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Ecological Applications, 24(5), 2014, pp. 1057–1069
� 2014 by the Ecological Society of America

Can fire atlas data improve species distribution model projections?

SHAWN M. CRIMMINS,1,4 SOLOMON Z. DOBROWSKI,1 ALISON R. MYNSBERGE,1 AND HUGH D. SAFFORD
2,3

1Department of Forest Management, College of Forestry and Conservation, University of Montana, Missoula, Montana 59812 USA
2USDA Forest Service, Pacific Southwest Region, Vallejo, California 94592 USA

3Department of Environmental Science and Policy, University of California, Davis, California 95616 USA

Abstract. Correlative species distribution models (SDMs) are widely used in studies of
climate change impacts, yet are often criticized for failing to incorporate disturbance processes
that can influence species distributions. Here we use two temporally independent data sets of
vascular plant distributions, climate data, and fire atlas data to examine the influence of
disturbance history on SDM projection accuracy through time in the mountain ranges of
California, USA. We used hierarchical partitioning to examine the influence of fire occurrence
on the distribution of 144 vascular plant species and built a suite of SDMs to examine how the
inclusion of fire-related predictors (fire occurrence and departure from historical fire return
intervals) affects SDM projection accuracy. Fire occurrence provided the least explanatory
power among predictor variables for predicting species’ distributions, but provided improved
explanatory power for species whose regeneration is tied closely to fire. A measure of the
departure from historic fire return interval had greater explanatory power for calibrating
modern SDMs than fire occurrence. This variable did not improve internal model accuracy for
most species, although it did provide marginal improvement to models for species adapted to
high-frequency fire regimes. Fire occurrence and fire return interval departure were strongly
related to the climatic covariates used in SDM development, suggesting that improvements in
model accuracy may not be expected due to limited additional explanatory power. Our results
suggest that the inclusion of coarse-scale measures of disturbance in SDMs may not be
necessary to predict species distributions under climate change, particularly for disturbance
processes that are largely mediated by climate.

Key words: California, USA; climate change; disturbance; fire; fire return interval; niche; species
distribution model; transferability; vascular plant species.

INTRODUCTION

Understanding the factors that determine biogeo-

graphic patterns has been a central tenet of ecological

studies for decades (Grinnell 1917). Although early

efforts to describe the relationships between species

distributions and environmental factors were largely

qualitative, ecologists today employ a wide variety of

techniques for evaluating and describing these patterns

(Elith and Leathwick 2009). In recent decades, species

distribution models (SDMs) have become widely imple-

mented for the study and description of biogeographic

patterns. These models use observed species occurrences

and spatially explicit environmental data to build

probabilistic models of suitable habitat across the

landscape (Austin 2002). Today these models are widely

applied to a variety of topics, including invasive species

biology (Urban et al. 2007), conservation planning

(Araújo et al. 2011), and tests of ecological theory

(Broennimann et al. 2007). However, perhaps the most

common application of SDMs is in predicting the effects

of climate change on species distributions (Thuiller

2004). As the availability of species distribution and

climate data continues to increase, it is likely that these

models will continue to be widely used in ecological

studies.

Although commonly used among ecologists, SDMs

are also the subject of some criticism (Hampe 2004).

This criticism focuses primarily on the failure of

correlative SDMs to account for dynamic processes

such as dispersal, biotic interactions, or disturbance

(Austin 2002, Pearson and Dawson 2003, Hampe 2004).

Because the results of SDMs are often used to guide

conservation planning or climate change mitigation

efforts, it is not surprising that substantial efforts have

been made to understand the factors affecting SDM

performance (Araújo and Luoto 2007, Thuiller et al.

2008). Yet despite these criticisms, SDMs are still

considered to be an appropriate tool for many ecological

studies (Pearson and Dawson 2003). For example,

SDMs have been used to identify previously undiscov-

ered locations for rare species (Williams et al. 2009), to

understand the dynamics of biological invasions (Broen-

nimann et al. 2007), and to aid in conservation planning

efforts (Wilson et al. 2005). Thus it is clear that SDMs

have great potential for applied ecological investigations
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and that additional research into factors affecting their

performance is warranted.

