University of Montana

ScholarWorks at University of Montana

Numerical Terradynamic Simulation Group Publications

Numerical Terradynamic Simulation Group

2009

Terrestrial Freeze-Thaw Monitoring in the Northern Hemisphere using Satellite Active and Passive Microwave Remote Sensing

Youngwook Kim

John S. Kimball University of Montana - Missoula

Kyle C. McDonald *City College of New York*

K. Zhang

J. Lucotch University of Montana - Missoula

Follow this and additional works at: https://scholarworks.umt.edu/ntsg_pubs Let us know how access to this document benefits you.

Recommended Citation

Kim, Youngwook; Kimball, John S.; McDonald, Kyle C.; Zhang, K.; and Lucotch, J., "Terrestrial Freeze-Thaw Monitoring in the Northern Hemisphere using Satellite Active and Passive Microwave Remote Sensing" (2009). *Numerical Terradynamic Simulation Group Publications*. 373. https://scholarworks.umt.edu/ntsg_pubs/373

This Poster is brought to you for free and open access by the Numerical Terradynamic Simulation Group at ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic Simulation Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Terrestrial Freeze-Thaw Monitoring in the Northern Hemisphere using Satellit and Passive Microwave Remote Sensing

(1)Flathead Lake Biological Station, The University of Montana 32125 Biostation Lane, Polson MT. USA, 59860-9659. *Corresponding author: youngwook.kim@ntsg (2)Numerical Terradynamic Simulation Group, The University of Montana, Missoula, MT, USA, 59812 (3) Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena CA. USA, 91109

Introduction:

Approximately 50 million km² of the terrestrial Northern Hemisphere undergoes seasonal freeze-thaw (F/T) transitions each year. The timing and duration of landscape F/T processes are closely linked to surface energy budget and hydrological activity, vegetation phenology, terrestrial carbon budgets and land-atmosphere trace gas exchange. Satellite microwave remote sensing is relatively insensitive to signal degradation by atmospheric contamination and solar illumination effects and is uniquely capable of detecting and monitoring a range of biophysical processes associated with the F/T signal, especially at high latitudes.

Datasets:

	Passive		Active		
Sensor	SSM/I	AMSR-E	SeaWinds		
Platform	DMSP	Aqua	QuikSCAT		
Frequency	37GHz	36GHz	13.4GHz		
Polarization	H-pol	H-pol	H-pol		
Resolution	25x25km	25x25km	15x25km		
Overpass	брт	1:30pm	Daily average		
Surface air temperat	ture data				
(1)National Climate daily summary of th	(1)National Climate Data Center (NCDC, 1988-2007):				
Long-term global record of F/T dynamic	cs for all vegetated regions where low	temperatures are a major constraint to	ecosystem processes are constructed		
F/T Algorithm	S:				
(1) Seasonal Threshold Approach (STA)		(2) Temporal Edge Detection Approach (CNV)			
$\Delta(t) = \frac{\sigma(t) - \sigma_{fr}}{\sigma_{fr} - \sigma_{fr}} \sigma_{fr} = mean in Jan \Delta(t) > T \text{Thawed} \qquad CNV(t) = \int_{-\infty}^{\infty} f'(x)\sigma(t-x)dx \frac{Passive ser}{Max(CNV)} \\ \frac{Max(CNV)}{Min(CNV)} = \int_{-\infty}^{\infty} f'(x)\sigma(t-x)dx \frac{Passive ser}{Min(CNV)} \\ \frac{Max(CNV)}{Min(CNV)} = \int_{-\infty}^{\infty} f'(x)\sigma(t-x)dx \frac{Passive ser}{Min(CNV)} $					
At T=0.5, first F/T dates have	been selected <pre></pre>				
50 40 40 30 10 20 10 20 -10 -10 -20 -30 -40 -50 -10 -50 -10 -10 -50 -10 -50 -10 -50 -10 -50 -10 -50 -50 -50 -50 -50 -50 -50 -5	80 90 100 110 120 130 140 150 160 170 	DOY A37V) — Tavg — Snow	280 290 300 340 320 430 350 350 370 3 Frozen Date (CNV)		
- Microwave s	sensors are ab	le to observe :	freezing and		

thawing of landscape has its origin in the distinct changes in landscape dielectric properties that occur during transitions between solid and liquid phases of water.

Youngwook Kim^{1,2,*}, J. S. Kimball^{1,2}, K. C. McDonald³, K. Zhang^{1,2}, and J. Lucotch^{1,2}

F/T timing from three sensors are distributed similarly. Most differences between two algorithms occur in the lower latitude, resulting in earlier F/T timing in STA.

te Active		Interview of the second	
g.umt.edu		Flathead ake Bological Station The University of Montana	
straints, LC, ar 0.0 - 0.5 Low land cover homog 0.5 - 0.75 Medium land cover homod 0.75 - 1.0 High land cover homod	nd topogra where the second state of the seco	ohic variab • 0.0 - 14.8 High DI • 14.8 - 52.2 Mediu • 52.2 - 1200.0 Low D	ility: Construction of the second sec
Percentage of major land cover type within 25kmx25km from AVHRR 1 km		Standard deviation of DEM within 25kmx25km; criteria by Rawlins (2005)	
	STA	CNW	DEM heterogeneity
30 2005 2007 101 2003 2005 2007 001 2005 2007	Contractions of the second sec	CITY 80 60 60 10 1987 1989 1991 1995 1997 1999 2001 2003 2005 2007 1987 1989 1991 1995 1997 1999 2001 2003 2005 2007 CITY Comparing 1987 1989 1991 1995 1997 1999 2001 2003 2005 2007 CITY CITY 1989 1991 1995 1997 1999 2001 2003 2005 2007 CITY CITY CITY 1987 1989 1991 1995 1997 1999 2001 2003 2005 2007 CITY 1987 1989 1991 1995 1997 1999 2001 2003 2005 2007 CITY 1987 1989 1991 1995 1997 1997 1997 1999 2001 2003 2005 2007 CITY CITY 1987 1989 1991 1995 1997 1997 1997 1997 1997 199	BIA
	0 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007LowMedHigh	0 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 →_LowMedHigh	0 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 → Low → Med → High