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Abstract  

 

Episodes of instability and falls in the elderly represent a major public health concern. 

The lack of scientific information about the effects of age-related changes on 

neurophysiological mechanisms of postural control has limited the advance in the field of 

fall prevention and rehabilitation of balance disorders. The overall goal of this 

dissertation was to investigate the effects of aging on postural control. Considering the 

progressive non-homogeneous deterioration of aging physiological systems, a series of 

five experimental studies, with healthy young and healthy nonfaller older adults 

performing upright stance tasks, explored three main hypotheses: (1) intermuscular 

coherence analysis is able to detect signs of intermuscular synchronization at lower 

frequency bands as one of the strategies used by the Central Nervous System to control 

upright stance; (2) aging is associated with a reorganization of correlated neural inputs 

controlling postural muscles; and (3) aging is associated with changes in body sway 

behavior. The first three studies corroborated the use of intermuscular coherence analysis 

to investigate the formation of correlated neural inputs forming postural muscle synergies 

during upright stance. The fourth study revealed an age-related reorganization of the 

distribution and strength of correlated neural inputs to multiple postural muscles. Healthy 

nonfaller older adults presented stronger levels of synchronization, within 0–10 Hz, for 

three distinct muscle groups: anterior, posterior, and antagonist muscle groups. The fifth 

study investigated age-related changes on postural sway using traditional and novel 

postural indices extracted from the center of pressure coordinates. Although the 

functional base support is preserved in healthy nonfaller older adults, these seniors 

revealed a larger, faster, shakier, and more irregular pattern of body sway compared to 

healthy young adults. In addition, age-related changes on supraspinal mechanisms, spinal 

reflexes, and intrinsic mechanical properties of muscles and joints involved in postural 

control were observed by changes in both rambling and trembling components of the 

postural sway. Findings reported here provide valuable information regarding 

compensatory mechanisms adopted by healthy nonfaller older adults to control upright 

stance. Together, these findings suggest an age-related reorganization of correlated neural 

inputs controlling multiple postural muscles, accompanied by changes in body sway 

behavior. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. PROBLEM STATEMENT AND RESEARCH FOCUS 

 

The overall focus of the dissertation was the effect of natural aging on human 

postural control of upright stance. Emphasis was given to the study of body sway 

behavior and correlated neural inputs sent from the Central Nervous System (CNS) to 

multiple postural muscles to control upright stance in aged individuals. This focus 

emerged from the importance of postural control in everyday life, the possible effects of 

aging on neuromuscular control, and the high incidence of falls in the elderly.  

Postural control is an imperative ability that plays a role in most daily activities. It 

is intrinsically related to an individual‟s independence, self-care, social integration, and 

quality of life. The ability to maintain a certain body posture in space is far from simple 

as it depends on a complex system performing sensorimotor integration based on neural 

signals. As the individual grows older, a series of physiological changes impact human 

postural control to the point that postural instability and balance disorders in the aging 

population are considered a major health concern. Currently, falls are the leading cause of 

fatal and non-fatal injuries in older adults, affecting approximately one third of adults 

over 65 years of age (Hausdorff et al 2001, Sleet et al 2008, CDC 2014).  

Specialists in areas of physical rehabilitation sciences recognize that, in order to 

advance the development of efficient models of prevention and intervention aiming to 

reduce episodes of instability and falls, a better comprehensive understanding of the 

neural mechanisms of postural control and the effects of aging on these mechanisms is 

needed. Therefore, the general goal of the dissertation was to identify the effects of the 

natural process of aging on organizing multiple postural muscles acting on several joints 

to control upright stance. The overall rationale behind the experimental studies reported 

here relates to the effects of the non-homogeneous functional declines observed across 

physiological systems on the resulting ability to control posture. It was hypothesized that 

such age-related changes may force the CNS to adapt its strategy to control multiple 
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muscles, resulting in further changes of body sway patterns. To test this central 

hypothesis and address the gap of knowledge regarding postural adaptations caused by 

the aging process, a series of studies was performed exploring the following research 

questions and hypotheses: 

 

- Question 1: How does the CNS organize multiple muscles to control upright 

stance? 

Hypothesis 1: Correlated neural inputs sent to a group of postural muscles 

forming muscle synergies may be one of the strategies used by the CNS to 

control upright stance. If this is the case, Intermuscular Coherence Analysis 

would be able to detect signs of intermuscular synchronization at lower 

frequency bands among postural muscles. 

- Question 2: What are the effects of the natural process of aging on the 

formation of correlated neural inputs to postural muscles in order to control 

upright stance? 

Hypothesis 2: The non-homogeneous age-related decline across physiological 

systems may lead to a reorganization of the generation and distribution of 

correlated neural inputs to control multiple postural muscles during upright 

stance.  

- Question 3: What are the effects of aging on postural sway behavior during 

upright stance? 

Hypothesis 3: Age-related changes in multiple muscle control may be detected 

by changes in postural sway behavior. Healthy nonfaller older adults may sway 

more, faster, less smoothly and with a more irregular pattern during upright 

stance than healthy young adults. 

 

The findings from this series of studies are expected to impact the scientific and 

clinical communities in the following ways. First, new knowledge will be gained on the 

mechanisms underlying postural sway behavior and multi-muscle control in older adults. 

Second, the findings produced here will aid advancements in the field of the assessment 

of balance control in older adults. It is important to emphasize that some of the studies 
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included in the dissertation were dedicated to the implementation of a variety of balance 

methods representing several dimensions of body sway characteristics that can be 

quantified via simple instrumentation. Finally, this work will assist future clinical and 

basic research work focusing on the development of more efficient interventions to 

optimize balance control in the elderly. 

 

 

1.2. ORGANIZATION OF THE DISSERTATION 

 

The dissertation is organized in eight (8) chapters.  

Chapter 1 is an introduction to the dissertation, presenting the overall research 

focus.  

Chapter 2 reviews the general literature related to human postural control and 

current literature on age-related changes to the postural control.  

Chapters 3 to 7 present five experimental studies performed during PhD training 

in a periodic article format. The first three studies (Chapters 3, 4, and 5) focused on the 

novel approach, the Intermuscular Coherence Analysis, to investigate possible 

mechanisms of multi-muscle control during upright stance. 

Chapter 3 is based on the published article Danna-dos-Santos A, Boonstra TW, 

Degani AM, Cardoso VS, Magalhães AT, Mochizuki L, Leonard CT (2014) Multi-

muscle control during bipedal stance: an EMG-EMG analysis approach. Exp Brain Res, 

232(1): 75–87. Specifically, Chapter 3 investigated the hypothesis that correlated neural 

inputs, as measured by intermuscular coherence, may be one of the mechanisms used by 

the CNS to coordinate the formation of postural muscle synergies. This hypothesis was 

investigated by analyzing the strength and distribution of correlated neural inputs to 

posterior postural muscles during upright stance. Nine healthy young participants (4 

females and 5 males, mean age = 29.2 years old, SD = 6.1) performed the task of standing 

while holding a 5 kg barbell in front of their bodies for 10 s. The activity of three postural 

muscles was recorded by surface electrodes: soleus (SOL), biceps femoris (BF), and 

lumbar erector spinae (ERE). Intermuscular coherence was estimated for three muscle 

pairs (SOL/BF, SOL/ERE, and BF/ERE). These three muscles were selected based on 



4 

 

previous reports describing them as components of a functional (synergistic) muscle 

group during bipedal stance. The experimental condition elicited significant pooled 

coherence for all three muscles within two distinct frequency bands: 0–5 and 5–20 Hz. 

The former frequency band showed stronger synchronizations for the more distal muscle 

pair (SOL/BF). The latter frequency band showed similar strength of its synchronization 

among all three postural muscles recorded and has been interpreted as a sign of a 

correlated circuitry underlying multi-muscle control. These findings corroborate the 

hypothesis of a synchronization of neural oscillations to multiple postural muscles as a 

strategy to reduce the number of variables to be controlled by the system. 

Chapter 4 expands the use of Intermuscular Coherence Analysis as a means to 

detect signs of intermuscular synchronization at lower frequency bands by including a 

larger number of postural muscles as well as a different challenging task (upright stance 

with closed eyes). This chapter is based on the published article Danna-dos-Santos A, 

Degani AM, Boonstra TW, Mochizuki L, Harney AM, Schmeckpeper MM, Tabor LC, 

Leonard CT (2015) The influence of visual information on multi-muscle control during 

quiet stance: a spectral analysis approach. Exp Brain Res, 233: 657-669. The strength and 

distribution of correlated neural inputs were computed for six postural muscles (soleus, 

biceps femoris, lumbar erector spinae, tibialis anterior, rectus femoris, and rectus 

abdominis). These muscles were selected because they are the main skeletal muscles 

involved in the maintenance of the body‟s vertical positioning. Ten healthy young adults 

(4 females and 6 males, mean age = 26.8 years old, SD = 2.7) performed two 

experimental tasks: upright bipedal stance with opened eyes and closed eyes, for 30 s 

each. Intermuscular coherence was estimated using EMG signals recorded from the six 

muscles selected. Muscle pairs included pairs formed by solely anterior muscles, solely 

posterior muscles, antagonist muscles, or mixed muscles (one posterior and one anterior, 

non-antagonist, muscles). The synchronization patterns observed between muscle pairs 

were found to be concentrated within a frequency interval of 1–10 Hz when visual 

information was available. No significant intermuscular coherence was found for mixed 

muscle pairs. In addition, the lack of visual input during unperturbed stance not only 

decreased the correlation between muscle pairs in the frequency domain, but also the 

coherence was no longer significant. These findings corroborate the use of the 
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intermuscular coherence approach to investigate the formation of muscle synergies 

during human upright stance. 