One criticism that could limit the predictive accuracy

of SDMs, and one whose effects have rarely been

investigated, is that they typically fail to incorporate

disturbance processes that can strongly influence bio-

geographic patterns (Austin 2002). It has been suggested

that disturbance can disrupt the relationship between

species occurrence and environmental factors (Cassini

2011) and that accounting for such processes is critical

for the field of conservation biogeography (Franklin

2010). Fire is one such disturbance that is often strongly

related to the spatial patterns of vascular plants on the

landscape (Franklin et al. 2004). In systems where fire

represents the dominant natural disturbance process,

such as in many of the mountain ranges of California,

fire differentially affects the survival and recruitment of

individual species, with some succumbing to fire-induced

mortality while others require the occurrence of fire to

facilitate germination (Hickman 1993). Fire occurrence

has also been linked to patterns of vegetation commu-

nity shifts in portions of California (Callaway and Davis

1993), further indicating its influence on plant commu-

nities. There is abundant indirect evidence from studies

in regions with mediterranean climates, such as Cal-

ifornia, to suggest that metrics of fire regimes could

influence SDM predictions. For example, previous

studies have shown that species-specific adaptation to

fire is strongly related to SDM accuracy when using

internally validated (i.e., within a single time period) or

temporally independent data (Syphard and Franklin

2010, Dobrowski et al. 2011b). Similarly, simulations of

potential vegetation indicate that fire occurrence strong-

ly influences broadscale vegetation distribution and

structure in mediterranean climates and across the globe

(Bond et al. 2003, 2005). However, in one of the few

studies to empirically assess the influence of fire-related

covariates on SDMs, Tucker et al. (2012) found that the

inclusion of fire-related covariates in SDMs provided

relatively little additional explanatory power for species

occurrence in plant communities in South Africa, a

mediterranean climate region with strong ecological and

evolutionary impacts of fire.

Metrics of fire occurrence may act as proxies of

successional trajectories and thus prove useful in

predicting species distributions across the landscape.

However, a potential confounding factor when consid-

ering the occurrence of fire as a covariate in SDMs is

that in many regions, the current fire regime differs

substantially from the historical fire regime. In regions

with altered fire regimes, contemporary occurrence of

fire is likely not representative of the long-term fire

conditions under which local species evolved. This

means that, especially for species with distributions

tightly coupled to historical patterns in fire occurrence,

current fire regimes may overlap only the periphery of,

or be entirely beyond, the fundamental niche of these

species (i.e., Hutchinson’s [1957] ‘‘n-dimensional hyper-

volume’’). This issue may be exacerbated by the use of

observational data, which rely on models of the realized
niche. Because SDMs assume that species are at

equilibrium with their environments, such departures
from long-term disturbance dynamics may strain the

ability of SDMs to account for disturbance processes.
These departures in fire regime can be the result of
change in climatic factors influencing fire occurrence

and/or changes in anthropogenic influences on the fire
regime, toward either longer or shorter return intervals

(Whitlock et al. 2003), yet it is largely unknown as to
how these departures may affect SDMs. For example,

California has experienced large changes in fire regime,
including ignition rates, fire frequency, and area burned,

resulting from anthropogenic activities (Syphard et al.
2007). Thus in some systems, it is reasonable to assume

that incorporating departure from historical fire regimes
into SDMs may prove more useful than incorporating

contemporary fire occurrence.
Despite previous research efforts and the extensive

literature debating the utility of correlative SDMs, to
date no studies have addressed the following basic

question: Does including covariates describing distur-
bance patterns improve SDM projections under climate

change? No work has been done to address this question
directly, and what little related work has been done
using empirical data has focused on a single time period,

making inferences related to future climate projections
impossible. Previous studies investigating species’ re-

sponse to fire have provided ancillary evidence to
suggest that the inclusion of fire as a predictor in

SDM development could improve projections (Dobrow-
ski et al. 2011b), but a direct assessment of this is still

lacking. Thus we have little information on how the
inclusion of fire-related covariates influences SDM

projections through time. We would expect that the
inclusion of fire occurrence would provide additional

power to identify occurrences of species that require fire
for germination. Conversely, for species that are

maladapted to fire we might expect the inclusion of fire
occurrence as a covariate to improve our ability to

identify absences, as fire may lead to mortality for such
species. Thus our objectives are to (1) quantify the
relative influence of fire occurrence as a covariate in

climatic envelope models of vascular plant distributions,
(2) quantify the relative influence of a measure of

departure from long-term fire frequency as a covariate,
and (3) determine if the inclusion of either variable as an

additional covariate improves the projection accuracy of
SDMs through time.

METHODS

Study area

Our study area encompasses the entire state of
California, although the majority of our data comes
from the mountainous regions of the state (Fig. 1). This

area is characterized by less anthropogenic land use than
other parts of the state, such as the agriculturally

SHAWN M. CRIMMINS ET AL.1058 Ecological Applications
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dominated central valley. This region has experienced

substantial and spatially variable changes in climate and

hydrology and contains major elevational, latitudinal,

and longitudinal gradients (Crimmins et al. 2011,

Dobrowski et al. 2011a). The region has been identified

as a global biodiversity hotspot, and predicting the

effects of climate change on the region’s endemic flora is

of great conservation concern (Loarie et al. 2008). There

is evidence to suggest that species distributions within

this region have shifted as a result of recent climate

change (Tingley et al. 2009, Crimmins et al. 2011).

Additionally, fire represents arguably the most impor-

tant natural disturbance process to plant species in this

region (Fig. 1), with more than 65 000 km2 burned

(including areas with multiple fires) in the state during

our two primary study periods. Vegetation communities

in California have adapted to vastly different fire

regimes, with lower montane forests adapted to high-

frequency but low-intensity fires while many chaparral

communities are adapted to lower frequency, high-

intensity fires (Sugihara et al. 2006, Safford and Van de

Water 2013). Additionally, both fire suppression and

increased human ignitions have greatly altered the

current fire regimes across most of the state, resulting

in divergent patterns of change in fire return intervals

(Safford and Van de Water 2013).

