013; IDFG unpublished data). Additionally, we note that 

if recruitment declined because of some unmeasured external factor it is unlikely we would have 

documented an increase in recruitment during the year that harvest temporarily ceased (2010-

2011; Figs 2, 3).  Although it appears that prey abundance and disease were not influential 

during our study future work should attempt to control for these potentially confounding 

variables.  
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Table 1. Mean survival from 3-15 months, number of gray wolf pups recruited into packs, and 

percent of mortality attributable to harvest before and after harvest in Idaho, USA, 2008-2013.  

Year Population 

harvest rate (%) 

N Mean pup 

survival (SE) 

Mean pups 

recruited (SE) 

Mortality directly 

attributable to 

harvest (%) 

2008-2009 0.0 20 0.60 (0.11) 2.4 (0.5) N/A 

2009-2010 21.7 23 0.50 (0.11) 1.8 (0.8) 18.2 

2010-2011 0.0 42 0.60 (0.08) 3.1 (0.7) N/A 

2011-2012 22.1 38 0.36 (0.08) 1.8 (0.7) 25.9 

2012-2013 27.6 31 0.32 (0.08) 1.1 (0.4) 38.1 
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Figure 1. Study areas in Idaho, USA where wolves were sampled genetically to estimate pup 

survival and recruitment before and after harvest, 2008-2013. 

Figure 2. Mean wolf pup survival from 3-15 months by year before and after harvest in Idaho, 

USA, 2008-2013. Errors bars represent SE.  

Figure 3. Mean wolf pup survival from 3-15 months before and after harvest in Idaho, USA, 

2008-2013. Errors bars represent 95% CI.  

Figure 4. Mean wolf pups recruited by year before and after harvest in Idaho, USA, 2008-2013. 

Errors bars represent SE.  

Figure 5. Mean wolf pups recruited before and after harvest in Idaho, USA, 2008-2013. Errors 

bars represent 95% CI.   
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Figure 1. 
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Figure 2. 

 

  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

2008-2009 

(No harvest) 

2009-2010 

(Harvest) 

2010-2011 

(No harvest) 

2011-2012 

(Harvest) 

2012-2013 

(Harvest) 

 P
u
p
 s

u
rv

iv
al

 



60 
 

Figure 3. 
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Figure 4. 

 

  

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

2008-2009 

(No harvest) 

2009-2010 

(Harvest) 

2010-2011 

(No harvest) 

2011-2012 

(Harvest) 

2012-2013 

(Harvest) 

N
o
. 
o
f 

p
u
p
s 

re
cr

u
it

ed
 



62 
 

Figure 5. 
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Abstract 

Recruitment in cooperative breeders can be negatively affected by reductions in group size, 

changes to group composition and breeder turnover. We wanted to know how mortality, in the 

form of persistent harvest, affects group size, composition, and ultimately recruitment (i.e., pup 

survival to 15 months) in a cooperative breeder. We used noninvasive genetic sampling and 18 

microsatellite loci to construct group pedigrees and estimate recruitment for gray wolves (Canis 

lupus) under 3 different harvest regimes ranging from heavily harvested to fully protected in 

Alberta, Canada, and Idaho and Yellowstone National Park (YNP), USA. We hypothesized that 

harvest reduces recruitment because of reduced group size, reduced intragroup diversity (i.e., 

fewer adults of varied sex and age classes), and breeder turnover. Alternatively, harvest increases 

recruitment possibly due to increased food availability or harvest mortality does not affect 

recruitment differently than natural mortality.  
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Harvest reduced recruitment and group size, intragroup diversity, breeder turnover, and 

the potential to inherit a breeding position all affected recruitment as well. Group size, and 

related metrics (number of breeders present), weakened the negative effects of harvest on 

recruitment. Not all additions to group size had positive effects, however. The presence of older 

nonbreeding males reduced recruitment. Given this, selection should favor female-biased sex 

ratios and relatively early dispersal (or expulsion) for males; we observed both albeit over a 

limited timeframe. We show that ameliorating the negative effects of harvest on recruitment is 

one benefit of group-living but individuals are not equal in their contributions to recruitment 

within groups.  

Introduction 

Group living has evolved across a wide range of taxa and species. Many group living species 

display cooperative breeding behavior. Cooperative breeding generally refers to the cooperative 

care of related, or even unrelated, young by helpers (i.e., nonbreeding individuals in the group) 

within a group (Solomon and French 1997). In mammals, both manipulative and observational 

studies have shown that the presence of helpers can be critical to breeder fitness and group 

persistence (Solomon and French 1997; Courchamp et al. 2000; Courchamp and Macdonald 

2001; Courchamp et al. 2002; Stahler et al. 2013).  

The number of helpers in a group can positively influence recruitment (Tardif et al. 1984; 

Solomon and French 1997; Clutton-Brock 2006), but group composition may also have an 

important influence on recruitment and population growth in cooperative breeders. For example, 

selective removal of male African lions (Panthera leo) results in instances of infanticide and 

reduced population viability (Whitman et al. 2004). Breeder turnover and reduced genetic 

relatedness within groups can affect both recruitment and group survival in other cooperatively 
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breeding mammals as well (Solomon and French 1997; Pope 2000; Brainerd et al. 2008; Gobush 

et al. 2008; Borg et al. 2014). Group composition may also be important because not all age and 

sex classes help equally within a group. Individuals in groups of gray wolves (Canis lupus), for 

example, vary widely in the amount of pup-guarding behavior they display (Thurston 2002; 

Ruprecht et al. 2012; Ausband et al. In Review). Considering the importance of pup-guarding to 

recruitment in African wild dogs (Courchamp et al. 2002), groups of wolves that have diverse 

sex and age classes may also have experienced adult helpers that contribute more to rearing 

young (Lawton and Guindon 1981; Tardif 1997) and ultimately increase fitness of breeders. 

Many social canids are territorial and individuals living in large groups are often more successful 

during intraspecific confrontations than those in small groups, as found in gray wolves (Cassidy 

2013) and African wild dogs (Creel and Creel 1995). Given their complex social structures, 

territorial defense that relies in part on large group size, and persistent harvest regimes, gray 

wolves are an ideal species for studying the relationships between mortality, group size and 

composition, and recruitment in cooperative breeders. 

Unharvested wolf groups are typically composed of a breeding pair and 2-3 generations 

of offspring where young remain in their natal group and care for subsequent years’ offspring. In 

the Rocky Mountains of the U.S., wolves generally do not disperse from their natal group until 3 

years of age even though they are reproductively mature at 22 months (Jimenez et al. In Review). 

If selection has favored breeding wolves that retain mature offspring and diverse group structures 

then recruitment may be negatively affected by events that simplify intragroup diversity (i.e., 

number of different sex and age classes). Groups of gray wolves in Idaho, USA, had significantly 

lower recruitment after public harvest was initiated but the number of pups harvested could not 

entirely account for the decline in recruitment (Ausband et al. 2015).  Indirect effects of harvest 
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on recruitment, perhaps because of reduced group size or altered group composition may form 

the mechanism underlying observed changes in recruitment. Generally, we have a poor 

understanding of how persistent mortality affects group characteristics and recruitment in 

cooperative breeders because most studies of cooperative breeding have not encompassed human 

harvest. 

We examined how varying levels of mortality, in the form of persistent public harvest, 

affects group size, composition, and ultimately recruitment in a cooperatively breeding mammal. 

We used noninvasive genetic sampling and 18 microsatellite loci to construct group pedigrees 

and estimate the probability of recruitment for gray wolves under 3 different harvest regimes 

ranging from heavily harvested to fully protected. We posited that harvest would negatively 

affect group size and composition and as a result would reduce a group’s ability to successfully 

rear young and grow in number of individuals. Specifically, we hypothesized that harvest, 1) 

reduces the probability of recruitment because of reduced group size, 2) reduces the probability 

of recruitment because of reduced intragroup diversity (i.e., fewer adults of varied sex and age 

classes), 3) reduces the probability of recruitment because of breeder turnover, 4) alternatively, 

harvest increases the probability of recruitment possibly due to increased food availability, or 5) 

harvest does not affect the probability of recruitment differently than natural mortality.  