Chapter 5 advances the use of intermuscular coherence analysis as a means to 

investigate the formation of muscle synergies in older adults. In general, the presence, 

distribution, and strength of correlated neural inputs to the same three postural muscles 

studied in Chapter 3 (SOL, BF, and ERE) were explored in thirteen healthy nonfaller 

older adults (8 females and 5 males, mean age = 69.0 years old, SD = 3.4). All 

participants performed upright stance holding a 5 kg barbell in front of their bodies. 

Intermuscular coherence analysis revealed the presence of correlated neural inputs to all 

three posterior postural muscles within the frequency band of 0–10 Hz, as happened for 

young adults. However, older adults showed significant synchronization not only for the 

most distal muscle pair (SOL/BF), as was observed for young adults. Older adults also 

revealed significant synchronization for the other two muscle pairs (SOL/ERE and 

BF/ERE). In addition, intermuscular coherence estimates within the frequency band of 0-

10 Hz for the muscle pairs SOL/ERE and BF/ERE were significantly stronger in older 

adults, compared to that in young adults. These findings corroborate the use of 

Intermuscular Coherence Analysis as a sensitive method to detect the effects of aging on 

the organization and strength of neural drive to postural muscles. 

Chapters 6 investigates the effects of aging on the formation, distribution, and 

strength of correlated neural inputs forming muscle synergies during upright stance. Ten 

healthy young adults (mean age = 26.8 years old, SD = 2.7) and ten healthy nonfaller 

older adults (mean age = 68.7 years old, SD = 3.5) performed two tasks: unperturbed 

bipedal stance with open eyes and unperturbed bipedal stance with closed eyes. The 

EMG activity of six postural muscles was recorded and intermuscular coherence analyses 

were performed. Older adults presented significant levels of intermuscular coherence 

within the frequency band of 1–10 Hz, indicating the presence of correlated neural inputs 

to aging skeletal muscles responsible for controlling upright stance. Signs of 

synchronization were reported for three distinct muscle groups: “push-forward M-mode”, 

“push-back M-mode”, and antagonist group. No significant intermuscular coherence was 

found for muscle pairs formed by one anterior and one posterior non-antagonist muscles, 

as also happened for young adults. Interestingly, coherence estimates within 1 to 10 Hz 
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were stronger in older adults, compared to that in young adults. Taken together, the use of 

intermuscular coherence analysis provided new knowledge on the mechanisms 

underlying the strategies adopted by the aging CNS to control multiple postural muscles. 

The findings suggest a reorganization of correlated neural inputs forming synergistic 

muscle groups responsible to control upright stance and avoid falls. 

Considering that age-related changes on multiple postural muscles control may be 

reflected in changes in postural sway behavior, Chapter 7 investigates the effects of aging 

on postural sway using postural indices from multiple domains (spatio-temporal, 

frequency, and structural domains). Eleven healthy young volunteers (Control group, 

mean age = 27.1 years old, SD = 3.8) and fourteen healthy nonfaller older volunteers 

(Senior group, mean age = 68.8 years old, SD = 3.2) performed three upright standing 

tasks on a force platform: bipedal stance with opened eyes, bipedal stance with closed 

eyes, and body oscillation to the limits of stability. Postural indices from multiple 

domains were extracted from the center of pressure (COP) coordinates recorded by a 

force platform. The results showed that the functional base support seems to still be 

preserved in healthy nonfaller older adults. However, these individuals tended to oscillate 

more and faster in both anterior-posterior and medio-lateral directions; increase their 

medio-lateral sway frequency; present a more irregular and random body sway pattern in 

both directions; and modify both rambling and trembling components of their postural 

sway, compared to healthy young adults. When older adults were asked to close their 

eyes, they increased their body sway velocity, frequency, and irregularity in the anterior-

posterior direction. The effects of temporary visual removal on postural sway in older 

adults were also observed for the rambling component of the COP displacement in the 

anterior-posterior direction. In conclusion, the inclusion of postural indices from multiple 

domains allowed the detection of subtle changes in postural control in the first stage of 

aging (65 to 74 years old). Therefore, the use of multiple variables provides a more 

comprehensive understanding of the neural mechanisms underlying the effects of aging 

on postural control. These findings are crucial to direct efforts of health professionals to 

optimize treatment and rehabilitation of age-related postural instability. 

Chapter 8 presents a summary of conclusions, contributions to science, and 

general clinical relevance of the dissertation.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

 

Due to the consequences resulting from a fall, postural instability in the aging 

population is considered a major public health concern. Falls affect approximately one 

third of people over the age of 65 annually and are generally associated with disability, 

decreased quality of life, institutionalization, and high morbidity and mortality rates 

(Hausdorff et al 2001, Stevens et al 2006, Sleet et al 2008, Boyé et al 2014). In 2012, 2.4 

million nonfatal falls among older adults were treated in emergency care; however, this 

number is considered to underrepresent the total number of fall occurrences in United 

States (Stevens et al 2012). In addition, the elderly population has grown dramatically in 

the last century (Paige 1992). It is expected that the number of people 60 years and older 

across the world will reach 2 billion by 2050 (World Health Organization 2002).  

Despite current efforts to optimize programs and interventions aiming to reduce 

fall risk in the elderly, further understanding of the age-related changes to the neural 

mechanisms underlying human postural control is needed. This chapter presents an 

overview on human postural control followed by the current literature of the effects of the 

natural process of aging on upright postural control.  

Within the dissertation, terms such as body posture, postural sway, unperturbed 

stance, postural control, postural perturbation, postural task, center of pressure, synergy, 

and correlated neural inputs will appear several times. In order to avoid possible 

confusions, some definitions are presented here. The term “body posture” will be 

considered as the configuration of the body in space. It is important to note that this 

configuration may or may not change over time. The term “postural sway” will be used 

to denote small variations in body position when individuals are asked to maintain a 

certain posture (e.g., upright stance). The term “unperturbed stance” will be considered 

as the maintenance of the upright posture in the absence of any other motor task or 

perturbation. The term “postural control” will be referred to as the functional ability to 

control the center of pressure (COP) sway by maintaining the projection of the center of 

mass (COM) within the manageable limits of the base of support either to stay upright or 
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to recover equilibrium after perturbations or challenging postures. The term “postural 

task” will be referred to as the ability to keep the body in a certain configuration. The 

term “postural perturbation” will be considered as any external force (force generated by 

the environment and applied to any part of the body) or internal force (mechanical force 

generated by contraction of muscles or movement of one segment that propagates to 

adjacent segments) that can induce changes in the current body configuration. The term 

“Center of Pressure” (COP) will be referred to as the point of application of the ground 

reaction force to the body.  

Considering the broad use of the term “synergy” in motor control literature, 

“synergy” in the dissertation will be referred to as the task-specific organization of 

elemental variables stabilizing a particular performance variable and reducing their 

variability across repetitive trials (Latash, Scholz & Schöner, 2007, Latash 2008). In line 

with this definition, Gelfand and Tsetlin (1966) defined “functional synergies” as a fixed 

and reproducible interaction of the joints or groups of joints, organized and controlled by 

the Central Nervous System (CNS) for effective solution of a specific problem. These 

definitions are different from those often used in clinical practice, in which “synergy” 

refers to the set of muscles (or muscle groups) performing essentially the same action, 

such as the “synergistic” muscles biceps femoris, semitendinosus, and semimembranosus 

related to the knee flexion. This definition was first presented at the beginning of the last 

century by Sir Charles Sherrington (Sherrington 1910, Burke 2007) and it is purely based 

on the anatomical function of the muscles. 

The term “correlated neural inputs” (or common neural inputs) refers to a pattern 

of distribution of neural inputs coming from a common commanding element or neural 

network, which is formed by the synchronization at low frequency bands of different 

areas within the CNS . Such correlated neural inputs diverge onto alpha-motoneuron 

pools, causing rhythmic discharge among specific muscles. Therefore, skeletal muscles 

receiving correlated neural inputs will present signs of intermuscular synchronization at 

lower frequency bands. 

