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Abstract 

  High latitude regions are undergoing significant climate-related change and represent an 
integral component of the Earth’s climate system.  Near-surface vapor pressure deficit, 
soil temperature, and soil moisture are essential state variables for monitoring high 
latitude climate and estimating the response of terrestrial ecosystems to climate change.  
Methods are developed and evaluated to retrieve surface soil temperature, daily 
maximum/minimum air temperature, and land surface wetness information from the EOS 
Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite for eight 
Boreal forest and Arctic tundra biophysical monitoring sites across Alaska and northern 
Canada.  Daily vapor pressure deficit is determined by employing AMSR-E daily 
maximum/minimum air temperature retrievals.  The seasonal pattern of microwave 
emission and relative accuracy of the estimated land surface state are influenced strongly 
by landscape properties including the presence of open water, vegetation type and 
seasonal phenology, snow cover and freeze-thaw transitions.  Daily maximum/minimum 
air temperature is retrieved with RMSEs of 2.88 K and 2.31 K, respectively.  Soil 
temperature is retrieved with RMSE of 3.1 K.  Vapor pressure deficit (VPD) is retrieved 
to within 427.9 Pa using thermal information from AMSR-E.  AMSR-E thermal 
information imparted 27% of the overall error in VPD estimation with the remaining 
error attributable to underlying algorithm assumptions.  Land surface wetness 
information derived from AMSR-E corresponded with soil moisture observations and 
simple soil moisture models at locations with tundra, grassland, and mixed -
forest/cropland land covers (r = 0.49 to r = 0.76).    AMSR-E 6.9 GHz land surface 
wetness showed little correspondence to soil moisture observation or model estimates at 
locations with > 20% open water and > 5 m2 m-2 Leaf Area Index, despite efforts to 
remove the impact of open water and vegetation biomass.  Additional information on 
open water fraction and vegetation phenology derived from AMSR-E 6.9 GHz 
corresponds well with independent satellite observations from MODIS, Sea-Winds, and 
JERS-1.  The techniques and interpretations of high-latitude terrestrial brightness 
temperature signatures presented in this investigation will likely prove useful for future 
passive microwave missions and ecosystem modeling. 
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I. Introduction 
 

High latitude regions are undergoing significant climate-related change and 

represent an integral component of the Earth’s climate system.  Observational evidence 

indicates that mean annual air temperatures (~ 2 m height) in Arctic and Boreal regions 

have warmed 2-4 ˚C in the last several decades (Oechel 1993; Serreze 2000; Hinzman 

2004).  Global model projections indicate that warming under future climate change will 

be most pronounced in high latitude regions (Gates 1992; IPCC 2001).  Warming is 

expected to alter the terrestrial carbon cycle (Oechel 1993; Oechel 1995; Euskirchen 

2006), surface energy balance (Eugster 2000), and hydrologic systems with resulting 

feedbacks to climate (Hinzman & Kane 1992).   

Ecosystem responses to warming include advances in growing season timing and 

duration, increases in vegetation growth and extent of woody shrubs (Sturm 2001), 

increases in the depth of annual soil thaw, and decreasing permafrost extent (Osterkamp 

& Romanovsky 1999).   Increasing soil thaw depths and thawing permafrost coupled with 

low annual precipitation characteristic of Arctic regions will potentially cause deepening 

of local water tables (Hinzman 2004).  Drying of surface soil layers coupled with 

warming may potentially cause increases in efflux of CO2 from soil organic matter 

decomposition and acceleration of soil nutrient cycles (Oechel 1998).  Drying may 

change the partitioning of latent and sensible heat energy, further increasing surface 

temperature and terrestrial ecosystem stress.  Recent satellite evidence corroborated with 

field data suggests that widespread drought has caused marked decreases the net-primary 

productivity of North American Boreal regions (Bunn 2007).  Near-surface vapor 

pressure deficit, soil temperature, and soil moisture therefore are essential state variables 
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for monitoring high latitude climate and estimating the response of terrestrial ecosystems 

to climate change.     

High-latitude regions have a sparse network of meteorological stations which 

strongly limit regional climate monitoring.  Additionally these stations usually provide air 

temperature, relative humidity and precipitation information; soil moisture and soil 

temperatures are seldom directly measured at standard meteorological stations.  Accurate 

surface meteorological information is needed to provide critical inputs for regional scale 

biophysical and hydrological models (Crow & Wood 2002; Zhang 2007).  The largest 

error in the MODIS MOD17 terrestrial productivity products was introduced by 

uncertainties in daily surface meteorology inputs (Hiensch 2006).  Uncertainties in the 

surface energy and water budgets of global re-analysis models are also contingent upon 

land surface parameterization and high latitude feedbacks (Stieglitz 1999).   

The latest generation of NASA's Earth Observing System (EOS) satellite-remote-

sensing-based observations provides an unprecedented array of global daily monitoring 

capabilities at moderate spatial resolution, including multi-band optical-infrared and 

passive-microwave-based measurements from MODIS and AMSR-E, respectively. These 

measurements are sensitive to thermal and moisture characteristics of the land surface 

and provide a potential alternative to spatially gridded meteorological data from sparse 

surface station networks and model re-analyses for driving terrestrial ecosystem models. 

Land surface temperature information has commonly been obtained from satellite 

infrared remote sensing observations from the NOAA Advanced Very High Resolution 

Radiometer (AVHRR), Advanced Space-borne Thermal Emission and Reflection 

Radiometer (ASTER), METEOSAT, and NASA’s Moderate Resolution Imaging 
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Spectroradiometer (MODIS; Goita 1997; Gillespie 1998; Verstraeten 2006; Wan 2002; 

Comiso 2002).  Thermal infrared land surface temperature algorithms are distinguished 

by methods of atmospheric aerosol and cloud-cover screening, and estimation of the 

surface emissivity (Gillespie 1998).  Infrared land surface temperatures have also been 

used to derive soil wetness information using thermal inertia approaches (Verstraeten 

2006; Anderson 2007).  Soil wetness information has also been derived from optical data 

by analyzing the slope of the relationship between land surface temperatures and the 

Normalized Difference Vegetation Index (NDVI; Nemani 1993; Gillies 1997; Sandholt 

2002).  

 Satellite passive microwave sensors afford advantages over optical-infrared 

sensors.  Despite having a relatively coarse spatial resolution (>5 km), microwave sensors 

are less impacted by cloud cover, smoke, and atmospheric aerosol effects, and can 

retrieve surface information day or night, regardless of solar illumination conditions. This 

represents a significant advantage for regional monitoring at high latitudes. Past and 

current passive microwave satellite missions include the Special Sensor 

Microwave/Imager (SSM/I), Scanning Multi-channel Microwave Radiometer (SMMR), 

and Advanced Scanning Microwave Radiometer flying on the NASA EOS Aqua satellite 

(AMSR-E).   

Microwave emission at low frequencies, e.g. C-band (~6.9 GHz) and L-band 

(~1.4 GHz), responds to temperature and moisture conditions under vegetation and below 

the soil surface, though direct sensitivity to these deeper microwave-emitting layers 

decreases under increasing vegetation water content (Ulaby 1989). The emitting soil layer 

is shallower and the vegetation opacity is greater for high frequency microwave 
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observations.  The emitting depth is typically between 0.5 and 2.8 cm at C band for soil 

volumetric moisture contents of 10 and 50% respectively, assuming a soil bulk density of 

1.50 g cm-3 typical of tundra soils (Ulaby 1989).  Frequencies of 10.7 GHz and lower 

may be susceptible to radio frequency interference (RFI) near densely populated areas 

depending upon the bandwidth, center frequency, and polarization of the anthropogenic 

radiation and characteristics of the observing sensor (Njoku 2005; Ellingson & Johnson 

2006); however, this may not be a significant problem in sparsely populated high-latitude 

regions.  Low frequency passive microwave observations (<18 GHz) are also sensitive to 

open surface waters (Fily 2003), vegetation biomass (Paloscia & Pampaloni 1988; 

Jackson & Schmugge 1991; Njoku & Chan 2006), freeze-thaw state (McDonald 2004; 

McDonald & Kimball 2005), sea ice (Comiso 2003), and snow cover (Kelly 2003). 

 Few studies have considered the retrieval of surface temperatures from passive 

microwave observations, although surface temperature is a vital state variable and an 

important ancillary parameter in soil moisture retrieval algorithms.   McFarland (1990) 

applied a multiple regression of several frequencies from the SSM/I to derive soil 

temperature in the central plains of the United States and reported difficulty in retrieving 

soil temperature under wet and snow-covered conditions.  Basist (1998) used a spectral 

difference method to correct for surface water and snow cover to retrieve screen-height (2 

m) air temperatures from the SSM/I.  A polarization ratio method was applied to retrieve 

soil temperatures from a tower-based radiometer over a variety of land cover conditions 

in Switzerland (Matzler 1994) and from SSM/I 19 GHz brightness temperatures under 

both frozen and snow-covered winter surfaces (Hiltbrunner 1994).  This method was also 

employed for surface temperature retrieval in the Boreal forest of Finland and was 
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reported to have larger error over dense vegetation than an empirical multiple-regression 

method (Pulliainen 1997).  A similar polarization ratio method was applied to retrieve 

surface temperature and surface water fraction over wet Arctic and Boreal regions of 

northern Canada under snow-free conditions (Fily 2003).  Iterative inversion of radiative 

transfer equations has also been explored (Njoku & Li 1999), as well as learning 

algorithms such as neural networks, which have been explored for dealing with surface 

heterogeneity (Aires 2001); both methods require either a great deal of accurate a priori 

information on land cover parameters or large training data sets. 

Past studies of land surface microwave emission have gone through great lengths 

to correct passive microwave brightness temperatures (Tb) for atmospheric influences 

using re-analysis data (Prigent 1997).  We prefer to avoid this approach because re-

analysis data can have large biases, especially at high latitudes (Zhang 2007), and 

systematically building such biases into the microwave algorithms in this study, at least 

in the absence of a data assimilation framework, would potentially obscure information 

contained in the microwave observations.  The retrieval of atmospheric water vapor 

estimates from AMSR-E channels is currently limited to ocean regions due to the strong 

relative influence of land surface emissivities on Tb.  This underscores the need to first 

describe land surface emissivity before considering atmospheric influences in land 

surface temperature algorithms, although proper consideration of atmospheric influences 

will surely improve future algorithms. 

Low frequency (≤10.7 GHz) passive microwave Tb observations can be highly 

sensitive to soil moisture content.  Theoretical sensitivities show up to a 95 K decrease in 

C-band (6.6 GHz) H-polarization Tb over bare, smooth loam soil and a homogenous field 
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of view (Njoku 1999).  Under most circumstances for natural surfaces, however, the soil 

moisture Tb response is intertwined with several other factors.  Over most natural surfaces 

Tb is influenced strongly by surface kinetic physical temperature, which shows large daily 

to seasonal fluctuations; open water, such as rivers, lakes, and oceans along coasts, which 

are especially prevalent in high latitude regions; and vegetation canopies, surface litter, 

and terrain roughness.   Surface physical temperature is inversely proportional to daily 

soil moisture variations through the partitioning of solar energy into latent and sensible 

heat, although surface temperature trends may mask changes in Tb due to higher soil 

moisture contents.  Open water causes a reduction in Tb similar to soil moisture but 

usually much more strongly.  The open water fraction of the sensor field-of-view 

dominates the Tb signal, reducing the bulk Tb signal of the footprint.  

Vegetation canopies and roughness have similar effects, both increasing Tb in the 

H-polarization and quickly reducing the sensitivity of H-polarization Tb to soil moisture.  

Recent investigations have shown that wet vegetation litter, dew, and canopy rain 

interception, which tend to correspond with soil moisture, can make such effects more 

severe (Shi 2002). The response of Tb at V-polarization to these factors can be an increase 

or decrease depending on the amount of radiation absorbed relative to the amount 

scattered (Prigent 2005). The spatial resolution of low frequency AMSR-E microwave 

observations is relatively coarse (~60 km x 60 km at C-band), so scenes contain mixtures 

of vegetation, open water, and soil that determine the bulk Tb of the scene. 

The relative accuracy of microwave soil moisture algorithms depends on how 

well the competing factors on Tb are reduced or eliminated.  Methods usually take a 

mixture of four approaches to accomplish this including: i) polarization or spectral 
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indices to reduce the dependence on any particular factor, such as using a polarization 

ratio to reduce surface temperature dependence; ii) using ancillary variables, including 

NDVI from optical observations to correct for vegetation biomass (Jackson 1999); iii) 

time series techniques such as smoothers and filters (Wagner 1999a; De Ridder 2003); iv) 

iterative methods that simultaneously solve for soil moisture and other variables using 

multiple channels (Njoku 1999; Njoku 2003; Owe 2001).  

 Tradeoffs exist among the various methods of correcting for confounding effects 

on Tb.  Indices, such as polarization and spectral ratios, provide reduced dependence on 

one factor, but they sometimes may magnify the influence of other factors.  In the case of 

the polarization ratio, the surface temperature dependence is greatly reduced, but where 

Tbv and Tbh (Tb at V- and H-polarization, respectively) move in opposing directions, such 

as respectively decreasing and increasing as a result of scattering, the polarization ratio 

shows enhanced response to vegetation or roughness relative to Tbh alone (Shi 2006).  

Ancillary variables introduce bias and uncertainty characteristic of their sources, for 

example, NDVI as seen by an optical instrument might not correspond to the same 

vegetation characteristics to which microwaves respond.  Time series techniques run the 

risk of eliminating time trends that occur within similar time-scales as the variable of 

interest.  Iterative methods are attractive alternatives because they can provide 

information on several variables at once independent of ancillary information.  Iterative 

methods have been used successfully in microwave remote sensing of the ocean, 

atmosphere, and soil moisture in field-scale experiments; however, current lack of 

knowledge of land surface emission processes at coarse spatial scales have limited the 

accuracy of iterative methods for application to regional to global soil moisture retrieval. 
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Soil moisture validation for satellite scales has been historically hampered by the 

limited availability of in situ observations, lack of correspondence of the depth of those 

observations to actual satellite sensing depth, and low spatial correspondence between 

point observations and satellite retrievals integrated over relatively coarse spatial scales 

(~60 km x 60 km; Crow 2007).  These factors are also present for surface temperature 

and vapor pressure deficit (VPD) validation comparisons; however, the spatial variability 

of soil moisture is usually much greater than for these typically smoothly distributed 

parameters as soil moisture is impacted by micro-topography, soil properties, vegetation, 

and precipitation patterns, which introduce spatial heterogeneity (Western & Bloschl 

1999). 

 Soil moisture estimation from airborne and satellite microwave remote sensing 

over agricultural landscapes has been extensively investigated; however, much less 

attention has focused on regional soil moisture estimation over heterogeneous natural 

land surfaces.  Microwave algorithms for soil moisture estimation differ primarily in how 

satellite observations are corrected for the impacts of surface physical temperature, 

vegetation biomass, surface roughness, and open water fraction.  Jackson (1999) 

developed an algorithm that uses NDVI and infrared surface temperatures to sequentially 

correct the brightness temperature at a single frequency and polarization to estimate soil 

moisture.  Njoku (2003) used a multi-frequency dual-polarization approach to 

simultaneously estimate vegetation biomass and soil moisture.  Owe (2003) employed a 

single-frequency approach that simultaneously retrieves both vegetation biomass and soil 

moisture and accounts for vegetation biomass using the ratio of two polarizations.  

Wagner (1999a; 1999b) used scaled radar backscatter observations from the European 
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Remote Sensing System (ERS)-1 scatterometer for global soil moisture retrieval.  Bassist 

(2001) employed an approach over the continental United States that considers the 

combined influence of soil moisture and open water as a “wetness index” described by 

the spectral difference of several frequencies.  

Current approaches are limited by the accuracy and availability of ancillary 

information, by limited knowledge of the frequency and polarization dependence of the 

microwave emission models, and lack of knowledge of how emission model parameters 

vary over natural landscapes.  An advantage of process-based methods is that they 

incorporate information on physical processes and mechanisms they can give insight into 

radiative transfer processes; they can also be refined for different land cover types, 

transferred between sensors, and refined as more information is obtained.  Drawbacks of 

process-based approaches are that their solutions can be unstable or indeterminate if the 

model parameters are inaccurately specified or if the model itself does not capture the 

dominant components of the radiative transfer process; they also often require much 

ancillary information or detailed knowledge of multi-frequency and polarimetric 

responses to emission processes.    

 

II. Objectives and Hypotheses 

 

 The objectives of this investigation are to i) evaluate the spatial and seasonal 

dynamics of multi-frequency, dual-polarized AMSR-E brightness temperature data 

relative to surface biophysical station observations of daily soil, land surface, and 

meteorological observations, ii) develop approaches to retrieve soil and air temperatures, 
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land fraction soil surface wetness, and daily average VPD information from AMSR-E 

under temporally dynamic surface physical conditions, and iii) determine the information 

content and accuracy of the algorithms relative to point observations, simple model 

simulations, and observations from other satellite products including AMSR-E 

operational Level 3 products, MODIS products, and JERS-1 products in Arctic and 

Boreal biomes.  

We develop and apply algorithms to retrieve surface (<5 cm depth) soil 

temperature, and daily air temperatures (~2 m height) for future use in biophysical 

modeling at high-latitudes.  A simple approach to derive near-surface daily VPD from 

daily am-pm overpass AMSR-E observations is also developed. We additionally develop 

a method to derive soil wetness by correcting for vegetation biomass and open water 

fraction effects, and compare this method with the NASA operational Level 3 soil 

moisture product (Njoku 2004) relative to process-model simulations of soil water status 

and site observations of soil moisture.   

We employ satellite observations from MODIS and in situ observations for fitting 

parameters, driving simple soil moisture models, and assessing satellite algorithm 

performance; these data were collected at three Ameriflux (Oechel  2000), three 

FLUXNET Canada eddy-covariance flux towers (Flanagan and Johnson 2005; Griffis  

2004; Dun and Wofsy 2006), two Kuparuk river basin sites administered by the 

University of Alaska Fairbanks Water and Environmental Research Center (Kane and 

Hinzman 2006), and two sites administered by the Natural Resources Conservation 

Service (NRCS) located in five distinct vegetation and land cover regimes representing 

major Boreal forest and Arctic tundra biomes (Paetzold 2006).  The satellite data are 
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from footprint extractions of spatially re-sampled AMSR-E L2A orbital-swath data and 

windows of MODIS optical data centered at each tower location. Additionally AMSR-E 

L2A Northern Hemisphere EASE grid data for 2003 is employed for gaining an 

understanding of broad-scale emission patterns. 

 

III. Methods 

 

1. Study Sites 

  

 The eight study sites are representative of five distinct vegetation types (Table 1; 

Fig. 1).  The vegetation types are coastal lowland wet-sedge tundra, upland tussock 

tundra, Boreal evergreen forest, Boreal deciduous forest, and Boreal grassland.  Tundra 

landscapes are generally a mosaic of tussock and sedge tundra vegetation types; however, 

for convenience the tundra sites were grouped according to the dominant vegetation type.  