Study Areas 

We had 3 study areas in Idaho, southwest Alberta, Canada, and Yellowstone National Park 

(YNP), Wyoming. The 3 study areas represented a wide range of human-caused mortality from 

heavily harvested and agency-controlled (southwest Alberta and central Idaho) to fully protected 

(YNP).  
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From 2008-2014, we genetically-censused 8-10 wolf groups annually in Game 

Management Units (GMUs) 28 (Salmon Zone), 33, 34, and 35 (Sawtooth Zone) in central Idaho. 

Idaho is mountainous and dominated by a mix of ponderosa pine (Pinus ponderosa), lodgepole 

pine (P. contorta), and spruce (Picea englemannii) forests and sagebrush (Artemisia tridentata) 

steppe. Annual precipitation ranges from 89-178 cm and temperatures range from -34° C in 

winter to 38° C in summer (Western Regional Climate Center 2014). Public harvest of wolves 

began in Idaho in 2009, temporarily ceased in 2010 and began again in 2011. Population harvest 

rates in our Idaho study areas average 24% (Ausband et al. 2015). Control actions to address 

livestock depredations are rare in our study groups in Idaho.  

During summers 2012-2014 we also sampled wolves in 5-6 groups in YNP. YNP is 

dominated by lodgepole pine forests and expansive meadow systems. YNP is relatively dry and 

precipitation averages 47 cm annually and temperature fluctuations range from -39°C in winter 

to 30°C in summer at Yellowstone Lake (Western Regional Climate Center 2014). Wolves exist 

at relatively high densities and there is no human hunting inside YNP.  

Lastly, during summers 2012-2014 we also sampled wolves in 2 groups in southwest 

Alberta. Southwest Alberta is a highly contrasted landscape where mountainous forests meet the 

dry short-grass prairie region. Mountain forests are dominated by Douglas-fir (Pseudotsuga 

menziesii) and lodgepole pine forests. Where forest meets prairie there are expansive aspen 

(Populus tremuloides) forests dominated by livestock grazing. Temperatures range from -32°C 

to 23°C and precipitation averages 40 cm annually on the prairie (Alberta Agriculture and Rural 

Development, 2014). Wolf densities are thought to be managed at low levels in southwest 

Alberta and wolf control actions, bounties, and human harvest are presumed to be higher than the 

Idaho study areas.  
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Methods 

Field methods 

When available, we used radiotelemetry locations of wolves to locate rendezvous sites and 

collect wolf scat samples for subsequent DNA analyses. In areas that did not contain 

radiocollared individuals as part of agency monitoring we surveyed for wolves at historic and 

predicted rendezvous sites. We applied a predictive rendezvous site habitat model (Ausband et 

al. 2010) and surveyed highly probable (≥70% suitability) rendezvous sites at dawn and dusk 

(Harrington and Mech 1982). After howling, 2 technicians separated and surveyed the site for 

30-45 minutes looking for wolf signs. At occupied or recently occupied sites, we located the 

activity center and collected pup and adult scat samples for 3-4 hours radiating out from the 

activity center on trails to ensure we collected scats from all available adults in the pack (Joslin 

1967; Ausband et al. 2010; Stenglein et al. 2010). We considered scats <2.5 cm diameter to be 

pup scats (Ausband et al. 2010; Stenglein et al. 2010) and those >2.5 cm to be adult wolf scats 

(Weaver and Fritts 1979). Pup counts using genotypes resulting from the 2.5 cm discrimination 

rule for pup vs. adult scats were tested against pup counts from intensively monitored 

radiocollared wolf groups and were found to be accurate (Stenglein et al. 2010; Stansbury et al. 

2014). This sampling approach generated 125-200 samples per pack and could provide 

genotypes for each animal in the pack (Stenglein et al. 2011). We used data only from 

reproductively active groups because we could not be sure we sampled every animal in the group 

if their movements were not centered at a pup-rearing site. Each site was surveyed and sampled 

one time. After an active site was detected and sampled, we excluded other probable rendezvous 

sites within a 6.4 km radius to avoid duplicate sampling (Ausband et al. 2010). We attempted to 

locate and resample each group every year. Additional detail on field and laboratory methods 
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have been published elsewhere (Ausband et al. 2010, Stenglein et al. 2010, 2011, Stansbury et al. 

2014). 

Laboratory methods 

DNA analyses on collected scat samples were performed at the University of Idaho’s 

Conservation Genetics Laboratory (Moscow, ID). We extracted DNA from samples using 

Qiagen stool kits (Qiagen Inc., Valencia, CA) in a room dedicated to low quantity DNA samples 

and using negative controls to monitor for contamination. We initially screened all samples in a 

mitochondrial DNA species-identification test to remove non-target species and low-quality 

samples (De Barba et al. 2014). We used nine nuclear microsatellite loci and sex identification 

primers to identify individuals and gender as described in Stenglein et al. (2010). We generated 

an additional nine microsatellite loci on the best sample for each unique individual (i.e., total = 

18 loci) and for samples that differed at only one locus out of initial nine loci to verify matches 

or mismatches (Stenglein et al. 2011, Stansbury et al. 2014). We used an Applied Biosystems 

3130xl capillary machine (Applied Biosystems Inc., Foster City, CA)  to separate PCR products 

by size and verified peaks individually by eye with GENEMAPPER 3.7 (Applied Biosystems 

Inc., Foster City, CA).  We used Program Genalex v. 6.5 (Peakall and Smouse 2012) to match 

genotypes from scat samples and we required >8 loci to confirm detections of the same 

individual. We initially amplified all samples twice and required successful amplification of 

alleles at >5 loci for the sample to continue for an additional 1–3 replications. We discarded 

samples that amplified at <5 loci. For each locus, we required >2 independent PCR 

amplifications for consensus of a heterozygote and >3 independent PCR amplifications for 

consensus of a homozygote. We included a negative control in all PCRs to test for 

contamination. We cross-checked all genotypes in program STRUCTURE  v.2.3.3 (Pritchard et 
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al. 2000) with reference samples of known wolves (n=66), domestic dogs (C. l. familiaris, n=17), 

and coyotes (C. latrans, n=40) at K=3 groups under the general admixture model, with a burn-in 

of 100,000, and 500,000 additional Markov Chain Monte Carlo (MCMC) iterations and 10 

iterations to estimate individual ancestry and remove samples highly probable as dogs or coyotes 

from the dataset.  We used RELIOTYPE (Miller et al. 2002) to test the accuracy of unique 

genotypes detected in only one sample (i.e. single captures) by ensuring the genotype attained a 

95% accuracy threshold.  In 2008 and 2009 we analyzed all collected samples. After 2010, we 

analyzed 40 adult and 25 pup scats from each pack based in part on rarefaction results regarding 

sampling effort (Stenglein et al. 2011). We analyzed additional samples to obtain 10 more 

consensus genotypes if a pack had >2 individuals detected only once. The actual number of 

additional samples analyzed in such instances varied because of differences in nuclear DNA 

amplification success rates. 

