
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Numerical Terradynamic Simulation Group 
Publications Numerical Terradynamic Simulation Group 

12-2004 

Satellite observations of annual variability in terrestrial carbon Satellite observations of annual variability in terrestrial carbon 

cycles and seasonal growing seasons at high northern latitudes cycles and seasonal growing seasons at high northern latitudes 

John S. Kimball 
University of Montana - Missoula 

Maosheng Zhao 

Kyle C. McDonald 
City College of New York 

Faith Ann Heinsch 

Steven W. Running 
University of Montana - Missoula 

Follow this and additional works at: https://scholarworks.umt.edu/ntsg_pubs 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Kimball, J.S., M. Zhao, K.C. McDonald, F.A. Heinsch, and S. Running, 2004. Satellite observations of annual 
variability in terrestrial carbon cycles and seasonal growing seasons at high northern latitudes. In 
Microwave Remote Sensing of the Atmosphere and Environment IV, G. Skofronick Jackson and S. 
Uratsuka (Eds.), Proceedings of SPIE – The International Society for Optical Engineering, 5654, 244-254. 

This Conference Proceeding is brought to you for free and open access by the Numerical Terradynamic Simulation 
Group at ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic 
Simulation Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more 
information, please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/ntsg_pubs
https://scholarworks.umt.edu/ntsg_pubs
https://scholarworks.umt.edu/ntsg
https://scholarworks.umt.edu/ntsg_pubs?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
mailto:scholarworks@mso.umt.edu


Satellite observations of annual variability in terrestrial carbon cycles 

and seasonal growing seasons at high northern latitudes 

John S. Kimball*
a,c

, Maosheng Zhao
c
, Kyle C. McDonald

b
 , Faith Ann Heinsch

c
, and Steve 

Running
c

a
 The University of Montana Flathead Lake Biological Station, 311 Bio Station Lane, Polson, MT, 

USA  59860-9659; 
b
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 91109-8099; 

c
 NTSG, College of Forestry and Conservation, The University of Montana, Missoula, MT  59812 

ABSTRACT

Global satellite remote sensing records show evidence of recent vegetation greening and an advance in the onset of the

growing season at high latitudes. We apply a terrestrial net primary production (NPP) model driven by satellite

observations of vegetation properties and daily surface meteorology from an atmospheric GCM to assess spatial

patterns, annual variability, and recent trends in vegetation productivity across Alaska and northwest Canada. We

compare these results with regional observations of the timing of growing season onset derived from satellite passive

microwave remote sensing measurements from the Special Sensor Microwave Imager, SSM/I. Our results show 

substantial variability in annual NPP for the region that appears to be driven largely by variations in canopy 

photosynthetic leaf area and average summer air temperatures.  Variability in maximum canopy leaf area and NPP also

correspond closely to remote sensing observations of the timing of the primary seasonal thaw event in spring. 

Relatively early spring thawing appears to enhance NPP, while delays in seasonal thawing and growing season onset

reduce annual vegetation productivity.  Our results indicate that advances in seasonal thawing and spring and summer

warming for the region associated with global change are promoting a general increase in NPP. 

Keywords: AVHRR, boreal, carbon cycle, climate change, NPP, arctic tundra, freeze/thaw, SSM/I

1.  INTRODUCTION

Boreal forest and Arctic tundra biomes of the northern high (>50 N) latitudes are undergoing significant change

coinciding with recent and persistent climatic warming for the region.
1,2

 Recent evidence of change includes melting

permafrost and deepening soil active layer depths
3
, advances in the timing and length of seasonal growing seasons

4,5
,

increased vegetation growth and alteration of land-atmosphere exchanges of radiatively active gases.
6–8