Other important terms used in the dissertation will be defined throughout the 

chapters. 
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2.1. HUMAN POSTURAL CONTROL  

 

Along the life span, one becomes very familiar with the ability to control the body 

to execute a great variety of daily motor tasks. For example, reaching to shake someone 

else‟s hand demands the control of the position of several body segments in time. This 

control includes not only the reaching movement of the upper extremity, but also the 

muscle activation necessary to control the vertical position of the axial skeleton and to 

counter-act the effects of gravity and internal body forces. Simple and routine postural 

tasks are generated smoothly and without a great deal of thought in healthy individuals. 

One only starts realizing how difficult and complicated it is to control posture when 

facing neuromotor deficits, such as those resulting from neurological diseases (e.g., 

Parkinsonism, stroke, and peripheral neuropathies), trauma, or aging.  

 

 

2.1.1. A Brief Historical Perspective on the Study of Postural Control 

 

Systematic investigation of mechanisms involved in human postural control 

began with experimentation on four-legged animals by Sir Charles Sherrington (Burke 

2007). In the beginning of the 20
th

 century, Sherrington used cat specimens to study 

reflexes mediated by the spinal cord and midbrain. He used a technique, now known as 

“decerebration”, to isolate the midbrain and spinal cord from higher areas within the 

Central Nervous System (e.g., cortical areas). Sherrington reported an increased 

activation of extensor muscles in all four legs and other anti-gravity muscles when 

decerebration was performed between the superior and inferior colliculi. This pattern of 

increased muscle activation was termed “rigidity”, and it sometimes allowed the animal 

to stand unsupported. The opposite result was reported when decerebration was 

accompanied by “deafferentation”, which is the disruption of the afferent information 

from sensory nerves. The resulting absence of muscle activity suggested the importance 

of afferent signals to postural control. Sherrington‟s findings suggested that the rigidity of 

extensor muscles represented the foundation of posture control. Subsequent studies 

corroborated Sherrington‟s observations. For example, Prof. Rudolf Magnus (Magnus 
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1926a,b) uncovered series of hierarchically organized reflexes in cats, varying from 

simple to more complex motor outputs depending on the site where decerebration was 

performed. The closer the decerebration was to the higher brain centers, the more 

complex the resultant motor actions were. Magnus (1926a,b) suggested that postural 

control could be achieved by a summation of reflexes. Further studies provided strong 

evidence that, despite the role of reflexes and reflex-like reactions in the maintenance of 

postural equilibrium, reflexes do not fully account for all postural control (Belen‟kiy et al 

1967, Cordo and Nashner 1982, Aruin and Latash 1996, Shiratori and Latash 2000).  

In 1889, Hughling Jackson introduced the idea that muscles are controlled in 

groups and not independently by stating that “the central nervous system knows nothing 

about muscles, it knows only movements” (Hughling Jackson 1889). Later, Nicolai 

Bernstein (Bernstein 1947,1967) advanced studies in human movement coordination and 

postural control by questioning how the brain chooses a solution from the vast number of 

seemingly equal options, emphasizing the redundancy of the human system. Bernstein‟s 

idea of several degrees of freedom for the brain to select was based on his observations 

on the work of blacksmiths. He observed that the task of hammering presented higher 

variability of shoulder, elbow, and wrist configurations than those needed for the tip of 

the hammer to hit the chisel. He suggested that motor variability allowed the joints to 

place the hammer in a similar final position by using different joint configurations. 

Bernstein‟s idea of redundant degrees of freedom as a central issue in motor control has 

been termed the Bernstein‟s Problem or Problem of Motor Redundancy (Turvey 1990). 

Following the idea of different limb configurations (degrees of freedom) achieving a 

specific motor task, Bernstein suggested that the control of human movements was 

organized hierarchically in at least four different levels: muscle tone, muscular and 

articular links, space, and motor actions. Regarding muscle coordination, Bernstein 

suggested that the complexity of controlling human posture could be partly solved by the 

formation of “postural synergies” (Bernstein 1967). He described these synergies as the 

combination of signals sent to postural muscles aimed at decreasing the number of 

variables that the CNS needs to control body equilibrium during either unperturbed 

posture, in anticipation of a voluntary movement, or in response to an external 

perturbation. 
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For decades, postural control has been studied using different perspectives and 

approaches. Biomechanical approaches have been used to investigate the mechanical 

complexity of the human body. Behavioral and neurophysiological studies have been 

performed to understand the integration of sensory information with motor responses. 

Some researchers have dedicated their efforts to proposing reliable methods to quantify 

and test Bernstein‟s hypothesis of the CNS organizing muscle synergies to decrease the 

number of variables to be manipulated (Gelfand and Latash 1998, Scholz et al 2000, 

Latash et al 2005,2007, Latash 2008, Danna-dos-Santos et al 2008).  

 

 

2.1.2. The Mechanical Challenge of the Human Upright Posture 

 

Human bipedal upright posture, defined as the configuration of the body segments 

relative to the gravitational force and the relative position among body segments at any 

given time (Zatsiorsky 1998), is inherently unstable. The mechanical challenge of the 

human upright posture is also related to the fact that the human body is not a rigid body. 

The human body has two-thirds of its mass located two-thirds of the body height above 

the ground. In addition, the human body consists of multiple linked segments (kinematic 

chain) connected to each other by muscles, tendons, ligaments, skin, and other soft 

tissues. A kinematic chain is said to be in mechanical equilibrium when all the links of 

the chain are in equilibrium (Zatsiorsky 2002). This mechanical equilibrium can be 

characterized according to its stability: if a mechanical system returns to equilibrium after 

being subjected to small disturbances, it is said to be in a stable equilibrium; whereas if 

the system departs from an equilibrium state after the application of a mechanical 

disturbance, it is said to be in an unstable equilibrium. To maintain the human body in a 

stable equilibrium while one or more body segments move, forces and torques created by 

the movement itself (internal forces) must be synchronously counteracted. It is important 

to note the complexity of the muscular system. For example, the action of a given muscle 

can stabilize one joint and destabilize another, complicating the control of multiple 

muscles acting to control movement and posture. 
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Based on this brief introduction, a complexity of mechanisms is responsible for 

controlling the upright position of the human body. The maintenance of the body 

orientation and postural equilibrium requires continual integration between perception 

and action to create corrective torques. Principles of sensorimotor integration are 

discussed in the next section.  

 

 

2.1.3. The Central Nervous System (CNS) and Postural Control 

 

Human bipedal postural control relies on a continuous and complex integration of 

sensory and neuromuscular systems. Figure 2.1 illustrates the systems involved in 

balance control. 

 

 

Figure 2.1. Contribution of different systems to balance control. 

 

 

The variety of sensory inputs from different parts of the body provides a reliable 

time-to-time neural representation of the body configuration and its relation with the 

surrounding environment (Winter 1995, Horak and McPherson 1996, Konrad et al 1999, 

Peterka 2002, Mergner et al 2003). This representation is essential for corrective 
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adjustments of body position. The primary sensory inputs (or afferent inputs) come from 

the visual, vestibular, and proprioceptive systems. The roles of visual, vestibular, and 

proprioceptive information regarding human postural control have been extensively 

studied (Roll et al 1980, Dijkstra et al 1994a, Fitzpatrick and McCloskey 1994, Kuo et al 

1998). 

The visual system uses oculomotor movements, such as smooth pursuit and 

saccadic movements, together with peripheral visual perception to provide a reference for 

verticality, head/body orientation, and body velocity relative to the visual world. Several 

studies have shown changes in the features of postural sway when the eyes are closed 

(Allum and Pfaltz 1985, Fitzpatrick et al 1992a, Simoneau et al 1992, Schumann et al 

1995). Other than the temporary removal of visual input, the manipulation of the visual 

environment has also been shown to impact postural control. Under the paradigm of the 

“moving room”, the visual environment is manipulated by either actually moving the 

room or altering the display in front of the individual to mimic motion of the visual 

environment (Lee et al 1980, Schöner 1991, Dijkstra et al 1994a,b). For example, when 

the visual environment accelerates towards the individual, he or she perceives this as a 

forward sway of their body and reacts by an actual backward sway of the body. 

The vestibular system employs the use of six semicircular canals to detect 

angular head movements, and two utricles and saccules to detect both linear head 

movements and the acceleration of gravity. Studies of the role of vestibular information 

for human postural control commonly use galvanic stimulation applied at the vestibular 

apparatus behind the ear. Such stimulation changes the firing rate of peripheral vestibular 

afferent information. Depending on the position of the individual‟s head and the polarity 

of the current, the body leans in a particular direction (Hlavacka et al 1995,1996, Coats 

and Stoltz 1969). For example, when an individual faces forward and a positive current is 

applied to the right vestibular organ, a body sway to the right is observed. When a similar 

current is applied but the head is initially positioned in rotation to the right, the whole 

body moves backward (Hlavacka and Njiokikjien 1985). An increase in the amplitude of 

the vestibular stimulation leads to an approximately linear increase of the body sway 

(Coats and Stoltz 1969). Sinusoidal stimulation results in body sway towards the positive 
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stimulus and away from the negative one, which leads to a sinusoidal sway pattern at low 

frequencies (Petersen et al 1995). 