Wet sedge tundra dominates in moist poorly drained lowland and coastal areas, whereas 

tussock tundra dominates the drier upland/foothill sites.   Coastal wet-sedge tundra is 

represented by the BRW, UPAD, and ATQ sites and is characterized by low topography 

and a shallow water table with numerous thaw lakes.  The vegetation is predominantly 

composed of low-growing sedges and mosses, interspersed with areas of shallow 

standing water.  Soils are highly organic and consist of a shallow active layer that thaws 

each growing season and is underlain by continuous permafrost (Oechel 1995; Kwon 

2006).  Wet sedge tundra lacks the hummocky micro-topography of tussock tundra, but 

may contain polygonal features formed by frost-wedge action, which consist of raised 
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surfaces surrounded by shallow troughs (high center polygons), or low centers 

surrounded by a raised rim (low-center polygons).  Tussock tundra at IVO and HPV is 

characterized by Eriophorum vaginatum, also known as 'cotton grass,' and low shrubs 

(Epstein 2004).  These two sites are located within ~40 km of the Brooks Range and the 

active layer tends to be thicker than that of coastal sites (Hinkel & Nelson 2003). 

 The Boreal sites are located in central Canada.  Boreal evergreen coniferous forest 

is represented by the Northern Old Black Spruce (NOBS) site and is dominated by 

mature black spruce (Picea marianna) forest with a canopy height of 10-13 m and low 

topographic relief (Dunn & Wofsy 2006; Dunn 2006).  The Old Aspen (OAS) site is 

composed of deciduous broad-leaf Boreal forest dominated by aspen (Populus 

tremuloides) with a mean canopy height of 21 m and low topographic relief (Griffis 

2004).  The Lethbridge (LTH) Boreal grassland site is the southern-most study site and is 

composed of semi-arid short-grass prairie on relatively flat terrain (Flanagan & Johnson 

2005).  

 

2. In Situ Observations 

 

Soil temperatures were obtained from tower and hydrologic monitoring site 

investigators.  Soil temperature data were recorded at a variety of measurement depths at 

each location.  The 0-5 cm depth was selected as the primary focus of this investigation 

because it was readily available across all study sites. Although lower range of this depth 

is greater than the expected microwave emitting depth of 2.5 cm at C-band or less for 

higher frequencies and greater soil moisture levels (Njoku 1995), we observed that daily 
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temperature differences between near surface soil depths and daily minimum air 

temperatures (above and below canopy for forested sites) are highly correlated with 

brightness temperatures under all conditions (r >0.70; p<0.001).  For simplicity we 

assumed that the near surface soil profile (e.g. <5 cm) is generally isothermal. Vertical 

and horizontal heterogeneity in soil temperature within and across the field-of-view also 

potentially adds variability to the brightness temperature observations.  For this reason 

we compare the surface temperature retrievals to three independent measures of surface 

temperature.  Observations of Tsoil and Tmin bracket the upper and lower bounds of the 

emitting-layer, while MODIS Land Surface Skin Temperature (LST) observations are 

used to assess sub-grid scale spatial heterogeneity in surface temperature conditions 

within the AMSR-E footprint. Soil and air temperature measurements from the study 

sites were reported at either 30-minute or 1-hour intervals and aggregated to daily 

minimums for comparison with daily satellite morning (AM) overpass observations.  

Daily minimums of soil temperature (5 cm) were not significantly different (p>0.05) 

from the temperature at overpass time and the temperature at time of  the minimum 

temperature gradient between the 2 and 5 cm depths at all sites. This assumption holds 

well for Arctic and Boreal soils which have a large amount of thermal inertia relative to 

drier mid-latitude soils with more intense diurnal heating.  

Soil moisture, air temperatures, and VPD (or other relative humidity information) 

time series were obtained for the sites or nearby locations (within 25 km) within the 

AMSR-E footprint where data was available.  Soil moisture observations ranged from 2-

10 cm depths between sites and were reported as daily or sub-daily values.  Soil moisture 

data was required to show time series variability during the thawed season to be included 
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in the analysis.  Data from sites that remained saturated throughout the summer were 

omitted. Soil moisture data were inspected for anomalous offsets between observational 

periods.  These types of offsets were likely due to changes in sensor calibration or loss of 

soil contact.  If an offset was detected, the longest period on either side of the offset was 

included in the analysis and the remaining data were discarded.  Soil moisture 

observations also represented a wide range of soil characteristics between site locations 

and soil characteristics for each sensor location were not necessarily reported.  Soil 

moisture values were therefore scaled between local maximum and minimum values to 

represent a relative (% saturation) index of surface wetness for the study period (June 

2002 to December 2004) within each location.   All air temperature and VPD information 

was reported at either 30- or 60-minute intervals.  This allowed for determining air 

temperature close to the time of satellite overpass, in addition to minimum and maximum 

daily values.  All in situ data were obtained from June 2002 to December 2004 to 

coincide with AMSR-E observations, which began with the launch of the Aqua satellite 

in May of 2002.  

 

3. AMSR-E Satellite Data 

 

The Advanced Microwave Scanning Radiometer on EOS (AMSR-E) flies on the 

Aqua satellite platform and measures brightness temperatures at frequencies of 6.9, 10.7, 

18.7, 23.8, 36.5, and 89 GHz, for vertical and horizontal polarizations (Table 2).  Aqua is 

polar-orbiting with 1 AM and 1 PM equatorial crossing times, providing multiple daily 

acquisitions in Polar Regions (Njoku 1999).  For high-latitude regions, the overlapping 
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orbital swaths allow 2 to 4 Tb observations per footprint overpass with a typical standard 

deviation of ~1 K (max = 5 K) at 6.9 GHz and <1 K (max =3.5 K) at 89 GHz. Tb 

measurements were extracted at each test site from the AMSR-E level 2A orbital swath 

data spatially re-sampled to the ~60 km x 60 km 6.9 GHz resolution (Ashcroft and Wentz 

1999).   

The Tb observations were only extracted from sensor footprints whose centroid 

falls within 5 km of each tower location.  Therefore the observations can be considered to 

be representative of a ~60 km x 60 km pixel centered at the tower location.  The 

minimum Tb of the descending (AM) overpass was selected on a daily basis for each site 

location under the assumption that the diurnal temperature minimum is more 

representative of surface soil layer temperatures.  The descending overpass occurs from 

3-6 AM local time in the study region and was chosen because the near surface soil and 

air temperatures were expected to be closer to thermal equilibrium.  

 The brightness temperatures were inspected for radio frequency interference 

(RFI) using the difference between the 6.9 and 10.7 GHz channels and the difference 

between the 10.7 and 18.7 GHz developed by (Njoku 2005).  For LTH, where RFI was 

expected to be most severe, a mean thawed condition RFI index for the 6.9 GHz (10.7 

GHz) band V-polarization of 0.51 K ( -0.25 K) and a standard deviation of 0.99 K (1.11  

K) were calculated.  These values are well below the 3 K 6.9 GHz and -0.25 K 10.7 GHz 

index thresholds suggested for identifying moderate to strong RFI (Njoku 2005).  The H-

polarization mean 6.9 GHz and 10.7 GHz RFI indices were similarly small (0.14 K for 

6.9 GHz and 0.14 K at 10.7 GHz) at LTH.  The RFI index for the 6.9 GHz band did range 

as high as 9.0 K for frozen conditions, but was assumed to be from the effects of snow 
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cover and not RFI.   These results indicate that moderate RFI was not detected in either 

the 6.9 GHz or the 10.7 GHz channel at H- or V-polarization at the study sites, and 

filtering of the brightness temperatures for RFI was not necessary.   

In addition to the site extractions of AMSR-E L2A data, Northern Hemisphere 

25-km Equal Area Scalable Earth (EASE) grids were also obtained for Jan. 1 to Dec. 31, 

2003.  The EASE grid data were employed to gain an understanding of the overall 

response of AMSR-E Tb to land, ocean, and atmospheric factors, and to empirically fit 

algorithm parameters over specific land cover types, but were not otherwise employed in 

the analysis. 

 

4. MODIS Satellite Data and Correlation Analysis 

 

Land cover heterogeneity within each AMSR-E tower footprint was assessed by 

extracting 60 km x 60 km windows centered over each tower site from the MODIS 1 km 

x 1 km resolution global land cover classification (Friedl 2002).  The MODIS land cover 

extraction subsets were obtained from Maosheng Zhao.   Relative proportions of the 

International Geosphere-Biosphere Program (IGBP) based land cover classes were 

calculated from the MODIS land cover classification results within each window.  

MODIS Leaf Area Index (LAI) estimates were also obtained. 

Simple linear correlation coefficients were computed between daily time-series 

AMSR-E V-polarized Tb and available in situ soil and near-surface air temperature 

measurements under thawed conditions to gain an understanding of the relation between 

sensor Tb from individual bands and the surface temperature profile for each study site.  
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Previous studies have shown that V-polarized Tb is generally more sensitive to surface 

temperature than H-polarized Tb (McFarland 1990; Njoku 1995) because V-polarization 

observations are less sensitive to soil moisture and open water. 

Five indices were compared to site observations of soil moisture (< 10 cm) and 

MODIS Leaf Area Index (LAI).  The indices included 6.9 GHz H-polarization brightness 

temperatures (Tbh), 6.9 GHz  H-polarization effective emissivities (eh) calculated using 

the observed site air temperatures at the time of the descending overpass, simple 

polarization ratio (Tbv/Tbh), a spectral ratio (36.5 GHz Tbh/6.9 GHz Tbh), and a spectral 

cross-polarization ratio (36.5 GHz Tbv / 6.9 GHz Tbh). 

 

5. Basic Principles of Passive Microwave Land Surface Remote Sensing 

 

Passive microwave observations of the Earth’s surface are influenced by the 

physical temperature, dielectric properties, and physical structure of the terrain.  

Radiometers are passive sensors that observe a target’s natural thermal emission.  

Thermal radiance is generally expressed as a brightness temperature (Tb) in Kelvin 

relative to a perfect blackbody emitter and is specified by frequency and polarization.  

The brightness temperature at polarization p (e.g. bpT ) of the Earth’s surface at 

atmospheric window channels can be approximated as the product of the object's physical 

temperature ( sT ) and its apparent emissivity ( pe ): 

 

 spbp TeT =                                                                                                             (1) 
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In (1) the physical temperature is integrated over the contributing depth and emissivity as 

a unitless scalar that can range from 0 to unity, with unity representing a perfect 

blackbody emitter.  Emissivity is related to the reflectivity (rp) of a surface by Kirchoff’s 

Law (e.g. ep = 1- rp) based on the assumption that nonscattered energy emitted from the 

soil surface must equal the down welling radiation absorbed by the soil if the soil is in 

thermal equilibrium with its surroundings (Shi 2002).  The quantity rp provides a 

conceptual link between passive and active (radar) microwave remote sensing.  The 

apparent emissivity is determined by the dielectric and scattering properties of observed 

materials.   

The dielectric constant describes how a material’s molecules respond to an 

applied electromagnetic field by a complex number ( rε ): 

 

 ''' rrr jεεε −=                                                                                                       (2) 

 

The real part ( 'rε ) of (2) represents the permittivity of the material relative to that of a 

vacuum and is related to the material’s ability to store an electric field.  The imaginary 

component ( ''rε ) of the dielectric constant is related to the energy loss of an 

electromagnetic wave propagating through the medium.  Liquid water has a high rε at 

microwave frequencies relative to other common earth-surface materials.  The locking of 

molecules into a crystal lattice as freezing occurs reduces water’s rε and produces 

marked changes in satellite observations of wet landscapes during the freezing or thawing 

processes (McDonald 2005).  The rε of liquid water increases with frequency from 3 at 
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100 GHz to 85 at 1.4 GHz (L-band).  The Fresnel coefficients relate the reflectivity of a 

smooth surface at given incidence angle to the material’s rε (Ulaby 1987).  The 

difference between reflectivities at vertical (v) and horizontal (h) polarizations is greatest 

at a critical angle, the Brewster angle, where all the energy at vertical polarization is 

transmitted into the material.  Microwave instruments are designed to take advantage of 

land surface information contained in the polarization difference by viewing the Earth 

from near the Brewster angle. 

 Scattering typically increases with frequency in the microwave spectral region. 

Rough surfaces including complex topography and agricultural windrows, and porous 

media, such as snow or vegetation canopies, scatter microwave radiation, mixing 

polarizations and mixing the directions of wave propagation.  Physical models of land 

surface scattering are typically too complex for application to satellite remote sensing 

observations, so several simple parameterizations have been suggested (Shi 2006; 

Matzler 2006; Escorihuela 2007) most based on the Q-h model of Wang and Choudhury 

(1995) relating rough surface reflectivity at polarization p (rsp) to smooth surface 

reflectivity at polarization p ( rop ) and orthogonal polarization q (roq): 

 

 )exp(])1[( hQrrQr oqopsp −+−=                                                                           (3) 

 

The empirical factors Q and h depend on the root mean square (RMS) height and 

horizontal correlation length.  Several parameterizations based on (3) have been applied.  

Discrepancies of the Q-h model with detailed field radiometric observations over bare 

soil and detailed physical scattering models have been noted (Li 2000).  Recent 
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investigations have shown that the Q-h model implies a dependence of the roughness 

parameters Q and h on soil moisture, which does not follow current physical knowledge 

that scattering of rough surfaces is independent of soil moisture content (Shi 2006; 

Matzler 2007).  Nevertheless, the Q-h model has been widely applied as a useful semi-

empirical model with the Q and h parameters empirically fit to observations. 

 Simple radiative transfer models incorporating first-order effects are applied to 

describe vegetation and other land cover effects.  A scene containing vegetation-covered 

soil can be described as (Njoku & Chan 2006): 

 

 )]}exp(1)][exp(1)[1()exp({ cspcpcspsbp reTT ττωτ −+−−−+−=                                       (4) 

 

where the soil skin temperature is assumed equal to the temperature of the vegetation and 

that multiple scattering effects and scattering at soil-atmosphere and vegetation-

atmosphere interfaces are negligible. These assumptions are considered valid for lower 

frequency observations (≤ 18.7 GHz) where scattering is expected to be less significant.  

Soil with emissivity (esp) is covered by a continuous layer of vegetation with single 

scattering albedo ( pω ) and opacity ( cτ ).  The effective emissivity of a scene is made up 

of three components, including: soil emission attenuated by the canopy; radiation emitted 

upwards by the canopy itself, and radiation emitted downwards by the vegetation and 

reflected by the soil back through the canopy.   

The canopy absorption of upwelling radiation is controlled by cτ : 

 

)cos(/ θτ ccc Wb=                                                                                                 (5) 
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Here bc is the canopy absorption loss factor dependent on canopy type and frequency 

(Jackson & Schmugge 1991; Van de Griend & Wigneron 2004).  Wc is the vegetation 

water content usually expressed in kg m-2.  The denominator accounts for a longer path 

length though the canopy from a view of angle θ  from nadir.  If the canopy is 

sufficiently opaque that the signal is dominated by canopy emission, (4) is dominated by 

radiation scattered upward from the canopy and becomes )1( psbp TT ω−=  (Ulaby 1987). 

 The case of snow cover is analogous to that of vegetation, by considering the 

snow pack as a single-scattering absorbing and emitting layer (Grody & Bassist 1997): 

 

)]exp())exp(1)(1[( snspsnsnsbp eTT ττω −+−−−=                                                  (6) 

 

In contrast to the vegetation situation, this case only considers the emission of the snow 

and the emission of the underlying soil attenuated by the snow, neglecting reflected down 

welling radiation.  The underlying soil is usually considered frozen with emissivity spe , 

the pack opacity is snτ , and the upward scattering of the pack is described by snω .  The 

opacity of the pack is determined by: 

 

)/)sec(exp( λθτ ssnsn Wb−=                                                                                 (7) 

 

Where the snow loss factor ( snb ) describes how rapidly the water content of the snow, Ws 

usually in equivalent water depth, masks the snow signal, which depends on the view 

angle, θ , and the free-space wavelengthλ  (Grody & Bassist 1997).   
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The atmosphere influences bpT  in (1) by absorbing surface emission ( surfbpT , ) or 

scattering the emitted radiation and contributing additional thermal emission in upward 

(Tu) and downward directions (Td): 

  

])exp()[exp( ,surfbpcspdaubp TrTTT +−−+= ττ                                                        (8) 

 

The atmospheric opacity ( aτ ) is determined by absorption from oxygen and columnar 

water, including water vapor and clouds.  An increasing atmospheric opacity generally 

leads to an increase in the observed satellite brightness temperatures and associated 

increases in atmospheric thermal emission.  Below about 18.7 GHz the transmissivity of 

the atmosphere ( )exp( aτ− ; ranging from opaque at 0 to transparent at unity) is generally 

>0.9, although absorption by active rainfall can effect all frequencies.  Aside from a 

water vapor absorption band at about 22.3 GHz, the influence of atmospheric absorption 

increases with frequency above 18.7 GHz due to an increasing sensitivity to water vapor. 

In the higher frequencies atmospheric effects can also drastically reduce brightness 

temperatures as in the case of scattering from rain and ice particles.     

Microwave observations are influenced by several land surface and atmospheric 

factors and deriving information on any single signal requires techniques that reduce or 

eliminate signal dependence on these additional effects.  Often observations and models 

developed for field-scale applications do not hold true for coarser-scale satellite 

observations.  The complexities of natural landscapes limit the rigor with which process-

based algorithms can be applied over entire regions.  Interpreting passive microwave 
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satellite observations, particularly over land surfaces typically requires a mix of 

empirical-statistical and physically-based approaches.   

 

IV.  Algorithms 

 

1.  Soil and Land Surface Temperature 

 

A.  Multiple Regression Approach:   Passive microwave Tb observations can be highly 

correlated with land surface temperatures (Pulliainen 1997; McFarland 1990); however, 

the correlation of Tb observations can degrade under various conditions, such as open 

water, snow cover, and changing atmospheric conditions.  Multiple regression exploits 

the information contained in the different spectral and polarization responses of Tb for 

estimating land surface response to changing surface conditions and thus can improve the 

accuracy of land surface temperature estimates above what is obtainable from a single 

band.  Multiple regression can produce accuracies similar to those from more 

sophisticated physical approaches (Pulliainen 1997).  Although simple and often 

accurate, a significant drawback to multiple regression approaches are that such 

algorithms are only valid for the locations and sensor characteristics for where they were 

fitted and they do not give physical insight for improving estimates from future sensors, 

under different conditions, or over different regions with different land cover 

characteristics.     

 An empirical multiple-regression approach was applied to multi-frequency 

AMSR-E observations for retrieval of land surface temperature information (Jones 2007).  
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Two equation sets were developed.  The first set consisted of two equations for 

estimating morning AM (descending overpass) soil temperature (< 5 cm) under thawed 

and frozen seasonal conditions.  The second set contained three equations for temperature 

estimates for input into the VPD and soil moisture algorithms that were fit to daily screen 

height (~2 m) air temperatures under thawed conditions.  Two equations used the 

descending (AM) overpass and the ascending (PM) overpasses fit respectively to 

minimum daily temperature (Tmin) and maximum daily temperature (Tmax) for determining 

VPD.  The third equation used the descending (AM) overpass fit to the temperature at the 

time of satellite overpass (Tam) for determining effective emissivity for the soil moisture 

algorithm.  The multiple regression coefficients were fit to several Tb channels and to 

index variables derived from those channels, such as the polarization difference ratio (ζ )  

(McFarland  1990; Njoku 1995; Pulliainen  1997) defined as: 

 

)/()( bhbvbhbv TTTT +−=ζ                         (9) 

 

Such that the surface temperature (Ts) was described as a linear function of V-polarized 

Tb and ζ at various frequencies making up the columns of the design matrix X: 

 

εΧβTs +=                                                                                                    (10) 

 

The vector β  contains model parameters andε  is a vector of errors between the Ts 

observations and model predictions.  Index variables, such as ζ and channel differences, 

can be used to account for non-linearity caused by changing surface conditions that 
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cannot be described simply by the equation structure (Njoku 1995).  Similar results can 

be obtained by incorporating H-polarization brightness temperatures in lieu ofζ .     

