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ABSTRACT 

 

Thomas, Matthew, B.S., May 2017                                         Geosciences 

 

Using Thermal Infrared Imaging to Estimate Soil Hydraulic Parameters: A Novel Approach  

 

Faculty Mentor: W. Payton Gardner, Marco Maneta 

 

  In this study, skin temperature measured with a thermal infrared (TIR) camera was used to 

estimate soil hydraulic parameters. These physical properties that control how soils transport and 

retain water are notoriously difficult to measure in the field due to spatial variability. Laboratory 

experiments were set up to record surface skin temperature response in a clean soil column using 

a TIR camera after an artificial wetting event.  An array of thermocouples, a net radiometer, heat 

flux sensor and weather station were used to constrain the TIR data and the energy budget during 

the experiment.  The soil column surface was then wetted with a known amount of water over a 

controlled time period and the thermal response recorded at five minute intervals over the course 

of 18 hours. Soil hydraulic parameters were then estimated by fitting a water-energy 

conservation model (ECH2O) to the observed data using a Marqhart-Levenberg least squares 

minimization method.  The estimated parameters obtained were then compared to several sets of 

known values based on soil textural classification. This inversion of ECH2O was able to estimate 

the Brooks-Corey λ for sand with a relatively high degree of precision; however, the inversion 

was unable to provide reasonable estimates of air entry pressure for sand, air entry pressure for 

soil, or the Brooks-Corey λ for soil. These results indicate that soil hydraulic parameter 

estimation based on TIR skin temperature data could potentially be a fast and useful new tool to 

characterize the distribution and spatial heterogeneity in some soil hydraulic parameters. 

However, future studies should test the method with dedicated groundwater flow models and 

accurately account for surface emissivity before conducting field tests. 
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Using Thermal Infrared Imaging to Estimate Soil Hydraulic Parameters: A Novel Approach 

Introduction 

 Fluid transport and storage in the vadose zone is a key part of the hydrologic cycle, and is 

an important aspect of critical zone science. The multi-phase nature of the vadose zone system 

leads to highly nonlinear models that relate various soil properties and state variables. Two of the 

most common water retention models are the Brooks-Corey model (Equation 1) and the van 

Genuchten model (Equation 2).  

𝜃 = (
𝜓𝑎𝑒

𝜓
)

1

𝜆 𝑛          (1) 

𝜃 = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+𝛼𝜓𝛽]
1−

1
𝛽

        (2) 

Where θ is volumetric soil water content, ψae is the soil air entry pressure (m), ψ is soil tension 

(m), 𝜆 is the Brooks-Corey pore size distribution parameter, n is porosity, θr is residual soil water 

content, θs is saturated soil water content, and α and β are fitting parameters (Brooks and Corey 

1964, van Genuchten 1980).  

The inherent complexity of this system has led to the widespread use of numerical 

modeling to simulate fluid flow and storage. These models require accurate measurements of the 

soil hydraulic properties and parameters (SHPs) that control transport (Mertens 2005). These 

properties often exhibit a high degree of spatial heterogeneity, making high precision modeling a 

difficult task. For instance, Scholl and Christenson (1998) found hydraulic conductivity (Ks) to 

vary three orders of magnitude along a 215 m transect. Similarly, infiltration rates, controlled by 

SHPs, have been found to vary up to two orders of magnitude at the hectare scale (Sharma et al 

1980). At the field scale, large areas are often simply assigned uniform SHP values based off a 

single measurement or the textural properties of the soil, when in reality a large number of in situ 

measurements must be made to properly characterize field heterogeneity (Pedretti et al 2012, 

Clancy and Alba 2011). New methodologies that can quickly characterize SHPs and their spatial 

heterogeneity to properly parameterize numerical models are needed (Dane et al 2002). 

 Traditional field measurement methods of SHPs often rely on covered cylinder 

infiltrometer experiments (Bouwer 1966). Parameters that cannot directly be measured with this 
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technique can be calculated by empirical models that take infiltrometer measurements as input 

(Fallow 1994). However, these devices are prone to user error and have many issues associated 

with them (Bouwer 1986). Additionally, they only provide point measurements, requiring a 

systematic and repeated infiltrometer campaign to characterize heterogeneity.  

At the other end of the spatial scale is the application of remote sensing methods to 

measure SHPs. Infrared and microwave remote sensing data have long been used to measure soil 

moisture content and thermal inertia (Price 1980, Petropoulos et al 2015). Recently, some 

researchers have tried to use remote sensing to measure SHPs as well. Cohen et al (2007) were 

able to use near infrared (NIR) spectroscopy to estimate Ks with a moderate degree of accuracy. 