Analysis methods 

For each year and study area we included all sampled adult males and females as potential 

parents and all sampled pups as potential offspring and then determined breeders and their 

offspring by constructing pedigrees using maximum-likelihood in Program COLONY version 

2.0.5.5 (Jones and Wang 2009).  In addition to adults we sampled at rendezvous sites, we also 

included genotypes of any radiocollared animals present in the study areas. We calculated allele 

frequencies for each study area and year in Program COANCESTRY version 1.0.1.5 (Wang 

2011) and then imported those into Program COLONY for use in pedigree analyses. We allowed 

for polygamy in both males and females and assumed an allelic dropout rate of 0.01. In cases 

where parentage was undetermined from COLONY we further examined offspring genotypes 

against the likely parents of the remaining offspring in the group and allowed for a 2 allele 
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mismatch owing to allelic dropout between parent and offspring to verify parentage across the 18 

loci. We sampled groups of wolves across consecutive years and from the resulting pedigrees we 

estimated the number of individuals in each age and sex class (breeding females, breeding males, 

1 year old nonbreeding females, >2 year old nonbreeding females, 1 year old nonbreeding males, 

>2 year old nonbreeding males, unknown age females, unknown age males, female pups, male 

pups) and recruitment (pups reared to 15 months). We obtained such detailed group 

compositions before and after harvest in Idaho as well as in Alberta and YNP. We defined 

intragroup diversity as the number of individuals in the group multiplied by number of sex and 

age classes represented. We documented breeder turnover between years and estimated the 

number of helpers (nonbreeding females and nonbreeding males) and breeders present at t = 3 

months (i.e., pups 3 months old) and t = 15 months (i.e., pups 15 months old; only helpers >2 

years old at t = 15 months because 1 year old helpers at t = 15 months are not independent with 

the response variable, recruitment).  

We used logistic regression with recruitment as the response variable to look for potential 

differences in recruitment before and after harvest in Idaho. We treated each sampled pup as a 

case, considered whether they were alive or dead at 15 months a binary response, and defined 

recruitment as the probability of surviving to 15 months of age. We also used logistic regression 

to ask whether recruitment before harvest in Idaho resembled recruitment levels we measured in 

YNP and whether recruitment after harvest in Idaho resembled levels measured in southwest 

Alberta. We used a generalized linear model with a Poisson distribution to assess whether litter 

sizes at 3 months were different among the 3 study areas. We used multiple logistic regression 

with recruitment as the response variable to assess the relative influence of harvest, intragroup 

diversity, group size (at t = 3 months and t = 15 months), and breeder turnover on recruitment. 
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Additionally, we used multiple logistic regression to assess the influence of each sex and age 

class and study area on recruitment. We used all data from all study areas to first assess the 

influence of harvest on recruitment. We then constructed models using data from Idaho to 

examine the influence of group composition and size on recruitment in years when there was 

harvest. We used Akaike's Information Criteria (AIC) to evaluate the relative support for each 

model and assessed the likelihood of the model given the data using model weight (wi; Burnham 

and Anderson 2002). We used the receiver operating characteristic (ROC) to assess model fit and 

assumed reasonable fit when the area under curve was >0.70.  

Results 

We genotyped 279 adults and 193 pups in 10 groups in Idaho during 2008-2014. We genotyped 

31 adults and 35 pups in 2 groups in Alberta, and 85 adults and 47 pups in 4 groups in YNP 

during 2012-2014 (Table 1). Litter sizes at 3 months of age were 5.0 (SE = 0.47), 5.8 (SE = 

0.95), and 2.6 (SE = 0.32) for Idaho, Alberta, and YNP, respectively. YNP had significantly 

fewer pups at 3 months than Alberta (p = 0.02) or Idaho (p = 0.001).  

Harvest was the most influential variable that negatively affected the probability of 

recruitment for pups across the 3 study areas (Table 2). Recruitment of pups to 15 months of age 

declined significantly in Idaho in years when wolves were harvested (3.69 vs 1.65 pups/group; 

logit = 0.56 – 1.26 (harvest); p < 0.0001). The probability of a pup being recruited did not differ 

between YNP and Idaho before harvest (0.62 vs. 0.67; p = 0.66) but differed significantly after 

harvest began in Idaho (0.67 before vs. 0.37 after; p = 0.003). The probability a pup was 

recruited in Alberta (0.13) was significantly lower than Idaho (0.37) even after harvest began (p 

= 0.04).  
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Across all study areas and years, the number of breeders in a group when pups reached 

15 months of age had a significant positive effect on the probability of recruitment. The number 

of nonbreeding males >2 years old when pups reached 15 months of age had a negative effect on 

the probability of recruitment although the number of >1 year old nonbreeding males in a group 

initially had a slight positive effect on the probability of recruitment when pups were young 

(Table 2). 

In years with harvest in Idaho, a global model that included group size, intragroup 

diversity (relative abundance of sex and age classes), and breeder turnover had the most support 

for predicting wolf pup recruitment (Table 3). Group size when pups reached 15 months of age 

had a positive effect on the probability of recruitment during harvest. Intragroup diversity and 

breeding male turnover when pups reached 15 months of age had a negative effect on the 

probability of recruitment during years with harvest (Table 4). Similar to the model across all 

study areas and years (Table 2), the number of >2 year old nonbreeding males present when pups 

reached 15 months had a significant negative effect on the probability of recruitment (odds ratio 

= 0.34; 0.12-0.96, 95% CI) whereas the number of breeders present at 15 months had a 

significant positive effect on the probability of recruitment (odds ratio = 3.88; 1.33-11.28, 95% 

CI) during years with harvest. For discussion purposes, we use the term “recruitment” hereafter 

to represent the probability of recruitment.  

Discussion 

We show that a benefit of group-living is that the negative effects of harvest on 

recruitment can be weakened by group size. The odds of recruitment increased >5 times for each 

additional adult in a group when pups reached 15 months of age (Table 4). Not all additions to 

group size had positive effects, however. The presence of older nonbreeding males particularly 

reduced recruitment. Increases in intragroup diversity (number of sex and age classes in a group 
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when pups reached 15 months of age) had negative effects on recruitment and we posit this is 

related to the effect of older nonbreeding males and sample size limitations. Three groups had >2 

nonbreeding males and none of these groups recruited pups.  

Individuals such as older nonbreeding males may cheat (i.e., not help) to increase the 

benefits of group-living for themselves and such behavior has been widely documented 

(Wenseleers and Ratnieks 2006; Crofoot and Gilby 2012). Older nonbreeding male helpers may 

not participate as much as female helpers in provisioning or guarding young, at least during 

portions of the pup-rearing season (Ausband et al. In Review). Older nonbreeding male helpers 

may have increased fitness by dispersing rather than waiting to inherit a breeding position in 

their natal group; a strategy female wolves appear to use more often than males (Von Holdt et al. 

2008). Conversely, adult males may be involuntarily expelled from the group because of the 

negative effects that sexually mature males have on the fitness of breeders. Given the lower 

likelihood of inheriting a breeding position in their natal group, one might expect males to be 

selfish, grow large, and help less. Additionally, although they may help increase prey acquisition 

rates (MacNulty et al. 2009a) older nonbreeding adult males may also consume more at kills due 

to their larger body size (MacNulty et al. 2009b). Clearly, several plausible hypotheses exist to 

explain the negative effect older nonbreeding males have on pup recruitment.  

Our model predicts that during years with harvest pups in groups with 2 breeders and 2 

adult male helpers had a 0.25 probability of surviving to 15 months whereas pups in groups with 

2 breeders and 2 adult female helpers had a 0.43 probability of surviving to 15 months. Given the 

disparate probabilities of recruitment for groups with adult females compared to adult male 

helpers one might expect selection to favor groups that expel adult males and recruit adult 

females perhaps through skewed sex ratios of litters. We found evidence of both earlier dispersal 
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for males (perhaps due to expulsion) and sex ratios that were biased toward females. Of the 

helpers that stayed with their natal pack for >3 years, only 29% were males yet 71% were 

females. This sex-biased philopatry allowed female helpers to obtain a breeding position in 10 

cases whereas male helpers only bred in their natal pack 4 times. Helper males may have been 

expelled from the group or died at an earlier date than female helpers. Harvest began in Idaho in 

2009, rates have gradually increased (22% in 2009  to 28% in 2013; Ausband et al. 2015), and in 

our study groups we observed an increase in the proportion of females in litters in recent years 

(Fig. 1). Pen and Weissing (2000) predicted that groups with few helpers would produce the 

helping sex whereas groups with helpers would produce the opposite sex. We found no such 

trend in our data. Sex ratios varied annually to some degree and we caution against inferences 

about biased sex ratios and selection without further study. The harvested wolf population in 

Alberta showed no trend toward female-biased litters (0.50:0.50). Only 3 of 23 pups were 

recruited in Alberta and the effect of harvest may be strong enough to overwhelm the potential 

benefits of skewed helper sex ratios for increasing recruitment.  