The multiple regression algorithm was developed by stepwise forward selection 

on a full frequency set containing all bands of the V-polarized brightness temperatures 

andζ values for each band as it was determined that the V-polarized brightness 

temperatures alone could not well account for surface wetness.  At each step, the least 

significant term in the regression was dropped, where p < 0.05 was considered 

significant.   The resulting equation was chosen when the root mean squared error 

(RMSE) of the estimate was not reduced by more than 0.5 K and the R2 did not change 

significantly with the addition of another parameter.  The results of the stepwise 

regression yielded the equation terms and parametersβ tabulated in Table 3 and Table 4 

for soil and near surface (~2 m) air temperatures, respectively.  The model fit for soil 

temperature at all sites resulted in: R2 = 0.75 and RMSE = 2.82 K for thawed conditions; 

and R2 = 0.48 and RMSE = 4.68 K for frozen conditions.  For Tmin and Tmax the model fit 

was R2 = 0.78 and RMSE = 2.75 K and R2 = 0.89 and RMSE = 2.99 K, respectively.  For 

Tsam the overall model fit resulted in R2 = 0.85 and RMSE = 2.65 K. 

 

B. Freeze-Thaw Classification:  The freeze-thaw transition can be identified through a 

change detection analysis of large (5-15 K) shifts in the AMSR-E Tb time series, which 

are pronounced at wet tundra sites. Other satellite microwave remote sensing studies have 

shown similar temporal behavior in microwave backscatter and emissions coinciding 

with temporal changes in land surface dielectric properties such as the landscape 

transitions between predominantly frozen and thawed conditions (Kimball 2001; Kimball 
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2004a; Kimball 2004b). This dynamic response is driven by the change in soil matrix 

dielectric as water transitions between solid and liquid phases, and the seasonal 

brightness temperature pattern for wet, cold lands (McDonald & Kimball 2005). An 

accurate freeze-thaw classification can be readily automated by applying the methods 

developed by McDonald (2004).  However, to limit this potential source of error we 

identified seasonal freeze-thaw transitions through visual inspection of the AMSR-E time 

series data in conjunction with observed air and soil temperatures at each location.  The 

spring (fall) transition was chosen when more air temperatures remained above than 

below (below than above) freezing in an 8 day period.  A single classification was 

performed for each season.   

 

C. Process-Based Approach:  The aim of the process-based method is to reduce the 

dimensionality of the surface temperature problem by exploiting the expected frequency-

dependence of AMSR-E brightness temperatures (Tb) to geophysical variables that 

influence the surface emissivity. This approach uses empirical parameters describing the 

frequency dependence of geophysical parameters within a simplified radiative transfer 

model (Jones 2007).  In addition to surface temperature, additional parameters including 

vegetation water content/roughness equivalent and snow water equivalent parameters are 

simultaneously produced.  Retrieved surface temperature and additional parameters 

represent linear spatial averages within the AMSR-E footprint.   

The influence of the atmosphere was ignored when parameterizing the process-

based method under the assumption that changes in apparent surface emissivity generally 

have a much stronger influence than the atmosphere over the study region even at 
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frequencies above 18.7 GHz.  The high correlation of SSM/I satellite observations with 

concurrent soil brightness temperature observations from a ground-based radiometer on 

the North Slope of Alaska (Kim & England 2003) indicates that this is a reasonable first-

order assumption.  The main contributing atmospheric influence is columnar water vapor.  

As a result of colder atmospheres and low tropopause height, high latitude atmospheres 

generally contain less atmospheric water vapor than lower latitudes.  

 Across large regions of sub-Arctic Canada, Fily (2003) observed that apparent 

emissivities at H and V polarization were linearly related by empirical parameters a and 

b: 

 

baee hv +=                                                                                                      (11) 

 

In Arctic regions during summer, Fily (2003) showed eh and ev vary linearly between the 

emissivity of open water (approximately 0.57 for pure water at 20 °C observed at 6.9 

GHz V-polarization) to that of dense vegetation over dry soil (approaching unity at V- 

and slightly less than unity at H- polarizations).  A linear trend can therefore be fit to 

effective eh and ev data scatters to describe the expected change in emissivity with 

changes in open water fraction.  Expressed in terms of surface temperature (Ts), (11) 

becomes: 

 

b
aTTT bhbv

s
−

=                                                                                                    (12) 
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A variation of this simple relation with constant atmospheric parameters was used by Fily 

(2003) for surface temperature and water fraction retrieval in these regions using the 19 

and 37 GHz channels on the SSM/I during summertime conditions.  Matzler (1994) used 

another variation of (12) for temperature retrieval in Switzerland and Pulliainen (1997) 

used a variation for the Boreal forests of Finland.  AMSR-E Tb observations over our sites 

show such a linear trend in effective eh and ev (Fig. 2); however, the value of the a and b 

parameters are clearly dependent on spatial and temporal variations in vegetation biomass 

among sites (Fig. 3).   

An examination of Tb over the tower locations indicates that during both summer 

and winter, a and b have a dependence on vegetation density that appears to shift a 

towards unity and b towards zero from their typical thawed-condition values reported in 

Table 5.  Whereas higher frequencies (>18.7 GHz) saturate quickly with even small 

amounts of vegetation, the lower bands (≤18.7 GHz) have a greater sensitivity to surface 

dielectric constant and therefore have a greater dynamic range of response to an 

overlying layer masking the surface.  Winter snow has a similar impact on the apparent eh 

and ev relation, but the influence increases with frequency due to volume scattering 

within the snow pack.  The influence of vegetation during the thawed season and of snow 

and sea/lake ice during the winter frozen season required a modification of (12) for 

frozen conditions.   

BRW was used as a calibration site for a and b over quasi-specular surfaces, due 

to locally large swings in emissivity in response to the annual cycle of sea ice formation 

and retreat occurring within the BRW tower window.  Although BRW is not an ideal 

calibration location because it contains vegetation during summer and snow/ice during 
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winter, the large amount of open water and relatively shallow snow pack reduces the 

overall impact of vegetation and snow on the calibration.  During winter, the slope (a) of 

the calibrated H-V relation decreased relative to its summer value, while the intercept (b) 

increased relative to its summer value at sites with little vegetation.  The specular values 

fitted to BRW were modified by radiative transfer for vegetation and snow cover. 

A simplified radiative transfer model was applied to describe the modification of 

the a and b parameters by vegetation opacity.  Njoku and Chan (2006) assumed 0≈pω  

to produce a simplified parameterization of (4): 

 

)])(exp(1[ gfrTT spsbp α−−=                                                                              (13) 

 

The canopy opacity ( cτ ) is rewritten in terms of a frequency-dependent parameter, 

)( fα , and a vegetation/roughness quantity (g) in equivalent kg/m2.  Values for 

)( fα were determined by extending the exponential relationship presented by Njoku and 

Chan (2006).  By inserting (13) into (11) and solving for the surface temperature as in 

(12) we arrive at: 

 

)]1)(exp(1/[)( γαγ ++−−+−−−= abgaaTTT bhbvs       (14) 

 

The addition of the empirical parameter γ  was necessary to adjust the value of the 

denominator where the vegetation opacity becomes saturated.  This parameter was set to 

a constant value of 0.012 and is added to partially account for extinction due to scattering 



 30

and the exclusion of pω in (13).  As can be seen from (14) and (12), if the effect of 

vegetation is the same at both polarizations the influence of vegetation is entirely by 

modifying the intercept (b). This confirms that the apparent shift in the slope (a) with 

vegetation is caused by reduced sensitivity to the quasi-specular wet surface emission.  

The quantity g is an effective value that describes the average vegetation opacity over the 

satellite footprint, meaning that a footprint with a greater amount of open water will 

automatically have a lower value of g, even if the vegetation/roughness amount of the 

land fraction is equivalent to another pixel that contains less open water.  The quantity g 

enters as an additional unknown and is determined using an iterative technique. 

 Additional terms for snow cover were added to the vegetation radiative transfer 

model for winter conditions.  Snow pack radiative transfer was described using (6) and 

(7).  In (7) the parameter snb is set constant at 0.025 and sW was interpreted as a simple 

snow signal that includes the combined influence of snow pack water content, particle 

size, and total snow depth.  As the purpose of this study is surface temperature 

determination, an effort was not made to define sW in terms of actual snow-water 

equivalent as in other studies (Matzler 1994).  By inserting (7) into (6), combining with 

(14) and solving for surface temperature as in (12), the expression for snow cover below 

a vegetation canopy becomes: 

 

)...)[exp(exp(/{)( snbhbvs gBaTTT τα −−+−=     
]})exp()1)(1[(... Bba snsn −−+−−∗ τω                                                  (15)     

        
 

where γ−−= aB 1 . Like g, the quantity sW is an additional unknown and is determined 

using an iterative technique.  
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The radiative transfer equations (14) and (15) use a constrained, one-dimensional 

iterative minimization technique to solve for one of the additional quantities g and 

sW with Ts, while holding the other parameter (g or sW ) constant.  The quantities g and 

sW were bracketed within some expected bounds (0 to 6 kg/m2 and 0 to 10 cm, 

respectively).  The physical temperature sensed by adjacent spectral bands is expected to 

be similar, so the weighted sum of squares of the pair-wise differences between the 

surface temperature estimated between adjacent bands was used as the cost function 

(Cf ): 

 

2
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ss kkTkTCf σ                                                                 (16) 

 

Where sT̂ )(k   denotes the surface temperature estimated at band )1( −k  and )(kσ  is the 

weight for the kth comparison summed over N bands.  A golden section search with 

parabolic interpolation was used to minimizeCf .  Surface temperature estimated at each 

frequency minimizedCf , and the quantities g and sW were produced.  All bands were 

employed in Cf  as it was determined that the use of all bands gave the best overall 

results. 
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2.  Daily Vapor Pressure Deficit 

 

The vapor pressure deficit (VPD) algorithm takes advantage of surface 

temperature retrievals from descending (am) and ascending (pm) satellite overpasses and 

the assumption of equivalence between minimum daily temperature and the dew point.  

VPD and dew point temperature (Tdew) represent two measures of air humidity.  The dew 

point (Tdew) is the temperature at which the air becomes saturated.  VPD is the difference 

between the partial pressure of water vapor (ea) in a parcel of air and the partial pressure 

of water vapor in an equivalent saturated parcel of air (es).  The es of water vapor in 

Pascals (Pa) of a parcel of air under non-frozen conditions at T in °C can be approximated 

by Running & Waring (1998): 

 

))237(269.17exp(8.6107 TTes +∗∗=                                                            (17) 

 

This relation can also be applied for determining ea, and thereby VPD, by substituting 

Tdew for T.   

The difference between air temperature and Tdew often decreases at night as a 

result of radiative cooling of the atmosphere near the land surface.  At night, the air 

temperature often reaches Tdew at which point water is removed from the atmosphere as 

dew.  In the absence of strong surface resistance to evaporation, Tdew tends to come into 

equilibrium with minimum daily air temperature (Tmin) at night.  Tmin can therefore be 

used as an indirect measure for Td over non-arid regions with relatively abundant surface 

water, conditions that are usually satisfied in high latitude regions (Kimball 1997a).     
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AMSR-E provides observations for twice daily overpasses with the descending 

(AM) overpass occurring near the time of daily Tmin and the ascending (PM) overpass 

occurring near the time of daily Tmax in the typical diurnal course of near surface air 

temperatures.  An empirical regression algorithm (Section IV.1.A) was employed to 

retrieve Tmin (Tmax ) information from AMSR-E descending (ascending) overpasses.  The 

empirical regression algorithm was favored over the process-based approach for 

temperature retrieval because i) the parameters were easily tuned to represent Tmin and 

Tmax without more complicated modeling of the relation between soil surface skin 

temperature at the time of satellite overpass and Tmin and Tmax, and ii) the empirical 

algorithm produced better overall accuracy relative to temperature measurements at the 

study sites (Section VI.2.A).  The maximum daily VPD was determined from AMSR-E 

retrieved Tmin and Tmax with (17) by assuming dewTT =min  and that the maximum daily 

VPD was coincident with Tmax.   

 

3.  Land Surface Wetness, Vegetation Phenology, and Open Water Fraction 

  

Our approach solves for land fraction surface wetness and additional variables by 

employing a simple emission model and time-series techniques using the AMSR-E 6.9 

GHz band.  The method can be conceptualized as the inverse of the process-based surface 

temperature method.  Instead of using iterative inversion of several bands to 

simultaneously produce Ts and vegetation biomass estimates, the surface wetness model 

employs empirical Ts retrievals and uses a time-series smoother to obtain vegetation 

optical depth.  This approach avoids uncertainties in the frequency dependence of 
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emission processes and avoids employing higher-frequency bands that are more sensitive 

to surface scattering and atmospheric effects.  Soil moisture is then determined by 

inverting the vegetation emission model in terms of soil emission.  A flow chart of the 

land surface wetness algorithm and the other algorithms developed in this study is 

presented in Fig. 4. 

 

A. Interpretation of Regional Tb Observations: H-V Histograms:  We find it useful to 

develop the model by visualizing the impact of land surface conditions on plots of 

regional V-polarization Tb vs. H-polarization Tb (henceforth termed H-V space) with 

points from simple theoretical emission model predictions.  Histograms of H-V space (1 

K bins) for the Northern Hemisphere for 2003 reveals a roughly triangular shape (Fig. 5).  

The triangle will be termed the “H-V emissivity triangle” and its vertices are formed by 

pixels dominated by open water (OW), desert pixels devoid of vegetation (D), and pixels 

composed entirely of dense forest (F).   

Notable features of H-V space for high frequencies (18.7 – 36.5 GHz) are snow, 

and atmospheric water vapor.  Sea ice, glaciers, and other snow- or ice-covered regions 

scatter microwaves, reducing Tbv and increasing Tbh.  These areas are marked SN in Fig. 

5.  Atmospheric water represents a region of high observation occurrence extending from 

OW.  This region denoted WV (for water vapor) was confirmed to be associated with 

storm systems over the oceans.  Due to WV’s stronger impact at higher spectral 

frequencies it is likely related to the atmospheric water vapor absorption increasing Tbh 

and Tbv along the line OW-WV line above the ocean Tb background.   
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The emissivity triangle becomes more compact with increasing frequency, 

representing decreased sensitivity to open water, soil moisture, and saturation of bulk 

land surface by canopy emission.  In other words, vegetation canopies are more opaque to 

higher frequency radiation, compressing the triangle along the base DF and reducing 

fluctuations in Tbh due to soil moisture.  Increased scatter along a line between OW and D 

in the 6.9 GHz plots show soil moisture fluctuations, which relative to time-stable open 

water and vegetation conditions have a low frequency of occurrence over the course of 

the year, especially over areas with sparse vegetation.  Soil moisture is also correlated 

with vegetation and therefore tends to fall within the triangle and is not visually separable 

from vegetation in the histograms.   

Tb has a similar dependence on soil moisture and open water, but the dependence 

can be separated by considering the case of a pixel composed of a mix of open water, dry 

soil, and wet soil components.  If the real portion of the surface dielectric constant ( rε ) is 

specified along an interval ranging from dry soil to open water (3.6-70), the Fresnel 

equations predict a concave-downward shape for Tbv as a function of Tbh (Fig 6).  It can 

be seen from Fig. 5 and also from Fig. 2 introduced previously that observed data do not 

follow such a concave shape.  In fact, the data are distributed linearly connecting open 

water to dry soil in Fig. 6 along line OW-D.  If wet soil is added as a third component to 

the mix, the resulting point must always fall to the left of the line for the scene composed 

of only dry soil and open water (Fig. 6).  This is because the pixel average dielectric of a 

scene composed entirely of wet soil is always less than the average dielectric of a scene 

composed entirely of open water.  Therefore, a pixel with wet soil should have a Tb 

signature distinct from a pixel without wet soil in the presence of open water.  The 
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presence of vegetation and roughness will foreshorten the line between dry and wet soil, 

and translate their relative position in an arc about the effective emissivity of open water. 

H-V space gives an indication of the relative influence of surface components on 

the emissivity triangle; however, further interpretation is necessary to tie temperature-

dependent H-V space to actual emissivity values and thereby calibrate the radiative 

transfer model for deriving surface information.  In H-V space, rays of slope Tbv/Tbh 

extending from the origin represent changes in surface physical temperature at constant 

effective emissivity for window channels (recall (1)).  Therefore the H-V plot represents 

translation of congruent triangles along these lines.  The emissivity triangle can be 

described as a mix of land (Tb,land; emissivity varying from bare soil to dense vegetation) 

and open water (Tb,water; constant emissivity) components weighted by the fractional open 

water cover (fw): 

 

waterbwlandbwb TfTfT ,,)1( ∗+∗−=                                                                      (18) 

 

For simplification, the pixel is assumed to have an averaged effective physical 

temperature of its land and water components, allowing (18) to be rewritten in terms of 

effective emissivities. 

 

B.  Algorithm Parameter Fitting:  The term landbT , in (18) contains soil moisture and 

vegetation information and can be modeled using (4).  The terms ep water, andω  are 

considered as constant parameters, while the terms esp and rsp are specified for dry 

baseline soil conditions.  The rε of dry loam soil at the wilting point (~0.15 volumetric 
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moisture content) was modeled using the Dobson soil dielectric model (Dobson  1985) 

and the Fresnel equations were employed to determine esp and rsp, which for low biomass 

conditions will correspond to point D in the H-V diagram.  The constant terms were 

determined from H-V space as follows.  We recognize from (12) that Ts can be 

determined from Tbv and Tbh through the constants a and b and in H-V space as Ts adjusts 

the intercept.   

We assume that the bottom edge of the histograms denoted by line OW-F 

represents the freezing point of water (~273 K).  This assumption allows values for the 

emissivity of open water and for the single scattering albedo of forest to be empirically 

determined.  The emissivity of open water was determined by finding the lowest values 

of a Tbh and Tbv on a histogram for the entire Northern Hemisphere (Fig. 7) and dividing 

these by 273.15 K for the AMSR-E 6.9 GHz frequency.  These results yielded the values 

ev,water = 0.586 and eh,water = 0.289.  The single scattering albedo ( pω ) at 6.9 GHz was 

determined to be about 0.05 and independent of polarization (denotedω ).  This value is 

within the range reported by several radiometer studies (van de Griend & Owe 1994; 

Pellarin  2006).  If values of ω  are considered < 0.05, (24) gives unreasonable values of 

cτ  (e.g. 0<cτ  or not a real number).  The reasoning thatω is polarization independent for 

natural forest vegetation is supported by the fact that points in H-V space for forests are 

distributed along the 1:1 line (Fig. 5).   

 

C.  Water Fraction and Vegetation Determination:  The first step in determining 

baseline water fraction and land fraction vegetation conditions is to estimate the effective 

emissivity using AMSR-E Ts retrievals and Tb observations.  This effective emissivity 
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contains information from the respective land fraction and water fractions of the 

composite sensor footprint.  The effective emissivity of open water at low frequencies is 

assumed constant and fit empirically.  The effective emissivity of the land fraction is 

modeled using (4).  Given a point of observed effective emissivities (ep
*) for H and V-

polarization, a line with slope ( â ) and intercept ( b̂ ) is defined relative to the open water 

point (Fig. 6): 
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watervwaterh eeab ,,ˆˆ −∗=                                                                                        (20) 

 

This line further defines an intersection with line D-F representing the modeled 

emissivity of the land fraction (ev, land) on the right side of (20) with specific soil moisture 

and vegetation water content.      