Minasny et al (2008) determined that Ks could not be estimated accurately using mid infrared 

(MIR) spectroscopy. Babaeian et al 2015 were able to show correlation between spectral 

reflectance values and the α* fitting parameter, n fitting parameter, saturated hydraulic 

conductivity, and saturated volumetric water content parameters of the Mualem-van Genuchten 

model. Gutmann and Small (2010) calibrated MODIS surface temperature data to the Noah land 

surface model to estimate Ks and the m parameter of the van Genuchten model. However, these 

methods suffer from coarse spatial resolution on the scale of kilometers. Their study was focused 

on large spatial scales to estimate Land Hydraulic Properties (LHPs) and only had two isolated 

temperature data points around midday per day to fit the Noah outputs to.  Finer resolution is 

necessary to study many surface processes (Fang and Lakshmi 2014). 

A promising method to obtain SHPs at fine spatial scales is the use of fiber optic 

Distributed Temperature Sensing (DTS). These cables measure soil temperature at 1 m 

resolution along their entire length, which can exceed 10 km with current technology. DTS has 

the potential to accurately estimate soil moisture content as a function of soil temperature, as 

well as Ks via inverse modeling (Dong et al 2016). However, both active and passive DTS are 

inherently invasive due to the need to bury the cables and disrupt the soil structure, a time 

consuming and labor intensive process. Active DTS has a large power requirement as well 

(Steele-Dunne et al 2010).  In addition, DTS only provide temperature along a linear array. A 

more broadly distributed method of intermediate spatial resolution is needed. 

The results of the study by Gutmann and Small show the potential of using skin 

temperature data and inversion modeling to estimate SHPs.  However, a method which provides 
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this estimate at intermediate spatial resolution and scale is needed.  Skin surface temperature 

measured from thermal infrared imagery could be an ideal methodology at a variety of spatial 

and temporal scales. In this paper, the utility of surface skin temperature data acquired with a 

TIR camera to estimate SHPs is tested. This method has the potential to estimate spatially 

distributed SHP, and bridge the scale gap between point and satellite footprint scales in SHP 

measurement. 

Methods 

 To test the effectiveness of using TIR acquired skin temperature data to model SHPs, a 

controlled environment was constructed and wetting experiments were performed with different 

soil types. The environment was then simulated with a numerical model that coupled the mass 

and energy balance of the soil surface. An inversion modeling method was then used to fit this 

model to the observed data and estimate air-entry pressure and the Brooks-Corey λ. 

Experiment  

 A laboratory experiment was setup to test the effectiveness of measuring soil skin 

temperature as a means to model SHPs. A 36 cm tall, 5 gallon bucket was filled to a height of 33 

cm with soil material and a 1500 W heat lamp was placed 68 cm above the soil material surface 

to simulate daytime solar flux. To provide turbulence, a fan was directed at the bucket such that 

the wind was parallel to the soil material surface. Soil moisture sensors were installed at 10 cm, 

17.5 cm, and 27.25 cm depth. Two thermocouples were placed at a depth of 10 cm and 0.5 cm, a 

heat flux plate was placed at a depth of 5 cm, and a net radiometer was placed just above and 

adjacent to the bucket (Figure 1). Ambient temperature and relative humidity were monitored 

with a meteorological station placed adjacent to the bucket. Wind speed was measured at 44 cm 

height above the surface with a handheld anemometer. 
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Figure 1: Diagram showing the major components of the experiment. TC = thermocouple, HF = 

heat flux plate, SM = soil moisture sensor 

  After allowing the soil material to arrive at an equilibrium temperature under the heat 

lamp over the course of several days, 910 mL of water at a temperature of 21.3 ⁰C was applied to 

the soil material over a period of 3.5 minutes as a fine mist to prevent disruption of the soil 

structure. The bucket was then allowed to dry out to observe the skin temperature recovery 

curve, with all data collected at 5 minute intervals.  

Skin temperature data were collected with both a traditional thermocouple and a FLIR E8 

TIR camera. This model included 320x240 resolution, thermal sensitivity of <0.06 °C, and a 

45°x34° field of view. The camera was mounted on a tripod adjacent to the bucket (see Figure 

1). The camera used required manual trigger operation to take images.  Enabling the TIR camera 

to take images without an operator present was one of the major design challenges of this 

project. A tripod mount attachment for the FLIR E8 camera was downloaded from an online 

open source digital design file repository to hold the camera stationary for the experiment and 

modified with an additional raised platform to the tripod adapter. A high-torque servo motor and 

Arduino Uno microcontroller were secured to the raised platform. String was threaded through a 
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hole in the arm of the servo motor and around the trigger on the TIR camera.  The 

microcontroller was programmed to have the motor rotate the arm up 30° and back down to its 

original position on a 5 minute recurrence interval. The servo motion caused the string to 

squeeze the trigger and take an image (Figure 2). To prevent overloading the microcontroller, 

both the servo and the microcontroller were supplied power through different inputs. Both 

devices had to be wired to a common ground to close the circuit. This left the signal wire as the 

only direct connection between the motor and the microcontroller. 