  Net primary

production (NPP) is the primary conduit of carbon transfer from the atmosphere to the land surface and is thus a

fundamental component of the global carbon cycle.  The NPP process involves plant sequestration of atmospheric CO2

through photosynthesis and carbon storage in vegetation biomass and soils. Long-term satellite and aerial remote

sensing observations of a greening arctic indicate a regional response of increasing NPP for northern terrestrial

temperate and high latitudes.
4,8,9

  Stand level observations and process modeling studies provide additional evidence of

recent increases in NPP for boreal Alaska, Canada and the northern boreal tree line, coinciding with regional warming

trends and associated lengthening of the growing season at high latitudes.
10–11

 However, other evidence from tree ring

data indicates a negative boreal NPP response to a warming climate due to temperature-induced drought stress.
12

Each spring approximately 50 million km
2
 of Earth’s terrestrial northern hemisphere undergoes a seasonal transition

from predominantly frozen to nonfrozen (i.e., thawed) conditions.
13

  These relatively abrupt seasonal transitions

represent the closest analog to a biospheric on/off switch existing in nature, affecting surface meteorological

conditions, ecological trace gas dynamics, energy exchange, and hydrologic activity profoundly.  In seasonally frozen

environments, the growing season is determined primarily by length of the nonfrozen period. Variations in both timing

of spring thaw and the resulting growing season length have been found to have a major impact on terrestrial NPP and

atmospheric CO2 source/sink strength in boreal regions.
7,14

  The timing of spring thaw in particular, can influence

boreal carbon uptake dramatically through temperature and moisture controls to net photosynthesis and respiration

processes.
15–16

  Regional analyses of annual NPP for boreal and subalpine evergreen forests of North America show a 



sensitivity to spring thaw timing on the order of 1% per day immediately following initiation of the growing season.
17

Temporal variations in the onset of frozen conditions in the fall are also significant but generally have less impact on

NPP due to the increased importance of other controls over vegetation photosynthetic activity such as photo-period

length.
17

  Recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes have also been attributed

to earlier ecosystem carbon uptake and increased NPP associated with earlier seasonal thawing and warmer springtime

air temperatures.
5,7,18

Satellite remote sensing at microwave wavelengths is sensitive to the predominant freeze/thaw state of the landscape

and provides a mechanism for assessing spatial and temporal variability in the onset of the growing season and

associated biophysical processes at high latitudes.
5,17,19

  Brightness temperature measurements obtained from the

Special Sensor Microwave/Imager (SSM/I) have been applied in terrestrial cryosphere studies including snow cover

extent mapping and frozen soils analyses.
20,21

  The SSM/I brightness temperature measurement record has also been

used to examine recent trends in the timing of springtime thaw across the panboreal high latitudes from 1988–2001.
5

Complementary global satellite remote sensing observations are also available from optical-infrared sensors such as the

NOAA AVHRR that provide repeat monitoring capabilities, consistent sampling, and spatially contiguous spectral

reflectance information that are sensitive to vegetation structure and photosynthetic biomass.  This information has

been used as a major driver of simple production efficiency models for spatial mapping and monitoring of gross

primary productivity (GPP) and NPP across large regions.
8,22–24

For this investigation, we applied a biome-specific production efficiency model driven by daily surface meteorological

inputs from an atmospheric GCM and satellite remote sensing observations of vegetation structure from the NOAA

AVHRR time series to assess spatial patterns and annual variability in NPP for Alaska and northwest Canada from

1988 to 2000. We conducted a model sensitivity analysis to evaluate the primary mechanisms driving NPP variability.

We also compared regional NPP anomalies with coincident satellite remote sensing observations of primary seasonal

thawing from the SSM/I daily time series to assess relationships between growing season onset and annual vegetation

productivity.