In order to provide a stable algorithm, we employ only the 6.9 GHz band, and 

thus avoid the need for undesirable aspects of employing higher frequency bands with 

scattering and atmospheric effects.  This allows the vegetation baseline to be left as a 

frequency dependent optical depth without defining a frequency dependent loss factor 

that relates frequency to vegetation water content, avoiding uncertainties in the canopy 

loss factor and its dependence on vegetation characteristics which could potentially be 

quite different from those values fitted for cropland (Jackson & Schmugge 1991) or the 

Sahel (Njoku & Chan 2006).  Baseline conditions of cτ were determined using by 

smoothing â  with a 30-day moving window median smoother.  This approach helps to 



 39

separate baseline conditions from soil moisture because seasonal vegetation/roughness 

changes are less time variant than the surface (< 2 cm) soil moisture signal at C-band as 

surface soil layers quickly wet during significant precipitation events in the absence of 

canopy interception and are closely coupled with the atmosphere.  Furthermore, â  shows 

minor sensitivity to soil moisture variability relative to other metrics such as the 

polarization ratio (e.g. Tbv/Tbh). 

 Vegetation optical depth ( cτ ) was determined by inserting (4) into (11) and 

inverting.  This gives cτ in terms of a quadratic equation of the form A cτ
2+B cτ +C=0, 

where: 

 

)ˆ()1( shsv rarA ∗−∗−= ω                                                                                  (21) 

]ˆ1ˆ)[1(ˆ arraeeaB svshsvsh −+−∗−+−∗= ω                                                     (22) 

waterhwaterv eaeaC ,, ˆ)1ˆ()1( ∗−+−∗−= ω                                                (23) 

 

And cτ is determined using the standard quadratic formula: 
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τ          (24) 

 

Although two roots exist, (24) shows the only root that satisfies cτ  as a non-zero real 

number.  The vegetation optical depth ( cτ ) only applies to the land fraction of the sensor 

footprint in contrast to (12) in the process-based model where cτ  (determined from g) 
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applied to the entire pixel.  This can be seen by remembering that g could only modify b 

in (12), whereas a is also allowed to vary with vegetation in (19).  

Once cτ was determined, open water fraction (fw) could be calculated by:  
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The V-polarization was used to reduce the dependence of the fw estimate on soil moisture.  

The resulting fw value was smoothed using a 30-day moving median filter similar to â .  It 

would have been preferable to use a moving minimum smoother to reduce soil moisture 

dependence; however, while soil moisture increases fw at locations with little open water, 

atmospheric water vapor slightly decreases fw at locations with much open water, and the 

median smoother was used to balance these biases between sites.  

 

D.  Wetness of the Land Fraction: Once baseline conditions of open water and 

vegetation were determined, the wetness of the land fraction was determined by re-

employing the daily effective emissivities and the emission model. The land fraction 

emissivity was calculated for H-polarization: 
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The soil reflectivity (rsh) was then calculated by inverting (4): 
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Error in the estimation of land fraction rsh introduced by estimating ep
* with AMSR-E 

surface temperature increases with 1/(1-fw) (Fig. 8).  This requires that the variability of 

rsh be dampened by the estimated open water fraction:   

 

shwshshcorrsh rfrrr +−∗−= )1()(,                                                                         (28) 

 

Where corrshr , is shr  with its variability dampened and shr is the long-term mean shr  

estimated for the pixel.  The value rsh,corr  roughly falls within bounds for bare loam soil 

between dry soil conditions (~0.05% volumetric moisture content) and saturation 

(~0.46% volumetric moisture content) modeled by the Dobson (1985) dielectric model.  

Values for rsh,corr < rsh,dry were assumed to be the result of frozen soil or atmospheric 

absorption from precipitation and were eliminated.  The time series for rsh,corr was then 

smoothed using a low-pass filter (Wagner 1999) and scaled between 0 and unity for each 

location.  The resulting values were again scaled between 10 and 95 to account for dry 

soil (0.05% vmc is ~10% saturation). 
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4.  NASA Operational L3 Soil Moisture Algorithm 

 

 The NASA AMSR-E operational global Level 3 algorithm data (Njoku 2004) are 

available from the National Snow and Ice Data Center (NSIDC).  The algorithm relies on 

change-detection with dual-polarized low frequency observations with regression 

equations adopted from a simplified radiative transfer equation for vegetation-covered 

soil (Njoku & Chan 2006).  Although the 6.9 GHz frequency on AMSR-E has greater soil 

moisture sensitivity, the 10.7 GHz frequency was used in the global algorithm to avoid 

radio frequency interference over populated areas in the 6.9 GHz band (Njoku 2005).   

Monthly minima of the normalized Tb polarization difference ratio (e.g. ζ ) at 

10.7 GHz linearly interpolated between months ( interpmin,ζ  ) provides a daily lumped 

vegetation and roughness factor ( w ), and also defines dry soil conditions (Njoku & Chan 

2006):   

 

)log(10 interpmin,ζββ ∗+=w                                                                               (29) 

 

The vegetation and roughness factor ( w ) is included in an exponential term that 

amplifies the change in the daily polarization ratio observations above the dry soil 

baseline to determine volumetric soil moisture ( vm ): 

 

)log()( 3210 wwmv ∗∗−∗+∗+= αζζααα interpmin,                                         (30) 
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The β andα  coefficients were determined from expected soil moisture regimes across 

transects of increasing vegetation biomass in moisture-limited regions (S. K. Chan, pers. 

comm.).  As can be seen from (29) and (30) the algorithm does not explicitly account for 

open water fraction, but the use of the monthly minimum polarization ratio for 

determining a baseline reduces its influence.  

 

5.  Soil Moisture Models 

 

A.  Antecedent Precipitation Index: The Antecedent Precipitation Index (API) is 

simply a one day lagged auto regression of daily precipitation observations (Pi): 

 

iili PAPIAPI +∗= −1γ                                                                                       (31) 

 

Where the water loss coefficient ( lγ ) is related to the evapotranspiration and infiltration 

properties of the soil and assigned a constant value of 0.85.  The purpose for using API is 

two-fold: i) It indicates the “fast” response of the surface to precipitation wetting events 

(although not to snow pack thaw) and ii) the API has been used for regional scale satellite 

soil moisture validation to compensate for the lack of coarse-scale soil moisture 

observations, and gaining an understanding of how it compares to observed soil moisture 

at specific sites is crucial (Crow 2007; Crow & Zhan 2007).   

 

B. BIOME-BGC Soil Water State:  The soil moisture state variable derived from the 

Biome Bio-Geochemistry (BIOME-BGC) ecosystem process model was used to indicate 
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potential soil profile moisture conditions.  BIOME-BGC simulates hydrological and 

ecological processes under the assumption that process rates are determined by climate 

and general plant functional characteristics (Running & Hunt 1993).  The hydrologic 

portion of the model uses daily meteorological observations including Tmin, Tmax, and 

precipitation to predict evapotranspiration, soil outflow, snow water equivalent, soil 

water outflow, and integrated soil profile water content (Kimball 1997b).  The water-

holding properties of the soil layer are determined from specified soil texture, which were 

determined for each study location from a literature review (Oechel 1995; Griffis 2004; 

Flanagan 2005; Kwon 2006; Dunn 2006).  The soil water content is fed by precipitation 

minus canopy interception and melting snow water equivalent, which accumulates from 

precipitation until the daily air temperature exceeds 1°C, at which point the snow pack 

ablates.  The soil loses water to direct bare-soil evaporation and transpiration through the 

vegetation canopy.  Soil water above saturation is drained into outflow.  Below 

saturation, extra soil water is partitioned into outflow at half the previous rate until the 

soil reaches field capacity.  

 

V. Validation and Inter-comparison of Algorithms 

 

1. Soil Temperature  

 

 The in situ soil temperature data and corresponding daily Tb values were divided 

into a set for fitting algorithm parameters and a test set for evaluating algorithm 

performance.  Days with missing soil or brightness temperature data were omitted from 
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the analysis (10.8 % of the entire test set).  As the API and BGC models required 

continuous forcing data, precipitation information was gap-filled when not available for 

the site by scaling observations from an adjacent weather station to the ratio of long-term 

annual precipitation between the site and the adjacent weather station.  The ATQ and 

IVO sites had relatively short duration datasets so these entire datasets were included in 

the test phase only, while for the other sites the entire year 2004 was set aside for 

algorithm testing.  The remaining data for years 2002 and 2003 for five of the seven sites 

were used for fitting algorithm parameters.  Daily AMSR-E soil temperature (Ts) 

retrievals for both retrieval methods under frozen and thawed conditions were compared 

to daily minimum soil (Tsoil) and air temperatures (Tmin).   

MODIS Aqua night time Land Surface Temperature (LST; Wan 1999) 1 km x 1 

km resolution grid subsets were extracted from ~60 km x 60 km windows centered at 

each tower site corresponding to the AMSR-E L2A spatial resolution.  Since MODIS and 

AMSR-E are both located on the Aqua satellite, they have essentially coincident 

observation times.  The mean and standard deviation of the 1 km x 1 km resolution, 

eight-day MODIS LST values were determined within each 60 km x 60 km tower 

window and used as a surrogate measure of sub-grid scale temperature variability for the 

corresponding AMSR-E microwave based temperature retrievals. 

   

2. AMSR-E Air Temperature and VPD 

 

 The in situ air temperature and VPD datasets were divided into test and 

development sets as in the soil temperature analysis.  Daily AMSR-E retrievals of Tmin, 
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Tmax, and Tam were compared to the corresponding observed values at each study location.  

Evaluation of the AMSR-E VPD algorithm contained three components.  First, an error 

propagation analysis was conducted to determine the amount of error introduced into the 

AMSR-E VPD estimates for 1, 2, and 4°C levels of root mean square error (RMSE) and 

for error levels determined in this study in the air temperature retrievals.  Error 

propagation was also determined for error levels in Tmin and Tmax determined by this 

study.  Errors in Tmin and Tmax retrievals were considered independent.  Second, the VPD 

algorithm was run using the in situ Tmax and Tmin observations as inputs, instead of the 

AMSR-E retrievals, and compared against in situ VPD observations to test the amount of 

error that was introduced by the assumption of Tmin = Tdew alone.  Third, the AMSR-E 

VPD results were compared directly to in situ VPD observations to determine the overall 

accuracy of the VPD algorithm at the study locations.      

 

3. AMSR-E Soil Moisture 

  

 The analysis of this study takes the philosophy that the valuable component of 

soil moisture estimates are the relative correspondence of their anomalies, placing less 

emphasis their absolute accuracy.  Other authors have convincingly argued that 

climatological modeling is best served by retrievals with high information contents rather 

than high absolute accuracy (Crow 2005).  Perhaps the best way to accomplish this is in a 

data assimilation framework as in Crow (2007).  Due to the exploratory nature of this 

analysis we chose to simply make comparisons using more traditional metrics, co-
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registering units to coincident measurement scales, and putting more emphasis on 

correlations and frequency distribution correspondence more than relative bias.   

 Time series of in situ observations, model predictions, and satellite algorithm 

retrievals were examined for coherent temporal responses.  Soil moisture modeled from 

in situ precipitation observations was employed to gain a better picture of the amount of 

soil wetness at each location.  The Antecedent Precipitation Index (API) and BIOME-

BGC soil moisture models were used to indicate soil surface and profile conditions, 

respectively.  All satellite, model predictions, and in situ observations were scaled 

between minimum and maximum values for the observational period to produce values 

between 0 and 1.  These values were then scaled again to vary between 10 and 95% to 

ensure that all observations and predictions were co registered to equivalent unit scales.  

The resulting quantities were expressed as proportional (%) units of saturation.  Pair wise 

correlations and error statistics were calculated for each time series to gain an 

understanding of overall agreement among methods within each study location.  

Histograms of the sample frequency of observed, modeled, and retrieved values of soil 

moisture were constructed and compared to gain an understanding of the agreement 

between the distributional characteristics of soil moisture, model predictions, and satellite 

retrievals.   

 Retrievals of open water fraction and 6.9 GHz optical depth were compared to 

independent observations related to these factors at each study location.  Maximum 

annual AMSR-E open water fraction was compared against open water fraction 

calculated from 60 km x 60 km window extractions of MODIS MOD-12Q1 1 km x 1 km 

resolution land cover maps centered over the study sites for each of the three observation 
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years (2002-2004).   AMSR-E open water fraction was also compared to a Japanese Earth 

Resources Satellite (JERS-1) Synthetic Aperture Radar L-Band (1.23 GHz) mosaic open 

water fraction product binned to 25 km x 25 km EASE grid cells for the North Slope of 

Alaska.  One EASE grid cell was extracted for each respective study site located on the 

North Slope of Alaska.  These data were generated by Erica Podest and Kyle McDonald 

of the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 

California.  Retrievals of 6.9 GHz optical depth were compared to extractions of MODIS 

MOD15A2 Leaf Area Index (LAI).  These data represent 8-day composite 60 km x 60 

km window means of 1 km x 1 km pixels passing the quality filter.  A linear least squares 

regression analysis was conducted to compare retrieved 6.9 GHz optical depth to MODIS 

LAI.   

 

VI. Results and Discussion 

 

1. Landscape and Seasonal Signatures of Tb at the Study Locations 

 

A. Land Cover Effects:  Percent semi-permanent land cover determined by MODIS at 

the eight study sites is presented in Fig. 9.  The MODIS land cover windows indicated 

that BRW, UPAD, and ATQ had the greatest amount of open water with 66 %, 30%, and 

10% respective coverage (Fig. 9).  NOBS had 9 % open water and OAS contained 8% 

open water, while the remaining locations had < 6 % open water.  Tundra vegetation at 

BRW, ATQ, IVO, and HPV was classified as open shrubland, which varied in extent 

from 17 % at BRW to 96 % at HPV, and as grassland, which varied in extent from 60 % 
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at ATQ to < 1 % at the other tundra sites.  Cropland coverage was dominant at LTH 

(59%) followed by grassland (34 %).   Evergreen needle-leaved forest was dominant at 

NOBS (80%), but was also present at OAS (25%).  The OAS window also had 

significant proportions of mixed forest (28%) and croplands (39%).  MODIS detected 

urban areas at LTH and NOBS, but represented < 1% of the total window area.   

 

B. Soil and Air Temperatures:  The correlation between Tb and shallow (<20 cm) soil 

temperatures was greater than 0.75 for all AMSR-E spectral bands for sites without 

significant open water, as defined from the MODIS land cover windows (Fig. 11).  The 

higher frequencies (23.8 – 89 GHz) were well correlated (r ≥ 0.70; P < 0.001) with in situ 

temperature observations for all soil depths ≤22 cm in both forested and non-forested 

sites.  The highest correlations were observed at the 89 GHz band, which was somewhat 

surprising considering expected greater sensitivity to the atmosphere; however, 

precipitable water and cloud liquid water content influence atmospheric opacity and 

emission at 89 GHz and also tend to be correlated with surface temperature and 

tropospheric lapse rates.  A similar analysis was conducted over Finland (Pulliainen 

1997) and found that the 85 GHz channel from the SSM/I showed lower correspondence 

with surface temperature relative to 37 GHz. The AMSR-E lower frequencies (≤18.7 

GHz) showed significant, but generally lower correspondence (r ≥ 0.65; P < 0.001) with 

air and soil temperatures for all sites.  

In non-forested locations (Fig. 10a,b), the AMSR-E brightness temperatures 

showed greater correspondence to shallow (<20 cm) soil temperatures (r = 0.80-0.91) 

than minimum daily air temperatures (r = 0.65-0.85); however, in forested locations (Fig. 
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10c,d) the brightness temperatures corresponded more closely to minimum daily air 

temperatures (r = 0.91-0.95) than soil temperatures (r = 0.75-0.90).  Differences in Tb 

correlations with minimum air temperatures measured above and below the OAS forest 

canopy were small, while both were greater than correlations with site-specific soil 

temperatures.  The greater correspondence between Tb and air temperatures is due to the 

larger vegetation contribution to bulk surface microwave emission at the forested sites 

and soil temperatures insulated from below canopy air temperatures by additional leaf 

litter and a thicker humus layer. Figure 11 shows that the correlation of multi-frequency 

V-polarization Tb to air temperature (~2 m) at the time of the descending overpass 

followed the same general patterns as soil and minimum daily air temperatures.   

  Examples of 6.9 GHz brightness temperature time series and air and soil 

temperature traces for representative locations are presented in Fig. 12.  Sites such as 

BRW, with a relatively large proportion of open water within the sensor footprint, 

showed a negative correlation between Tb and surface temperatures. The response was 

attributed to emissivity reductions from surface water.  An increase in surface 

temperature leads to a decrease in Tb where ice is melted to form liquid water.  Open 

water also increases the polarization ratio most strongly at lower frequencies, as indicated 

by the seasonal fluctuation of open water surface at BRW, whereas over vegetation, such 

as grassland at LTH, the difference between H and V brightness temperatures shows a 

decreasing trend during the growing season, the result of an increase in the depolarizing 

properties of a developing leaf canopy (Fig. 12).  
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C.  Soil Moisture and Leaf Area Index: The correlation between AMSR-E simple 

indices and their expected direction for soil moisture and LAI are displayed in Table 6.  

Significant correlations (p < 0.05) and correlations of expected sign are shown in bold.  

For passive microwave remote sensing, soil moisture and vegetation have opposing 

effects on Tb, which is opposite to active microwave remote sensing (radar) where soil 

moisture and vegetation both increase backscatter (Wagner 1999; Prigent 2005). The 

indices at sites BRW, HPV, NOBS, OAS, and LTH all showed significant correlation 

with site soil moisture, although correlation at BRW and NOBS was relatively weak.  

Only LTH displayed significant correlations between LAI and all indices (r ranged from 

0.39 to 0.57), while at OAS three of the five indices (Tbh, Tbv/Tbh and Tbv36/Tbh6) showed 

significant correlation (r ranged from 0.23 to 0.42).  Tbh had the highest correlation of the 

five indicies for both soil moisture and LAI with magnitudes ranging from 0.21 to 0.56 

and 0.43 to 0.74, respectively.  The correlation of Tbh with LAI dropped rapidly with 

increasing open water, while the relation for soil moisture also appears to decrease but 

not as strongly (Fig. 13).  No clear trend of Tbh correlation to soil moisture and LAI with 

annual maximum LAI was observed, likely because the open water signal was the 

dominant factor reducing correlation, so locations with much open water automatically 

had lower correlation even if they also had lower LAI. 

In general, sites that showed relatively strong correspondence with soil moisture 

(LTH and OAS) also showed significant correlation with LAI.  The interpretation of this 

result is that the 6.9 GHz signal contains contributions from both vegetation and 

underlying soil at these locations, indicating the appropriateness of a two-layer radiative 

transfer model.  HPV indices showed insignificant correlation to LAI (p > 0.05), likely 
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because the magnitude of seasonal LAI variability is much less than that for lower 

latitude grassland (LTH) and mixed forest (OAS) locations, yet AMSR-E observations at 

HPV were sensitive to soil moisture.  The lack of strong correlation at BRW, UPAD, and 

ATQ is likely due to the dominance of the open water signal at these locations.  The lack 

of strong correlation at NOBS is likely due to the dense evergreen forest land cover, 

masking soil emission and providing a Tb signature saturated by canopy emissions. 