 

Figure 2: Automated camera design 

After the experiment, skin temperature data from the TIR camera were compiled into a 

.csv file. Skin temperature data for each image was compiled using the FLIR Tools software to 

create a .csv file for each individual image. These files were then indexed in an external program 

that read values from the same group of pixels centered over the skin temperature thermocouple 
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in each image and calculated an average (Figure 3). The average value for the given area for each 

image was then written to a new .csv file indexed by the image time.   

    

Figure 3: IR images from before (left) and after (right) water application. The pixels used to 

calculate an average temperature are highlighted in green. 

Modeling 

The ECH2O ecohydrologic model (Maneta and Silverman, 2013) was used to simulate a 

bare, unvegetated surface with no topography. ECH2O is a spatially distributed numerical model 

that couples the vertical energy balance equation for a two-layer system to a hydrologic and 

forest/vegetation growth model. The vertical energy balance uses a surface and a canopy layer; 

however, for this study no vegetation was simulated and the canopy layer and forest growth 

model were not considered. 

Theory 

The governing equation for the 1-D vertical transport of water in the subsurface is: 

𝑆𝑠
𝜕𝐻

𝜕𝑡
=  −

𝜕(−𝐾𝑧
𝜕𝐻

𝜕𝑧
)

𝜕𝑧
  (3) 

where Ss is the specific storage (m-1), H is the hydraulic head (m), t is time (s), Kz is hydraulic 

conductivity in the z-direction (ms-1), and z is depth (m). The 1-D kinematic wave approximation 

of this equation, assuming homogenous conditions, is (Singh, 1997): 

𝜕𝐻

𝜕𝑡
+ 𝐾𝑠𝑖𝑛(𝑆𝑥)

𝜕𝐻

𝜕𝑧
= 𝑅   (4) 

where Sx is the slope in the x direction and R accounts for all sources and sinks of water in the 

domain. In this simulation, Sx = 0 and there are no sources or sinks within the domain itself. This 
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is the form of the groundwater flow equation implemented in ECH2O with an implicit first order 

finite difference numerical method. The model avoids having sin(Sx) = 0 by forcing a nonzero 

minimum slope in the calculation. Infiltration is implemented as a form of the Green and Ampt 

equation: 

𝐼𝑓 =  𝐾𝑠[
𝜓𝑎𝑒(1−𝑆𝜃)𝑛

𝜃𝑑𝑠
+ 1]  (5) 

Where If  is the infiltration rate (ms-1), ψae is the soil air entry pressure (m), Sθ is effective 

saturation, n is porosity, θ is the volumetric soil water content for the soil layer, and ds is the 

depth of the hydrologically active soil layer. Potential infiltration (Fp), given as a depth of water, 

is calculated as  

𝐹𝑝 = min(ℎ𝑤 , 𝐼𝑓𝑡𝑝)   (6) 

where hw is the ponding depth on the surface (m) and tp is the time at which ponding occurs (s). 

Actual infiltration (ΔF) is given as a depth of water by 

∆𝐹 = ∆𝜃𝑑𝑠 = 𝐹𝑝 + 𝐾𝑠(∆𝑡 − 𝑡𝑝) − 𝜓∆𝜃×ln (
𝜓∆𝜃+∆𝜃𝑑𝑠

𝜓∆𝜃+𝐹𝑝
)     (7) 

This equation is solved for Δθ iteratively by the Newton-Raphson method to find the increase of 

the average soil moisture over ds that is now part of the subsurface reservoir and is governed by 

Equation 2. 

 The total energy balance for each pixel in the domain is: 

𝑅𝑛 + 𝐻 + 𝐺 + 𝑅 + 𝐸 = 0  (8) 

Where Rn is net radiation, H is the sensible heat flux, G is the ground heat flux, R is sensible heat 

advected by rain, and 𝐸 is the latent heat flux due to soil evaporation (all in W m-2). 