Species data

We used two temporally independent data sets of

vascular plant species distributions from our study area

FIG. 1. Map of study area in California, USA, showing fire perimeters (orange) and vegetation survey locations (yellow) from
historical (1905–1934) and modern (1975–2004) time periods.
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to develop and test species distribution models (SDMs),

both of which were statewide in coverage. The first data

set is a collection of ;14 000 survey locations collected

in the 1930s as part of the U.S. Forest Service’s

Vegetation Type Map (VTM) Project (Wieslander

1935a, b). VTM plots were 800 m2 in size, and plot

locations have been digitized and georeferenced with an

accuracy of 6200 m (Kelly et al. 2005). The second data

set represented ;33 000 survey locations compiled from

a variety of sources that have been collected since 2000.

Further details about these inventories are provided in

Crimmins et al. (2011) and Dobrowski et al. (2011b).

Hereafter we refer to these as ‘‘historical’’ and ‘‘modern’’

data. For both data sets, survey locations were included

only if they were far enough apart to occur in different

climate grid cells. We extracted species presence–absence

data from both data sets for a suite of tree and shrub

species that were sufficiently represented (�30 occur-

rences) in each data set. This left us with 144 species for

which we were able to build and evaluate SDMs. The

number of occurrences per species averaged 402 (range

30–3044) in our historical data and 1161 (range 37–

10 940) in our modern data.

We categorized species by their adaptation to fire, the

primary natural disturbance agent in our study area. We

used published studies of species’ ecology and expert

opinion to assign each species to one of three adaptation

levels: (1) fire evaders, (2) fire resisters, and (3) fire

endurers and avoiders (Agee 1998; we refer to group 3 as

‘‘avoiders’’ throughout). Fire evaders are species that

exhibit regeneration syndromes that are thought to have

evolved in response to fire, including fire obligate

seeding and serotiny; these are mostly species adapted

to high-intensity fire regimes, where the adult plant is

often killed. Fire resisters are species that tend to survive

fire through adaptations conferring resistance to low- or

moderate-intensity fires, such as thick bark or self-

pruning of lower branches; resisters do not possess

specialized regeneration syndromes tied to fire, and they

tend to be rare or absent in areas characterized by high-

intensity fires. Fire endurers are resprouting species

whose aboveground parts are usually killed by

moderate- or high-intensity fire; the ability to resprout

is considered a generalized adaptation to a variety of

disturbances that remove or consume aboveground

biomass (Bond and van Wilgen 1996). Fire avoiders

are species without any adaptations to fire or similar

disturbances; these species are rare in mediterranean

climate regions like California. In the fire evader group,

we included species that exhibit both fire-stimulated

germination and postfire resprouting (‘‘facultative’’

species), and in the resisters group we included fire-

resistant species that sprout (e.g., Quercus spp.) or not

(e.g., Pinus spp.).

Climate and fire data

We developed a suite of four climatic predictor

variables that we hypothesized would exhibit direct

influence on species distributions. We used 800-m

resolution climate data from two time periods repre-

senting ;30-year time frames prior to vegetation data

collection (1906–1935, 1976–2005). We used two cli-
matic variables from the Parameter-elevation Regres-

sion on Independent Slopes Model (PRISM; Daly et al.

2008) data set, maximum temperature and minimum

temperature. We also used two hydrologic variables that

have been shown both theoretically and empirically to
affect vascular plant distributions: actual evapotranspi-

ration and annual climatic water deficit (Stephenson

1990, 1998). These variables were estimated at a monthly

time-step and then summed within each year and

averaged across the 30-year periods to represent average
annual conditions for the entire time period. The

hydrologic variables were developed using a modified

climatic water balance model (Lutz et al. 2010) that

accounts for atmospheric demand, snowmelt, and soil

moisture storage on a monthly time step. Climate and
hydrologic variables were available at a nationwide level

and clipped to our study region. For additional

information on hydrologic data see Dobrowski et al.

(2013). Fire perimeters were acquired from the Cal-

ifornia Department of Forestry and Fire Protection’s

Fire and Resource Assessment Program (FRAP; avail-
able online).5 This database contains mapped fire

perimeters for most fires .0.04 km2 dating back to

1878 within the entire state of California. The database

is not comprehensive, as it does not include most small

fires or many on private lands. However, because most
of our vegetation survey locations were from publicly

owned lands, and because there are few examples of

more accurate or comprehensive fire atlas data available,

we felt the use of these data were justified. For each

vegetation survey location, we determined if a fire
perimeter from the same 30-year time periods used in

our climate summaries overlapped the survey location.