 

2.  Surface Temperature Retrievals 

 

 Fig. 14 shows the overall thawed season results of the AMSR-E surface 

temperature retrievals and relevant statistics.  The regression method was more accurate 

than the process-based method overall (RMSE = 3.11 K vs. RMSE = 3.93 K).  Fig. 15 

shows time series of soil temperature retrievals at each of the study locations.  The 

corresponding statistical results are summarized in Tables 7 and 8 for thawed and frozen 

conditions, respectively.  Both methods are generally able to capture the annual cycles 

and daily variability of soil and air temperatures at each site.  More favorable results are 

obtained during the summer thawed season relative to winter frozen conditions.  The use 

of the 89 GHz in estimating Ts did not degrade the retrievals in either of the AMSR-E Ts 

methods.  The Ts results for the process-based method for each frequency were nearly 

equivalent where the value of Cf was low.     

Several instances of either systematic bias or anomalous, short-term spikes or dips 

in AMSR-E retrieved Ts are worthy of detailed discussion (Fig. 15). Correspondence of 

AMSR-E Ts with Tsoil and Tmin varied among sites as the latitudinal range of the sites 
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presented different soil-to-air temperature gradients at each location.  Sub-pixel spatial 

heterogeneity was also a significant factor for the microwave Ts retrievals.   The freeze-

thaw transition and snow during the winter season significantly impacted winter 

retrievals.  Land cover characteristics, such as open water and vegetation phenology, 

presented a range of temporally dynamic and spatially variant emissivities within and 

among sites.  The accuracy of the temperature retrievals under these conditions indicates 

the skill of the retrieval method to account for these dynamic effects.  

  

A.  Comparison to in situ Air and Soil Temperatures and MODIS LST:  The 

process-based approach obtained lower errors at the Arctic sites relative to the Boreal 

locations with the exception of HPV (RMSE<3 °C vs. RMSE>3 °C; Table 7).  This 

demonstrates the model correctly accounts for changes in surface emissivity in response 

to open water surfaces which dominate regional land cover conditions at higher latitudes. 

The regression method also performed well over the Arctic tundra sites, but had higher 

error at HPV.  The somewhat poorer performance of both methods for HPV relative to 

IVO, another tussock tundra site, can be partially attributed to erroneous predictions 

during the freeze-thaw transition which were more severe at HPV.  For both the IVO and 

HPV tussock sites the regression method consistently over-predicted Ts (MR= -3.71 °C 

and -4.43 °C respectively).  The overestimation at the tussock sites was therefore 

attributed to ζ  similar to forested sites, but the thermal gradient between soil and canopy 

temperatures was much different than forested sites as shown in Section VI.2.A and Fig. 

10.  IVO and HPV have ζ  that was more similar to the Boreal forest sites than to the 

grassland site, LTH, despite the short stature tussock tundra vegetation. The summer 
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minimum ζ  at 6.9 GHz varied from 0.0107 at IVO, 0.0099 at HPV, and 0.0112 at 

NOBS, to 0.0149 at LTH.  Anisotropy of tussock tundra has previously been noted in 

(Kim & England 2001; Kim 2007 pers. comm.).  The regression method had generally 

less bias over the Boreal sites relative to the process-based method.   

Bias can be explained by the near-surface soil-to-air temperature gradient.  

Summer soil temperature observations at the high latitude Arctic sites were only slightly 

warmer than the daily minimum air temperatures.  These daily temperature differences 

increased for lower latitude Boreal locations, with the greatest average difference of 

about 5°C occurring during mid-summer conditions at LTH. Maximum daily differences 

between Tsoil and Tmin decreased with increasing latitude and ranged from 24 °C for LTH 

to 9.65 °C at BRW.  These differences reflect stronger surface heating and larger diurnal 

temperature gradients at drier, lower latitude locations; these conditions impact the soil 

temperature comparisons by increasing surface temperature spatial and vertical 

heterogeneity, and decreasing the correspondence between relatively coarse scale AMSR-

E based Ts and in situ soil temperature measurements.  In contrast, reduced solar 

irradiance at higher latitudes and the relatively large heat capacity of water and enhanced 

latent energy transfer in areas with large amounts of surface water moderates Tmin and 

Tsoil differences for tundra sites.  As a result, the AMSR-E process-based retrieval method 

underpredicted soil temperatures at OAS and LTH relative to in situ measurements 

(Table 7).  The bias is removed or reversed when the retrieval is compared to Tmin , 

indicating the bias was mostly the result of the near-surface soil-to-air temperature 

gradient and not assumptions in the vegetation model.  The greater under prediction at 

OAS and LTH might also be attributed to soil moisture variability at these locations, as 
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the process-based approach did not seek to separate the influences of open water and soil 

moisture.  The under prediction was greatest with the process-based approach relative to 

the regression method because the coefficients of the regression approach were tuned to 

the soil temperature when the equation coefficients were established.     

 The relatively coarse scale AMSR-E results from the two approaches are in 

general agreement with the footprint mean LST derived from MODIS. MODIS LST 

shows that mean surface skin temperatures within the AMSR-E field-of-view generally 

correspond more closely to Tmin rather than soil temperature, due to the descending 

(morning) overpass time and shallow penetration depth.  At the tundra locations (BRW, 

ATQ, and HPV), MODIS LST shows generally colder temperatures relative to Tmin and 

both AMSR-E Ts methods.  The standard deviation of the LST within each pixel ranges 

from <1°C in winter to 11°C during the fall freeze-thaw transition. Summer season LST 

pixel standard deviations are ~3.6°C at the Arctic sites and ~2.7°C at the Boreal sites.  

These values suggest that LST spatial heterogeneity within the tower windows is on the 

order of the AMSR-E-based temperature accuracy determined from pixel-to-point 

comparisons with in situ observations during the thawed season.   

 

B. Winter Retrievals and the Freeze-Thaw Transition:  The onset of winter induces 

rapid changes in surface dielectric properties during the transition to frozen conditions.  

Soil to air temperature gradients and the accumulation of a scattering snow pack are also 

important factors.  It is therefore not surprising that the AMSR-E based temperature 

retrievals significantly degrade during the winter months.  A marked increase in retrieval 

error during freeze-thaw transitions was evident for the process-based method (Fig. 15).  
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This error was more severe during the fall than in spring because the seasonal thaw 

transition generally occurred rapidly, while the transition to seasonal frozen conditions 

was more gradual, with multiple freeze-thaw events occurring over a relatively long 

duration. The erroneously high temperature retrievals between late September and early 

October at ATQ and HPV indicate that this effect is strongest at tundra sites (Fig. 15).  

The relatively simplistic freeze-thaw classification approach used for this investigation 

does not account for spatial heterogeneity or multiple freeze-thaw events occurring 

within the sensor footprint.  Also, freeze-thaw state varies within each ~60 km x 60 km 

microwave footprint during the transition.  An earlier study on the North Slope of Alaska 

compared tower-based 37 GHz brightness temperatures and SSM/I observations, 

concluding that the satellite- and ground-observed brightness temperatures differ as a 

result of spatial heterogeneity in landscape dielectric properties during the seasonal 

freeze-thaw transition (Kim & England 2003).   

Snow cover also impacts the AMSR-E temperature retrievals of both methods by 

insulating soil temperatures.  As can be seen from Figure 15, the AMSR-E temperature 

retrievals correspond more closely to minimum daily air temperatures and MODIS LSTs 

than soil temperatures for sites under seasonal snow cover for the process-based 

approach.  A similar pattern is evident at NOBS, where soil temperatures fluctuate near 

0.0°C, while air temperatures range as low as -40°C.  The positive bias relative to in situ 

temperature measurements at BRW (MR = -6.6°C; Table 8) is also the result of the 

regression equation representing an insulating snow pack that was present at most of the 

other sites (Fig. 15).   
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C.  Evaluation of Additional Parameters from the Process-Based Method:  The 

accuracy of the process-based Ts retrieval under temporally dynamic surface conditions 

indicates the skill of the method to account for the effects of changing emissivities.   The 

assumption of a linear relation between Tbh and Tbv accounts for changes in surface bulk 

dielectric constant.  As stated earlier, this relationship is related to the scale of the 

microwave observations over quasi-specular surfaces and appears to shift with surface 

freeze-thaw state and does not separate open water and soil moisture influences.  Earlier 

studies have used this relation for surface temperature retrieval at both site (Matzler 

1994) and regional scales (Fily 2003); however, the impact of the absorption of quasi-

specular surface emissions by vegetation and volume scattering within snow pack 

required the use of simple radiative transfer equations to describe the behavior of the 

polarization difference over these surfaces.  In addition to surface temperature, the 

inversion of these equations enabled the retrieval of canopy water content/roughness 

equivalent (g) and a snow-water equivalent parameter Ws.  

The results for the g parameter are given in Fig. 16 and indicate that g 

corresponds closely with variations in the 8-day MODIS leaf area index (LAI) among the 

sites, as well as the seasonal trends at each site for 2003.  One anomalous spike in g at 

ATQ in 2003 (Fig.16) during the fall freeze is similar to such a spike in 2004 causing 

over prediction of Ts during the fall freeze (Fig. 15).  The influence of g is to modify the b 

parameter in (12), increasing the predicted surface temperature.  The surface temperature 

prediction at 6.9 GHz is most sensitive to the influence of g because this band is most 

sensitive to surface water and thus will have a greater relative response to the masking of 

the underlying surface, whereas the 89 GHz band saturates quickly with even a small 
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amount of vegetation.  The best Ts results were obtained by employing all bands equally 

weighted in the iterative minimization.  When only the highest frequency bands (18.7 to 

89 GHz) were included, Ts was over predicted and retrieved values of g approached 6 

kg/m2 at NOBS, which was assumed unreasonable for Boreal forest given the results of 

(Pulliainen  1997).  Similarly, when only the lowest bands (18.7 GHz and less) were 

included, Ts was under predicted.  The inclusion of a more detailed radiative transfer 

equation, such as (4), may further improve results by accounting for scattering effects.  

However, the surface temperature results of this investigation show that bias introduced 

by scattering within the vegetation canopy is a relatively small factor and can be 

mitigated with the empirical parameterγ .    

In contrast to a vegetation canopy, scattering is the main effect of snow cover on 

the linear relation between Tbh and Tbv.  Scattering decreases the Ts estimates from (6) 

more strongly at higher frequencies relative to lower frequencies, which is the opposite 

spectral effect of vegetation absorption.  This poses a difficulty for the current algorithm 

where vegetation persists above the snow pack in winter, such as the Boreal forest at 

NOBS and OAS (Fig. 17).  The opposing effects of vegetation and snow on predicted Ts 

cause g to unreasonably decline to zero during winter at the NOBS evergreen forest site 

and gives an unreasonably low estimate of Ws, rising only above zero when the snow 

pack scattering spectral signal is strong enough to overwhelm the vegetation absorbance 

spectral signature.  This pattern is also evident at the OAS site where W rises only briefly 

above zero, corresponding to the peak depth of the in situ snow pack observation.  Some 

of the error in the process-based winter Ts retrieval can be attributed to this effect because 
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minimizing Cf can not arrive at an unbiased Ts estimate when a portion of the spectral 

signature is confounded by the vegetation effect. 

Snow packs also vary greatly in their physical characteristics (Matzler 1994) and 

the simplistic treatment in this study does not account for changes in snow grain size, the 

formation of ice lenses and associated impacts on the extinction and scattering 

coefficients influencing snω  and snb , which were held constant in this investigation.  

However, the radiative transfer treatment of the snow pack did produce a clear snow 

signal (Fig. 17).  We lacked ground data on snow for most sites in this study with the 

exception of BRW and OAS; however, the snow signal shows the expected seasonal 

pattern, accumulation throughout the winter, peaking before a rapid decline in spring.     

 

3.  Air Temperature Retrieval Validation  

 

The overall retrieval accuracies across sites for Tam (RMSE = 2.82°C) were 

slightly lower than for Tmin (RMSE = 2.88°C), which was much more accurate than for 

Tmax (RMSE = 3.31°C).  These results are expected given that Tam corresponds more 

closely to the AQUA overpass time than does Tmin.  Steep near-surface temperature 

gradients from solar heating in the afternoon increase spatial heterogeneity and reduce the 

accuracy of Tmax relative to Tmin.  The overall accuracy for Tam and Tmin was also an 

improvement over the soil temperature accuracy for the same overpass (RMSE = 3.10 

°C).   

Site-specific results for Tmax, Tmin, and Tam retrievals are presented in Table 9.  

Site-specific accuracies and biases are graphically presented in Fig. 18 and Fig. 19, 
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respectively. Relative retrieval accuracy among sites was similar across all air 

temperature estimates and regressions derived soil temperatures, but was different from 

the process-based soil temperature estimates, which show a general pattern of decreasing 

accuracy with latitude (Fig. 18).  Bias in the air temperature retrievals does not show any 

specific patterns among sites, with the exception of UPAD, displaying under prediction in 

all instances (Fig 19).  Bias in soil temperatures did show a pattern between sites, which 

was previously discussed. 

 

A. Effective Emissivity Accuracy for LSW Algorithm:  The overall accuracy of 

effective emissivities calculated from AMSR-E Tam relative to those calculated from 

observed Tam were (RMSE=0.0089 and RMSE=0.0081 for ev and eh, respectively).  The 

greatest error in effective emissivities was at HPV with (RMSE=0.0012 for both ev and 

eh).  The overall effective eh standard deviation for sites with <10% open water is 0.0248, 

so the uncertainty in estimating effective eh overall from AMSR-E is low relative to the 

variability in effective eh calculated from site observations.  For NOBS the variability in 

eh is sufficiently low (stdev. = 0.0137) that effective eh estimation can overwhelm any 

soil moisture signal contained in eh.  In general, the estimation of effective eh does not 

pose a significant source of error for soil moisture estimation because locations with low 

eh variability, which are areas contributing mostly canopy emission (such as forests) have 

low intrinsic sensitivity to soil moisture. 

 

B. Correlation of Error Between Tmin and Tmax Retrievals:  Residual errors for Tmin 

and Tmax were significantly (p < 0.001) correlated at four of the eight locations.  The 
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greatest residual correlation was at HPV (r = 0.44), followed by ATQ (r = 0.40), OAS (r 

= 0.37), and LTH (r = 0.30).  The significant correlations between Tmin and Tmax residuals 

were always positive; indicating that Tmin under prediction (over prediction) was 

associated with Tmax under prediction (over prediction).  This situation indicates that the 

influence of correlated AMSR-E Tmin and Tmax errors will tend to introduce bias, into the 

VPD retrievals rather than inaccuracy.   For ATQ the mean residual was positive for both 

Tmin and Tmax (1.5°C and 1.95°C, respectively) and for LTH the mean residual was 

negative for both Tmin and Tmax (-0.51°C and -0.76°C, respectively).  The MRs were in 

opposing directions for the other locations with positive residual correlation, indicating 

that introduced VPD bias could be either positive or negative for HPV and OAS (Fig. 

19).   

 

4. Vapor Pressure Deficit Algorithm Validation 

 

A.  VPD Error Sensitivity Analysis:  The error analysis for daily maximum VPD is 

presented in Fig. 20.  The amount of error introduced into predicted VPD from 

uncertainty in both Tmin and Tmax is dependent on the magnitude of VPD.  Error increases 

with increasing temperature and VPD, so the smallest errors occur at the lowest 

temperatures and lowest VPD and the largest error is introduced at the highest 

temperature and highest VPD.  Range in VPD error for error in estimated surface 

temperature ( Tδ  ) are 189 to 816 Pa for Tδ = 1°C.  Range in VPD error for Tδ = 2°C is 

243 to 851 Pa VPD and the range in VPD error for Tδ = 4°C is 425 to 980 Pa.  
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Meaningful VPD information can be derived for sites with mean annual VPD greater 

than 216, 276, and 490 Pa for Tδ = 1°C, 2°C, and 4°C, respectively (Fig. 20c). 

 

B.  VPD Algorithm Evaluation:  The results for VPD retrieval are shown in Table 10 

and in conjunction with overall Tmin and Tmax results in Fig. 21.  The overall accuracy of 

the AMSR-E VPD retrievals were RMSE = 427.9 Pa (R2 = 0.71), whereas the overall 

accuracy of the VPD algorithm run on the site meteorology was RMSE=307.4 Pa 

(R2=0.86).  The bias for AMSR-E VPD was 4.8 Pa vs. 46.6 Pa for the VPD algorithm run 

on the site meteorology.  The scatterplots in Fig. 21 indicate that the bias in VPD 

predicted from site meteorology was introduced at higher levels of VPD (e.g. drier days 

and locations).  Similar bias is visible in the AMSR-E retrievals (Fig. 21), but appears 

reduced due to error introduced by the surface temperature estimation.   

Site specific VPD accuracies are presented in Fig. 22 and Table 10.  Site specific 

results also show that more error is introduced into VPD at lower latitudes, although the 

forested sites showed somewhat more error in VPD than the grassland location (LTH).  

These two general patterns were independent of meteorology used to drive the VPD 

estimates.  Fig. 23 shows that both AMSR-E VPD and VPD estimated with site 

meteorology tend to under predict VPD at the Boreal locations, but also tend to over 

predict VPD at the Arctic locations.  This pattern can mostly be attributed to the 

underlying assumptions of the VPD algorithm and not to error in surface temperature 

retrievals, because the VPD algorithm run on the site meteorology shows the same 

pattern.  The under prediction at the southern sites is an expected consequence of 

violations of the underlying assumption of Tmin = Tdew  when the air is especially dry; 
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however, the over prediction at the Arctic sites is somewhat unexpected and indicates the 

air is generally wetter than one would expect if Tmin = Tdew.       

The comparison of VPD estimates using the site meteorology vs. VPD estimates 

using AMSR-E indicate the relative amount of VPD prediction error introduced by 

AMSR-E meteorology was 28.2% of the overall error in the AMSR-E VPD estimates 

across sites.  This shows that the bulk of the error (71.8%) is in the underlying 

assumptions of the VPD algorithm, which is corroborated by the systematic offsets for 

Boreal vs. Arctic regions.  Site-specific results for relative error introduced by AMSR-E 

are presented in Fig. 24.   Contributions of AMSR-E meteorology to overall VPD error 

varied from 11.01% at OAS to 47.58% at LTH.  Sites where the relative amount of error 

between site and AMSR-E meteorologies was high did not tend to be sites where VPD 

was also high.   These results show that AMSR-E meteorology represents half or less of 

the error introduced in the AMSR-E VPD estimates, with the remaining error attributable 

to the underlying assumptions of the algorithm.   

 

5.  Land Surface Wetness and Baseline Land Surface State  

 

A.  Open Water Fraction:  Comparisons of maximum annual open water fractions 

retrieved from AMSR-E to JERS-1 radar mosaic and MODIS land cover derived open 

water fractions are displayed in Fig. 25.  The accuracy of AMSR-E open water fraction 

was greatest relative to MODIS (RMSE = 0.10) and slightly less favorable relative to 

JERS-1 (RMSE=0.18).  AMSR-E estimates showed overestimation relative to both 

methods with MR=-0.13 for JERS-1 and MR=-0.06 for MODIS.  The AMSR-E 
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overestimation relative to JERS-1 and MODIS was controlled by locations with the 

greatest open water fractions (ATQ, UPAD, BRW).  AMSR-E estimates for the 

remaining locations, all with fw ≤0.10, did not show noticeable bias.  All three open water 

fraction methods show the same relative amounts of open water between sites with the 

exception that JERS-1 estimates more open water for ATQ (0.29) relative to UPAD 

(0.20), whereas both AMSR-E and MODIS predict greater open water fraction at UPAD 

(AMSR-E fw = 0.44-0.49; MODIS fw = 0.30)  than ATQ (AMSR-E fw = 0.29-0.30; 

MODIS fw = 0.10).   