Breeder turnover has been found to reduce recruitment in cooperative breeders (Whitman 

et al. 2004; Brainerd et al. 2008; Maldonado-Chapparo and Blumstein 2008; Borg et al. 2014) 

and we found that turnover of breeding males in particular had negative effects on recruitment in 

years with harvest. Male vacancies were often filled by males adopted from outside the group 

(71.4%, n = 14). Such individuals may not have been as effective as former resident males 

because they did not have adequate time to establish stable social hierarchies and develop 

knowledge of the group’s territory and hunting patterns. In contrast (78.9%, n=19), vacancies 

caused by losses of breeding females were filled by nonbreeding females within the group. 



76 
 

The number of breeders present at 15 months (which may or may not have included the 

initial breeders when pups were 3 months old) was a strong predictor of recruitment across all 

study areas and years and also only in years with harvest. Maintaining breeders in the group, 

even if they are new individuals, can increase recruitment. Additionally, in some cases adult 

helpers changed status during the year and became breeders as the pups neared 15 months of age. 

Mortality can create breeding vacancies where helpers may contribute more to rearing young if 

they can acquire a breeding position in the group during the pups’ first year of life. Under group 

augmentation theory, such wolves would be expected to help more and thus potentially increase 

recruitment (Kokko et al. 2001).  

Genetic relatedness within groups can influence recruitment because helpers 

preferentially direct care to related young (Tardif 1997). We did not find a significant reduction 

in genetic relatedness between helpers and pups after harvest began (r = 0.31 vs. 0.29; p = 0.23) 

thus we did not include relatedness in our analyses. Relatedness between helpers and young in 

the protected population of wolves in YNP was 0.20 yet 0.29 for a heavily harvested population 

of wolves in Alberta. Genetic relatedness may be a poor measure to look for effects on 

recruitment in gray wolves because relatedness within a group can be quite high (e.g., r = 0.50) 

even when there is just one helper and its sibling young. Given our results showing that 

nonbreeding adult males are associated with decreased recruitment, if the lone helper is an adult 

male then genetic relatedness to the sibling young may be inconsequential in such cases.  

Recruitment in Idaho before harvest was similar to levels measured in unharvested YNP 

but was significantly lower after harvest was initiated. Therefore, we reject our hypothesis that 

harvest and increasing mortality do not affect recruitment differently than natural mortality in 
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unharvested wolf populations. Alberta had much lower pup recruitment rates than either Idaho 

(after harvest) or YNP.  

Sample sizes are limited for Alberta (2 groups over 3 years) thus an Alberta-specific 

model is not appropriate, but turnover within packs in Alberta was high among all age classes. 

Only 22% of the 41 wolves sampled that were available for recapture in Alberta were detected 

again the following year and only 1 wolf was detected during all 3 years of our study. These 

animals may have dispersed out of the study area and not died, but the resulting change to group 

composition between years is the same. It is difficult to discern what factors beyond harvest 

influence recruitment in Alberta. Given the very low levels of recruitment we measured in 

southwest Alberta, it appears this population of wolves is likely dependent on immigration for 

population persistence.  

Studies have found increased food availability after high human-caused mortality events 

(e.g., control) can lead to increases in recruitment in some canids (i.e., coyotes, Canis latrans; 

Knowlton et al. 1999). We found no evidence that recruitment increased after harvest. 

Hypothetically, harvest could create breeding vacancies and areas where groups are no longer 

extant thus small reproductive pairs and groups could proliferate. Such a scenario could lead to 

increased recruitment in the population via more breeding pairs. We have not found this to be 

true in our study areas nor has the number of groups increased statewide in Idaho since harvest 

began (USFWS 2012, 2013). Our analyses focused on reproductive groups because they could 

be adequately sampled with confidence, thus years when groups did not have pups were not 

included in our analyses. As a result, it is likely that we underestimate the effect of harvest on 

recruitment at the population level.   
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Recruitment, although important, is just one component for measuring fitness in 

cooperatively breeding carnivores. Behaviors such as foraging and territory maintenance 

contribute to both survival and recruitment and thus affect fitness indirectly. For example, 

individuals in group-living carnivores that rely on capturing large prey can fulfill different roles 

during foraging (MacNulty et al. 2009a, b). Maintaining diverse sex and age classes in a group 

may enhance foraging success and lead to larger body size in breeders, thus positively affecting 

fitness. Group size can also influence territory maintenance and defense (Creel and Creel 1995; 

Cassidy 2013) leading to increased fitness for breeders. Mortality can influence both group size 

and composition which in turn affect recruitment, territory maintenance and defense, and 

foraging success. Determining how persistent mortality due to harvest also influences group-

living benefits such as territory defense and foraging success can enhance our understanding of 

the evolution and maintenance of group living in managed populations of cooperative breeders. 
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Table 1. Group composition and number of pups recruited in groups of wolves in Alberta, Canada, 

and Idaho and Yellowstone National Park, USA. 

Study 

area 

Year Group No. of 

breeders 

No. of 

nonbreeding 

females 

No. of 

nonbreeding 

males 

No. of 

pups at 3 

months 

No. of 

pups at 15 

months 

Alberta 2012-2013 Castle River 2 1 2 7 0 

 2012-2013 Willow Creek 2 0 3 7 0 

 2013-2014 Castle River 2 2 0 6 2 

 2013-2014 Willow Creek 1 0 5 3 1 

Idaho 2008-2009 Bear Valley 2 8 6 4 2 

 2008-2009 Casner Creek 2 2 1 3 2 

 2008-2009 Jureano Mtn 4 3 3 6 3 

 2008-2009 Moyer Basin 2 4 5 5 4 

 2008-2009 Scott Mtn 2 2 0 1 1 

 2009-2010 Casner Creek 2 4 1 4 3 

 2009-2010 Hoodoo 2 5 2 4 0 

 2009-2010 Jureano Mtn 3 1 7 3 2 

 2009-2010 Moyer Basin 1 6 7 6 5 

 2009-2010 Wapiti 2 4 4 6 2 
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 2010-2011 Archie Mtn 2 1 2 9 0 

 2010-2011 Bear Valley 2 1 0 6 6 

 2010-2011 Casner Creek 2 6 0 2 2 

 2010-2011 Hoodoo 3 2 2 12 9 

 2010-2011 Jureano Mtn 2 1 2 4 3 

 2010-2011 Moyer Basin 4 2 4 9 9 

 2010-2011 Timberline 2 0 2 7 4 

 2010-2011 Wapiti 2 5 1 9 3 

 2011-2012 Bear Valley 2 3 4 5 0 

 2011-2012 Hoodoo 3 5 4 14 8 

 2011-2012 Jureano Mtn 3 2 3 2 0 

 2011-2012 Little Anderson 2 1 4 1 0 

 2011-2012 Moyer Basin 2 4 6 6 2 

 2011-2012 Scott Mtn 2 0 0 3 2 

 2011-2012 Timberline 2 2 3 4 1 

 2011-2012 Wapiti 2 7 2 8 2 

 2012-2013 Bear Valley 2 3 2 2 0 

 2012-2013 Casner Creek 2 1 0 3 0 

 2012-2013 Hoodoo 2 8 3 4 4 
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 2012-2013 Jureano Mtn 2 1 1 5 2 

 2012-2013 Little Anderson 2 0 0 7 0 

 2012-2013 Moyer Basin 2 0 2 5 3 

 2012-2013 Scott Mtn 2 1 1 1 0 

 2012-2013 Timberline 2 1 2 4 0 

 2012-2013 Wapiti 2 3 2 3 1 

 2013-2014 Jureano Mtn 2 1 2 7 3 

 2013-2014 Scott Mtn 2 1 1 3 3 

 2013-2014 Timberline 1 0 1 1 0 

 2013-2014 Wapiti 2 2 0 5 0 

YNP 2012-2013 Cougar Creek 4 1 2 4 5 

 2012-2013 Junction Butte 0 8 3 2 3 

 2012-2013 Bechler 4 3 1 2 5 

 2012-2013 Snake River 4 0 2 2 3 

 2013-2014 Cougar Creek 3 3 3 2 6 

 2013-2014 Junction Butte 2 4 1 4 4 

 2013-2014 Bechler 3 1 4 2 4 

 2013-2014 Snake River 2 1 2 3 3 

 