2.  METHODS 

2.1.  NPP calculations

BF GR TUN AG BN

The domain for this investigation encompasses boreal forest and arctic tundra biomes of Alaska and northwest Canada

(Figure 1). The region is defined in terms of nodes of the National Snow and Ice Data Center (NSIDC) north polar

Equal-Area Scalable Earth (EASE) grid.
20

  The study

domain spans a latitudinal range from 56.19°N to

71.24°N, while land areas within the region comprise

3511 grid cells with nominal 25 km × 25 km resolution

and a total representative area of approximately 2.2

million km
2
.  We used a NOAA AVHRR based global

land cover classification to define major biomes within

the study region.
4,25

  Boreal forest and tundra-grassland

areas represented approximately 52% and 30% of the 

region, respectively, while agricultural systems

represented less than 1% of the study domain.  The rest

of the study domain was composed of permanent ice and

snow, barren land, and inland water bodies (18% or

387,083 km
2
).  These nonvegetated areas were masked

from further analysis to isolate relationships between

terrestrial vegetation productivity and environmental

parameters.

Figure 1.  Alaska-Northwest Canada study region with major

biomes representing boreal forest (BF), Arctic tundra (TUN),

grassland (GR), agricultural (AG) and barren (BN) classes 

defined from a NOAA AVHRR land cover classification;

areas outside the study region are shown in white.

A biome-specific Production Efficiency Model (PEM) 

was used to calculate GPP and NPP for unmasked

pixels within the 25 km resolution EASE-grid domain.

The PEM logic is described and verified in detail



elsewhere,
8,24,26

and summarized below.  GPP (g C m
-2

) was derived on a daily basis as:

PARFPARGPP  (1)

ff
VPDT

max
(2)

where is a light use efficiency parameter (g C MJ
-1

) for the conversion of photosynthetically active radiation (PAR,

MJ m
-2

) to GPP, where PAR is assumed to represent 45% of incident solar radiation; FPAR is the fraction of absorbed

PAR;
max

is the potential maximum under optimal conditions (i.e., no environmental stress); T  is a scalar that 

defines reductions in photosynthesis under low temperature conditions, while VPD  is a scalar that defines similar

reductions under suboptimal surface air Vapor Pressure Deficit (VPD) and associated daytime water stress conditions. 

Both T  and VPD  are dimensionless parameters ranging from 1 for optimal conditions to 0 under complete canopy

stomatal closure and minimal photosynthetic activity.  Both T  and VPD  are defined from daily air temperature

(T

f

f

f f

f f

min) and VPD using simple photosynthetic response curves.  These response curves and
max

are prescribed for

different biome types defined from the global land cover classification.

Net primary production (g C m
-2

) is derived on an annual basis as the difference between the annual summation of

daily net photosynthesis and autotrophic growth and maintenance respiration:

 NPP =  (3))()(
_

365

1

_ gwmlrm
RRRGPP

where is the daily maintenance respiration of leaves and fine roots as derived from allometric relationships to

canopy leaf-area index (LAI) and an exponential relationship between respiration and temperature. The

parameter represents the annual maintenance respiration from live wood, while represents the annual growth

respiration; both and  are derived from allometric relationships between vegetation biomass and maximum

annual LAI, and exponential respiration response curves to air temperature.  The characteristic response curves for

these calculations vary according to major biomes as defined by a Biome Properties Look-Up Table (BPLUT) and the

global land cover classification.  The BPLUT defines response characteristics for 11 major biomes including evergreen 

and deciduous needleleaf and broadleaf forests, mixed deciduous and evergreen forests, grasslands, shrublands, and

croplands. The PEM used for this investigation is currently being used for operational global assessment and

monitoring of GPP and NPP using LAI and FPAR data from the MODIS sensor onboard the NASA EOS Terra satellite

from 2000 onward.

lrm
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26,27
  A detailed description of these algorithms and associated BPLUT properties can be found in

the MODIS MOD17 User’s Guide.
28

For this investigation we applied the PEM described above to assess spatial and temporal variability in annual

vegetation productivity for the study region over a 13-year period from 1988 to 2000.  The PEM requires spatially

explicit and temporally contiguous inputs of daily surface meteorology, LAI and FPAR, to derive GPP and NPP.

Monthly LAI and FPAR data were obtained from the NOAA AVHRR Pathfinder dataset, which has an approximate 16 

km
2
 spatial resolution and extends over the entire domain from 1982 to 2000.