The proprioceptive system detects the orientation and velocity of body segments 

in space and relative to each other, the muscle length, and any contact with objects and 

surfaces via sensory receptors embedded in the muscles, tendons, joint capsules, and skin. 

Some examples of sensory receptors are the muscle spindles, golgi tendon receptors, and 

skin receptors. The muscle spindles are located among striated fibers of skeletal muscles. 

Muscle-tendon vibration has been used as a powerful stimulus for muscle spindles (Ia 

afferents) and a way to better understand their role in controlling upright stance. Lackner 

and Levine (1979) reported a linear correspondence between the muscle spindle 

discharge and the stimulus at frequencies below 100 Hz. Muscle vibration generates a 

tonic contraction (also called the tonic vibration reflex) a few seconds after the beginning 

of the vibration. This contraction increases gradually and, then, stays at a relatively 

constant level until few seconds after the stimulus is turned off. The Golgi Tendon Organ 

(GTO), a stretch receptor sensitive to tendon force, is located close to the junction 

between the tendon and extrafusal muscle fibers. GTOs generate spinal reflexes and 

supraspinal responses, which helps controlling muscle contraction (Stephens et al 1975, 

Moore 1984, Latash and Zatsiorsky 2016). The skin receptors represent another 

important source of sensory information. Studies have shown that a light touch by a 

fingertip at mechanically non-supportive force levels (< 1N) greatly attenuates postural 

sway during unperturbed stance (Holden et al 1994, Jeka and Lackner 1994). It was 

suggested that the higher receptor density present in the index finger was able to detect 

subtle changes in force level and direction. This sensory information contributed to the 

decrease in body sway (Holden et al 1994, Jeka and Lackner 1994). The effects of touch 

were also observed in blind individuals and those with vestibular loss (Jeka et al 1996, 

Lackner et al 1999).   

Interestingly, the interaction between vision and touch was investigated by Jeka et 

al (2000). They manipulated both the visual field and finger touch. Their results 

suggested that the sensory integration of visual and cutaneous information behaved in an 

approximately linear fashion. In another study, the relation between cutaneous and 

muscle spindle information was investigated by asking participants to stand on Romberg 
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position (feet touching each other in parallel arrangement) with and without a light finger 

touch to a stable surface, while their fibularis longus and brevis tendons were vibrated 

(Lackner et al 2000). The results indicated that the finger touch was sufficient to suppress 

the destabilizing effects of the vibration. 

Based on all information coming from the aforementioned sensory systems, the 

CNS integrates redundant but divergent inputs simultaneously to influence and alter 

sensory reweighting. During the dynamic process, the system scales the relative 

importance of each sensory input on postural control. Subsequently, the CNS sends motor 

outputs to postural muscles spanning across several joints of the axial skeleton (Horak 

and McPherson 1996, Jeka et al 2000, Teasdale and Simoneau 2001). 

Considering the importance of sensorimotor integration, changes in sensory input 

or motor output, such as those associated with aging, are detrimental to postural control.  

Numerous studies over the years have examined which brain structures process 

information related to the control of human posture. For example, it is suggested that not 

only a few but a great number of supraspinal pathways are fundamentally involved in the 

processes of posture control; to name a few, the cerebellum, basal ganglia, thalamus, 

brainstem, and cortex of the hemispheres (Diener et al 1984, Bazalgette et al 1986, 

Viallet et al 1987, Bouisset and Zattara 1990, Horak and Diener 1994, Karnath 2000a,b, 

Slobounov 2006a). The supraspinal contributions to the control of human posture have 

been investigated in behavioral studies and clinical observations relating changes in body 

behavior to specific injured areas and areas usually targeted by pathologies (Diener et al 

1984, Bazalgette et al 1986, Viallet et al 1987, Bouisset and Zattara 1990, Horak and 

Diener 1994, Nakamura et al 1997, Slobounov et al 2006b,2008).  

Individuals with cerebellar disorders typically show increased anterior-posterior 

postural sway during unperturbed stance, and exaggerated postural responses (such as 

increased activation of muscles acting at the ankle joints) to unexpected perturbations 

(Diener et al 1984, Horak and Diener 1994). Neurophysiological abnormalities of the 

basal ganglia also affect postural behavior (Bazalgette et al 1986, Viallet et al 1987, 

Bouisset and Zattara 1990). Patients with Parkinson‟s disease commonly present smaller 

amplitude of anticipatory postural adjustments (APAs) in postural muscles, anticipatory 

cocontraction of antagonist muscles, and impaired ability to voluntarily modulate 
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preprogrammed postural reactions during postural perturbations (Bazalgette et al 1986, 

Viallet et al 1987, Bouisset and Zattara 1990). Postural control after a stroke may also 

result in a series of impairments since different areas of the brain may be affected. 

Although the consequences of cortical stroke vary among individuals, a general clinical 

finding is hemiparesis (i.e., the decrease of muscle strength and impairment on the ability 

to move and control joints in certain segments on the side of the body contra-lateral to the 

side of the brain lesion). These individuals may have a relatively good trunk balance soon 

after the stroke, but they may lose lateral balance and may fall toward the affected side 

even when sitting (Brunnstom 1970, Davies 1985, Bohannon 1986, Pedersen et al 1996, 

Karnath 2000a,b). Another growing body of experimental studies demonstrating the role 

of supraspinal structures involved in postural control comes from a series of behavioral 

studies involving individuals with history of mild traumatic brain injury (mTBI). These 

studies suggest that, even in mild cases with no detected anatomical tissue lesions, the 

trauma affects the intricate network of mechanisms controlling the upright posture. The 

effects of mTBI on postural stability are not only present shortly after the injury, but also 

as long-term effects of the trauma (Ingersoll and Armstrong 1992, Wober et al 1993, 

Slobounov et 2006b,2008). These individuals present a larger, slower, and more random 

body sway compared to individuals with no history of mTBI (Ingersoll and Armstrong 

1992, Wober et al 1993). 

Besides behavioral studies and clinical observations, several studies using other 

techniques have advanced knowledge in how the CNS produces movements and controls 

human posture. Deecke et al (1969) studied the electroencephalogram (EEG) in humans. 

They reported a late activation of structures within the primary motor area (the dorsal 

portion of the frontal lobe) compared to that within the other portions of the frontal lobe, 

suggesting that the primary motor area serves as a muscle activator instead of a planner. 

A few studies using EEG techniques to investigate postural control have suggested that 

postural adjustments and compensatory postural movements involve supraspinal 

structures, such as the cerebral cortex (Dietz et al 1985, Dimitrov et al 1996, Slobounov 

et al 2000, 2005, Quant et al 2004a,b, Adkin et al 2006). For example, Slobounov and 

colleagues described an increase in the gamma-range activity about 200 ms prior to the 

reversal point during body sway in the anterior direction (Slobounov et al 2005). They 
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also described a decrease in the EEG power in individuals with a history of mTBI when 

performing a postural task requiring the recognition of unstable postures. They suggested 

that these individuals had an impaired ability to recognize the limits of their functional 

boundaries of stability (Slobounov et al 2000).  

In another study using event-related functional Magnetic Resonance Imaging 

(fMRI), this group of researchers evaluated the ability of healthy individuals to recognize 

unstable positions of a projected image of a virtual body. They reported that the 

recognition of unstable postures induced the activation of distinct areas of the brain, 

including bilateral parietal cortex, anterior cingulate cortex, and bilateral cerebellum 

(Slobounov et al 2006a). The positron emission tomography (PET), which may be used 

to measure metabolic processes in the body, has also been used to investigate the role of 

brain structures in postural control. Based on an assumption that areas of high 

radioactivity are associated with brain activity, PET neuroimaging indirectly measures 

the blood flow to different parts of the brain. Ouchi (1999) reported activation of 

cerebellar structures and visual cortex during different standing postures, while no 

activation was shown during supine posture. In general, studies using brain imaging 

techniques support the hypothesis that some postural adjustments are not just automatic 

muscle responses to perturbation mediated by the brainstem and spinal cord. Rather, they 

are cortically controlled intentional movements. 

 

 

2.1.4. Principles of Human Upright Postural Control 

 

The complexity of human bipedal upright posture is related to the control of the 

center of pressure (COP, e.g., the point of application of the ground reaction force to the 

body) in order to keep the projection of the center of mass (COM) within the base of 

support. Several models have been suggested to explain upright control and describe the 

COP migration during upright stance. Five of them will be addressed in the following 

paragraphs. 

The inverted pendulum model has been frequently used to describe human 

upright posture (Fitzpatrick et al 1992b, Winter et al 1993,1998, Morasso and Schieppati 
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1999). According to this model, the body sways in a small magnitude and the motion 

occurs only around ankle joints with the feet in a fixed position (Zatsiorky and King 

1998). Winter et al (1998) suggested that the continuous movement of the COP regulates 

the projection of the whole body COM (considered the controlled variable) to fall within 

the base of support. They showed that the COP-COM error signal was proportional to the 

horizontal acceleration of the COP in the anterior-posterior and medio-lateral directions. 