89 
 

Table 2. Logistic regression parameters (SE) and odds ratios from model (AUC = 0.78) 

predicting the probability of wolf pup recruitment (i.e., survival to 15 months) in Alberta (2012-

2014), Idaho (2008-2014), and Yellowstone National Park (2012-2014). NBF = nonbreeding 

female, NBM = nonbreeding male, AF = adult female, AM = adult male, BF = breeding female, 

BM = breeding male. 
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Parameter Estimate SE Odds ratio Lower 95% CI Upper 95% CI 

harvest -1.89 0.42 0.15 0.07 0.35 

1 yr old NBFs(t=3 months)  -0.04 0.19 0.97 0.67 1.39 

1 yr old NBMs(t=3 

months) 

0.35 0.17 1.42 1.02 1.99 

>2 yr old NBFs(t=3 

months) 

0.06 0.16 1.06 0.78 1.44 

>2 yr old NBMs(t=3 

months) 

-0.08 0.17 0.93 0.67 1.29 

unk AFs(t=3 months) -0.03 0.16 0.98 0.71 1.35 

unk AMs(t=3 months) -0.26 0.25 0.77 0.47 1.24 

breeders(t=3 months) -0.27 0.23 0.76 0.49 1.21 

>2 yr old NBFs(t=15 

months) 

0.01 0.16 1.01 0.73 1.38 

>2 yr old NBMs(t=15 

months) 

-0.40 0.19 0.67 0.47 0.97 

breeders(t=15 months) 0.82 0.24 2.27 1.41 3.64 

area (Alberta) -0.42 0.90 0.66 0.11 3.83 
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area (Idaho) 0.18 0.55 1.20 0.41 3.49 

constant 0.04 0.88    
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Table 3. Log-likelihood (-2LL), number of parameters (K), Akaike's Information Criterion Value (AIC), change in (∆) AIC value, and 

Akaike weight (wi) of multiple logistic regression models predicting the probability of wolf pup recruitment (i.e., survival to 15 

months) in years when there was public harvest, Idaho (2009, 2011–2014). BF = breeding female, BM = breeding male. 

   

Model -2LL K AIC ΔAIC wi 

Global: (diversity (t=3 months) + diversity (t=15 months) +  group size(t=3 months) + group 

size(t=15 months) +  BF turnover + BM turnover) 

123.2 7 137.2 0 0.98 

Breeder turnover: (BF turnover + BM turnover) 140.5 3 146.5 9.3 0.01 

Group size: (group size(t=3 months) + group size(t=15 months)) 141.8 3 147.8 10.6 0.00 

Intragroup diversity: (diversity (t=3 months) + diversity (t=15 months)) 145.4 3 151.4 14.2 0.00 
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Table 4. Logistic regression parameters (SE) and odds ratios from the highest-ranked 1 

model (Akaike weight = 0.98; AUC = 0.71) predicting the probability of wolf pup 2 

recruitment (i.e., survival to 15 months) in years of harvest in Idaho (2009, 2011-2014). 3 

BF = breeding female, BM = breeding male. 4 

 5 

 6 

  7 

Parameter Estimate SE Odds ratio Lower 95% CI Upper 95% CI 

diversity(t=3 months)  0.05 0.03 1.05 1.00 1.12 

diversity(t=15 months) -0.46 0.16 0.63 0.47 0.86 

group size(t=3 months) -0.18 0.17 0.83 0.60 1.16 

group size (t=15 months) 1.71 0.61 5.52 1.66 18.33 

BF turnover -0.54 0.60 0.58 0.18 1.88 

BM turnover -1.50 0.68 0.25 0.06 0.85 

constant -2.71 0.91    
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Table 5. Logistic regression parameters (SE) and odds ratios from model (AUC = 0.66) 8 

predicting the probability of wolf pup recruitment (i.e., survival to 15 months) in Idaho 9 

during years with harvest (2009, 2011-2014). NBF = nonbreeding female, NBM = 10 

nonbreeding male, AF = adult female, AM = adult male, BF = breeding female, BM = 11 

breeding male. 12 

  13 
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Parameter Estimate SE Odds ratio Lower 95% CI Upper 95% CI 

1 yr old NBFs(t=3 months)  -0.13 0.27 0.88 .052 1.50 

1 yr old NBMs(t=3 

months) 

0.10 0.32 1.10 0.59 2.08 

>2 yr old NBFs(t=3 

months) 

-0.06 0.23 0.95 0.61 1.48 

>2 yr old NBMs(t=3 

months) 

0.19 0.27 1.21 0.71 2.07 

unk AFs(t=3 months) -0.03 0.58 0.97 0.31 3.00 

unk AMs(t=3 months) -0.53 0.61 0.59 0.18 1.94 

breeders(t=3 months) -0.10 0.72 0.91 0.22 3.74 

>2 yr old NBFs(t=15 

months) 

0.38 0.26 1.47 0.89 2.42 

>2 yr old NBMs(t=15 

months) 

-1.08 0.53 0.34 0.12 0.96 

breeders(t=15 months) 1.36 0.55 3.88 1.33 11.28 

constant -2.68 1.90    
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Figure 1. Sex ratio of pups in study areas in Idaho, USA, 2008-2014.  14 
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Title: Individual, group, and environmental influences on helping behavior in a social 17 

carnivore 18 

Abstract: Variation in group composition and environment can affect helping behavior 19 

in cooperative breeders. We do not, however, have a good understanding of how group 20 

size, individual traits, food abundance, and predation risk simultaneously influence 21 

helping behavior. We evaluated pup-guarding behavior in gray wolves (Canis lupus) to 22 

assess how differences in individuals, groups, and environment affect helping behavior. 23 

We used data from 92 satellite-collared wolves in North America (2001-2012) to estimate 24 

individual pup-guarding rates. The presence of predators did not have a significant effect 25 

on time spent guarding pups. Individuals in groups with low helper to pup ratios spent 26 

more time guarding young than those in groups with more helpers, an indication of load-27 

lightening. Contrary to predictions from group augmentation theory, guarding rates 28 

varied with sex of helpers only before pups were weaned. Helper age had no influence on 29 

guarding rates. Prey density had a negative relationship with pup guarding rates after 30 

weaning, suggesting pup-rearing sites may be places of information transfer between 31 

individuals. We show that the interaction of individual, group, and environmental 32 

variation can have strong influences on individual decision-making and cooperative 33 

behavior. 34 

Key words: Canis lupus, cooperative breeding, groups, helping, pup-guarding, wolves 35 

Introduction  36 

Cooperative breeding refers to the care of related or unrelated young by 37 

nonbreeding individuals in a group (Solomon and French 1997). In cooperatively 38 
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breeding animals, both manipulative and observational studies have shown that the 39 

presence of helpers is critical to fitness of the breeders and persistence of the group as 40 

well (Mumme 1997; Solomon and French 1997; Courchamp, Clutton-Brock, Grenfell 41 

2000; Courchamp and Macdonald 2001; Courchamp, Rasmussen, Macdonald 2002). 42 

Variation in group composition and environment can affect helping behavior (Russell 43 

2004; Clutton-Brock 2006) but we do not have a good understanding of how group size, 44 

individual traits, food abundance, and predation risk simultaneously influence an 45 

individual’s decision to help.  46 

In cooperatively breeding carnivores, foraging must often be done at great 47 

distances from relatively immobile young. In such species the ability to adequately guard 48 

young while other members in the group forage can be important for successful 49 

reproduction in the group (Moehlman 1979; Pusey and Packer 1987; Courchamp and 50 