4
  These data were reprojected to the 25 

km polar EASE-grid format using a nearest-neighbor resampling scheme.  The LAI and FPAR data were then

resampled to a daily time step by temporal linear interpolation of adjacent monthly values.  Surface air temperature,

incident solar radiation, and VPD inputs were provided by daily reanalysis data from the National Center for

Environmental Prediction.
29

  The NCEP meteorological data are available globally in approximately 1.875 degree

(~208 km) spatial resolution and were reprojected into the 25 km resolution polar EASE-grid format using a bi-

Lagrange interpolation approach.
30

  PEM calculations were conducted for vegetated cells within the study region from 



1988 to 2000, and spatial patterns and annual variability in NPP were evaluated accordingly. We conducted a 

statistical correlation analysis to assess correspondence between annual productivity calculations, LAI, and mean

annual surface meteorological parameters from the NCEP reanalysis.  The statistical significance of these relationships

was assessed at the 90% confidence level. 

2.2 Classification of primary seasonal thaw events

The Special Sensor Microwave/Imager (SSM/I) is a multifrequency, linearly polarized passive microwave radiometer

operating with a constant incidence angle of 53.1 degrees and has flown on the Defense Meteorological Satellite

Program (DMSP) platform series.  Coverage is global and began in August 1987. We utilized the 19 GHz horizontally

polarized channel, which has a 70 × 45 km footprint resolution. Data for this study were acquired as globally gridded

brightness temperatures derived from orbital (swath) data.
31

  The SSM/I sensors have 6 AM and 6 PM equatorial

crossing times for the ascending or descending orbital nodes, the crossing time and respective node depending on the 

platform in the DMSP series.  Brightness temperature data corresponding to orbital passes with 6 PM equatorial

crossing times were mapped to the 25 km resolution polar EASE-grid for each 24-hour period and used for temporal

classification of primary thaw events.  The data gridding scheme maximizes the radiometric integrity of the original

brightness temperature values, maintains high spatial and temporal precision, and involves no averaging of original

swath data.  Daily SSM/I data, spanning winter 1988 through winter 2000, were assembled onto the 25 km EASE-grid

grid covering the study domain.  The daily composite data allow examination of annual thaw cycles from 1988–2000. 

A material’s radiometric brightness temperature, TB, is characterized by its emissivity e, as  TB = e · T, where T  is its

physical temperature (ºK).  Emissivity is a unitless variable ranging from 0 for a perfectly non-emitting material, to 1

for a perfect emitter (blackbody).
32

Emissivity is a function of the material’s dielectric constant and is directly sensitive

to the phase (solid/liquid) of water within the media.  As water changes from a solid to a liquid phase, its dielectric

constant increases dramatically and significant increases in e and TB result.  Defining freeze/thaw as the predominant

state (solid or liquid) of water within the landscape, we utilize the temporal change in TB associated with the primary

landscape springtime thaw event to monitor the timing of thaw across the study domain.

Previous studies have employed thresholding schemes based on time-series signal processing to examine springtime

thaw transitions with high temporal repeat microwave remote sensing data.
14,17,19

  These algorithms characterize

landscape thaw transition sequences utilizing the response of time series radar backscatter resulting from large changes

in the bulk landscape dielectric constant occurring as the landscape thaws.  As TB responds similarly to the landscape

dielectric constant, these approaches are also suitable for analysis of time-series brightness temperature.