According to their model, muscles act as springs to move the COP in phase with the 

COM as the body sways about a desired equilibrium position. This model also predicts 

instant corrective responses due to the stiffness of the postural muscles placed around the 

joints. Therefore, it is suggested that there is less necessity of the CNS to intervene along 

the process of postural control. However, the inverted pendulum model has been strongly 

criticized. According to Morasso and colleagues, muscle stiffness alone is not enough to 

control the body upright. Sensory information from the pressure receptors in the soles of 

the feet and from muscle receptors is also likely to contribute to the control of upright 

posture (Morasso and Schieppati 1999, Morasso and Sanguinetti 2002). Other scientists 

discussed that the assumption of a fixed reference point for stabilization of posture may 

not be correct since several studies have emphasized a moving reference point 

(Accornero et al 1997, Zatsiorsky and Duarte 1999). Another criticism came from the 

assumption that only motion at the ankle is of importance (Day et al 1993, Kuo and Zajac 

1993, Accornero et al 1997, Aramaki et al 2001). 

The open- and closed-loop of postural control was proposed by Collins and De 

Luca (1993). They decomposed the COP signal in two stochastic processes (open- and 

closed-loop of postural control), also called random walk or Brownnian movement. In the 

random walk analysis of the COP trajectory, for each instant of time, the next position of 

the COP is predicted to be at fixed amplitude and random direction. According to this 

model, an open-loop control mechanism was called to act during short-term intervals (< 

1s), whereas a closed-loop mechanism was called to act during long-term intervals. 

Collins and De Luca (1993) suggested that the CNS allows a certain amount of 

“sloppiness” in the control of upright posture. In the case of the sensory systems 

indicating a COP movement beyond a certain threshold value, feedback mechanisms are 

then used to bring the COP back into a “safety zone”.  
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Winter et al (1998) proposed the decomposition of the gravity line (the vertical 

line passing through the center of mass of the body). In their model, the COP migration 

was represented as an outcome of two processes: the gravity line migration and the COP 

deviation from the gravity line trajectory. Winter et al (1998) found a large negative 

correlation between the COP deviation from the gravity line trajectory and the horizontal 

force at a time lag of approximately 4 ms. 

Another hypothesis of postural sway control proposed was the Shifting-

Fidgeting-Drifting patterns of prolonged upright stance. Duarte and Zatsiorsky (1999) 

identified three patterns of COP behavior during a prolonged unconstrained standing 

task: (a) shifting (a step), a quick change in the mean position of the COP; (b) fidgeting 

(a pulse), a fast and large change of the mean position of the COP followed by a return of 

the mean position of the COP to approximately the same previous mean position; and (c) 

drifting (a ramp), a continuous and slow displacement of the mean position of the COP. 

This analysis has been sensitive in detecting changes in postural behavior among 

different populations (Freitas et al 2005, Lafond et al 2009). 

The same researchers also proposed the Rambling-Trembling decomposition of 

the stabilogram (Zatsiorsky and Duarte 2000). The rambling-trembling decomposition 

was based on the Equilibrium Point Hypothesis of motor control. According to this 

hypothesis, the transient shifting of the COP from one instant equilibrium point to 

another is one of the mechanisms underlying the control of upright stance (Feldman 

1986, Feldman and Levin 1995). The Rambling-Trembling Hypothesis suggests a 

superposition of two processes of upright stance control: the rambling and the trembling 

processes. The rambling component of the COP trajectory represents the migration of the 

reference point from one instant equilibrium point to the subsequent instant equilibrium 

point along a smooth trajectory; whereas the trembling component represents the COP 

migration around this moving reference point.  

In general, human balance control depends on a continuous integration of sensory 

input and neuromuscular output. Based on sensorimotor integration, the CNS organizes 

the activation of postural muscles to maintain upright posture or to recover equilibrium 

after external perturbations or challenging postures (Bauer et al 2008, Santos et al 2008). 

There are basically two main mechanisms of postural control: the feedback and the 
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feedforward mechanisms (Peterka 2002, Seidler et al 2004, Papegaaij et al 2014). The 

feedback control is a reactive mechanism involving an online correction of posture 

based on ongoing sensory inputs, sensorimotor integration, and motor outputs; whereas 

the feedforward control is a predictive mechanism involving the anticipation of 

potential disturbances.   

In addition, there are several lines of defense against the forces threatening body 

stability. The main mechanisms of postural control are presented in chronological order: 

 

- Anticipatory Postural Adjustments (APAs): The CNS anticipates the 

disturbing effects of a voluntary movement (such as a step or reaching for a glass of 

water) or an expected perturbation by changing the background activity of postural 

muscles in a feedforward manner. APAs are commonly quantified by using EMG signals, 

body segment kinematics, and displacements of the COP. Examples of APAs include the 

shifting of the center of gravity in the opposite direction of the upcoming perturbation 

(Bouisset and Zattara 1983,1987); different patterns of COP displacement in preparation 

to stepping forward, stepping down, stepping up, and stepping over an obstacle (Degani 

et al 2007); and anticipatory muscle activity prior to fast voluntary arm raising (Ramos 

and Stark 1990). Such anticipatory adjustments are necessary to counteract upcoming 

forces and moments large enough to shift the COM outside the base of support and have 

the body at risk of fall.  

APAs were first observed by Belen‟kiy et al (1967). They reported the 

activation of postural leg muscles 50–100 ms prior to raising the arm in a standing 

posture. Previously, it was suggested that APAs were generated only in preparation of 

expected movements involving large body parts. However, recent studies have shown 

that APAs can also be generated by either small movements (such as finger movements) 

or even in the absence of movements. Aruin and Latash (1995b) reported that even a very 

small finger movement was enough to trigger APAs. Later, Shiratori and Latash (2001) 

reported that when a standing individual was required to catch a load without any 

movement, visual information about the falling object was sufficient to trigger APAs. 

Interestingly, a few studies reported no APAs when the experimenter triggered a load 

release from the participant‟s hands even though the participant knew that the 
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experimenter would release the load (Hugon et al 1982, Dufosse et al 1985, Paulignan et 

al 1989, Scholz and Latash 1998). Aruin and Latash (1995b) reported that only self-

initiated perturbations were accompanied by APAs. Since then, several studies have 

described APAs prior to voluntary movements of the arm, leg, trunk, and head while 

standing (Belen‟kiy et al 1967, Cordo and Nashner 1982, Breniere and Do 1986, 

Mouchino et al 1991, Danna-dos-Santos et al 2007b); forearm loading and unloading 

(Hugon et al 1982, Dufosse et al 1985, Lacquantini and Maioli 1989, Paulignan et al 

1989, Aruin and Latash 1995a, Bennis et al 1996); and quick loading and unloading of 

the upper extremities during sitting and standing postures (Lavender et al 1993, Aruin 

and Latash 1995b,1996, Shiratori and Latash 2000). 

In general, the generation of APAs depends on several factors, such as the 

magnitude and direction of the perturbation, the characteristics of the voluntary 

movement or expected perturbation, the current postural task, and time constraints. Aruin 

et al (1998) reported that situations of extreme stability/instability tend to decrease the 

magnitude of APAs or even abolish them. Slijper (2001) suggested that under situations 

of time constraint, such as reaction time, the APAs may be delayed and suboptimal. 

The CNS origin of APAs is still not clear. Several studies have reported cortical 

activity before an expected perturbation (Jacobs et al 2008, Mochizuki et al 2008, 2009, 

Varghese et al 2016). Cortical activity associated with APAs has been reported prior to 

self-initiated postural perturbation of releasing a load (Mochizuki et al 2008), externally-

cued perturbations (Jacobs et al 2008, Mochizuki et al 2009), and step initiation 

(Varghese et al 2016). The supplementary motor area (SMA) may also be involved in 

APAs. Jacobs et al (2009) investigated APAs to step initiation in participants with and 

without Parkinson‟s disease. Considering the progressive dysfunction of circuits 

associated with the SMA in individuals with Parkinson‟s disease, and findings revealing 

impaired timing of APAs, Jacob et al (2009) suggested the contribution of the SMA to 

the timing of the APAs to step initiation. 

 

- Passive elasticity of soft tissues surrounding joints (such as muscles, 

tendons, ligaments, and capsules) opposing perturbing forces: The muscle-tendon 

unit plays an important role in postural control (Fitzpatrick et al 1992b, Winter et al 1998, 
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Morasso and Schieppati 1999). Their mechanical property generates an opposing force 

when the muscle-tendon unit is deformed. This property, commonly referred to as 

“muscle stiffness”, will be termed “apparent elasticity” as suggested by Latash and 

Zatsiorky (1993). Studies have reported a linear relation between the ankle torque and the 

ankle angular displacement under very small postural perturbations when neither 

vestibular nor visual information was available (Fitzpatrick et al 1992b, Winter et al 

1998). These researchers suggested that the apparent elasticity of the muscle-tendon unit 

around ankle joints acted as a spring, resulting in a COP displacement in phase with the 

COM displacement. Therefore, they suggested that the ankle passive elasticity was 

enough to maintain quiet standing.  However, Morasso and Schieppati (1999) used their 

own method of computing “stiffness” and reported that restoring forces provided by the 

passive elasticity of the muscle-tendon unit were too low to maintain the vertical posture. 