The inter-annual variability in open water fraction estimated by AMSR-E among 

the three years of observation (2002-2004) ranged up to 0.06 at LTH.  The inter-annual 

variability at UPAD was 0.05 for the greatest inter-annual variability of a site with 

fw>0.1.  It is important to note that the use of a moving window smoother may introduce 

inter-annual variability in AMSR-E estimated fw that is actually related to long-term soil 

moisture levels than variability in open water fraction.  The three methods of estimating 

open water fraction also represent different window sizes and shapes relative to each 

other.  This difference can explain the modest accuracy against JERS-1 compared to that 

against MODIS, where the MODIS 60 x 60 km window more closely resembles the 

oblong (75 km x 43 km) AMSR-E footprint than does the JERS-1 binned 25 km x 25 km 

EASE grid cell open water product.  The difference in cell size is also consistent with the 

greater deviations between methods at sites with more open water, as locations with more 

open water represent landscapes with greater heterogeneity.    

 Time series of AMSR-E open water fraction presented in Fig. 26 show 

seasonality in open water fraction across sites.  Open water fraction is generally stable 
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throughout the thawed season except for sites along the coastal Arctic Ocean (BRW and 

UPAD).  These two coastal locations both show increases in open water fraction from the 

spring thaw date to a maximum in late August and early September.  The ~60 km x 60 

km 6.9 GHz AMSR-E footprint can contain a significant ocean fraction in coastal areas. 

The timing of maximum annual open water fraction corresponds with the typical timing 

of annual minimum Arctic Ocean sea ice extent (Comiso 2003).  Even if the ice edge 

itself has retreated offshore, ice floes and bergs may contribute significantly to reduction 

in open water fraction throughout the thawed season.   

 

B.  Vegetation Phenology:  Retrievals of baseline landscape conditions of 6.9 GHz 

optical depths compared to MODIS LAI are shown in Fig. 27.  All locations with <11% 

open water fraction show significant positive trends with LAI (Table 11).  Locations with 

>11 % open water fraction show significant negative relationships with LAI at BRW (p < 

0.01) and a relatively weak negative relationship at ATQ (p < 0.05).  These two locations 

have small LAI (≤1.6 m2 m-2) relative to IVO and HPV (LAI ≤2.6 m2 m-2), two other 

locations that have land fractions with similar land cover classes as BRW and ATQ, but 

displayed positive trends with LAI.  Open water fraction and optical depth should not be 

significantly correlated from the algorithm formulation, so this result is somewhat 

unexpected; however, the combination of low LAI and location in HV-space close to the 

open water point (e.g. Tb signal dominated by Tb signal from water) add considerable 

uncertainty into the estimation of optical depth at these locations and especially at BRW 

with ~80% estimated open water fraction.    
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 The regression slopes for grassland (LTH) and tussock tundra (IVO and HPV) 

are greater than those for the forested locations (NOBS and OAS).  This gives the 

appearance of an overall logarithmic-shaped relationship between LAI and optical depth 

(Fig. 27), with optical depth saturating at higher levels of LAI (3-5 m2 m-2).  Optical 

depth is usually assumed to be linearly related to vegetation water content in low-

frequency microwave remote sensing as seen in (5).  Wen and Su (2004) suggested that 

vegetation water content displays a logarithmic relationship with LAI.  These conjectures 

are both consistent with our results.   

The appearance of the 6.9 GHz optical depth vs. MODIS LAI plot (Fig. 27) 

closely resembles a figure of SeaWinds on Quickscat Ku-band (13.4 GHz) backscatter 

(σo) in dB vs. MODIS LAI plot produced for North America (Fig. 2 in Frolking  (2006)).  

Each land cover type occupies the same relative position and has the same relative slope 

magnitudes on the AMSR-E 6.9 GHz optical depth plot as compared to the SeaWinds 

13.4 GHz backscatter plot.  This result provides an empirical link between passive and 

active microwave remote sensing observations of vegetation phenology.  This link 

provides a potentially promising avenue for passive/active microwave synergy for land 

surface parameter retrieval particularly relevant to future passive/active satellite missions.    

 Time series traces of AMSR-E 6.9 GHz canopy optical depth ( cτ ) and MODIS 

LAI are shown in Fig. 28.  Time series of the AMSR-E NASA L3 soil moisture algorithm 

baseline parameter ( w ) derived from interpolated monthly minima of the 10.7 GHz 

polarization ratio (ζ ) are shown in Fig. 29.  The cτ relative magnitude and seasonal 

timing of peak conditions between sites corresponds well with the relative magnitude and 

peak timing of MODIS LAI between Boreal sites.  The values of cτ at the tundra 
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locations relative to other sites are higher than the values of LAI at the tundra locations 

relative to other sites.  This indicates greater microwave canopy loss per unit of LAI over 

tundra canopies relative to grass or forest canopies, which could potentially be caused by 

absorbance of microwave emission by low-bulk density wet organic material and litter 

for tundra.   

Over locations with little open water cτ and w  are correlated, although over 

locations with significant open water (ATQ, UPAD, and BRW) w shows a seasonal trend 

inverted relative to the trend shown by cτ and LAI.  The w parameter results are much 

lower for NOBS than for HPV and IVO in contrast to cτ , which showed relatively higher 

results for forested NOBS than for the tundra sites HPV and IVO.  Both of these 

differences between w and cτ trends is caused by open water increasing the 10.7 GHz 

monthly minima and decreasing the w  bar parameter at the tundra sites with open water 

and densely forested NOBS, which would otherwise be expected to have a high w  

parameter were it not for the ~10% open water at this site.   

 

C.  Land Surface Wetness Results: The results of the soil moisture model-algorithm 

inter-comparison are presented in Figure 30 and pair wise statistics can be found Tables 

12a-12d.  The two AMSR-E algorithms showed favorable correspondence with observed 

soil moisture at three of the six study locations for which soil moisture was available (r > 

0; p < 0.001).  Correlation coefficients for these locations for the NASA L3 algorithm 

ranged from r = 0.76 at HPV to r = 0.40 at LTH with intermediate correlation at OAS (r 

= 0.54).  For the LSW algorithm, correlation was higher at LTH (r = 0.64), somewhat 

lower for HPV (r = 0.49), and non-significant at OAS (r = 0.15).   
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At OAS, the LSW algorithm was significantly correlated with the API model (r = 

0.48), while the correspondence with API was non-significant for the NASA L3 

algorithm (r = 0.13), although the API and soil moisture observations were correlated (r 

= 0.42).  At LTH and HPV, the two algorithms both correspond significantly with API 

(Tables 12c and 12d).   Relatively weak correspondence was also observed between the 

LSW index and both API and BGC modeled soil moisture at ATQ, r = 0.219 and r = 

0.238, respectively.  The L3 algorithm showed weak correspondence to BGC soil 

moisture at BRW and UPAD (r = 0.28 and r = 0.36, respectively), but not to either soil 

moisture or API at these two locations.  No correspondence was detected between LSW 

to either the site observations or the model results at these two locations.  Additionally, 

the two AMSR-E algorithms did not correspond to either the site soil moisture 

observations or the model results at NOBS and also at IVO.   

Locations where the NASA L3 Algorithm and the LSW showed correspondence 

to site and modeled soil moisture, the two algorithms also showed correspondence to 

each other, including HPV, OAS, and LTH (Tables 12c and 12d).  The BGC and API 

results showed correlation in these three locations with soil moisture and generally with 

each other (with the exception of HPV).  Where the NASA L3 Algorithm and the LSW 

showed no correspondence to site and modeled soil moisture, the two algorithms did not 

correspond to each other.  At two of these locations, BRW and NOBS, the BGC and API 

results showed significant correlation with soil moisture and each other.  At UPAD, BGC 

and API results corresponded with each other, but not with observed soil moisture.  The 

models and AMSR-E algorithms did not show any correlation with each other at IVO 

(Table 12b).  This result could have been caused by a relatively large number of missing 
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precipitation data points at IVO (103 days missing out of 312 daily observations or 

33.0%).   

The absolute accuracy to site soil moisture observations was more favorable for 

the LSW algorithm at sites where the algorithms showed significant correspondence.  

The lowest error was at LTH (RSME = 20.2% of saturation) for the LSW algorithm.  

This corresponds to ~0.091 m3m-3 error in volumetric soil moisture content (VMC) for 

loam soil (composed of 30% clay, 60% silt, and 30% sand).  The RMSE for the LSW 

compared to the API and BGC models at LTH were more favorable (15%, e.g. ~0.068 

m3m-3 VMC) and 17.3 % (~0.078 m3m-3 VMC), respectively.  The error for LSW 

compared against API at OAS was 16.5 % (~0.074 m3m-3 VMC).  The error for LSW 

compared against site observations at HPV was 27 m3m-3 (~ 0.12 m3m-3 VMC), and 

compared against API was 20.1 % (~ 0.091 m3m-3 VMC).  The pre-launch accuracy of 

soil moisture retrieval from AMSR-E was estimated at ~0.06 m3m-3 (Njoku 2003) and is 

expected to be ~0.04 m3m-3 for L-band radiometers planned for the near future (Kerr 

2001; Entekhabi 2004).   

The accuracy for the NASA L3 algorithm was much more modest than for the 

LSW algorithm for most locations.  The L3 algorithm had the lowest error compared to 

site observations at OAS (RMSE = 26.8% or ~ 0.12 m3m-3 VMC).  The accuracy of the 

L3 algorithm was 29.7% (~ 0.13 m3m-3 VMC) at LTH and was greatest at HPV, despite 

relatively high correlation (r = 0.76), with 41% (~ 0.18 m3m-3 VMC).  The L3 product 

showed much improved accuracy when compared to API (RMSE = 15.7% or ~0.067 

m3m-3 VMC for both HPV and LTH). 
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The modest accuracy of the L3 product was driven by strong low bias as 

evidenced by the low values for the slope statistic relative to those for the LSW 

algorithm.  For LTH the slope statistic was 0.42 for LSW and 0.18 for the L3 product and 

at HPV the slope statistic was 0.30 for LSW and 0.13 for the L3 product.  These results 

indicate under prediction of soil moisture values for the two algorithms, but the under 

prediction was especially acute for the L3 product and subsequently produced modest 

values for overall accuracy indicated by the large RMSE statistics.  This characteristic of 

the L3 algorithm has been noted by others for the central United States (Wood 2006; 

Crow 2007). Under prediction was persistent even after scaling the soil moisture values 

to equivalent scales, indicating fundamentally different properties in the distributional 

characteristics of both satellite prediction methods compared to those of observed <10 cm 

soil moisture (Fig. 32). 

By comparison, Wagner (2006) obtained RMSE values of 0.12 m3m-3 VMC for 

the AMSR-E L3 soil moisture product compared to soil moisture observations (~2-8 cm) 

over Mediterranean vegetation in arid central Spain.  Wagner (2006) also obtained a 

value of 0.091 m3m-3 VMC for the AMSR-E soil moisture algorithm described in Owe  

(2003), a value of 0.10 m3m-3 VMC for the ERS C-Band Scatterometer product (Wagner 

1999), and a value of 0.099 m3m-3 VMC for a METEOSAT product based on an optical-

infrared thermal inertia approach described in Verstraeten  (2006).  Few additional 

published studies have compared the accuracy of operational AMSR-E to soil moisture 

observations distributed across regions of natural land cover. 

 



 71

D.  Soil Wetness Seasonality:  Time series of daily soil moisture results are presented in 

Figure 31.  The correspondence of the AMSR-E soil wetness products to wetting events 

indicated by in situ soil moisture observations and the models is evident at HPV, OAS, 

and LTH.  The LSW algorithm appears to show some response to mid-summer wetting 

events for all of the tundra locations, although the statistics were not significant.  A 

coherent time signal appears in mid-summer between tundra locations, linking HPV, 

where AMSR-E LSW showed significant correspondence to soil moisture, to the other 

tundra sites where AMSR-E LSW showed an insignificant response; whereas the low 

variability in the L3 product at the tundra locations with open water did not allow such a 

comparison.  

Particularly of note is a 15 August, 2002 extreme precipitation event that is 

registered as a rise in LSW, and modeled and observed soil moisture where available, at 

all of the tundra locations.  This event is confirmed by Kane (2004) who observed 40-cm 

of wet snow falling in a 24-hour period that overwhelmed their rain gauges in the Upper 

Kuparuk drainage basin (~100 km from HPV).   The recording of this event by both the 

AMSR-E LSW and NASA L3 algorithms at HPV and the apparent response of the LSW 

algorithm to this event at the other North Slope tundra location indicates that AMSR-E 

contains information of soil wetness in tundra locations, despite the lack of detection of 

significant correlation at several of the sites.   

For some years at all locations the LSW algorithm indicates dry conditions 

relative to observed soil moisture early in the spring.  The cause of this pattern is 

unknown, but one potential explanation is that a significant portion of the scene is frozen 

and thus appears ‘dry’ (low dielectric constant) to microwave observations.  This pattern 
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was especially evident at the tundra locations with large open water fractions (BRW, 

UPAD, and ATQ), which suggests that it might be related to lake and sea ice that persists 

for a few days after the thaw of the surrounding landscape.  Sea and lake ice emission 

was not considered to be distinct from land fraction emission in the LSW algorithm and 

as previously discussed sea ice was likely present at the coastal tundra locations for at 

least part of the summer. 

 

E.  Soil Moisture Frequency Distributions:  The histograms presented in Figure 32 

indicate that the sample frequency distribution of site soil moisture observations (< 8 cm) 

is relatively uniform at the locations where the satellite observations showed 

correspondence to observed soil moisture (HPV, OAS, and LTH).  The models and 

AMSR-E retrievals, however, all show strongly aggregated distributions, consisting 

mostly of low values of soil moisture with spikes of extremely high soil moisture.  This 

resulted in overall under prediction of soil moisture by the satellite methods and also by 

the API as can be seen in Figs. 30 and 31.  The bias is somewhat removed by comparing 

the satellite products to the API instead of to soil moisture and this can partly explain the 

better accuracy occasionally obtained when the AMSR-E products were compared to API 

vs. soil moisture observations.  The physical interpretation of this is that AMSR-E 

responds to the moisture content of the ‘fast’ surface soil layer which responds rapidly to 

wetting events, but dries quickly in the absence of wetting events.  The use of time series 

smoothers in the two AMSR-E algorithms would also increase this type of 

correspondence.       
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F.  The Challenge of Soil Moisture Validation:  Validation of satellite soil moisture 

products against point soil moisture observations and precipitation-driven models is 

limited by several factors that are particularly severe in high-latitude regions.  Actual soil 

moisture state integrated across a 60 km x 60 km satellite footprint can be much different 

than soil moisture measured at a single location within the footprint.  Arctic and Boreal 

regions also have landscape features that can have vastly different soil moisture states in 

close proximity, for example, saturated lowland mires directly adjacent to dry upland 

heaths.  Tussock tundra in particular is composed of relatively dry tussocks surrounded 

by near saturated inter-tussock areas.   

High organic matter content soils with low bulk density and high porosity can 

cause soil moisture to be much different between near-surface organic layers and deeper 

mineral layers in tundra and Boreal landscapes (Kane 2004).  The common Time Domain 

Reflectometry (TDR) technique for soil moisture used at all the study sites in this study is 

usually itself only accurate to ~ 0.03 m3m-3 VMC (Boike & Roth 1997).  TDR can also 

give erroneous readings in high-organic-matter, low-bulk-density soils when the probes 

are not in good contact with the soil matrix (Yoshikawa 2004). 

It is well known that precipitation observations in high latitude regions under-

represent actual precipitation by as much as a factor of three (Kane 2004).  This will 

affect time-variability in model predictions of soil water state especially when the 

magnitude of extreme precipitation events is under-represented and small precipitation 

events are missed altogether.  Furthermore, models may not be well suited to the 

hydrologic environment in which they are applied.  The BIOME-BGC model employed 
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in this investigation only represents mineral soil, so the hydraulic properties of high-

organic matter, low-bulk density soils are not well represented.        

 

VII. Conclusion 

 

The seasonal dynamics of multi-frequency AMSR-E Tb observations and their 

correlation with near-surface soil and air profile temperatures at high latitude sites were 

evaluated.  The results demonstrate that brightness temperatures were strongly correlated 

(r >0.85) with minimum daily air temperatures at forested locations and better correlated 

with soil temperatures (r >0.80) than with minimum daily air temperatures at non-

forested locations, with the highest correlation at frequencies >18.7 GHz.  AMSR-E 

indicies, including Tbh, effective eh, 6.9 GHz polarization ratio, and 6.9 GHz to 36.5 GHz 

V and H-polarization spectral gradients, were sensitive to soil moisture variations (r 

ranged in magnitude from 0.23 to 0.56) and LAI seasonality (r ranged from 0.29 to 0.74) 

at locations with < 10 % open water and max annual LAI < 5 m2 m-2.  

 Methods were developed to retrieve soil temperature, maximum/minimum daily 

air temperatures, air temperature at time of overpass, daily maximum vapor pressure 

deficit, and a daily land surface wetness index from AMSR-E passive microwave 

observations.  Land cover phenology including open water fraction and vegetation 

parameters were also retrieved as additional information.  Visualization of Northern 

Hemisphere and pan-Arctic basin regional AMSR-E Tbh vs. Tbv histograms aided in 

formulating a method for retrieving open water and vegetation phenology from a single 

low-frequency AMSR-E channel.  Interpretation of the Tbh vs. Tbv histograms also aided 
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in empirically fitting emission model parameters.  Multiple regression, emission process-

based radiative transfer models, and time series smoothers proved useful for separating 

the dependencies of factors influencing AMSR-E dual polarization, multi-frequency 

brightness temperature observations for retrieval of multiple land surface and 

meteorological state variables.   

State variables retrieved from AMSR-E were evaluated for correspondence and 

accuracy against in situ observations, simple land-surface process model results, and 

other operational satellite products at eight Boreal and Arctic monitoring stations.  For 

soil temperature, a multiple regression method had lower overall error (RMSE = 3.11 K) 

than a process-based method (RMSE = 3.93 K); however, the relative performance of the 

two methods was highly dependent on land cover type and condition between sites.  

Multiple regression methods were able to retrieve daily air temperatures including air 

temperature at time of overpass (Tam), minimum daily air temperature (Tmin), and 

maximum daily air temperature (Tmax) to accuracies of RMSE = 2.82°C, 2.88°C, and 

3.31°C, respectively.   

Daily maximum vapor pressure deficit (VPD) retrieved using AMSR-E daily 

AM/PM overpass surface temperature retrievals was accurate to within 427.9 Pa overall 

across locations.  Substituting site meteorology reduced error to 307.4 Pa, indicating that 

71.8% of the overall error was related to the underlying VPD algorithm assumptions with 

the remainder attributable to the AMSR-E air temperature retrievals.  Open water fraction 

estimated from AMSR-E corresponded well with JERS-1 L-band radar open water 

fraction EASE grid cells (RMSE = 0.18), and MODIS land cover extractions of open 

water fraction (RMSE = 0.18), though the rigor of the comparisons was restricted by 
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differing spatial representations.  Vegetation phenology represented by AMSR-E 6.9 

GHz optical depth estimates corresponded well (r = 0.52 to r = 0.80) with MODIS 8-day 

LAI at sites with ≤ 11% open water.  Relative linear trends among land cover classes of 

AMSR-E 6.9 GHz optical depth with MODIS LAI are similar to those obtained from Ku-

band SeaWinds Scatterometer observations over North America (Frolking 2007).   

 Land surface wetness (LSW) and NASA L3 soil moisture retrievals contained 

significant information (p < 0.001) relative to site observations at three of the six 

locations for which soil moisture observations were available.  Significant 

correspondence ranged from r = 0.49 to r = 0.76 at these locations for both methods.  