Net radiation is calculated by: 

𝑅𝑛 = 𝑅𝑠↓(1 − 𝛼) + 𝜀𝑠𝑅𝐿 − 𝜀𝑠𝜎𝑇𝑠
4   (9) 

Where 𝑅𝑠↓is shortwave radiation flux (Wm-2), 𝛼 is surface albedo, 𝜀𝑠 is surface absorptivity, 𝑅𝐿 

is longwave radiation flux (Wm-2), 𝜎 is the Stefan-Boltzmann constant (Wm-2K-4), and Ts is the 

surface skin temperature (K). 
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 The sensible heat flux is computed as: 

𝐻 =
𝜌𝑎𝑐𝑎

𝑟𝑎𝑠
(𝑇𝑠 − 𝑇𝑎)  (10) 

Where 𝜌𝑎 is the density of air (kg m-3), 𝑐𝑎 is the heat capacity of air (J m-3 K-1), 𝑟𝑎𝑠 is the 

aerodynamic resistance of the surface (s-1 m), and 𝑇𝑎 is the air temperature (K). Sensible heat 

advected by precipitation is calculated as (Dingman 2002): 

𝑅 = 𝜌𝑤𝑐𝑤𝑃𝑟(𝑇𝑎 − 𝑇𝑚),        (11) 

where 𝑃𝑟 is the precipitation rate (m s-1) and 𝑇𝑚 is the melting point of water (K). 

 The ground heat flux is calculated with (Arya 1988): 

𝐺 =  𝐶𝑠(𝜃)𝑑𝑔
𝜕𝑇

𝜕𝑡
+  𝐺𝑔𝑝  (12) 

where Gp is flux across the surface (Wm-2), Ggp is the heat flux (Wm-2) at depth dg, dg is the 

depth of the top thermal layer boundary (.10 m), and Cs(θ) is the volumetric heat capacity of the 

soil (J m-3 K-1). This is an analytical solution of the 1-D conductive heat flow governing 

equation: 

𝜕𝑇

𝜕𝑡
=  𝛼

𝜕2𝑇

𝜕𝑧2  (13) 

where T is temperature (K), t is time (s), α is the thermal diffusivity (m2s-1), and z is distance 

(m). Ggp is approximated by (Liebethal and Foken 2006) 

𝐺𝑔𝑝 = √
𝑐𝑠(𝜃)𝐾𝑇(𝜃)𝜋

𝑃𝑒
(𝑇𝑑 − 𝑇𝑠)  (14) 

 where 𝑃𝑒 is the angular rotation speed of the Earth (s-1), and 𝑇𝑑 is the temperature of the lower 

thermal layer (K). In this simulation, 𝑐𝑠(𝜃) and 𝐾𝑇(𝜃) are calculated internally as a function of 

the soil moisture content at each timestep: 

𝐶𝑠(𝜃) = (1 − 𝑛)𝑐𝑝𝜌𝑝 + 𝜃𝑐𝑤𝜌𝑤 + (𝑛 − 𝜃)𝑐𝑎𝜌𝑎  (15) 

                   𝐾𝑇(𝜃) = (1 − 𝑛)𝐾𝑝 + 𝜃𝐾𝑤 + (𝑛 − 𝜃)𝐾𝑎                  (16) 
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where 𝐾𝑇(𝜃) is the bulk thermal conductivity (W m-1 K-1), 𝐾𝑝, 𝐾𝑤, and 𝐾𝑎 are the thermal 

conductivities of the surface, water, and air respectively, and 𝑐𝑝, 𝑐𝑤 and 𝜌𝑝, 𝜌𝑤 are the heat 

capacity (J m-3 K-1) and density (kg m-3) for the surface and water, respectively. A form of the 

Brooks-Corey equation is used to calculate θ in the vadose zone: 

𝜃 = (
𝜓𝑎𝑒

𝜓
)

1

𝜆 𝑛            (17) 

Where ψ is soil tension (m) and 𝜆 is the Brooks-Corey pore size distribution parameter. 

The soil evaporation term of the energy balance is: 

𝐸 = (
0.622𝜌𝑎

𝜆𝑣𝜌𝑤𝑃
) (

𝑘2𝑣

𝑟𝑎𝑠
) (𝑒𝑎 − 𝑒𝑠𝑅𝐻𝜃)        (18) 

Where 𝜆𝑣 is the latent heat of vaporization of water (J g-1), P is atmospheric pressure, k is the von 

Karman constant, 𝑒𝑎 is the air vapor pressure (Pa), and 𝑒𝑠 is the saturation vapor pressure (Pa). 

The saturation vapor pressure is modified by the  𝑅𝐻𝜃 function to provide the soil pore relative 

humidity, with (Lee and Pielke 1992) 

∫ 𝑅𝐻𝜃 = 𝛽𝑒𝑠𝑇𝑠 + (1 − 𝛽)𝑒𝑎𝑇𝑎         (19) 

and β a function of soil moisture (Kondo et al 1990): 

𝛽 = 𝑚𝑖𝑛 {1.0,
1

4
 [1 − 𝑐𝑜𝑠(

𝜃10

𝜃𝑓𝑐
𝜋)2]}       (20) 

where  𝜃10 is the soil moisture content of the top 10 cm of the soil column and 𝜃𝑓𝑐 is field 

capacity. 