Macdonald 2001). For example, when group size dropped below 5 animals in African 51 

wild dogs (Lycaon pictus), groups reproduced less successfully than larger groups in part 52 

because of increased predation on unguarded young (Courchamp and Macdonald 2001; 53 

Courchamp et al. 2002). Group size can affect how much time an individual devotes to 54 

guarding young (Courchamp and Macdonald 2001; Ruprecht, Ausband, Mitchell, Garton, 55 

Zager 2012). Distributing the workload of rearing young among members of a group (i.e., 56 

load-lightening, (Crick 1992) has positive effects that have been documented across a 57 

broad range of species including birds (Crick 1992), mongooses (Clutton-Brock et al. 58 

2001), and monkeys (Sanchez, Pelaez, Gil-Burmann, Kaumanns 1999; Bales, O’Herron, 59 

Baker, Dietz 2001). Load-lightening can lead to increased survival and growth of young 60 
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as well as increased fitness for female breeders because of increases in maternal 61 

condition and survival (Sanchez et al. 1999; Bales et al. 2001; Russell, Sharpe, 62 

Brotherton, Clutton-Brock 2003; Sparkman et al. 2011). Load-lightening can also allow 63 

larger groups to both provision and guard young whereas individuals in smaller groups 64 

may have to make costly tradeoffs between time spent guarding young and foraging
 65 

(Courchamp et al. 2002). The costs of such tradeoffs presumably increase when food is 66 

scarce and individuals in small groups may help less when food availability is low 67 

(Harrington, Mech, Fritts 1983). 68 

Although group size can affect helping behavior, individual traits and 69 

environmental variation can also be influential. In some primates, nonbreeding females 70 

help more than nonbreeding males and may be learning to care for young giving them an 71 

advantage once they initiate their own reproduction (Tardif, Richter, Carson 1984). 72 

Helper age can also influence behavior because older helpers often assist more with 73 

young than younger helpers (Lawton and Guindon 1981; Tardif 1997). Older helpers may 74 

be gaining experience as they prepare for dispersal and subsequent breeding opportunities 75 

of their own. Perception of predation risk on young can affect reproductive decision-76 

making (Martin 2011) and behaviors such as the guarding of young (Courchamp and 77 

Macdonald 2001). Lastly, kin selection theory (Hamilton 1964) predicts that genetic 78 

relatedness will have a positive influence on helping behavior. This is true for many 79 

species but can vary as resources and conditions (e.g., territories, food abundance, 80 

individual condition) change (Clutton-Brock 2006; Cornwallis, West, Davis, Griffin 81 

2010).  82 
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Gray wolves (Canis lupus) often leave adults at den and rendezvous sites to guard 83 

relatively sessile offspring while other adult wolves in the group forage or rest (Packard 84 

2003). Pup-guarding behavior is crucial for group growth and stability in other species 85 

with similar life history strategies to wolves (Courchamp and Macdonald 2001; 86 

Moehlman 1979). Both grizzly bears (Ursus arctos) and other wolves prey on wolf young 87 

(Hayes and Baer 1992; Smith et al. 2010)
 
and wolves are commonly known to 88 

aggressively chase grizzly bears and other wolves away from pup-rearing sites (Murie 89 

1944; Peterson, Woolington, Bailey 1984; Hayes and Mossop 1987; Mech, Adams, 90 

Meier, Burch, Dale 1998; Smith and Ferguson 2005; Smith et al. 2013). The breeding 91 

female spends the most time of any group member guarding the young but this 92 

diminishes markedly after weaning when guarding by nonbreeding (i.e., helper) wolves 93 

increases (Ruprecht et al. 2012). Wolves within a group vary widely in how much time 94 

they spend guarding young (Ruprecht et al. 2012; Thurston 2002) and we do not know 95 

how individual, group, and environmental variation affect such behavior.  96 

We studied guarding behavior to provide insights into how differences in 97 

individual, group, and environmental factors affected helping behavior in gray wolves. 98 

Specifically, we hypothesized that: 1) risk of pup predation positively influences helping 99 

behavior and guarding rates, 2) individuals in groups with relatively more helpers than 100 

young spend less time guarding pups because of load-lightening, 3) female helpers gain 101 

experience rearing pups and thus spend more time guarding pups than male helpers, 4) 102 

older helpers help more than younger helpers, and 5) helping behavior is contingent on 103 

food availability and guarding of pups decreases as food becomes more scarce. 104 



101 
 

Study Areas 105 

Our 4 study areas were in Alberta, Canada, and Idaho, Montana, and Yellowstone 106 

National Park (YNP), Wyoming. Generally, Idaho and Montana are mountainous and 107 

dominated by a mix of ponderosa pine (Pinus ponderosa), lodgepole pine (P. contorta), 108 

and spruce (Picea englemannii) forests and sagebrush (Artemisia tridentata) steppe. 109 

Annual precipitation ranges from 89-178 cm and temperatures range from -34° C in 110 

winter to 38° C in summer (Western Regional Climate Center 2014). Wolves were 111 

common and at moderate densities in both Idaho and Montana. Groups within our study 112 

areas in Idaho did not overlap the range of grizzly bears while some, but not all, of our 113 

groups in Montana did. Black bears (U. americanus), cougars (Puma concolor), coyotes 114 

(C. latrans), and wolves were present in all of our study areas. Public harvest of wolves 115 

began in both states in 2009 and control actions to address livestock depredations were 116 

rare in our study groups. YNP is dominated by lodgepole pine forests and expansive 117 

meadow systems. YNP is relatively dry and precipitation averages 47 cm annually and 118 

temperature fluctuations range from -39°C in winter to 30°C in summer at Yellowstone 119 

Lake (Western Regional Climate Center 2014). Wolves and grizzly bears both exist at 120 

high densities and there is no human hunting inside YNP. Lastly, southwest Alberta is a 121 

highly contrasted landscape where mountainous forests meet the dry short-grass prairie 122 

region. Mountain forests are dominated by Douglas-fir (Pseudotsuga menziesii) and 123 

lodgepole pine forests. Where forest meets prairie there are expansive aspen (Populus 124 

tremuloides) forests dominated by livestock grazing. Temperatures range from -32°C to 125 

23°C and precipitation averages 40 cm annually on the prairie (Alberta Agriculture and 126 
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Rural Development 2014). Wolf densities are thought to be low in southwest Alberta 127 

while grizzly bears are abundant and wolf control actions and human harvest are 128 

common.  129 

Methods 130 

Gray wolves were captured in foot-hold traps or by helicopter darting and were fitted 131 

with Global Positioning System (GPS) collars from 2001-2012 (Alberta 2008-2009; 132 

Idaho 2007-2012; Montana 2008-2010; YNP 2001-2012). Wolves were captured by 133 

management agencies as part of monitoring and research efforts, and by University of 134 

Montana personnel (Animal Use Protocol 008-09MMMCWRU and University of Alberta 135 

Animal Care Protocol no. 565712).  Wolves were sexed and aged via tooth wear at the 136 

time of capture and breeding status was determined at time of capture or after subsequent 137 

monitoring (USFWS 2002-2013). GPS collars were Lotek (Newmarket, Ontario, Canada) 138 

and Telonics (Mesa, AZ) brand collars and were set to acquire 3-8 locations at evenly-139 

spaced intervals daily. Several collars in Alberta and YNP were deployed as part of 140 

predation studies and acquired 48 or 24 locations daily spaced 0.5-1.0 hr apart.  141 

We plotted wolf locations from 15 April – 1 September for each year. Because 142 

there are marked shifts in guarding rates between age classes before and after weaning 143 

(Ruprecht et al. 2012) we considered 15 April – 1 June the pre-weaning season (Kreeger 144 

2003)
 
and 2 June - 1 September the post-weaning period. We assumed distances >500 m 145 

from pup-rearing sites would make detecting and alerting the pups to predators 146 

ineffective. Thus we considered an individual wolf was guarding pups if its location fell 147 

within a 500 m buffer of the group’s den or rendezvous site location (Ruprecht et al. 148 
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2012). Additionally, pups move in areas around den and rendezvous sites and it is likely 149 

that adults were closer than 500 m to pups when adults were within the 500 m buffer. 150 