It is important to note that these two groups of researchers defined stiffness differently, 

which might have led to the difference of opinion regarding the role of “muscle stiffness” 

in posture control. 

 

- Stretch reflexes at the latency of 30–50 ms: External small perturbations to 

upright posture are partly counteracted by stretch reflexes, which are muscle contractions 

in response to the muscle spindle stretching. Postural perturbations, such as the 

movement of a force platform inducing ankle dorsiflexion or plantiflexion, have shown 

muscle activity in response to the stretching of muscles acting on the ankles (Schieppati 

et al 1995). Nakazawa et al (2003) also observed the presence of stretch reflexes in the 

tibialis anterior muscle to stabilize the ankle joint during upright stance.  

 

- Compensatory Postural Adjustments (CPAs): Compensatory adjustments are 

feedback-based control mechanisms. They occur during the balance restoration phase 

after the perturbation. These adjustments may include changes in the magnitude of 

muscle activity and COP displacements (Park et al 2004, Maki and McIlroy 2006, 

Mohapatra et al 2012). 
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- Preprogrammed reactions at the latency of 50–100 ms: While passive 

resistance of the surrounding joint tissue and stretch reflexes are commonly used to 

maintain postural balance under small displacements of the COM, as happens during 

unperturbed stance; preprogrammed reactions emerge approximately 50–100 ms after a 

larger perturbation has been applied. These preprogrammed reactions consist of spatial 

and temporal muscle activation specific for a given perturbation.   

Preprogrammed postural reactions in humans have been studied using moving 

force platforms. Stereotypical postural responses in leg and trunk muscles of healthy 

young adults were observed depending on the direction of the perturbation. For example, 

a small and slow backward translation of the platform led to a forward body sway and 

increased the activity of posterior muscles (soleus, biceps femoris, and lumbar erector 

spinae) at a latency of about 80 ms. The opposite happened when a small and slow 

forward translation was applied. In this case, the body swayed backward and the activity 

of anterior muscles increased (Horak and Nashner 1986). In both cases, muscles were 

recruited in a distal-to-proximal order, pulling the body either backward or forward. 

Although simplistic, this motor response around the ankle joint aiming corrective torques 

while keeping the feet in the same place is referred to as the “ankle strategy” (Horak and 

McPherson 1996, Gatev et al 1999, Horak 2006). The ankle strategy is commonly 

observed under small and slow postural perturbations. 

In the case of larger and/or faster perturbations, the recruitment order of 

preprogrammed reactions in postural muscles changes to proximal-to-distal, and the 

individual tends to flex or extend the hip to minimize the excursion of the COM. This 

strategy is referred to as the “hip strategy”. The hip strategy recruits muscles acting 

mainly on the hips, spine, and abdominals, while keeping the feet in the same place. 

Depending on the perturbation, the hip strategy may be used in conjunction with the 

ankle strategy to maintain equilibrium. When ankle and hip strategies occur together, the 

ankle and hip move in opposite directions (Horak and McPherson 1996, Gatev et al 1999, 

Horak 2006). 

 

- Voluntary actions: Additional motor strategies commonly used to control 

balance are voluntary actions, such as the stepping and reaching strategies (Horak and 
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McPherson 1996, Gatev et al 1999, Horak 2006). These strategies are based on changing 

the base of the body support to accommodate the projection of the COM within its limits 

and restore equilibrium. The stepping strategy involves voluntary forward, backward, or 

lateral step(s) to restore balance, whereas the reaching strategy involves the use of the 

hand or another part of the body for support.  

 

 

2.2. THE USE OF POSTURAL INDICES AND MUSCLE ACTIVITY TO 

INVESTIGATE POSTURAL CONTROL 

 

Human postural control can be investigated by analyzing postural behavior during 

upright standing tasks. It can be assessed by either static or dynamic posturography. In 

static posturography, the individual is asked to stand as still as possible (unperturbed 

stance), and balance control will basically rely on feedback mechanisms. In dynamic 

posturography, the individual is asked to stand still while either a perturbation (auto 

perturbation or externally triggered perturbation) is applied or a second task is performed 

(such as a cognitive task or a voluntary movement). During unexpected perturbed stance, 

feedback mechanisms are responsible for corrective postural adjustments to restore 

balance, whereas expected perturbations and voluntary movements trigger APAs 

(feedforward control) and feedback mechanisms. 

Current studies apply different quantitative techniques to measure balance, such 

as the analysis of the center of pressure and center of gravity, the relative position among 

body segments, the head and body segments position in space, and the patterns 

(magnitude and sequencing) of muscle activation (Collins and De Luca 1995, Winter 

1995, Farina et al 2004, Duarte and Freitas 2010, Murillo et al 2012, Cimadoro et al 

2013). These analyses provide more information regarding mechanisms underlying 

postural control than a simple clinical visual analysis of the upright stance. Despite 

promising advantages of using these laboratory techniques to assess balance, it is 

important to know what measures should be considered and how to translate 

biomechanical outcomes into clinically meaningful information. 
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2.2.1. Postural Indices 

 

During unperturbed upright stance, the human body presents small oscillations. 

These oscillations have been quantified using different methods. The most frequently 

used biomechanical tool to assess postural sway is the force platform. This equipment can 

record the coordinates of the center of pressure (COP) in time, which is the 

displacement of the point of application of the ground reaction force to the body in time. 

Data extracted from the COP has been used to make inferences about postural sway 

behavior. Since the COP is the point of application of the resultant ground reaction force 

vector in a force platform, the COP position is given by two coordinates (x and y) (Winter 

1995). The center of pressure in each anterior-posterior and medio-lateral direction 

(COPap and COPml, respectively) is computed based on six signals measured by the 

force platform (x, y, and z forces, and moments around x, y and z axis) and the height (h) 

of the base of support above the force platform:  

 

COPap = ( - h *Fx – My) / Fz       (2.1) 

 

COPml = ( - h *Fy – Mx) / Fz      (2.2) 

 

In general, the COP migrates approximately 0.4 cm in the anterior-posterior 

direction and 0.18 cm in the medio-lateral direction during unperturbed bipedal stance. 

Interestingly, the magnitude of the COM displacement is smaller than that for the COP 

(Winter et al 1996,1998). The differences in migration of COP and COM in the anterior-

posterior direction have been associated with the generation of torques at the ankle joints, 

whereas displacements in the medio-lateral direction have been associated with activity 

of hip muscles (Winter et al 1996). 

Different variables can be extracted from the COP signals to measure different 

aspects of the body sway. Considering that each variable measures only part of the 

body‟s sway characteristics, it is necessary to use COP measures from different domains, 

such as spatio-temporal, frequency, and structural domains. In general, the variables in 

the spatio-temporal domain include, but are not limited to, the area of the dispersion of 
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the COP displacement, the total length of the COP trajectory, the amplitude of the COP 

displacement in the anterior-posterior and medio-lateral directions, the mean velocity of 

the COP displacement in each direction, and the variability of the COP displacement 

around its mean value (Collins and De Luca 1995, Pyykko 2000, Demura et al 2001, 

Kitabayashi et al 2002, Duarte and Freitas 2010).  

Quantities in the frequency domain define important characteristics of a signal, 

such as the main frequencies composing it. The complexity (or lack of complexity) of a 

signal has not only been commonly linked to principles of posture control, but also 

provide the recognition of signal patterns associated with specific disease states (see 

Duarte and Freitas 2010 for review). These quantities are computed using the Fourier or 

spectral analysis, which decomposes the COP signal as a sum of the sine and cosine 

function with different amplitudes, frequencies, and phases (Collins and De Luca 1995, 

Pyykko 2000, Demura et al 2001, Kitabayashi et al 2002, Duarte and Freitas 2010). The 

resulting power spectral density profile (PSD) describes the levels of energy contained in 

each of the single frequencies composing the resulting COP. Some of the variables 

extracted from the COP signal in the frequency domain include the mean power 

frequency for each direction, the peak frequency for each direction, and the frequency 

band with either 50% or 80% of the spectral power for each direction. Figure 2.2 shows 

the COP excursion of a healthy young adult standing for 60 seconds on a force platform 

(panel A), the decomposition of the COP trajectory into COPap and COPml (panel B), the 

power spectrum density (PSD) of the COPap (panel C), and the decomposition of the 

COPap into rambling (panel D) and trembling (panel E) components. The computation of 

these latter components of the COP (rambling and trembling) is explained later in the 

text. 
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Figure 2.2. (A) The body‟s center of pressure (COP) excursion of a healthy young adult 

standing for 60 seconds. (B) The anterior-posterior and medio-lateral component of the 

COP displacement in time (COPap and COPml, respectively). (C) The power spectrum 

density (PSD) of the COPap. (D) The COPap and its respective rambling component 

(RambAP). (E) Trembling component of the COPap displacement (TrembAP). 