Correspondence degraded at locations with ≥ 25% open water and max annual LAI ≥ 4 

m2 m-2 despite efforts to correct for the influence of open water.  Overall accuracy for the 

LSW algorithm compared against soil moisture observations and a simple API model 

ranged between ~ 0.068% to ~ 0.091% volumetric moisture content, which is comparable 

to results from similar studies for lower latitude locations.  Accuracy of the NASA L3 

algorithm was lower (~ 0.067% to ~ 0.12% volumetric) due to a dry bias.  Histograms of 

AMSR-E satellite LSW and the NASA L3 algorithm indicate that these estimates 

potentially correspond more closely to the ‘fast’ response of the soil surface layer rather 

than the slow, average response of the 2-8 cm soil moisture observations.  Point soil 

moisture observations and precipitation-driven models represent an imperfect means by 

which to validate coarse-resolution satellite estimates of soil wetness status. 

 The results of this investigation demonstrate that AMSR-E brightness 

temperatures contain a vast amount of useful information on land surface and 

meteorological state variables at high latitude locations.  These variables can generally be 
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retrieved over natural landscapes though accuracies are dependent on land cover type, 

freeze-thaw status, snow, and potentially the atmosphere.  Soil wetness estimates are 

generally possible over regions without much open water and without significant forest 

vegetation, although the precise range of influence of these factors is still uncertain.  The 

algorithms employed are relatively simple, and require little ancillary data from other 

(and potentially error-prone) sources other than the AMSR-E radiometer itself.  The 

products of this study are appropriate for biophysical modeling activities in Arctic and 

Boreal regions.  The techniques and interpretations of high-latitude terrestrial brightness 

temperature signatures presented in this investigation will likely prove useful for future 

passive microwave missions.   
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TABLES 
 
Table 1:  Biophysical network sites used for this investigation. NSA NOBS refers to the 
Northern Study Area Old Black Spruce; SSA OAS refers to the Southern Study Area Old 
Aspen tower sites located within the Boreal Ecosystem-Atmosphere Study (BOREAS) 
region of central Canada; these sites are currently associated with the Boreal Ecosystem 
Monitoring and Research Sites (BERMS) project. 

Site  Abbrev. Lat. Long. Vegetation Topog. 
Barrow BRW 71.32 N 156.62 W Wet-sedge Tundra flat 
UPad/Betty Pingo UPAD 70.28 N 148.88 W Wet-sedge Tundra flat 
Atqasuk ATQ 70.47 N 157.40 W Wet-sedge/Tussock Tundra flat 
Ivotuk IVO 68.47 N 155.73 W Tussock Tundra foothills 
Happy Valley/Sagwon HPV 69.13 N 148.83 W Tussock Tundra foothills 
NSA NOBS NOBS 55.88 N   98.48 W Boreal spruce forest flat 
SSA OAS OAS 53.63 N 106.20 W Boreal mixed forest/Crops flat 
Lethbridge LTH 49.70 N  112.93 W Grassland/Crops flat 

 
Table 2:  AMSR-E sensor instrument specifications. 

Center Frequency (GHz) 6.9 10.7 18.7 23.8 36.5 89.0 
Bandwidth (MHz) 350 100 200 400 1000 3000 
3-dB Footprint (km) 75 x 43 51x 29 27 x 16  32 x 18 14 x 8 6 x 4 
Resolution (km x km) 60 60 25 25 15 5 

 
Table 3:  Coefficients (standard errors) fit to the multi-band, multiple regression equation 
for soil temperature retrieval in (10). 

All Sites β0 β1 β2 β3 β4 β5 

Thawed 74.792 
(4.743) 

0.915 
(0.122) 

-0.640 
(0.208) 

-0.927 
(0.189) 

1.42 
(0.093) 

230.553 
(9.217) 

Frozen 246.905 
(5.422) 

0.913 
 (-0.159) 

-0.084 
(0.240) 

-2.618 
(0.187) 

1.892 
(0.093) 

-35.016  
(8.338) 

 
Table 4:  Coefficients (standard errors) fit to the multi-band, multiple regression equation 
for maximum daily air temperature (Tmax), minimum daily air temperature (Tmin), and air 
temperature at time of Aqua satellite descending (morning) overpass retrieval. 
  β0 β 1 β 2 β 3 β 4 β 5 

13.889 -0.807 0.168 1.617 -75.384 342.025 Tmax 
(-3.091) (0.052) (0.053) (0.030) (8.020) (12.107) 
40.826 -0.384 -0.091 1.346 -80.348 338.752 Tmin 
(3.946) (0.049) (0.049) (0.026) (6.600) (10.782) 
16.595 -0.959 0.342 1.586 -99.169 357.934 Tam 
(3.944) (0.049) (0.049) (0.026) (6.555) (10.530) 
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Table 5:  Constant Parameters calibrated to the BRW site for the process-based method.  
The α values were obtained using a frequency power relation (Njoku and Chan 2006).  
The values for a and b are also given for frozen conditions (asn and bsn). 

Model Parameters 
Band  
(GHz) a b asn bsn α 

6.9 0.631 0.402 0.592 0.450 0.486 
10.7 0.607 0.416 0.574 0.468 0.566 
18.7 0.601 0.418 0.578 0.466 0.688 
23.8 0.557 0.453 0.523 0.508 0.749 
36.5 0.554 0.455 0.526 0.506 0.87 
89 0.518 0.481 0.508 0.515 1.188 

 
Table 6:  Correlation between site soil moisture observations and MODIS 8-day Leaf 
Area Index (LAI) to AMSR-E observations, including 6.9 GHz H-pol. brightness 
temperature observations (Tbh), 6.9 GHz H-pol. effective emissivity (eh), and indices 
computed from V and H pol. brightness temperatures at 6.9 GHz and 36.5 GHz.  Bold 
font denotes that the correlation is significant (p < 0.05) and of expected sign for 
microwave radiometry.   

Site Soil Moisture Correlations 
Index BRW UPAD ATQ IVO HPV NOBS OAS LTH Expected Sign (+/-) 
Tbh -0.21 0.47 NA NA -0.51 0.05 -0.42 -0.56 - 
eh -0.21 0.53 NA NA -0.50 0.15 -0.28 -0.46 - 
Tbv/Tbh 0.26 -0.44 NA NA 0.42 0.07 0.33 0.47 + 
Tbh36/Tbh6 0.29 -0.44 NA NA -0.11 0.15 0.23 0.39 + 
Tbv36/Tbh6 0.28 -0.49 NA NA 0.12 0.13 0.32 0.47 + 

MODIS Leaf Area Index (LAI) Correlations 
Index BRW UPAD ATQ IVO HPV NOBS OAS LTH Expected Sign (+/-) 
Tbh -0.28 -0.29 -0.19 0.49 0.32 0.43 0.74 0.60 + 
eh -0.28 -0.35 -0.63 -0.79 -0.21 -0.53 0.03 0.37 + 
Tbv/Tbh 0.29 0.28 0.41 -0.13 -0.32 0.18 -0.50 -0.55 - 
Tbh36/Tbh6 0.27 0.19 0.18 0.40 -0.03 0.46 -0.14 -0.33 - 
Tbv36/Tbh6 0.29 0.26 0.36 0.32 -0.14 0.42 -0.29 -0.46 - 
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Table 7:  Thawed condition validation statistics by site for AMSR-E surface temperature 
methods.  The numbers represent comparison of retrieved Ts vs. Tsoil (Tmin).    R2 = 
coefficient of determination, RMSE = root mean square error, MAE = mean absolute 
error, MR = mean residual (observed – retrieved), n = sample size. 

 Process-Based Method Regression Method 

SITE RMSE R2 MAE MR RMSE R2 MAE MR n 

BRW 2.96  
(3.91) 

0.45 
(0.23) 

2.40 
(3.27 ) 

1.12   
(-1.59 ) 

2.57 
(3.47) 

0.59 
(0.45) 

2.14 
(2.85) 

0.86     
(-1.88) 

105 
(120) 

ATQ 2.22  
(3.74)  

0.69 
(0.41) 

1.83 
(2.90) 

-1.19   
(-2.53) 

2.16 
(3.55) 

0.69 
(0.44) 

1.75 
(2.84) 

-0.94 
(-2.31) 

99 
(100) 

IVO 2.94  
(4.06) 

0.61 
(0.19 ) 

2.43 
(3.43) 

-1.70   
(-1.10) 

4.032 
(4.58) 

0.75 
(0.22) 

3.85 
(3.92) 

-3.71 
(-3.40) 

56 
(102) 

HPV 3.15  
(3.84) 

0.77 
(0.36) 

2.69 
(3.09) 

-2.39 
 (-1.93) 

4.99 
(4.69) 

0.76 
(0.46) 

4.54 
(4.11) 

-4.43 
(-3.97) 

90 
(90) 

NOBS 3.72  
(5.74) 

0.32 
(0.30 ) 

2.91 
(4.60) 

-0.59  
(-3.77) 

3.00 
(5.47) 

0.37 
(0.30) 

2.43 
(4.05) 

-0.35   
(-3.53) 

132 
(132) 

OAS 3.99  
(4.81 ) 

0.60 
(0.44 ) 

3.22 
(3.85) 

2.57   
(-1.68) 

2.71 
(5.18) 

0.62 
(0.44) 

2.16 
(4.32) 

1.05   
(-3.20) 

186 
(186) 

LTH 5.55 
(5.12 ) 

0.68 
(0.44) 

4.86 
(4.16) 

4.72   
(-2.61) 

2.84 
(8.30) 

0.65 
(0.41) 

2.32 
(7.32) 

0.30   
(-7.03) 

187 
(187) 

 
 
Table 8:  Frozen condition validation statistics by site for AMSR-E surface temperature 
methods.  The numbers represent comparison of retrieved Ts vs. Tsoil (Tmin).    R2 = 
coefficient of determination, RMSE = root mean square error, MAE = mean absolute 
error, MR = mean residual (observed – retrieved), n = sample size. 

 Process-Based Method Regression Method 

SITE RMSE R2 MAE MR RMSE R2 MAE MR n 

BRW 7.00      
( 12.52) 

0.24 
(0.25) 

5.32 
(11.05) 

-0.91     
(-.891) 

8.67 
(16.31) 

0.35 
(0.42) 

7.86        
(14.11) 

-6.17     
(-13.78) 

222 
(241) 

ATQ 7.85 
(13.25) 

0.51 
(0.21 

5.65 
(11.32) 

-1.24   
(-7.24) 

4.95 
(7.80) 

0.70 
(0.63) 

4.05 
(6.40) 

2.54       
(-3.80) 

247 
(262) 

IVO 10.51 
(10.48) 

0.49 
(0.42) 

9.24 
(7.67) 

5.77   
(-5.92) 

6.18 
(7.54) 

0.64 
(0.71) 

5.23 
(6.10) 

5.11      
(-4.66) 

205 
(252) 

HPV 9.23 
(11.05) 

0.48 
(0.54) 

6.83 
(9.02) 

-2.71   
(-8.17) 

5.53 
(7.06) 

0.50 
(0.66) 

4.32 
(5.86) 

-3.36     
(-4.68) 

228 
(222) 

NOBS 19.48 
(7.96) 

0.48 
(0.68) 

16.29 
(6.21) 

15.44 
(-3.07) 

3.11 
(20.35) 

0.14 
(0.04) 

2.60 
(16.88) 

2.32      
(-16.34) 

196 
(202) 

OAS 7.42 
(13.38) 

0.22 
(0.30) 

5.96 
(11.36) 

4.47   
(-0.87) 

3.06 
(16.78) 

0.03 
(0.06) 

2.51 
(14.45) 

1.83       
(-13.45) 

145 
(145) 

LTH 4.76 
(12.83) 

0.00 
(0.02) 

3.57 
(9.70) 

-1.61  
(-8.78) 

3.37 
(10.56) 

0.36 
(0.13) 

2.96 
(7.74) 

2.01       
(-5.16) 

124 
(124) 
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Table 9:  Validation statistics for thawed-season AMSR-E 2004 air temperature (T in 
 °C; ~2 m height) retrievals by study location.  Tam stands for air temperature at time of 
descending (am) overpass; Tmin is minimum daily air temperature; Tmax is maximum daily 
air temperature.  Statistical abbreviations as in Table 7.   

  Tair [ °C] RMSE R2 MAE MR Slope n 
Tam 3.77 0.55 3.05 1.14 1.01 113 
Tmin 3.25 0.45 2.62 0.42 0.88 113 BRW 
Tmax 3.79 0.52 3.12 -1.24 0.65 113 
Tam 3.59 0.68 2.94 2.19 0.96 91 
Tmin 3.71 0.57 3.19 2.41 0.82 91 UPAD 
Tmax 4.06 0.68 3.28 1.65 0.70 92 
Tam 1.86 0.84 1.44 -0.13 0.94 99 
Tmin 1.91 0.84 1.50 0.87 0.83 100 ATQ 
Tmax 2.40 0.85 1.95 0.70 0.81 101 
Tam 1.95 0.81 1.44 0.03 0.82 61 
Tmin 2.10 0.87 1.82 1.33 0.83 67 IVO 
Tmax 3.17 0.82 2.57 1.35 0.92 66 
Tam 3.54 0.77 2.93 0.66 0.75 130 
Tmin 3.77 0.74 3.04 1.42 0.67 130 HPV 
Tmax 3.92 0.83 3.00 -1.05 0.84 133 
Tam 3.06 0.73 2.41 0.45 0.74 128 
Tmin 2.38 0.83 1.79 -1.38 0.82 129 NOBS 
Tmax 2.79 0.82 1.85 0.22 0.80 130 
Tam 1.93 0.90 1.53 0.31 0.87 187 
Tmin 2.57 0.84 2.11 0.68 0.73 187 OAS 
Tmax 2.48 0.91 1.92 0.02 0.78 177 
Tam 2.46 0.82 1.96 -0.43 0.77 187 
Tmin 2.74 0.79 2.18 -0.51 0.66 187 LTH 
Tmax 3.61 0.75 2.75 -0.76 0.88 189 

 



 91

Table 10:  Validation statistics for thawed-season AMSR-E 2004 Vapor Pressure Deficit 
(VPD) in pascals (Pa) by algorithm input meteorology and by study site.  The VPD 
algorithm run with Tmin and Tmax from AMSR-E is denoted ‘VPD AMSRE’ and the VPD 
algorithm run with Tmin and Tmax from site observations is denoted ‘VPD site met.’  
Statistical abbreviations as in Table 7.   

   VPD [Pa] RMSE R2 MAE MR Slope n 
VPD site met 191.78 0.68 137.72 -93.22 1.33 113 BRW 
VPD AMSRE 330.17 0.03 255.23 -178.78 0.25 113 
VPD site met 102.70 0.79 100.23 11.29 1.29 16 UPAD 
VPD AMSRE 127.22 0.25 111.79 -19.12 0.37 16 
VPD site met 250.62 0.79 198.47 -147.09 0.91 100 ATQ 
VPD AMSRE 284.13 0.63 226.61 -113.84 0.66 99 
VPD site met 201.29 0.86 162.25 -42.96 0.90 68 IVO 
VPD AMSRE 321.06 0.69 271.81 4.15 0.87 67 
VPD site met 295.46 0.79 230.23 -77.95 0.75 134 HPV 
VPD AMSRE 489.85 0.61 379.64 -256.81 0.80 129 
VPD site met 441.54 0.80 357.13 246.41 0.87 119 NOBS 
VPD AMSRE 549.73 0.79 448.90 407.60 0.73 100 
VPD site met 388.05 0.72 257.56 137.35 0.67 198 OAS 
VPD AMSRE 436.04 0.60 303.66 121.06 0.61 167 
VPD site met 246.68 0.94 193.43 122.80 0.87 220 LTH 
VPD AMSRE 470.57 0.71 369.68 48.79 0.79 159 

 
Table 11:  Results for comparison of retrieved AMSR-E 6.9 GHz optical depth to 
MODIS 8-day LAI by study site.  The statistics presented here correspond to regression 
lines presented in Fig 27.    

Site 
MODIS LAI 

Range [m2 m-2] 
AMSR-E 6.9 GHz 

Optical Depth r p-value Slope Int. n 
BRW 0.5 - 1.5 0.51 - 1.23 -0.46 0.005 -0.39 1.20 36 
UPAD 0.6 - 1.6 0.79 - 1.36 -0.15 0.425 -0.08 1.11 32 
ATQ 0.6 - 1.6 0.67 - 1.19 -0.34 0.045 -0.15 1.08 36 
IVO 1.0 - 2.0 0.85 - 1.37 0.52 0.001 0.21 0.94 36 
HPV 1.2 - 2.6 1.06 - 1.45 0.54 0.001 0.14 1.05 36 
NOBS 1.9 - 4.7 1.30 - 1.87 0.75 <0.0001 0.13 1.25 45 
OAS 0.8 - 3.8 0.98 - 1.41 0.79 <0.0001 0.07 1.07 56 
LTH 0.4 - 2.0 0.68 - 1.16 0.80 <0.0001 0.19 0.74 64 

 
 
 
Table 12a:  Pairwise soil moisture validation statistics for the period June 2002- 
December 2004 for BRW and UPAD sites.  The data compared include in situ soil 
moisture (< 8 cm) observations (SM Obs), Antecedent Precipitation Index (API) model, 
BIOME-BGC soil moisture model, the AMSR-E NASA L3 algorithm soil moisture (L3), 
and AMSR-E Land Surface Wetness Index (LSW).  All data are scaled between 10 % 
and 95 % and assigned units of % Saturation.  Comparisons with corresponding slope 
statistic significantly (p < 0.001) greater than zero are in bold.  Na indicates that soil 
moisture observations for the location were not available.  Statistical abbreviations as in 
Table 7. 
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BRW  UPAD 
r      r     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 0.49     API 0.11    
BGC 0.44 0.22    BGC 0.55 0.27   
L3 -0.19 -0.04 0.28   L3 0.05 0.19 0.36  
LSW -0.18 -0.03 0.04 0.03  LSW 0.13 0.02 0.06 -0.20 
           
RMSE      RMSE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 28.2     API 27.1    
BGC 27.3 26.6    BGC 20.4 25.3   
L3 33.8 26.4 25.1   L3 25.3 22.0 20.8  
LSW 32.0 23.9 27.1 24.1  LSW 26.3 27.2 29.6 27.0 
           
MAE      MAE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 20.8     API 19.2    
BGC 20.4 18.7    BGC 17.8 18.8   
L3 28.3 19.9 19.8   L3 19.2 17.3 15.8  
LSW 26.7 18.3 22.0 18.2  LSW 22.2 22.6 24.5 22.2 
           
MR      MR     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 18.0     API 14.3    
BGC 8.3 -6.6    BGC 10.8 3.5   
L3 11.5 -8.2 -2.2   L3 17.0 0.6 -3.3  
LSW 7.0 -8.0 -4.1 -0.6  LSW -14.1 -9.6 -15.8 -11.2 
           
SLOPE      SLOPE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 0.34     API 0.11    
BGC 0.44 0.32    BGC 0.60 0.29   
L3 -0.14 -0.05 0.23   L3 0.02 0.14 0.26  
LSW -0.12 -0.03 0.03 0.02  LSW 0.17 0.01 0.05 -0.23 
           
N      N     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 263     API 85    
BGC 263 303    BGC 85 280   
L3 241 281 281   L3 85 261 261  
LSW 221 261 261 258  LSW 68 234 234 234 
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Table 12b:  Same as Table 12a, but for ATQ and IVO sites. 
ATQ  IVO 

r      r     
  SM Obs API BGC L3    SM Obs API BGC L3 
API Na     API Na    
BGC Na 0.07    BGC Na 0.11   
L3 Na -0.06 0.49   L3 Na 0.10 0.00  
LSW Na 0.23 0.28 0.18  LSW Na -0.02 -0.20 -0.01 
           