Where den and rendezvous site locations were not known from ground surveys and 151 

monitoring work in the study areas we defined a cluster of GPS locations as a pup-rearing 152 

site when >10 locations were within 500 m of one another for >6 days. Unsuccessful 153 

GPS location attempts did not constitute abandonment of a site. Wolves may have 154 

clusters of locations that are kill sites, but 85% of kills are abandoned after three days and 155 

none have been found active after 5 days (Metz, Vucetich, Smith, Stahler, Peterson 156 

2011).  157 

The number of helpers and pups in each group were acquired via radiotelemetry 158 

flights or ground surveys conducted in summer (USFWS 2002-2013). Some group counts 159 

in Idaho were derived from noninvasive genetic sampling of scats at rendezvous sites 160 

(Ausband et al. 2010; Stenglein, Waits, Ausband, Zager, Mack 2011; Stansbury et al. 161 

2014). Scats <2.5 cm were considered pup and >2.5 cm adult (Stenglein et al. 2011; 162 

Stansbury et al. 2014). We subtracted 2 (to represent the breeding pair) from the number 163 

of adults in each group to estimate the number of helpers that were present.  164 

The presence of grizzly bears varied among our study areas, thus we included the 165 

presence or absence of grizzly bears for each group to represent predation risk for pups in 166 

Alberta, portions of Montana, and YNP. As a second measure of predation risk, we 167 

estimated wolf density (wolves/1,000 km
2
) for groups in the northern range of YNP 168 

where counts where nearly complete and constituted a census (D. Smith, YNP, 169 

unpublished data). As a relative index of prey abundance, we estimated winter prey 170 
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density (elk/km
2
) annually for 10 focal groups in the YNP northern range using aerial elk 171 

counts from the prior winter (Northern Yellowstone Cooperative Wildlife Working 172 

Group 2012). 173 

We estimated the proportion of time spent guarding pups (number of locations 174 

<500 m from den or rendezvous site/number of successful locations while site occupied) 175 

before and after weaning for each individual in each year. We used locations that fell 176 

within a 500 m buffer of a den or rendezvous site and did not use locations for fine-scale 177 

habitat analysis, thus we assumed that any differences in collar brand and duty schedule 178 

would not have biased our results.   179 

We then arcsine-transformed the proportions to ensure normally distributed data. 180 

We used a generalized linear mixed model (GLMM) with proportion of locations with 181 

pups as the dependent variable and number of helpers (i.e., nonbreeding adults) to pups in 182 

the group as a covariate and area, breeding status and sex of each wolf, and presence or 183 

absence of grizzly bears as factors (SPSS 22; IBM Software NY, USA). We also included 184 

a random effect for individuals. We did not have covariates of prey density, wolf density, 185 

and helper age for every individual. Rather than impute these values we obtained data for 186 

subsets of individuals where it was available and conducted 2 additional GLMM 187 

analyses. These models included prey (log10) and wolf density (log10; YNP northern 188 

range), and helper age (Montana, portions of Idaho, YNP). We used t-tests to look for 189 

differences in guarding rates before and after weaning and considered differences 190 

significant if p<0.05.  191 

Results  192 
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We collected location data from 92 GPS-collared wolves for a total of 123 wolf summers 193 

(Table 1). Breeding females spent the greatest amount of time guarding pups over the 194 

course of the season although this declined from nearly 70% to 40% after pups were 195 

weaned (p<0.001; Fig. 1). All other sex and age classes increased the time they spent 196 

guarding pups after weaning although nonbreeding males showed the largest increase in 197 

time spent guarding pups after weaning (p = 0.02; Fig. 1).  198 

Before pups were weaned, breeding status and sex were the dominant predictors 199 

of time spent guarding pups. Breeding females and nonbreeding females were significant 200 

variables in the pre-weaning model while breeding males approached significance (p = 201 

0.06; Table 2). The presence of grizzly bears, study area, and the ratio of helpers to pups 202 

were not significant before pups were weaned. After pups were weaned, breeding status 203 

and sex and number of helpers to pups were the dominant predictors of time spent 204 

guarding pups (Table 2). The effect of grizzly bears and study area were not significant. 205 

Nonbreeding females spent more time guarding pups than nonbreeding males before 206 

weaning (p = 0.01) but the sexes did not differ after pups were weaned (p = 0.17; Fig. 1). 207 

Helper age was not influential in models predicting guarding rates before or after pups 208 

were weaned (Table 3). Although prey density varied widely (0.35-14.9 elk/km
2
) it was 209 

not important in models predicting an individual’s time spent guarding pups before pups 210 

were weaned but it had a significant negative effect after weaning (p = 0.04; Table 3). 211 

Wolf density did not influence pup-guarding rates in YNP (Table 3). 212 

Discussion 213 
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Guarding young from predation is an important behavior that enhances reproductive 214 

success in group-living carnivores (Moehlman 1979; Courchamp et al. 2002). Our work 215 

partially supports findings from previous studies of helping behavior in cooperatively 216 

breeding species. Similar to other studies (Crick 1992; Clutton-Brock et al. 2001), we 217 

observed load-lightening where individuals in large groups spent less time guarding 218 

young than their counterparts in smaller groups. We discovered a lack of support, 219 

however, for other findings, chiefly, that age and prey abundance have strong influences 220 

on helping behavior (Tardif et al. 1984; Tardif 1997; Clutton-Brock 2006). Prey 221 

abundance likely influences provisioning rates in wolves but we found that, after 222 

accounting for the behavior of breeding females, characteristics associated with the group 223 

influenced pup-guarding rates more than characteristics associated with individuals. A 224 

helper’s experience or ability may be less important than maintaining a large group size 225 

in highly territorial species such as wolves that breed once a year. A group of experienced 226 

helpers may not be as important to breeder fitness as maintaining an adequate number of 227 

helpers to reduce workload.  228 

Group composition influenced guarding behavior because individuals in groups 229 

with fewer helpers per pup spent more time guarding pups than those in groups with 230 

more helpers. For example, our model predicts that a nonbreeding female in YNP spends 231 

nearly 10% more time (i.e., nearly 2.5 more hours each day) guarding pups if she is the 232 

only helper in a group with 4 pups compared to being in a group with 3 other helpers and 233 

just 2 pups. Individuals in small groups, or those with low helper to pup ratios, increase 234 

their time spent guarding young and this presumably comes at the cost of obtaining food 235 
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for both themselves and pups.  Our findings suggest that load-lightening occurs within 236 

groups of wolves. The effects of such load-lightening on reproduction in wolves are not 237 

known, but it may be one mechanism that explains why wolf pups have higher survival 238 

and breeding females have increased fitness in larger groups than their counterparts in 239 

smaller groups (Sparkman et al. 2011; Stahler, MacNulty, Wayne, vonHoldt, Smith 240 

2013). Our counts of individuals in groups may be slightly conservative particularly for 241 

larger groups where all individuals may not be visually or genetically detected during 242 

sampling. Subsequently, we suspect the effect of group size on helping behavior may be 243 

more marked than what we observed.  244 

We found that breeding status and sex and the number of helpers relative to the 245 

number of young in the group were important predictors of how much time an individual 246 

devotes to guarding young. After weaning, breeding females spent less time guarding 247 

young while all other age classes in the groups simultaneously increased the amount of 248 

time guarding young. Breeding females may spend less time guarding pups after weaning 249 

because of foraging demands related to the nutritional costs of recent lactation.  250 

Group augmentation theory (i.e., helpers increase group productivity and thus 251 

increase their own fitness) predicts that the sex which is most philopatric will help most 252 