 

 

A few structural analyses of the COP have been proposed to analyze the COP 

signal (Duarte and Zatsiorsky 1999, Richman and Moorman 2000, Zatsiorsky and Duarte 

2000). The dynamics of the human postural sway have been investigated using entropy 

analysis of the COP signal (Ramdani et al 2009, Borg and Laxaback 2010, Mei et al 
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2013, Rigoldi et al 2013, Clark et al 2014, Perez et al 2014, Fino et al 2015). The use of 

entropy analysis in biological signals was introduced by Pincus (1991). He proposed the 

Approximate Entropy method to investigate the complexity of the heart rate and beat-to-

beat blood pressure. The innovative use of entropy analysis to quantify the 

unpredictability of the COP fluctuation in time was later proposed by Richman and 

Moorman (2000).  

In general, there are two types of entropy: the state and the sequence entropies. 

The state entropy, such as the Shannon Entropy and the Rényi Entropy, quantifies the 

amount of information contained within the COP signal. These computational methods 

measure the probability of the signal occupying discrete states by examining the 

frequency that a COP position is visited throughout the signal without regarding the path 

to or from that position (Shannon 2001). In contrast, sequence entropies (such as the 

approximate entropy and its derivatives sample, multiscale, and composite multiscale 

entropies) examine the repetition of patterns within a signal. Sequence entropies evaluate 

the probability that particular values occur within a signal given that the sequence 

preceding that value is similar to a template sequence (Pincus 1991, Richman and 

Moorman 2000, Costa et al 2002).  

Considering that the interpretation of entropy may vary between these methods, 

the sequence entropies may better assess the dynamical structure and regularity of the 

COP behavior. More specifically, the sample entropy of the COP signals has been 

successfully used to address the irregularity and randomness of body sway in healthy 

individuals (Ramdani et al 2009), older adults (Borg and Laxaback 2010, Fino et al 

2015), and other populations (Mei et al 2013, Rigoldi et al 2013, Clark et al 2014, Perez 

et al 2014). Smaller sample entropy estimates indicate a more predictable and regular 

pattern of COP displacement in time, whereas higher estimates indicate a more irregular 

and random postural sway.  

Another dynamic approach to measure postural sway is the Rambling-Trembling 

decomposition of the stabilogram proposed by Zatsiorsky and Duarte (2000). As a 

reminder, the rambling component represents the migration of the reference point from 

one instant equilibrium point to the subsequent one, while the trembling component 

represents oscillation around this moving reference point. This approach was introduced 



29 

 

previously in this chapter. Figure 2.2 (panels D and E) shows the rambling and trembling 

components of the COPap in a representative healthy young adult standing for 60 

seconds. Zatsiorsky and Duarte (2000) suggested that the rambling mechanism was 

related to supraspinal processes. The supraspinal mechanism of postural sway may be 

viewed as a sequence of drift-and-act episodes, where sensory inputs inform the CNS 

about changes in the body deviation from the vertical, and motor outputs are elicited for 

corrective actions (Milton et al 2009a,b). Zatsiorsky and Duarte (2000) also suggested 

that the trembling mechanism is related to spinal reflexes and changes in the intrinsic 

mechanical properties of muscles and joints.  

This idea of two distinct processes controlling postural sway has been supported 

by other studies investigating the effects of visual feedback, different bases of support, 

external load, and peripheral impairments on the behavior of rambling and trembling 

trajectories (Mochizuki et al 2006, Danna-dos-Santos et al 2008, Shin et al 2011, 

Tahayori et al 2012). Danna-dos-Santos et al (2008) asked healthy adults to maintain 

their upright stance while a visual feedback of the COP displacement was provided. In 

order to maintain their COP inside different targets on the screen, participants decreased 

their rambling sway area and increased their trembling area as the target difficulty 

increased. In another study, an external load was applied in healthy adults performing 

upright stance (Tahayori et al 2012). Interestingly, there were changes in the trembling 

trajectory, independent of the area of postural sway and the rambling trajectory. The 

manipulation of the base of support also imposed changes in the behavior of rambling 

and trembling trajectories, reinforcing the idea of the rambling component of the COP 

representing a search strategy for postural stability (Mochizuki et al 2006). Their findings 

support the hypothesis that the rambling mechanism is activated by central processes, 

whereas the trembling mechanism is activated by peripheral processes and reflexes. 

As observed, many COP variables are available to measure postural sway. It is 

important to understand the clinical meaning of each one when selecting the best 

approach to assess human upright control. While the variables are undoubtedly important 

when assessing balance, the protocol used to record COP data is equally fundamental in 

ensuring the quality of the measurements. Consideration should be given to the task(s) to 

be performed, the characteristics and age of the individuals, the duration of the task, and 
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the sampling frequency. The task, for example, may differ among studies by using 

different bases of support (such as feet apart, feet together, tandem position, semi-tandem 

position, and unipedal stance), manipulating sensorial input (such as occluding or 

distorting visual input and/or ankle joint somatosensory senses), or adding a secondary 

task. Gender, health status, activity level, anthropometric characteristics, and age also 

need to be considered. Another reason for discrepancies among studies is the duration of 

the task. The recommended trial duration to assess upright postural sway is between 60 s 

and 120 s (Lafond et al 2004, Kooij et al 2011).  Despite the fact that COP signals with 

less than 60 s in upright posture may not provide enough data, several studies analyze 

only 30 s due to the task complexity or to avoid long duration of testing or fatigue. 

Therefore, the choice of trial duration depends on the clinical context. In addition, the 

sampling frequency should be carefully selected. Frequencies of 10 Hz, 20 Hz, or higher 

(100 Hz) for data acquisition have been used to assess human upright postural sway since 

the frequency bandwidth during human upright sway is below 10 Hz (Winter 1995). In 

addition, data with higher acquisition frequencies should be down sampled or filtered to 

eliminate signal noises. Therefore, the lack of standardized testing protocols to measure 

body sway using COP signals also explains discrepancies in the literature.  

 

 

2.2.2. Multiple Postural Muscle Activation 

 

As mentioned earlier, the control of upright stance depends on the ability of the 

CNS to generate adequate patterns of postural muscle activation. These patterns must 

ensure counter-action of all forces applied to the axial skeleton, implying an accurate 

distribution of forces across joints and temporal accuracy in their delivery. To understand 

how the CNS achieves this goal, signals extracted from electromyography (EMG) have 

been used as a general measure of motor unit activity. Recordings of EMG signals of 

postural muscles have been largely used to investigate muscle activation under different 

standing tasks. Traditionally, primary stabilizers of major axial joints (ankles, knees, hips, 

and intervertebral) are the focus of these studies. 
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Conventional methods for EMG signal processing involve analyses in the time 

and frequency domains. In the time domain, muscle activity can be assessed by 

quantifying the amplitude or magnitude of muscle activation, which is related to the 

recruitment and discharge rates of active motor units. In general, EMG magnitude can be 

a measure of estimation of muscle force using surface or intramuscular EMG recording 

electrodes. The magnitude of the EMG signal can be linked to activation level provided 

by the spinal cord. This is a general idea, since the signal extracted from EMG electrodes 

is influenced by several factors, such as electrode placement, thickness of the 

subcutaneous tissues, motor unit conduction velocities, positive and negative phased of 

motor unit action potentials leading to amplitude cancellation, and equipment used to 

record EMG signals (Farina et al 2004). It is also important to note that data extracted 

from surface EMG signals are global measures of the activity of motor units rather than 

firing rates of a single motor unit (Farina et al 2004). The measurement of the amplitude 

of muscle activation can be performed by two different approaches. In the first method, 

the filtered and full-wave rectified EMG signal is integrated over the desired time 

window. In the second method, the root mean square (RMS) of the EMG signal (EMG 

signals from several time frames from a recorded trial) is normalized by the maximal 

voluntary isometric contraction (MVC, which measures the maximal EMG activity) of 

this muscle (Murillo et al 2012, Cimadoro et al 2013). Other than the magnitude of 

muscle activation, analyses in the time domain may also include the timing and sequence 

of multiple muscle activation. 

Conversely, signal processing in the frequency domain can be performed by 

spectral analysis of the EMG signal. The transformation of the EMG signal from the time 

domain to the frequency domain can be done by Fast Fourier Transform (FFT), as 

discussed previously in this chapter. As a reminder, some of the measures derived from 

the power spectrum of an EMG signal include the mean frequency (frequency at which 

the average power is reached), the peak frequency (frequency at which the maximum 

power occurs), and the median frequency (frequency at which 50% of the total power is 

reached).  