We also tabulated the total number of fire occurrences at

each sampling location during the 30-year time periods

and used this value as a covariate in SDMs. However,
these results did not differ from those when including

simple binary occurrence of fire (Appendix A). To

evaluate the effects of departure from historical fire

regime on SDMs, we used a recently developed data set

on the departure in fire return interval between the 20th-
century and pre-European settlement conditions for all

national forests in California (Safford and Van de Water

2013; U.S. Forest Service, Pacific Southwest Region;

available online).6 These data cover the 18 U.S. Forest

Service (USFS) National Forests in California and all
adjacent lands and quantify the extent, in percent, to

which contemporary fires (since 1908) are burning at

frequencies similar to those prior to European settle-

ment. These data range from�100 to 100, with negative

values representing current return intervals that are

5 http://frap.cdf.ca.gov
6 http://www.fs.fed.us/r5/rsl/clearinghouse/r5gis/frid/
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shorter than presettlement intervals, and positive values

representing intervals that are longer than presettlement

intervals (Appendix C; see Safford and Van de Water

[2013] for more details). This represented our only

source of data that was not statewide in extent. From

these data we extracted the percent departure in mean

fire return interval (FRID) for all modern survey

locations that occurred on USFS and adjacent lands.

Because these data did not cover the entire state of

California, analyses based on FRID were conducted

using a subset (n¼ 116) of the 144 species for which we

had sufficient occurrence data within the area covered

by the FRID maps.

Hierarchical partitioning

We evaluated the influence of covariates, including

fire, on explained deviance in species distributions using

hierarchical partitioning (Chevan and Sutherland 1991).

Hierarchical partitioning is an approach that quantifies

the contribution of a given explanatory variable to the

explanation of a dependent variable, in our case species

presence or absence. Importantly, it allows for the

contribution to be partitioned into the component that

is shared jointly with other explanatory variables and

the individual component that is unique to that

predictor. The independent contribution of the variable

is calculated by quantifying the effect of the variable in

all possible models that can be constructed from the

entire set of explanatory variables, while the joint

contribution is that contribution that is shared among

explanatory variables. We conducted hierarchical parti-

tioning using the hier.part package in the R program-

ming language (R Development Core Team 2011). We

used generalized linear models (GLMs) with a binomial

distribution and calculated the contribution of each

explanatory variable to goodness-of-fit, using log-

likelihoods as our measure of fit. We modeled each

species separately in each of the two time periods when

including fire occurrence as a covariate and in the

modern time period when including FRID. We com-

pared explanatory power for each variable between time

periods using z tests.

Species distribution models

Although our hierarchical partitioning allows us to

decompose the influence of individual covariates on

measures of model fit, it does little to describe how

incorporation of new covariates affects actual prediction

accuracy of SDMs. Because we sought to explore the

influence of fire on various classes of SDMs, we used a

suite of different model algorithms to build our

predictive models. First, we developed GLMs of species

presence–absence using logistic regression. We used an

all-subsets stepwise variable selection procedure based

on minimization of Akaike’s information criterion

(AIC) scores (Burnham and Anderson 2002). Using

this procedure, each variable could be dropped or fit as a

linear, second-order, or third-order polynomial. Second,

we developed generalized additive models (GAMs) as an

example of a semiparametric regression approach

(Hastie and Tibshirani 1990). We again used a stepwise

variable selection procedure based on AIC scores where

each variable could be dropped, fit as a linear term, or fit

as a cubic spline with three degrees of freedom. Third,

we developed boosted regression trees as an example of

a relatively new machine-learning approach (De’ath

2007). Boosted regression tree models were built using

2000 trees with a shrinkage parameter of 0.01, a 0.5 bag

fraction, and an interaction depth of 3 (Elith et al. 2008).

We derived out-of-bag estimates of the optimal number

of boosting iterations, which we then used to predict

probability of occurrence. Finally, we developed ran-

dom forest models as another example from the

machine-learning community (Breiman 2001, Cutler et

al. 2007). Random forest models were developed using

independent bootstrap samples to grow 750 trees for

each species (Cutler et al. 2007). For each species, the

probability of occurrence was determined as the

proportion of presence votes from the 750 trees. We

built one set of models using only our four climatic

variables, and one set of models that also included fire

occurrence or FRID as a predictor in addition to

climatic variables. We developed models using 75% of

the historical data and tested the models on the

remaining 25% of the historical data and all of the

modern data. We refer to results from tests using the

withheld 25% of the historical data as internal evalua-

tions, and results using data from the modern time

frame as independent evaluations. Because of the

temporal scale of our FRID data, we were not able to

develop models in the historical time period using these

data and thus could not evaluate their effects on model

projections across time (i.e., independent evaluations).

However, we were able to evaluate the influence of

FRID on internal evaluations in our modern data using

a randomly selected 75% of the modern data to build

models and testing it on the remaining 25%. Because

these data did not cover our entire study area, we were

able to conduct these evaluations only for a subset (n¼
116) of our overall group of species.