Domain 

 A uniform, 100m x 100m domain with 30 cm grid resolution and a 33 cm deep soil layer 

with a flat surface, minimal rugosity, and no channels or drainage network was simulated with 

ECH2O. The subsurface was divided into three layers of uniform properties, with partitions at 10 

cm, 21.5 cm, and 33 cm depth (Figure 4). A single cell in the center of the domain was selected 

to simulate the column and output results. The column was devoid of any biological structures 

that would affect water and energy transport.  
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Initial conditions and boundary conditions 

 The soil column was set at an initial temperature of To = 23.5 °C at all depths and initial 

residual water content in each layer of θ1,2,3 = 0.05 for sand and θ1 = 0.04, θ2 = 0.09, θ3 = 0.10 for 

potting soil. Once the model was started a constant radiative forcing of S = 995.0 Wm-2 was 

applied continuously. After 30 minutes had passed in the model, a precipitation input equivalent 

to the amount applied to the bucket was applied to the surface. The temperature at the lower 

boundary of the soil column was held constant at To. The side boundaries of the column were 

considered free flow boundaries, while the bottom of the column was considered a no flow 

boundary. All climate inputs to ECH2O were derived from the observed data acquired with the 

meteorological station, anemometer, net radiometer. Table 1 shows the relevant spatially 

distributed parameters used for modeling each soil type; all other variables were related to 

ecological processes and were assigned the minimum possible value. 

 

Figure 4: Domain and boundary conditions of model simulations 
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 Sand Soil 

Albedo 0.3 0.26 

Emissivity 0.76 0.68 

Soil heat capacity (Jm-3K-1) 830 700 

Soil thermal conductivity 

(Wm-1K-1) 

0.27 1.5 

Damping depth (m) 0.34 0.34 

Temperature at damping 

depth (°C) 

61.0 46.0 

Terrain rugosity (m) 0.05 0.05 

Ks vertical-horizontal 

anisotropy ratio 

1.0 1.0 

Residual water content 0.05 0.01 

Soil depth (m) 0.33 0.33 

Effective hydraulic 

conductivity (ms-1) 

0.000176 0.0000069 

Porosity 0.4 0.45 

Soil moisture, layer 1 0.05 0.011 

Soil moisture, layer 2 0.05 0.099 

Soil moisture, layer 3 0.05 0.124 

Soil temperature (°C) 61.0 60.0 

Depth, layer 1 (m) 0.10 0.10 

Depth, layer 2 (m) 0.215 0.215 

Leakance 0.0 0.0 

Table 1: Spatial parameters input to ECH2O for each soil type 

Parameter Estimation 

 Model simulations using ECH2O were run for 18 hours at 5 minute time steps. ψae and λ 

values were then estimated by fitting the modeled output to the observed skin temperature data 

using a Marqhart-Levenburg least squares minimization.  

Results 

Sensitivity analysis 

 Sensitivity analyses were performed with ECH2O to determine the degree to which SHPs 

controlled the modeled surface skin temperature. These analyses were performed for Ks, ψae, and 

λ. For each parameter, five ECH2O simulations were performed with a single parameter value 

increased while all other parameters were set to baseline values. Parameters were varied between 

a range of commonly reported values. After running the ECH2O simulations, the difference 
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between the largest and smallest skin temperature values at each time step was normalized by the 

parameter range,   

𝑑𝑇

𝑑𝑃
=

max(𝑡𝑖) − min (𝑡𝑖)

𝑅
                 (21) 

where 
𝑑𝑇

𝑑𝑃
 is the skin temperature sensitivity to parameter P, ti is the ith time step, and R is the 

range over which parameter P was varied. The results are shown in Figures 5-7. 

 

Figure 5: Sensitivity of skin temperature to Ks, varied between 10-8 ms-1 and 10-4 ms-1 
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Figure 6: Sensitivity of skin temperature to λ, varied between 2.0 and 6.0 

 

Figure 7: Sensitivity of skin temperature to ψae, varied between 0.05 m and 1.45 m  

The maximum sensitivity to Ks is 0.25 °C per unit change in Ks, which does not occur until the 

late times (Figure 5). The maximum sensitivity to λ is 0.43 °C per unit change in λ (Figure 6), 

and the maximum sensitivity to ψae is ~1.8 °C per unit change in ψae (Figure 7).  Maximum 
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sensitivity to ψae and λ is at earlier times than Ks. The relatively minimal sensitivity of skin 

temperature to Ks indicates that skin temperature data provides little information on Ks. Attempts 

to estimate Ks via inversion modeling confirmed this observation. The changes in skin 

temperature resulting from changes in Ks were not significant enough for the inversion routine to 

constrain the Ks estimate. Thus, no further attempts were made to estimate Ks using ECH2O. 

Experiment results 

 The experiments were performed using two different soil types: sand and potting soil. 