We employed a step-edge detection scheme to identify the predominant springtime thaw transition event on an annual

basis. In boreal regions, this event has been found to be generally coincident with the arrival of maximum surface

wetness in spring associated with rising air temperatures, seasonal snowmelt, soil active layer thawing, and growing

season onset.
17

  The technique is based on the application of an optimal edge detector for determining edge transitions

in noisy signals.
33

  The time of primary springtime thaw event is determined from the convolution applied to TB:

(4)dxxtTxftCNV
B

)()(')(

where f’(x) is the first derivative of a normal (Gaussian) distribution.  The occurrence of the primary springtime thaw

event is then given by the time, tp, when CNV(t) is a maximum.  As the winter-spring transition progresses, the

landscape may thaw and refreeze repeatedly.  This technique accounts for the occurrence of weak edges, or less

pronounced thaw events, as well as strong edges, and is less likely to classify minor thaw occurrences as the primary

thaw event. This approach has been previously employed to examine thaw trends across the pan-Arctic basin and

Alaska.
5
  For this investigation, we apply a similar approach to map the primary spring thaw event on an annual basis

for each 25 km grid cell within the study domain.

The thaw classification algorithm (Eq. 4) was applied to each annual time series of SSM/I brightness temperature from

1988 to 2000, producing yearly maps of the primary spring thaw event across the study domain.  Areas of permanent



ice and snow, bare ground, and sparse vegetation cover were identified using the NOAA AVHRR based global land

cover classification
4,25

 and masked from further analysis to isolate the relationship between seasonal thawing and NPP.

Annual anomalies of PEM- and SSM/Ibased results were calculated relative to long-term means or linear least-squares

regression results, where significant (P 0.1) secular trends were observed.

3.  RESULTS 

Satellite derived NPP results for the study domain are summarized in Table 1, while a map of mean annual NPP for the

1988–2000 period is presented in Figure 2. Mean annual NPP for the region is approximately 288 +/- 105.6 [s] g C m
-2
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Figure 3.  Mean annual timing of primary seasonal thaw

events for the 1988–2000 period as derived from 

temporal classification of daily, descending orbit (6 PM 

local overpass), 19 GHz brightness temperature data 

from the SSM/I sensor series.  Barren land and other

nonvegetated surfaces were excluded from the analysis

and are shown in gray, while areas outside the study

region are shown in white. 

Figure 2.  PEM predictions of mean annual NPP for the 

1988–2000 time period.  Barren land and other

nonvegetated surfaces excluded from the analysis are shown

in gray, while areas outside the study region are shown in

white.

Table 1.  Summary of NPP and primary thaw event results for the vegetated study domain.

Classification

Region

1
Area (%)

2
NPPav

(g C m
-2

 yr
-1

)

3
Thaw date 

(DOY)

Entire domain 100.0 288.0 (105.6) 106 (20)

Boreal forest 52.0 320.0 (112.4) 102 (19)

Arctic tundra-grassland 30.0 232.6 (60.7) 114 (21)

Agricultural 0.1 168.5 (51.0) 110 (37)
1
Proportional area represented within the 2.2 million km

2
 study domain;

2
 Mean annual NPP (standard deviations in parentheses) for 1988–2000 period;

3
 Mean annual spring thaw date (standard deviations in parentheses) for 1988–2000 period.



yr
-1

, with substantial spatial and temporal variability.  Spatial variability in annual productivity generally follows major

physiographic, climatologic, and associated land cover gradients.  Annual productivity is generally greatest within

subarctic boreal evergreen coniferous and mixed deciduous-evergreen forests of the Yukon and central and southern

Alaska. Annual productivity is generally lower at higher elevations of the Alaska and Brooks Ranges, and within polar

tundra and grassland areas of northern Alaska and the Yukon.  Boreal forests cover approximately 52% (1.16 × 10
6

km
2
) of the study area and account for 41% of the total average annual NPP for the region, while Arctic tundra and

grasslands represent 30% (661,056 km
2
) of the region and 71% of total NPP.  Agricultural biomes are the least

productive on a unit area basis, and represent less than 1% of aerial coverage and total productivity for the region.

A map of the average timing of primary spring thaw events for the study region as derived from temporal classification

of daily SSM/I brightness temperature observations for the 1988–2000 period is presented in Figure 3 and summarized

in Table 1.  The average timing of primary spring thawing extends over a 12 week period from approximately March

7
th

 (Day 66) to May 26
th

(Day 146), with generally earlier occurrence at lower latitudes and elevations. The spatial

pattern of spring thaw timing also shows general distinctions among the major land cover classes (Figure 1).  Boreal

forests show the earliest average arrival of seasonal thawing on approximately April 12 (Day 102), followed by

agricultural and tundra-grassland areas with respective thaw dates of April 20
th

 (Day 110) and April 24
th

 (Day 114).