We evaluated SDMs using multiple criteria. First, we

used the area under the receiver operating characteristic

curve (AUC) as a threshold independent measure of

SDM accuracy (Fielding and Bell 1997). Area under the

curve is a commonly used metric for describing SDM

accuracy (Elith et al. 2006) because it avoids the

somewhat arbitrary issue of choosing a prediction

threshold. However, it has been suggested that AUC

may be a misleading measure of SDM accuracy (Lobo et

al. 2008). Therefore, we also chose to use binary

classifications of species presence or absence and

confusion matrices to assess model accuracy. We used

the sensitivity–specificity equality approach to select our

prediction thresholds (Cantor et al. 1999). This ap-

proach places equal weight on sensitivity (proportion of

occurrences correctly classified) and specificity (propor-

July 2014 1061FIRE ATLAS DATA AND NICHE MODELS



tion of absences correctly classified) and performs well

when compared to other commonly used threshold

selection criteria (Liu et al. 2005). We converted our

predicted probabilities of occurrence into binary pres-

ence–absence predictions for each species at each

sampling location and assigned each prediction one of

the four possible entries into a confusion matrix. We

expressed false-positive (FP; errors of commission) and

false-negative (FN; errors of omission) error rates as the

proportion of true absences or presences that were

incorrectly classified. These correspond to 1 minus

sensitivity and 1 minus specificity for FP and FN,

respectively. We quantified the effect of fire on SDM

projection accuracy by calculating the change in each

accuracy metric (AUC, FP rate, FN rate) when going

from a model without fire as a predictor to one including

fire as a predictor using both internal and external model

evaluations. Because previous research has indicated

that species’ response to fire can influence SDM

projection accuracy (Dobrowski et al. 2011b), we

summarized results from hierarchical partitioning and

SDM evaluations within each of the three fire response

groups. We compared accuracy metrics between models

with and without fire occurrence or FRID using paired t

tests.

RESULTS

Hierarchical partitioning

In general, the occurrence of fire provided little

explanatory power relative to the climatic variables used

in species distribution models (SDMs). When examined

across all 144 species, the joint and individual contribu-
tions of fire occurrence to the log-likelihood were the

lowest of all explanatory variables, a pattern that was

evident regardless of time period (Fig. 2). The individual

explanatory power of fire occurrence was similar

between time periods (P¼ 0.99), in each case accounting
for ,6% of the total variation explained by the model.

The patterns in explanatory power among other

predictors differed between time periods but were

consistently greater than fire (Fig. 2). Patterns of

explanatory power differed when examined within
individual fire adaptation groups. For fire avoiders

and resisters, fire occurrence yielded the least explana-

tory power in either time period (Fig. 2). For fire

evaders, the occurrence of fire provided the least

explanatory power in the historical time period, but
the third strongest in the modern time period, surpassing

the explanatory power of actual evapotranspiration and

maximum temperature (Fig. 2). For all fire adaptation

groups in both time periods, the individual contribution

of fire occurrence amounted to ,10% of the total

FIG. 2. Stacked bar plots of joint (light gray) and individual (dark gray) contributions (proportion of total log-likelihood) of
predictors from hierarchical partitioning. Models were calibrated with historical (1905–1934) and modern (1975–2004) data for all
species and within fire adaptation groups. Fire category represents binary fire occurrence. Avoiders are species with no adaptations
to fire, evaders are species adapted to high-intensity fire regimes, and resisters are species that survive fires but exhibit no specialized
regeneration strategy. All species are vascular plants. Abbreviations are as follows: Max T, maximum temperature; Min T,
minimum temperature; AET, actual evapotranspiration; Def, climatic water deficit; Fire, binary fire occurrence.
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explanatory power. Patterns of explanatory power for

other variables differed between time periods within

each of the fire adaptation groups, with temperature-

related variables showing a general increase in predictive

power while hydrologic variables showed a general

decrease (Fig. 2).

Compared to fire occurrence, fire interval departure

did offer additional explanatory power, with an

individual contribution to the total explained variability

of ;10% when examined across all species. However, as

with fire occurrence, this was the lowest among all

predictors (Fig. 3). Patterns of explanatory power for

the avoiders and evaders groups were similar to those

found when using fire occurrence, with the explanatory

power of departure in mean fire return interval (FRID)

exceeding that of AET and maximum temperature for

the evaders while retaining the lowest explanatory power

among the avoiders. For the resisters, FRID yielded the

second highest individual contribution to total model

likelihood, explaining ;16% of the total variation in

species occurrence.

Species distribution model accuracy

Our models that excluded fire occurrence performed

well when evaluated internally, with an average area

under the curve (AUC) of 0.91 across all five model

algorithms (Table 1). When validated with contempo-

rary data, average AUC of models excluding fire

occurrence dropped to 0.80. The random forest model

exhibited the largest decrease in AUC when projected

into the modern time period (Table 1). False-positive

(FP) and false-negative (FN) error rates both increased

when SDMs were projected into the future, with FP

rates increasing to a larger degree than FN rates (Table

1).