The skin temperature recovery curves for both soil types, collected with the TIR camera, are 

shown in Figure 8. 

 

Figure 8: TIR skin temperature recovery curves from each experiment. 

The TIR recovery curves show that there is a significant difference in skin temperature recovery 

between the two soil types tested. This indicates that different soils have different skin 

temperature responses to and recovery from a wetting event. The response disparity shows that 

the volume of water in a soil plays a role in determining the bulk thermal properties of the soil, 

as modeled in Equations 15 and 16. Volumetric water content evolution in an unsaturated soil is 

controlled by SHPs, showing that SHPs are a controlling factor in skin temperature recovery 

curves.  
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 Figures 9 and 10 compare the skin temperature data collected with the TIR camera and 

thermocouple for both sand and soil. 

 

Figure 9: TIR and thermocouple skin temperature curves from the sand experiment 
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Figure 10: TIR and thermocouple skin temperature curves from the soil experiment 

TIR skin temperature recorded from the sand experiment is consistently higher than the 

thermocouple skin temperature; however, this difference is only a few degrees. The general 

shape of the two recovery curves match relatively well. TIR skin temperature recorded from the 

soil experiment shows more variation with respect to the thermocouple data. Skin temperatures 

in some cases are almost 15 °C different. The shapes of the curves do not match as well either. 

The TIR curve cools to 25 °C and quickly recovers, while the thermocouple curve cools to 40 °C 

and remains cool for over 2 hours before beginning to recover to a higher temperature.  

Figures 11 and 12 show the temperature data for all in situ sensors in for the sand and soil 

experiments.  
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Figure 11: Temperature data from all in situ sensors from the sand experiment 

 

Figure 12: Temperature data from all in situ sensors from the soil experiment 

For both experiments, the temperature signal is dampened with increasing depth in the 

soil column. For the sand experiment, skin temperature rapidly drops to 27 °C before recovering 
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to 34 °C for 1.5 hours and then steadily recovering. At 10 cm depth, the temperature increases 

slightly immediately after water application before beginning to decrease over several hours, 

reaching a minimum of 34 °C 4.5 hours into the experiment and then slowly recovering. At 17.5 

cm depth, the temperature shows a similar dampened trend, increasing slightly after water 

application and then slowly decreasing to a minimum of 32 °C at 5.75 hours. The temperature at 

27.25 cm depth remains constant at 33 °C throughout the experiment. In the soil experiment, the 

skin temperature rapidly drops after water application to 40 °C and remains constant for 2.5 

hours before beginning to recover. At 10 cm depth, the temperature rapidly drops to 20 °C, 

reaching its minimum before the skin temperature curve. It then quickly rebounds to about 37 °C 

and remains constant for the remainder of the experiment. The temperature at 17.5 cm and 27.25 

cm depth remains constant throughout the experiment.  

Figures 13 and 14 show the soil moisture data from each experiment. In the sand 

experiment, soil moisture in the top layer rapidly spiked after water application to a value of 

0.24. The top layer drained rapidly until it returned to field capacity 20 minutes after water 

application, at which point it drained more slowly as capillary forces began to dominate water 

transport rather than gravitational forces. In the second layer, soil moisture content reached a 

maximum of 0.145 at 2.5 hours into the experiment, then decreased linearly for the remainder of 

the experiment. No water drained to the bottommost third layer, which remained constant at 

0.06. In the soil experiment, soil moisture content in the top layer quickly increased to a 

maximum of 0.18 and remained steady for 1 hour before decreasing linearly for the rest of the 

experiment. Soil moisture content in the second and third layer remained constant at 0.10 and 

0.124, respectively. This indicates that no water drained to either layer.  
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Figure 13: Soil moisture curves from the sand experiment 

 

Figure 14: Soil Moisture curves from the soil experiment 
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Inversion modeling 

Inversion was conducted against each TIR data set to determine the average best fit SHP 

values. Table 2 shows the estimated best-fit SHPs produced by the inversion program, with the 

95% linear confidence interval in parentheses.  Figures 15 and 16 show the modeled best fit skin 

temperature and observed skin temperature from the TIR camera for each experiment.   

 Sand Soil 

Air-entry pressure, ψae 

(m) 

0.243 (20.61%) 0.012 (15.13%) 

Brooks-Corey lambda, λ 3.57 (5.53%) 2.95 (3.80%) 

Table 2: Best fit SHPs for sand and soil  

 

 

Figure 15: Modeled best fit curve and TIR temperature curve from the sand experiment 
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Figure 16: Modeled best fit curve and TIR temperature curve from the soil experiment 

The modeled best-fit skin temperature curve for sand, while not exact, has a reasonable 

fit (Figure 15). While ECH2O matched the late-time curve shape well, it was unable to model the 

extremes of the observed skin temperature in the early-time curve immediately after water 

application. On the other hand, the modeled best-fit skin temperature curve for soil is a poor fit 

(Figure 16). ECH2O was unable to model the degree of cooling seen in the observed skin 

temperature data, instead producing an extremely dampened skin temperature recovery curve. 