However, land cover class coefficients of variation in seasonal thaw timing range from 18 to 34 percent, with

considerable overlap among regional biomes.
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Temporal variability in NPP for the region coincided with changes in both vegetation structure and climatology.

Annual variations in photosynthetic canopy structure inferred from NOAA AVHRR derived measures of maximum

annual LAI (LAImx) accounted for 71.2% (P = 0.0003) of the variability in annual NPP for the region as shown in

Figure 4.  Absolute annual variability in LAImx and NPP was approximately 2.2% and 5.9%, respectively.  Years with

relatively high NPP rates coincided with greater photosynthetic canopy cover, while lower productivity years coincided

with reduced canopy cover. Annual NPP anomalies also corresponded directly to average summer air temperatures (r 

= 0.718; P = 0.006) indicating warmer temperatures during the growing season promote greater NPP by enhancing

photosynthesis relative to autotrophic respiraton processes.  No significant relationship was found, however, between

NPP and mean annual air temperature because temperatures outside the growing season, which are reflected in mean 

annual values, have little direct impact on NPP since boreal-arctic ecosystems are largely dormant during these periods.

Annual NPP in 1992 was approximately 9.4% below long-term regional conditions and coincided with an approximate

2-year regional cooling event following the June 1991 volcanic eruption of Mt. Pinatubo (Figure 4).  Previous studies

have also documented the apparent short-term effects of the Pinatubo eruption on LAI, NPP, and atmospheric CO2

concentrations at high latitudes.
8,34

 A large positive NPP anomaly in 1998 coincided with relatively warm spring and

Figure 4.  Annual variability and associated

correspondence between PEM-based NPP and

NOAA AVHRR Pathfinder observations of 

maximum annual LAI (LAImx).  The time-

series data are expressed as annual anomalies of

regional averages for the entire vegetated study

region, where variability in LAImx is expressed

as a proportion (%) of long-term (1988–2000) 

average conditions; positive and negative

anomalies denote respective increases and

decreases in annual magnitudes relative to

long-term average conditions.  Approximate

timing of the Mt. Pinatubo eruption is

represented by a dashed, vertical line.



early summer conditions, while the large negative NPP anomaly in 2000 coincided with relatively cool (3–4 ºC below

mean, 1992–2000, summer conditions) summer temperatures across Canada and Alaska (IPCC 2001).

Mean annual NPP for the region was inversely proportional to the timing of primary seasonal thawing in spring as

derived from SSM/I based remote sensing (see Figure 5).  The timing of the primary spring thaw event was inversely

proportional to both LAImx (r = -0.687; P = 0.009) and NPP (r = -0.857; P = 0.0001) anomalies for the study domain.

Years with relatively early seasonal thawing showed generally greater annual productivity and associated increases in

photosynthetic biomass, while years with delayed seasonal thawing showed lower annual productivity rates and

associated reductions in canopy cover.  These results are consistent with other regional studies showing strong linkages

between the timing of seasonal thawing, growing season onset, and annual vegetation productivity in boreal

landscapes.
4,15,17

  At high (>50ºN) northern latitudes, cold temperatures and limited photoperiod largely constrain the

growing season to a relatively brief period during the spring and summer months. These conditions contrast with

temperate latitudes where growing seasons begin earlier and can extend well into the fall.
8
  In the spring, solar

irradiance in boreal and Arctic regions is near the seasonal maximum, and photosynthesis and NPP proceed at

relatively high rates following spring thawing and the arrival of warmer air temperatures.
17,37