Because our results were qualitatively similar across

SDM algorithms (Appendix B), hereafter we present

results only from our generalized additive models unless

otherwise noted. When evaluated internally, models

including fire occurrence yielded small but nonsignifi-

cant (P . 0.1) increases in overall model accuracy

compared to models excluding fire across all 144 species

(Table 1). Changes in accuracy metrics varied among

model algorithms but in each case were not significant

(Table 1). When evaluated with temporally independent

data, the inclusion of fire occurrence in SDMs had no

discernible effects on model accuracy, with no significant

changes in any accuracy metric when examined across

all 144 species (Table 1). When examined within fire

adaptation categories, the inclusion of fire generally did

FIG. 3. Stacked bar plots of joint (light gray) and individual (dark gray) contributions (proportion of total log-likelihood) of
predictors from hierarchical partitioning. Models were calibrated with modern (1975–2004) data from national forest lands in
California for a subset of species with sufficient data. Fire category represents fire return interval departure (FRID). Abbreviations
are as follows: Max T, maximum temperature; Min T, minimum temperature; AET, actual evapotranspiration; Def, climatic water
deficit; Fire, fire return interval departure (FRID).

TABLE 1. Accuracy statistics for 144 species distribution models with and without fire occurrence as a predictor variable.

Model

Fire not included Fire included as binary predictor

Internal evaluation External evaluation Internal evaluation External evaluation

AUC FP FN AUC FP FN AUC FP FN AUC FP FN

GLM 0.888 0.176 0.209 0.829 0.383 0.210 0.891 0.171 0.209 0.826 0.377 0.214
GAM 0.895 0.172 0.199 0.834 0.279 0.268 0.898 0.167 0.197 0.830 0.318 0.237
BRT 0.925 0.202 0.174 0.803 0.284 0.349 0.926 0.186 0.175 0.804 0.284 0.347
RF 0.975 0.209 0.056 0.781 0.536 0.152 0.975 0.181 0.056 0.788 0.493 0.168
CT 0.877 0.298 0.162 0.742 0.439 0.230 0.878 0.302 0.168 0.742 0.444 0.223

Note:Abbreviations are: AUC, area under curve; FP, false-positive error rate; FN, false-negative error rate; GLM, general linear
model; GAM, generalized additive model; BRT, boosted regression tree; RF, random forest; CT, classification tree.
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not improve any metric of projection accuracy (Fig. 4).

The lone exception was AUC for the evaders group,

which exhibited a small (;0.01) but significant (P ,

0.01) increase. When evaluated against temporally

independent data, the inclusion of fire occurrence

yielded no discernible changes in any accuracy metric

within any of the fire adaptation groups (Fig. 4). The

inclusion of FRID yielded no discernible changes in any

accuracy metric within any of the fire adaptation groups

(Fig. 5).

DISCUSSION

Disturbance-related variables are typically absent

from species distribution models (SDMs), a point that

has been highlighted in critical evaluations of SDMs

(Austin 2002). Although SDMs are often criticized for

this lack of disturbance processes, empirical evaluations

of the effects of failing to include disturbance history on

model accuracy are rare. We conducted our study in a

region with a dominant natural disturbance process

FIG. 4. Change in species distribution model (SDM) accuracy metrics from internal (t1 models against t1 data) and
independent (t1 models against t2 data) evaluations within fire response groups when adding fire occurrence as a binary predictor
variable in a generalized linear model (GLM). Results were similar across SDM algorithms (Appendix B). The black line in the box
represents the mean, the box width represents inner quartile range, whiskers extend 1.5 times the inner quartile range from the
mean, and outlying points represent individual species occurring outside the bounds of the whiskers. Abbreviations are: FP, false-
positive error rate; FN, false-negative error rate; AUC, area under curve.
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(fire) that is generally thought to exert a strong influence

on plant distributions (Keeley and Fotheringham 2001).

Because of this we hypothesized that fire occurrence

would be an important predictor of species distributions

and that its inclusion would improve SDM projection

accuracy. Contrary to our expectations, we found that

fire occurrence yielded very little additional explanatory

power relative to climatic variables and generally did not

improve model accuracy. We had also hypothesized that

using a metric of departure from presettlement fire

return interval as a covariate in our models might yield

additional explanatory power compared to observed fire

occurrence. Our hierarchical partitioning results con-

firmed this hypothesis, with a combined individual and

joint contribution to total explanatory power nearly

double that of fire occurrence (15% compared to 8%).

However, this increase in explanatory contribution had

little effect on metrics of model accuracy. For fire

evaders, species for which the explanatory power of fire

occurrence and departure in mean fire return interval

(FRID) exceeded that of some climatic metrics, inclu-

sion of these disturbance variables yielded small

improvements (;0.01 increase in area under the curve

[AUC]) in model projection accuracy. Thus for species

for which we have evidence to suggest that disturbance

regimes influence distributions, we were unable to

improve our predictions by accounting for disturbance.