The inversion method was run from multiple starting points to ensure that the minimizer function 

had not arrived at a local minimum, but each point produced the same result.  

 Figures 17 and 18 show the resulting modeled soil moisture curves corresponding to the 

modeled best fit curves.  Comparison of the resulting modeled soil moisture curves to the 

observed moisture profiles provided a test of the accuracy of the SHPs derived from fitting skin 

temperature. The soil moisture curves for sand show that ECH2O was able to reproduce the 

shape of the soil moisture curve for the first layer of the column using the TIR SHP (Figure 17).  

However, ECH2O was unable to model the degree of saturation observed in the experiment. 

Additionally, the ECH2O model did not show any movement of water into the second layer of 

sand, as seen in the observed data. The curve for the bottommost layer 3 was well matched.  
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Figure 17: Modeled (solid line) and observed (dots) soil moisture curves from the sand 

experiment 

 

Figure 18: Modeled (solid line) and observed (dots) soil moisture curves from the soil 

experiment 

The modeled soil moisture curves from the soil experiment show different trends. The 

best fit SHPs caused ECH2O to output a modeled soil moisture curve that was consistently too 
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low for layer 1 (Figure 18); however, the difference between the observed and modeled curves 

for layer 1 was less than that for the sand experiment. The shape of the modeled layer 1 soil 

moisture curve was inaccurate, however. The modeled soil moisture curves for layers 2 and 3 are 

consistent with the observed data.  

Discussion 

 The skin temperature recovery curves shown in Figure 8 provide the first indication that 

estimation of SHPs from surface skin temperature data is feasible. By showing that the thermal 

response to an identical wetting event under identical conditions varies between two soil types, it 

is clear that there is a thermal signal which is dependent upon soil type, likely due differences in 

water movement. The difference between the two curves also suggests that researchers should be 

able to take advantage of the varying recovery curve shapes to estimate SHP values, given that 

they control the soil moisture content evolution after a wetting event and thus the bulk thermal 

properties of the soil matrix. This is supported by Cracknell and Xue (1996), who argue that the 

identification of soil moisture patterns by thermal inertia mapping is possible. Since soil moisture 

patterns themselves are controlled by SHPs, identification of spatial variation in temperature 

should provide insights into SHP values and variation in a landscape. 

 The inversion method provided estimates of ψae and λ with mixed results. Linear 

uncertainty estimates of the inversion results indicate that SHPs can be estimated based on a 

soil’s characteristic skin temperature recovery signal. The estimated SHP values were compared 

to several tables of measured SHPs. These results are summarized in Tables 3 and 4. 

 Modeled results Clapp and 

Hornberger 1978 

Cosby et al 1984 Kishne et al 

2017 

Air-entry 

pressure, ψae (m) 

0.243 0.121 ± 0.143 

(67.0%) 

0.069 ± 0.036 

(111.5%) 

0.047 ± 0.004 

(135.2%) 

Brooks-Corey 

lambda, λ 

3.57 4.05 ± 1.78 

(12.6%) 

2.79 ± 1.38 

(24.5%) 

3.36 ± 0.30 

(6.1%) 

Table 3: Comparison of sand SHPs with % difference from modeled values 
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 Modeled results Clapp and 

Hornberger 1978 

Cosby et al 1984 Kishne et al 

2017 

Air-entry 

pressure, ψae (m) 

0.012 0.478 ± 0.512 

(190.2%) 

0.355 ± 0.046 

(186.9%) 

0.219 ± 0.046 

(179.2%) 

Brooks-Corey 

lambda, λ 

2.95 5.39 ± 1.87 

(58.5%) 

5.25 ± 1.66 

(56.1%) 

6.01 ± 0.80 

(68.3%) 

Table 4: Comparison of soil SHPs with % difference from modeled values 

 In general, λ is better matched than ψae in both soil types, with both a smaller percent 

difference from published values and a narrower 95% confidence interval. The set of parameters 

for sand match those of Clapp and Hornberger (1978), while the parameters for soil match those 

of Cosby et al (1984). The comparison to other published values suggests that this method 

provides reasonable estimates of λ for a simple soil type like bare sand. However, the 

comparison is not near as favorable for the soil λ, and even worse for both ψae values. It is also 

worth noting the variability within the accepted published values. Table 5 shows the percent 

difference range within the published values for each parameter. 