  Boreal evergreen forests

can accumulate as much as 1% of their annual NPP on a daily basis immediately following seasonal thawing in the

spring, while potential accumulation rates are substantially reduced by decreasing photoperiod during later stages of the

growing season.  Thus year-to-year changes in the timing of growing season onset, indicated by satellite remote

sensing observations of landscape freeze/thaw status, have a significant impact on annual NPP and vegetation biomass

for the region.
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Figure 5.  Annual variability and associated correspondence between SSM/I based seasonal thaw anomalies, and NOAA

AVHRR based annual maximum mean monthly LAI (LAImx; left) and PEM based NPP anomalies (right) for vegetated land

cover within the Alaska-Northwest Canada study region. Positive and negative anomalies denote respective increases

(advances) and decreases (delays) in annual values relative to long-term (1988–2000) average conditions.

4. CONCLUSIONS

The results of this study indicate that satellite optical-infrared remote sensing of annual variability in terrestrial NPP

and photosynthetic biomass at high latitudes is inversely proportional to the timing of growing season onset inferred

from satellite microwave remote sensing of landscape freeze/thaw status. Annual NPP calculations also corresponded

directly with mean summer air temperatures for the region.  Years with relatively warm summers and early seasonal 

onset of the growing season appear to promote greater net photosynthesis relative to autotrophic respiration, resulting

in greater NPP; alternatively, relatively cool summers or delayed onset of the growing season promote the opposite

response.  These results differ somewhat from studies of Alaska White spruce forest stands that show evidence of a

negative NPP response to warmer temperatures due to temperature-induced drought stress.
12

  Other studies show

evidence of a generally positive NPP response to early growing season onset, but with variable sensitivity depending



upon species composition and location.
38

  Still other studies indicate that NPP at high latitudes is predominantly cold

temperature limited and responds positively to warmer air temperatures and earlier onset of the growing season.
4,8,10,15

The results of this study imply that while surface air temperature records show a relatively consistent global warming

trend since the early 1980s, NPP for boreal forest and arctic tundra of Alaska and Northwest Canada appears to be

largely benefiting from regional warming and associated lengthening of annual growing seasons, particularly during

the initial period following seasonal thawing when solar radiation levels are near seasonal maxima and plant available

moisture is relatively abundant.  However, our results also indicate that vegetation productivity is spatially and

temporally complex for the region with the potential for a variable NPP response to projected warming.

For this investigation, we utilized daily meteorological inputs from an atmospheric General Circulation Model (GCM),

satellite optical-infrared remote sensing measures of vegetation parameters, and general assumptions of plant

physiological responses to environmental forcings to simulate regional patterns and annual variability in NPP for 

Alaska and northwest Canada.  The land cover information used for this study and the resulting NPP calculations

largely reflect dominant, overstory vegetation and do not explicitly account for mixed or subdominant vegetation

categories within individual land cover classes.  The accuracy of coarse resolution GCM meteorological data is also

uncertain at high latitudes where regional monitoring networks useful for GCM calibration and reanalysis are 

extremely sparse and largely confined to coastal areas and lower elevations. Satellite monitoring of high latitude

regions from optical-infrared remote sensing is also problematic due to poor solar illumination and image degradation

from frequent cloud cover and other atmospheric aerosols, while observational trends from the long-term NOAA

AVHRR record are uncertain because of issues related to navigational drift and cross-calibration of instrument series.

All of these factors have the potential to adversely impact the relative accuracy of satellite based NPP calculations for

the region.  Nevertheless, the results of this study are consistent with a growing body of evidence indicating a generally

positive boreal-arctic vegetation productivity response to the relaxation of low temperature constraints to

photosynthesis from regional warming and earlier growing season onset. Our findings also indicate the recent trend of

global change related warming at high latitudes is enhancing vegetation growth and sequestration of atmospheric CO2

in boreal and arctic ecosystems.  However, while NPP may be enhanced under warmer conditions and longer growing

seasons, the apparent effects of these changes on terrestrial carbon losses from soil respiration, fire and insect

defoliations, and other regional disturbances are uncertain.
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