In a related study, Tucker et al. (2012) found that

variables related to fire regime yielded little explanatory

power. Their study was conducted in the Cape Floristic

Region of South Africa, an area with similar climatic

patterns and evolutionary forces as much of our study

area, which may help explain the similarity in our

results. Tucker et al. (2012) found that the influence of

fire-related variables on SDMs was not related to

species’ adaptation to fire, which they attributed to

limited statistical power due to a small number of species

included in their analysis (n¼27). Our results are similar

to those of Tucker et al. (2012) in that we generally

found that fire occurrence yielded little explanatory

power. Although the improvement in model accuracy

for fire evaders was not statistically significant, the

pattern does match what we would expect for species

that are dependent upon fire for regeneration and is

consistent with the results of Syphard and Franklin

(2010), who found that species with pyrogenic seeding

had higher SDM accuracy than other species in southern

California. This suggests that SDMs for such species

may benefit from the inclusion of alternative fire regime

metrics not included in our study (Tucker et al. 2012).

Interestingly, nearly all species studied by Tucker et al.

(2012) were sclerophyllous shrubs typical of fynbos, a

region dominated by species adapted to high-frequency

fire regimes (i.e., fire evaders). Our suite of species

represented a much greater breadth of life forms,

suggesting that the overall lack of effect that we

observed may be present across numerous vegetation

communities. Despite coming from a single study

region, the fact that our study area comprises several

climatic/disturbance regimes also suggests that our

results may be applicable to other regions.

An explanation for the general lack of influence of fire

occurrence on species distributions is that the occurrence

of fire itself is not independent of climate. Wildfire

regimes are largely determined by climatic factors

FIG. 5. Change in SDM accuracy metrics from internal (t2
models against t2 data) evaluations for a subset of species
within fire response groups when adding FRID as a predictor
variable in a GLM. Results were similar across SDM
algorithms (Appendix B). Abbreviations and boxplot compo-
nents are as in Fig. 4.
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(Westerling et al. 2003), which likely limit their

predictive power in our models. For example, using

the same climatic variables as in our SDMs to build

logistic models (general linear models) of fire occurrence

at the vegetation survey locations yields an AUC value

of .0.78 in both time periods, suggesting that the

occurrence of fires in our study area was largely

determined by the climatic parameters used in our

SDMs. This is not entirely surprising, as previous

research has documented the strong influence of long-

term climate on the relative probability of fire occur-

rence in the western United States (Parisien et al. 2012).

Similarly, climatic models of FRID yielded relatively

high levels of predictive power (r2 ¼ 0.5) as well. Even

though FRID is driven primarily by fire suppression

efforts, the success of these efforts is dependent to a

great extent on variables related to weather and climate,

such as drought, fuel moisture, temperature, precipita-

tion, and wind patterns (Miller et al. 2012). The fact that

FRID generally yielded greater explanatory power than

fire occurrence is likely the result of departures from

environmental equilibrium. Such departures from equi-

librium would more readily be captured by our FRID

data than short-term occurrence of fire. It is entirely

possible that other disturbance processes unrelated to

long-term climate may prove useful for SDM studies,

however our results suggest that, particularly for

relatively short-term projections (;80 years), climatical-

ly mediated disturbance processes may be of limited

utility in improving SDM projections.

Although fire was prevalent in our study area, with

15.6% and 17.6% of our historical and modern plots

having at least one fire occurrence during our 30-year

time frames, respectively, our data come from a time

period in which both fire suppression and human-caused

fire ignitions were widespread. Thus the fire regimes

represented in our data do not represent the natural,

long-term fire regimes that developed in the region prior

to large-scale anthropogenic alterations of the system

and the fire regime under which many of these species

have adapted. This effect of human influence on fire

regimes is largely captured with our FRID data, which

motivated our use of these data in addition to our fire

atlas data. Because of this, it is not entirely surprising

that including contemporary fire occurrence data in our

models had little effect on their accuracy, particularly

given the limited time frame over which fire occurrence

was measured (30 years). Given that both large-scale fire

suppression and increased human ignitions are likely to

continue in the near future, our results are very pertinent

to short-term predictions of future species distributions.

The lack of influence of FRID on SDM accuracy,

despite its increased contribution to explained variation,

may be an artifact of the relatively short time frame (30

years) used in our analysis. Fire regimes, and species

adaptations to them, have developed over evolutionary

time scales. Thus altered fire regimes may have a strong

influence on species distribution, but at a time scale

greater than that of our study. Paleoecological studies

may prove informative for understanding the long-term

influence of altered disturbance regimes on species

distributions (Svenning et al. 2011). Other metrics

related to fire regime, such as time since last fire, may

prove more informative than the metrics used here.

Another issue to consider regarding the inclusion of

disturbance-related covariates in SDMs is that of large-

scale distributional patterns vs. small-scale occupancy

dynamics. Although we found that disturbance had little

effect on broadscale species distributions in this study, as

evidenced by similarities in model accuracy and in

spatial patterns of predicted probability of occurrence

(Appendix D), disturbance may be important when

considering temporal changes in site-level occupancy

patterns. For example, propagules of fire-evading

species dispersing into previously unoccupied habitat

cannot generally germinate in the absence of a fire event,

regardless of climatic suitability. Thus the actual

occurrence of a fire at a specific site can serve as the

mechanism determining whether or not a site is occupied

by a particular species, for example by resetting the

succession process, despite the site being climatically

‘‘suitable’’ habitat. This dynamic would be very impor-

tant at range margins, where transient metapopulation

dynamics that are poorly represented by correlative

SDMs may exhibit stronger influence on site-level

occupancy dynamics than long-term climatic conditions.