 Sand Soil 

Ψae 88.0% 74.3% 

λ 18.6% 13.5% 

Table 5: % difference between largest and smallest reported SHP values 

  In most cases, the percent differences between the published parameters is still smaller 

than the percent differences between the modeled parameters and published values. The wide 

range of published values reported, along with the error margins on the individual published 

values, shows the inherent uncertainty and variability involved in measuring SHPs. For instance, 

the published ψae values for sand show an 88% variability, and the variability of ± 0.143 m in the 

Clapp and Hornberger value is larger than the actual value of 0.121 m.  

  For sand, Figure 15 and Table 3 show that this method provides reasonable estimates of 

λ and unreasonable estimates of ψae. The best-fit skin temperature curve modeled by ECH2O is a 

good match to the observed TIR data and the estimated λ value is well within the range of 

reported values. However, the ψae estimate is significantly larger than the reported values, at 

times over 100% greater. Figure 16 and Table 4 show that fitting ECH2O to TIR skin 

temperature data does not provide accurate SHP estimates for soil. ECH2O was unable to match 
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the observed TIR skin temperature curve, and both of the estimated SHP values are significantly 

lower than those reported by other researchers. 

 The choice of model may have impacted the estimated SHP results. ECH2O is primarily 

an ecohydrologic model that is designed to account for energy and mass conservation across 

entire ecosystems, and has a significant ecological component built into it. This aspect of the 

model was disregarded in this study. Additionally, ECH2O uses the relatively simple Brooks-

Corey water retention model to account for water storage in the unsaturated zone. The use of this 

method with a dedicated variably saturated groundwater model that uses a more robust water 

retention model, like the van Genuchten, and still includes a surface mass and energy balance 

calculation could provide better SHP estimates and a better fit to the TIR skin temperature curve. 

Additionally, the use of the van Genuchten model introduces more SHPs that could potentially 

be estimated with this method as well.  

 One of the largest sources of error in the experiment was the emissivity (ε) of the soil 

material. The fundamental physical relationship that TIR temperature measurement relies on is 

the Stefan-Boltzmann Law (Equation 22). 

𝐼 = 𝜎𝜀𝑇4         (22) 

Where I is radiation intensity being emitted from an object (W/m2), σ is the Stefan-Boltzmann 

constant (5.67x10-8 Wm-2K-4), ε is the object’s emissivity, and T is the object’s temperature (K). 

Thus, ε is the main variable parameter involved in obtaining temperature from a TIR camera. 

However, much like SHPs, ε is highly variable both spatially and temporally (Cracknell and Xue 

1996). This means ε has a strong effect on the recorded surface temperature of an object (Clark 

1976). The emissivity of the soils used in this study was acquired from a lookup table; however, 

future studies should measure the emissivity of each soil and include it in the image analysis 

(Faye et al 2015). It is likely that as water leaves the soil surface, the bulk emissivity and thus 

radiation intensity of the soil material changes. Additionally, Faye et al recommend collecting 

TIR data during periods of low solar irradiation or at night to prevent interference between solar 

radiation and radiation emitted from the soil surface.    

 If successfully developed, this method could drastically speed up the determination of 

SHPs in field site investigations. Large plots of land could be captured in a single series of 
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images, with temperature data recorded at each pixel from a TIR camera mounted on a pole or 

balloon. One image series could be used to estimate heterogeneous SHPs in multiple areas 

showing different skin temperature signals at once. This would eliminate the need to make 

multiple infiltrometer measurements in the field to characterize SHP variance. However, future 

investigations first need to test the applicability of this method in a field setting and for a variety 

of soil types and vadose zone structures.  

Conclusion 

 In this paper, a method is presented to estimate difficult to measure SHPs from surface 

skin temperature recorded with a thermal infrared (TIR) camera. This was tested by applying a 

known volume of water to two different soil columns, one of sand and one of soil, in thermal 

equilibrium and observing the surface skin temperature recovery curve. A spatially distributed 

ecohydrologic model was then fitted to the observed curve using inversion modeling in order to 

estimate ψae and λ for each soil type tested. TIR skin temperature data from the experiments 

show that different soil types exhibit different skin temperature responses to and recoveries from 

a wetting event. This difference is caused by differences in SHPs, indicating that fitting a model 

to the skin temperature recovery curves could provide a way to estimate these SHPs. The 

inversion method was able to provide a reasonable estimate of λ for sand, but was unable to 

provide reasonable estimates for any of the other SHPs included in the inversion. Overall, this 

study shows that estimating SHPs from surface skin temperature has the potential to become a 

useful new tool to properly characterize spatial heterogeneity for some SHPs in field 

investigations and parameterize numerical models. However, future studies should test this 

method using dedicated groundwater models and obtain surface emissivity measurements in an 

attempt to improve the accuracy of the estimated SHPs before evaluating the applicability of this 

method in the field. 
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