RMSE      RMSE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API Na     API Na    
BGC Na 32.5    BGC Na 27.4   
L3 Na 27.2 22.4   L3 Na 20.2 27.1  
LSW Na 21.9 23.8 21.0  LSW Na 24.4 30.5 24.4 
           
MAE      MAE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API Na     API Na    
BGC Na 24.7    BGC Na 21.5   
L3 Na 19.3 18.5   L3 Na 14.6 20.0  
LSW Na 17.4 19.3 15.5  LSW Na 18.9 23.5 21.0 
           
MR      MR     
  SM Obs API BGC L3    SM Obs API BGC L3 
API Na     API Na    
BGC Na -18.1    BGC Na -3.3   
L3 Na -12.0 5.4   L3 Na 7.0 9.5  
LSW Na -13.3 3.6 -1.8  LSW Na -8.8 -7.7 -17.1 
           
SLOPE      SLOPE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API Na     API Na    
BGC Na 0.11    BGC Na 0.15   
L3 Na -0.07 0.39   L3 Na 0.06 0.00  
LSW Na 0.20 0.16 0.12  LSW Na -0.01 -0.13 -0.02 
           
N      N     
  SM Obs API BGC L3    SM Obs API BGC L3 
API Na 326    API Na    
BGC Na 326 326   BGC Na 312   
L3 Na 307 307 307  L3 Na 292 292  
LSW Na 295 295 295  LSW Na 260 260 259 

 



 94

Table 12c:  Same as Table 12a, but for HPV and NOBS sites. 
HPV  NOBS 

r      r     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 0.38     API 0.67    
BGC 0.13 0.09    BGC 0.39 0.27   
L3 0.76 0.57 0.14   L3 -0.32 -0.42 0.11  
LSW 0.49 0.36 0.07 0.27  LSW -0.24 -0.10 -0.31 0.08 
           
RMSE      RMSE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 35.3     API 31.6    
BGC 35.3 29.3    BGC 21.0 29.2   
L3 41.0 15.7 28.9   L3 39.9 27.0 31.6  
LSW 27.4 20.1 28.9 23.6  LSW 29.9 30.0 24.2 29.4 
           
MAE      MAE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 30.4     API 28.6    
BGC 29.4 22.2    BGC 15.4 26.0   
L3 37.2 10.8 19.7   L3 34.3 19.6 28.3  
LSW 22.0 16.5 25.6 20.5  LSW 25.4 24.8 19.8 26.7 
           
MR      MR     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 29.3     API 27.3    
BGC 12.9 -6.7    BGC 4.7 -22.2   
L3 36.4 8.3 14.8   L3 23.6 1.9 23.8  
LSW 20.2 -11.5 -5.3 -18.9  LSW 5.7 -19.0 3.2 -20.9 
           
SLOPE      SLOPE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 0.21     API 0.47    
BGC 0.19 0.14    BGC 0.27 0.25   
L3 0.13 0.25 0.04   L3 -0.28 -0.40 0.11  
LSW 0.30 0.36 0.04 0.55  LSW -0.18 -0.08 -0.30 0.08 
           
N      N     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 118     API 250    
BGC 118 316    BGC 250 400   
L3 111 296 296   L3 250 381 381  
LSW 105 261 261 260  LSW 223 337 337 337 
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Table 12d: Same as Table 12a, but for OAS and LTH sites. 
OAS  LTH 

r      r     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 0.42     API 0.47    
BGC 0.68 0.48    BGC 0.71 0.29   
L3 0.54 0.13 0.16   L3 0.40 0.32 0.44  
LSW 0.15 0.48 0.07 0.22  LSW 0.64 0.59 0.51 0.58 
           
RMSE      RMSE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 41.7     API 26.3    
BGC 31.5 28.8    BGC 23.5 18.9   
L3 26.8 27.6 32.1   L3 29.7 15.7 15.7  
LSW 36.2 18.8 32.5 18.3  LSW 20.2 15.0 17.3 16.8 
           
MAE      MAE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 33.6     API 20.1    
BGC 22.4 17.7    BGC 19.3 12.7   
L3 23.0 23.9 29.6   L3 24.5 11.2 12.0  
LSW 28.7 16.5 27.5 14.0  LSW 16.2 11.2 13.9 13.5 
           
MR      MR     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 32.8     API 17.3    
BGC 20.9 -11.9    BGC 17.6 0.3   
L3 12.2 -21.4 -9.0   L3 21.7 4.4 3.9  
LSW 21.1 -12.3 0.4 9.0  LSW 10.7 -6.8 -7.1 -11.6 
           
SLOPE      SLOPE     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 0.21     API 0.32    
BGC 0.72 1.02    BGC 0.55 0.33   
L3 0.23 0.11 0.06   L3 0.18 0.21 0.26  
LSW 0.07 0.45 0.03 0.25  LSW 0.42 0.59 0.45 0.90 
           
N      N     
  SM Obs API BGC L3    SM Obs API BGC L3 
API 535     API 566    
BGC 535 535    BGC 566 576   
L3 513 513 513   L3 547 557 557  
LSW 474 474 474 474  LSW 463 471 471 471 
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Figure 1:  Biophysical network study sites.  Site abbreviations described in Table 1. 
 

 
Figure 2:  Observed AMSR-E Tbh  vs. Tbv relations at the study sites.  The R2 statistic 
indicates the level of linear correlation between Tbh vs. Tbv at BRW for each frequency. 
The black straight line represents the appropriate a and b parameters from Table 3 and 
the mean summer Tsoil at BRW.  The dashed straight line represents a 1:1 relationship. 
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Figure 3:  Apparent slope parameter a derived by fitting (11) to the eh vs. ev emissivity 
relation at each site for each AMSR-E frequency.  Maximum annual MODIS Leaf Area 
Index (LAI) for the dominant vegetation type is on the secondary y-axis. 
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Figure 4:  Flowchart showing algorithm structure and processing order of AMSR-E 
products created in this investigation.  The diamond cell represents dual-polarization 
multi-frequency AMSR-E L2a brightness temperatures, darkly-shaded square cells 
represent calculations, lightly-shaded square cells represent time-series smoothing and 
filtering, and circles represent products, which include end products and products re-
employed in the processing scheme. See section IV for details and abbreviations.    
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Figure 5:  Histograms (1 K bins) of the entire Northern Hemisphere (land and ocean 
areas; June-September 2003) Tbv vs. Tbh at 6.9 GHz, 18.7 GHz, and 36.5 GHz frequencies 
(upper plots).  Histograms (1 K bins) for the entire Pan-Arctic basin (land and inland 
waters with watersheds flowing into the Arctic Ocean; June-September 2003) Tbv vs. Tbh 
at 6.9 GHz, 18.7 GHz, and 36.5 GHz frequencies (lower plots).  The letter labels 
represent locations of homogenous land cover (or atmospheric effects) that have strong 
influence on AMSR-E Tb observations: Open water with either fresh or saltwater (OW); 
Desert locations with sparse or no vegetation (D); Densely forested areas including 
Boreal, temperate, and tropical forests (F); Snow cover and permanent ice (SN); 
Atmospheric water vapor absorption (WV) associated with storms over the ocean.  
Dashed lines indicate 1:1. 
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Figure 6: (a) Theoretical basis for separating the influence of open water from soil 
moisture over bare, smooth soil.  Solid gray line represents the Fresnel relationship with 
the real part of the complex dielectric (εr) increasing from 3.6 (Dry Soil) to 70 (Open 
Water).  Solid black lines WS-D and OW-D represent the prediction for a two-component 
surface with varying fractions of dry loam soil (D) and at saturation (WS) and for dry 
loam soil and open water (OW), respectively.  Finely dashed black lines WS-WP and 
OW-WP show the same situation but for loam soil at the plant wilting point (WP).  (b) 
Representation of the LSW algorithm in H-V emissivity space.  Points D, WS, and OW 
correspond to the same in (a) and also in Fig. 10 with the addition of F.  Increasing 
vegetation biomass increases the slope of the line between (eh

*, ev
*) and point OW 

(curved arrow).  Broadly dashed lines represent 1:1 in both plots.     
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Figure 7:  Histograms of 6.9 GHz Tbh and Tbv for June 1-Sept. 31, 2003 across the 
Northern Hemisphere used for determining the emissivity of open water (OW).  Plot 
represents the distribution of points from Fig. 5 for the Tbh - and Tbv - axes.  
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Figure 8:  Uncertainty in estimated slope ( aδ ) between land fraction emissivity and 
open water with increasing open water fraction.  Small error in emissivity estimation 
from errors in land surface temperature estimates ( Tδ ), greatly increases uncertainty in 
land fraction emissivity as open water fraction approaches 1.  The effect of 0.5 K 
radiometer noise is very small and within the thickness of the displayed lines.  Mean 
maximum annual estimated AMSR-E 6.9 GHz for the observation period (June 19, 2002-
Dec. 31, 2004) shown as dashed vertical lines.  
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Figure 9:  Percent of MODIS International Geosphere-Biosphere Programme (IGBP) 1-
km pixels falling into each land cover class for 60 km x 60 km window extracted over the 
study sites.  Land cover classes are open water, barren areas, crops, grass, open shrubland 
(Oshrub), mixed forest (MXForest), evergreen needle-leaf forest (ENForest), and other 
for any IGBP land cover class within the window outside of those listed.  
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Figure 10:  Linear correlation between AMSR-E uncorrected Tbv values for various 
frequencies and in situ minimum daily air temperature (Tmin) and soil temperature (Tsoil) 
measurements for selected study sites.  Note that the soil and air temperature 
measurement levels are different for each plot as measurement depth differed between 
each site. 
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Figure 11:  Linear correlation of AMSR-E multi-frequency Tbv to in situ air temperature 
(~2 m) by study site corresponding to the time of the descending (am) satellite overpass. 
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Figure 12: AMSR-E 6.9 GHz V and H polarized brightness temperatures over selected 
study sites from 2002 to 2004. 
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Figure 13:  Linear correlation coefficient (r) between AMSR-E 6.9 GHz Tbh and site 
observed soil moisture (< 8 cm) and AMSR-E 6.9 GHz Tbh and MODIS 8-day LAI  
plotted against maximum annual MODIS LAI and percent open water derived from 
MODIS IGBP land cover 60 km x 60 km window extractions.  Closed symbols indicate 
that correlation is significant (p < 0.05) of expected sign (see Table 6).   
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Figure 14:  Scatter plot of 2004 thawed-season retrievals for the regression and process-
based AMSR-E Ts methods and associated statistics. 
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Figure 15:  Both methods of AMSR-E Ts retrievals (°C) plotted against Tsoil, Tmin, and 
MODIS LST at the study sites for 2004. MODIS LST error bars represent the standard 
deviation of the 1 km x 1 km resolution based MODIS LST results within a 60 km x 60 
km window centered at each site. 
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Figure 16:  MODIS 8-day LAI (m2/m2) time series and AMSR-E g (kg/m2) 
vegetation/roughness parameter results for 2003.  The points represent daily values of g, 
while the solid black lines represent an 8-day running average (gsm8). 
 

 
 
Figure 17:  Snow depth at BRW and OAS (dashed gray lines) and AMSR-E Ws (cm). 
The points represent daily values of W, while the solid black lines represent an 8-day 
running average. 
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Figure 18:  Root mean square error (RMSE) in Kelvin (K) for all AMSR-E temperature 
algorithms considered in this investigation.  Values are tabulated in Table 7 and Table 9. 
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Figure 19:  Mean residual (MR) in Kelvin (K) for all AMSR-E temperature algorithms 
considered in this investigation.  Values are tabulated in Table 7 and Table 9. 
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Figure 20: a) Error introduced in saturation water vapor pressure for given levels of error 
in air temperature.  b) Error introduced in VPD estimates from independent errors ( Tδ ) 
in Tmin and Tmax inputs for fixed levels of Tmin.  c) Relative error (%; 100*/VPDVPDδ ) 
introduced in VPD estimates from independent errors ( Tδ ) in Tmin and Tmax inputs for 
fixed levels of Tmin. 
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Figure 21:  Overall results from validation of AMSR-E Tmax and Tmin against site 
observations and associated statistics (upper plots).   Overall results from prediction of 
VPD from the VPD algorithm run on site observed meteorology and from prediction of 
VPD using AMSR-E Tmax and Tmin vs. site observations of VPD and associated statistics 
(lower plots).  Dashed line represents 1:1. 
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Figure 22:  Root mean square error (RMSE) in pascals (Pa) for the VPD algorithm run 
on site meteorology and the VPD algorithm with AMSR-E meteorology.  Values are 
tabulated in Table 10. 
 

-300.0

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

BRW UPAD ATQ IVO HPV NOBS OAS LTH

Site

M
R

 [P
a]

VPD site met VPD AMSRE
 

Figure 23:  Mean residual (MR) in pascals (Pa) for the VPD algorithm run on site 
meteorology and the VPD algorithm with AMSR-E meteorology.  Values are tabulated in 
Table 10. 
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Figure 24:  Relative amount of error introduced by employing the AMSR-E meteorology 
in the VPD algorithm plotted as a percentage of overall AMSR-E VPD retrieval RMSE.      
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Figure 25: Maximum annual open water fraction estimated from AMSR-E 6.9 GHz 
(2002-2004) compared to JERS-1 EASE-grid open water map and MODIS land cover 
with relevant statistics.  Symbol shapes same as fig. 13, except that closed symbols stand 
for JERS-1 and open symbols stand for MODIS.  JERS-1 data were only available for 
Alaska North Slope locations. 
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Figure 26:  Time series of thawed season open water fraction by study location derived 
from AMSR-E 6.9 GHz observations.  Gaps in the AMSR-E lines represent missing daily 
values. 
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Figure 27:  (a) Relation between AMSR-E 6.9 GHz canopy optical depth ( cτ ) and 
MODIS 8-day Leaf Area Index (LAI) means derived from 60 km x 60 km windows.  The 
lines represent linear least-squares fits for each location.  Statistics for the lines are in 
Table 11.   
 

a) b)
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Figure 28:  Time series of thawed season AMSR-E 6.9 GHz canopy optical depth ( cτ ) 
and MODIS 8-day LAI by study location.  Error bars represent one standard deviation 
from the mean 8-day LAI within 60 km x 60 km windows.  Gaps in the AMSR-E lines 
represent missing daily values. 
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Figure 29:  Time series of thawed season NASA L3 soil moisture algorithm w  
parameter by study location.  The w  parameter contains information on both vegetation 
biomass and open water fraction combined. 
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Figure 30:  Scatterplots of model (API, BGC) and AMSR-E soil moisture algorithm (L3, 
LSW) results vs. site observed soil moisture and API (all in % saturation) by study 
location.  Composites of 8-day means are displayed to improve visualization.  The 
associated statistics for the daily values are shown in Tables 12a-d.   Dashed lines 
represent 1:1 for each panel. 
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Figure 31:  Time series of thawed season model (API, BGC), AMSR-E soil moisture 
algorithm (L3, LSW) results, and site observed soil moisture by location and year for the 
observation period (June 19, 2002 to Dec. 31, 2004).  Plots depict growing season 
differences and time series correspondence between locations down each column and 
across time within a site across each row. 
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Figure 32:  Histograms of soil moisture across locations where the AMSR-E algorithms 
showed correspondence to both site observed soil moisture (< 8 cm) and API (LTH, 
OAS, and HPV).     
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APPENDICIES 
 
Appendix A  Symbol List and Description 

Site Observation Symbols 

Symbol Units Description 
   
Tsoil [K] or [°C] Observed soil temperature (0-5 cm depth) 
T [K] or [°C] Air temperature (2 m height) 
Tmin [K] or [°C] Daily minimum air (2 m height) 
Tmax [K] or [°C] Daily maximum air temperature (2 m height) 
Tam [K] or [°C] Air temperature at Aqua descending overpass time 
Tdew [C] Dew point temperature 
ea [Pa] Partial pressure of water vapor in air 
es [Pa] Partial pressure of water vapor in saturated air 
VPD [Pa] Vapor pressure deficit 

VPDδ  [Pa] Error in vapor pressure deficit estimate 
LAI [m2 m-2] One-sided leaf area index 
mv [m3 m-3] Soil volumetric moisture content 
P [cm] Daily precipitation 

lγ   API model water loss coefficient 
 

Brightness Temperature Symbols 

Symbol Units Description 
   
Tb [K] Brightness temperature (generic) 
Tbland [K] Brightness temperature of land fraction 
Tbwater [K] Brightness temperature of water fraction 
Tbp [K] Brightness temperature (for polarization p) 
Tbv [K] Brightness temperature (V-polarization) 
Tbh [K] Brightness temperature (H-polarization) 
Ts [K] or [°C] Retrieved soil near-surface temperature  

Tδ  [K] Error in temperature estimate 
 

Emissivities and Reflectivity Symbols 

Symbol Units Description 
   
ep  Emissivity (polarization p) 
epland  Emissivity land fraction 
epwater  Emissivity water fraction 
esp  Soil surface emissivity (polarization p) 
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ev  Emissivity (V-polarization) 
eh  Emissivity (H-polarization) 
ev

*  Effective emissivity (V-polarization) 
eh

*  Effective emissivity (H-polarization) 
rp  Reflectivity (polarization p) 
rop  Smooth surface reflectivity (polarization p) 
roq  Smooth surface reflectivity (orthogonal polarization q) 
rsp  Soil surface reflectivity (polarization p) 
rsh,corr  Smooth soil land-fraction noise-corrected reflectivity 
rv  Reflectivity (V-polarization) 
rh  Reflectivity (H-polarization) 

 

Empirical Algorithm Index and Parameter Symbols 

Symbol Units Description 
   
ζ   Normalized difference polarization ratio 

interpmin,ζ   Monthly minimum normalized difference polarization ratio 
β   Regression parameters 
α   Regression parameters 
w   L3 algorithm baseline parameter 
a  Slope for thawed season eh and ev relation 
b  Intercept for thawed season eh and ev relation 
asn  Slope for frozen season eh and ev relation 
bsn  Intercept for frozen season eh and ev relation 
â   Slope estimate for eh and ev relation 
b̂   Intercept estimate for eh and ev  relation 
aδ   Uncertainty in estimated slope 

 

Radiative Transfer and Process-based Algorithm symbols 

Symbol Units Description 
   

rε   Complex dielectric constant (Relative to a vacuum) 
'rε   Real part of the complex dielectric constant 
''rε   Imaginary part of the complex dielectric constant 

Q  Roughness model parameter 
h  Roughness model parameter 

pω   Vegetation single scattering albedo 
cτ   Canopy optical depth (or opacity) 

bc  Canopy absorption loss factor 
θ   Incidence angle relative to nadir 
Wc [kg m-2] Vegetation water content 

)( fα   Combined vegetation/roughness loss parameter 
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g [kg m-2] Vegetation water content equivalent 
γ   Empirical scattering parameter 
Cf  Weighted least-squares cost (or objective) function 
σ   Cost function weight 

snω   Snow single scattering albedo 
snτ   Snow optical depth (or opacity) 
snb   Snow absorption loss factor 

Ws [cm] Snow-water depth equivalent  
λ  [cm] Free space wavelength  
f [GHz] Frequency 
fw  Open water fraction 

aτ   Atmospheric optical depth (or opacity) 
Tu [K] Upwelling atmospheric brightness temperature 
Td [K] Downwelling atmospheric brightness temperature 
Tbp,surf [K] Brightness temperature at Earth's surface 
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