Thus it is important to consider issues of both temporal

and spatial scale when developing SDMs using distur-

bance-related covariates. For instance, we were not able

to differentiate between plots that had burned 30 years

prior to sampling or two years prior. If a fire occurred at

a plot near the beginning of our 30-year window, this

would allow ample time for regeneration of any species

that were killed by fire. Thus the timing of vegetation

sampling relative to that of fire occurrence may have

substantial consequences for understanding site-level

occupancy dynamics, further emphasizing the need for

additional studies focused on the effects of alternative

fire regime metrics. Our results, when using the count of

the total number of fires during our 30-year time frames

(results not shown), did not differ from those when using

binary fire occurrence, suggesting that our analysis is

likely robust to this issue. Hybrid modeling approaches

that incorporate climate envelope models with dynamic

models (e.g., Anderson et al. 2009, Conlisk et al. 2013)

may be more appropriate for incorporating dynamic

disturbance processes into predictions of species distri-

bution under climate change, as would explicit consid-

eration of other metrics related to disturbance regimes.

Additionally, explicit consideration of spatial nonstatio-

narity in the relationship between species occurrence and

fire regimes should also be considered, as small-scale

alterations to fire regimes may have direct effects on

species distributions at localized scales.

The motivation behind including disturbance-related

variables in SDMs is that they represent dynamic
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processes that can directly affect the survival and

reproduction of organisms, whereas many long-term

climatic factors commonly used in SDMs (e.g., mean

annual temperature) do not. An important yet over-

looked caveat to this discussion is that it presumes that

patterns of disturbance, both spatially and temporally,

carry information that is independent of the climate

factors used in SDM development. It is nearly impos-

sible to argue that fire does not have a direct influence on

plant distributions through its differential effects on

mortality and regeneration. Yet in some situations,

SDMs that do not include variables related to distur-

bance yield accurate predictions of species distributions

(see Table 1). Although our study area has historically

been dominated by fire as a disturbance, the inclusion of

fire-related predictors yielded no discernible improve-

ment on SDM performance. Because the disturbance

process of interest in our system is largely governed by

the same climatic parameters used in SDM develop-

ment, it may be unnecessary to include it in modeling

broadscale species distributional patterns. For other

disturbance processes that are not related to climate, the

decision of whether to include them in SDMs will

depend upon a variety of factors, including the

availability of spatially explicit disturbance data and

the accuracy of future projections of disturbance

regimes.

There are several practical limitations to including

disturbance processes into SDMs used for conservation

planning. First, it requires a detailed knowledge of the

life history requirements of the species of interest in

order to properly incorporate the disturbance process

into the model (Franklin 2010). For example, it has been

suggested that fire occurrence in fire-dominated systems

is more likely to affect demographic patterns and

abundances of vascular plants than their broadscale

distribution patterns (Tucker et al. 2012). Many species

that require the occurrence of fire for germination also

have life spans longer than the interval between our two

study periods. For these species, it seems reasonable to

assume that areas that frequently burn may support

higher densities, but that because of their longevity,

these species can occur in many areas that have not

experienced recent fire activity. This also relates to the

issue of detectability, as many of these species can lay

dormant in seed banks for extended periods of time until

fire occurrence promotes germination. Second, it re-

quires spatially explicit estimates of the disturbance

process and ideally, projections of the disturbance into

the future. For many disturbance processes such data

are difficult to attain, and projections of disturbance

processes into the future carry large uncertainty in their

predictions and are inherently difficult to validate

(Flannigan et al. 2009, Moritz et al. 2012). In the

absence of such data, it has been suggested that

modeling demographic ratios rather than simple occur-

rences in nonequilibrium environments can accurately

capture the effects of disturbance by separating its

differential effects on survival and recruitment (Cassini

2011). However, this approach requires information that

is typically unavailable in most data sets. Obviously, the

inclusion of anthropogenic disturbance processes will be

critical for building accurate SDMs in regions with a

rapidly expanding human footprint. However, our

results indicate that in certain situations, SDMs that

do not include disturbance processes can yield accurate

projections of species distributions under climate

change.
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SUPPLEMENTAL MATERIAL

Appendix A

Hierarchical partitioning and species distribution model (SDM) accuracy results when considering number of fires as an ordinal
predictor (Ecological Archives A024-061-A1).

Appendix B

Change in model accuracy metrics for alternative SDM algorithms (Ecological Archives A024-061-A2).

Appendix C

Twentieth-century fire return interval departure on public lands in California, USA (Ecological Archives A024-061-A3).

Appendix D

Predicted probability of occurrence maps in historical and modern time periods for models with and without fire occurrence for
three example species (Ecological Archives A024-061-A4).
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