(Kokko, Johnstone, Clutton-Brock 2001). Our findings only partially support predictions 253 

from group augmentation theory regarding which sex will help more. Females are 254 

slightly philopatric in the U.S. Rockies (Jimenez et al. In Review) yet we found 255 

nonbreeding females guarded pups more than nonbreeding males only before pups were 256 

weaned and this trend was not evident after weaning. Males in some species may be 257 
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constrained to help through social coercion or face eviction from the group if they do not 258 

help (Clutton-Brock 2006). Alternatively, female philopatry may not be marked enough 259 

in U.S. Rockies’ wolves to expect consistent differences in helping behavior between the 260 

sexes. Group augmentation remains a viable theory to explain why both sexes remain and 261 

help, however. Nonbreeding males and females guarded pups equally over the majority 262 

of the pup-rearing season and thus both classes contributed to the reproductive success of 263 

the group. Such helping behavior could ultimately enhance their individual success as 264 

predicted by group augmentation theory.  265 

In some cooperatively breeding species, older helpers assist more with young than 266 

younger helpers (Lawton and Guindon 1981; Tardif 1997). We found no evidence, 267 

however, that the age of helpers affected guarding rates in wolves. Hypothetically, 268 

nonbreeding wolves may not be helping when attending pup-rearing sites but rather are 269 

trying to obtain food and information on kill locations, particularly when prey densities 270 

are low (Harrington et al. 1983). We found that prey density did not have a strong 271 

influence on an individual’s time spent guarding pups before weaning. After weaning, 272 

however, there was a negative relationship (p = 0.04) between prey density and guarding 273 

rates suggesting increased pup-guarding as prey became relatively more scarce. If true, 274 

this would support the hypothesis that a benefit of helping behavior is acquiring 275 

information on food. There was no evidence, however, that helping behavior was 276 

contingent on food availability in black-backed jackals (C. mesomelas; Moehlman 1979) 277 

and there was no relationship between time spent at den and rendezvous sites and prey 278 

density for wolves in the Midwest U.S.(Potvin, Peterson, Vucetich 2004). Alternatively, 279 
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we may not have found a strong relationship between prey abundance and helping 280 

behavior because previous winter’s prey density was a poor index of prey availability 281 

during pup-rearing season. We posit that years with low winter prey counts, however, 282 

were likely to be indicative of low prey availability the following summer.  283 

Wolf density was not an influential predictor of the amount of time an individual 284 

spent guarding pups. One possible explanation may be that wolves decrease the chance 285 

that neighboring wolves will encounter their pups by not placing pup-rearing sites near 286 

the edges of their territories (Ciucci & Mech 1992). Additionally, territorial behavior 287 

such as scent-marking and howling may further decrease aggressive wolf encounters with 288 

a group’s young. An alternative explanation for why wolf density was not influential 289 

could be that wolf density in YNP was high enough during each year of our study that 290 

individuals were spending the maximum amount of time available for pup-guarding 291 

given foraging demands. Indeed, our lowest estimated wolf density in this model was 292 

21.6 wolves/1,000 km
2 

which is indicative of a healthy, saturated wolf population in this 293 

region (Fuller, Mech, Cochrane 2003). 294 

Helping behavior in wolves can take several forms; guarding, provisioning, social 295 

development of pups. Although essential for a full understanding of the adaptive value 296 

and evolution of helping behavior in this species, provisioning rates for gray wolves are 297 

exceedingly difficult to obtain in the wild. We expect, however, that one of the main 298 

factors driving guarding rates (i.e., group size) also influences provisioning rates. For 299 

example, wolves in groups with fewer helpers spent more time guarding pups and we 300 

presume this would lead to lowered provisioning rates as well.  301 
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The presence of load-lightening coupled with guarding rates that did not decline 302 

when prey was relatively scarce suggests that individuals in small groups make 303 

potentially costly tradeoffs (i.e., less time spent foraging) to adequately guard young. We 304 

show that it is useful to simultaneously examine helping behavior in light of individual, 305 

group, and environmental variation because the interaction of these variables can have 306 

strong influences on individual decision-making and cooperative behavior. 307 
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 489 

Figure 1. Pup-guarding rates for gray wolves before and after weaning in Alberta, 490 

Canada, Idaho, Montana, and Yellowstone National Park, Wyoming, USA, 2001-2012.  491 

  492 
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Table 1. Number of GPS collared wolves used to estimate guarding rates of pups in 493 

Alberta, Canada, Idaho, Montana, and Yellowstone National Park, Wyoming, USA, 494 

2001-2012. 495 

Study Area No. breeding 

females 

No. breeding 

males 

No. nonbreeding 

females 

No. nonbreeding 

males 

Alberta 2 0 1 0 

Idaho 10 9 26 11 

Montana 4 3 4 1 

Yellowstone 5 3 11 7 

Total
1
 21 15 42 19 

1 
n >92 wolves because 5 wolves changed breeding status over the course of the study 496 

  497 
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Table 2. Coefficients (p-values) for covariates from generalized linear mixed models (GLMM) predicting guarding rates of wolf pups 

before and after weaning in Alberta, Canada, Idaho, Montana, and Yellowstone National Park, Wyoming, 2001-2012. 

 Intercept Study area Breeding status and 

sex
1
 

Helper:pup 

ratio 

Grizzly bears 

absent 

Pre-weaning 0.08 0.20 (0.14; Yellowstone) 

0.10 (0.65; Idaho) 

0.21 (0.28; Montana) 

0 (N/A; Alberta) 

0.60 (<0.001; BF) 

0.12 (0.06; BM) 

0.15 (0.009; NBF) 

0 (N/A; NBM) 

-0.003 (0.91) -0.05 (0.78) 

Post-weaning 0.36 0.04 (0.61; Yellowstone) 

-0.02 (0.89; Idaho) 

0.04 (0.69; Montana) 

0 (N/A; Alberta) 

0.18 (0.001; BF) 

0.04 (0.49; BM) 

0.07 (0.13; NBF) 

0 (N/A; NBM) 

-0.05 (0.01) -0.04 (0.67) 

1
BF = breeding females, BM = breeding males, NBF = nonbreeding females, NBM = nonbreeding males 
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Table 3. Coefficients (p-values) for covariates from subset analyses of generalized linear mixed models predicting 1 

guarding rates of wolf pups before and after weaning in Alberta, Canada, Idaho, Montana, and Yellowstone National 2 

Park, Wyoming, 2001-2012. Subset analyses included independent variables of prey density, wolf density and helper 3 

age. 4 

 Intercept Study area
1
 Breeding status and 

sex
2
 

Helper:pup 

ratio 

Prey density Wolf 

density 

Helper age 

(Prey and wolf density)       

Pre-weaning 0.22 N/A 0.39 (<0.001; BF) 

0.21 (0.06; BM) 

0.13 (0.04; NBF) 

0 (N/A; NBM) 

-0.08 (0.02) -0.02 (0.87) 0.14 (0.64) N/A 

Post-weaning 1.19 N/A 0.10 (0.11; BF) 

-0.05 (0.56; BM) 

0.02 (0.76; NBF) 

0 (N/A; NBM) 

-0.06 (0.03) -0.24 (0.04) -0.38 (0.13) N/A 



123 
 

(Helper age)  

Pre-weaning 

 

0.28 

 

0.15 (0.01; YNP) 

0 (N/A; ID) 

 

0.14 (0.02; NBF) 

0 (N/A; NBM) 

 

-0.03 (0.36) 

 

N/A 

 

N/A 

 

-0.12 (0.12; age = 1) 

-0.09 (0.25; age = 2)  

-0.25 (0.22; age = 3)  

0 (N/A; age = 4) 

Post-weaning 0.31 0.089 (0.35; YNP) 

-0.02 (0.80; ID) 

0 (N/A; MT) 

0.05 (0.21; NBF) 

0 (N/A; NBM) 

-0.01 (0.50) N/A N/A -0.02 (0.66; age = 1) 

-0.04 (0.43; age = 2)  

0.09 (0.50; age = 3)  

0 (N/A; age = 4) 

1
YNP = Yellowstone National Park, ID = Idaho, MT = Montana 5 

2
BF = breeding females, BM = breeding males, NBF = nonbreeding females, NBM = nonbreeding males 6 
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