Many previous studies have proposed reliable methods to investigate muscle 

synergies and test Bernstein‟s hypothesis of muscle synergies as a strategy to reduce the 
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number of degrees of freedom of the system (Gelfand and Latash 1998, Scholz et al 

2000, Latash et al 2005,2007, Latash 2008). Scholz and Schöner (1999) developed a 

method to explore the synergistic features of the motor system, termed the Uncontrolled 

Manifold Hypothesis (UCM Hypothesis). According to their hypothesis, the controller 

(CNS) acts in the space of elemental variables (such as joint angles and digit forces) 

creating synergies to stabilize (decrease variability across repetitive trials) the 

performance variable (such as the end position or the total force produced). In other 

words, they investigated synergies using kinematics as the performance variables. More 

specifically, Scholz and Schöner (1999) applied the UCM method using the variability of 

the joint configuration in time during sit-to-stand tasks. The variability of these elemental 

variables was decomposed into components that did and did not affect the performance 

variable (the body‟s center of mass displacement). The component parallel to the 

uncontrolled manifold, termed the VUCM component, represents the variability that does 

not exert any changes in the performance variable (also known as the “good variability”), 

whereas the component orthogonal to the UCM component, termed the VORT component, 

represents any variation of the magnitude of the muscle mode that influences the 

performance variable (also known as the “bad variability”). Scholz and Schöner (1999) 

reported that the position of the center of mass in the sagittal plane was very well 

stabilized by co-variations of the joint configurations. Therefore, the controller stabilizes 

a particular performance by allowing a variability of multiple elemental variables. It is 

achieved by selecting a subspace (termed uncontrolled manifold) within the space of the 

elements‟ actions related to the desirable value of the performance variable.  

The first studies using the UCM approach employed mechanical variables (such 

as joint angles and finger forces) as elemental variables (Scholz and Schöner 1999, 

Scholz et al 2000, 2002). Follow-up studies used EMG signals as elemental variables to 

identify muscle synergies associated with postural tasks (Krishnamoorthy et al 2003a,b, 

Wang et al 2005,2006, Danna-dos-Santos et al 2007a,2008). Krishnamoorthy and 

colleagues (Krishnamoorthy 2003a,b) improved the UCM approach by implementing the 

following steps: (1) principal component analysis (PCA) on the indices of integrated 

EMG signals across repeated trials to identify the elemental variables, referred to as 

muscle modes or M-modes; (2) selection of a performance variable, such as the COP 
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displacement, shear forces, or moments around the vertical axis; (3) multiple linear 

regression to compute the Jacobian of the system to verify changes in the relationship 

between magnitudes of M-modes and COP shifts; and (4) UCM computation and 

decomposition of the variance in magnitude of the muscle modes into VUCM and VORT. 

According to their findings, three M-modes were identified during upright stance: the 

“push-back M-mode” (formed by the gastrocnemius lateralis, gastrocnemius medialis, 

soleus, biceps femoris, semi-tendinosus, and erector spinae), the “„push-forward M-

mode” (formed by the vastus lateralis, vastus medialis, rectus femoris, and tibialis 

anterior), and the “mixed M-mode” (formed by the tibialis anterior, rectus abdominis, 

vastus lateralis, and gastrocnemius lateralis). Wang et al (2005, 2006) reported a 

significant decrease in the index of multi-M-mode synergies stabilizing COP shifts 

during either a fast step or a fast voluntary upright body sway. They suggested that the 

structure of M-modes and/or their effects on COP sway depend on the velocity of the 

COP displacement. Moreover, Danna-dos-Santos and colleagues investigated multi-M-

mode synergies under different challenging whole-body tasks. They analyzed cyclic 

voluntary anterior-posterior body sway at different frequencies and reported a 

dependency of multi-M-mode synergies on the speed of the voluntary COP shift (Danna-

dos-Santos et al 2007a). These researches also observed flexible muscle modes during 

voluntary whole-body cyclical sway tasks at 0.5 Hz (bipedal or unipedal sway with eyes 

either open or closed) (Danna-dos-Santos et al 2008). Their findings revealed an increase 

in the number of M-modes (three to five) in function of the increase in the task 

complexity. They suggested that the controller manipulates a larger number of elemental 

variables under more challenging tasks.   

In line with the organization of muscle synergies controlling human posture, 

relatively recent studies have proposed that a synchronization at lower frequency bands 

of neural oscillations from different sources within the CNS (also referred to as correlated 

or common neural inputs) may be the mechanism used by the CNS to coordinate a large-

scale integration among its cortical and subcortical components (Farmer 1998, De Luca 

and Erim 2002, Santello and Fuglevand 2004, Semmler et al 2004, Johnston et al 2005, 

Winges et al 2008, Boonstra et al 2009, Poston et al 2010, Danna-dos-Santos et al 2010). 

In other words, the synchronization of neural oscillations seems to be related to the 
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activation of multiple muscles forming postural synergies. Considering that traces of such 

synchronizations within the CNS at lower frequency bands are likely to be embedded in 

EMG signals of target postural muscles (Farmer 1998, De Luca and Erim 2002), 

synchronization features, such as coherence between pairs of EMG signals, can be used 

to investigate the formation of multi-muscle synergies. Figure 2.3 illustrates a schematic 

representation of the hypothesized synchronization of neural oscillations within the CNS 

diverging onto multiple postural muscles and forming postural synergies. 

 

Figure 2.3. Schematic illustration of the hypothesized synchronization of neural 

oscillations in the Central Nervous System forming two distinct postural muscle 

synergies (“push-back M-mode” and “push-forward M-mode”) during upright stance.  
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The Intermuscular Coherence Approach has recently been used to determine the 

formation of correlated neural inputs to skeletal muscles. In general, intermuscular 

coherence quantifies the correlations of muscle activation in the frequency domain, e.g., 

the synchronization between two EMG signals. The coherence between two signals is 

estimated using the cross-spectrum of two EMG signals (fxy) squared and normalized by 

the product of the autospectrum of each signal (fxx and fyy) at each frequency (λ), as 

follows: 

 

       (2.3) 

 

Coherence is considered statistically significant if it exceeds the significance limit 

of the null distribution, computed as proposed by Rosenberg et al (1989). The 

significance limit for zero coherence at α = 0.05 and for the number of disjoint segments 

(L) is determined by the following equation: 
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Figure 2.4 shows the EMG signal of both right tibialis anterior and right soleus 

muscles and the intermuscular coherence estimate profile of a representative individual 

during upright bipedal stance. Considering that significant coherence is observed when 

coherence estimates are above the significant level, there was a significant 

synchronization of the right tibialis anterior and right soleus within the frequency band of 

0–12 Hz. This frequency interval represents the frequency distribution of the coherence 

between these two muscles during upright bipedal stance. In this case, the strength of 

such synchronization can be computed by the integral of the coherence profile over the 

frequency band of interest (0–12 Hz). 
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Figure 2.4. Filtered EMG signal of the tibialis anterior (panel A) and soleus (panels B) 

muscles during upright stance of a representative individual, along with the z-scored 

intermuscular coherence estimate profile for this muscle pair and respective significance 

level (panel C, red line and black dashed line, respectively). 

 

 

In addition to the intermuscular coherence for pairs of muscles, estimates of 

coherence obtained for each muscle pair can be combined to calculate pooled coherence 

estimates across muscle pairs, as proposed by Amjad et al (1997) as follows: 
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Recently, a few studies have used intermuscular coherence analysis during object 

grasping tasks (Boonstra et al 2009, Danna-dos-Santos et al 2010, Poston et al 2010) and 

during the execution of whole-body tasks (Boonstra et al 2008,2009). Poston et al (2010) 

reported not only the presence of correlated neural inputs to the hand muscles, but also a 
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singular distribution of these inputs among intrinsic and extrinsic muscles. Danna-dos-

Santos et al (2010) have demonstrated the effects of hand muscle fatigue on the 

distributions of correlated neural inputs previously reported by Poston et al (2010). In 

addition, Boonstra et al (2009) reported that pairs of homologous muscles from both 

lower limbs showed signs of synchronization during the execution of voluntary whole-

body anterior-posterior oscillations. These studies suggest that correlated neural inputs to 

skeletal muscles have specific spatial distributions, strength, and periodicity. 

 

 

2.3. THE EFFECTS OF PHYSIOLOGICAL AGE-RELATED CHANGES ON 

BALANCE 

 

The natural process of aging is associated with degenerative processes of many 

physiological systems (such as cardiovascular, musculoskeletal, cognitive, sensory, and 

nervous systems), affecting balance control and increasing susceptibility to falls. Figure 

2.5 illustrates structural and functional age-related changes in different systems 

contributing to balance deficits and consequent increased risk of fall.  

 

 

Figure 2.5. Structural and functional age-related changes in different systems 

contributing to balance deficits and consequent increased risk of fall. 

 

Even though this idea seems simple, the aging process occurs at different rates 

across different tissues, and with accelerated declines with advanced age (Nair 2005, 

Shaffer and Harrison 2007). The non-homogenous rates of tissue degeneration affect the 
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functionality of the anatomic structures. Physiological changes seem to evoke a 

reorganization of cortical and spinal control of movements, which may lead to a 

suboptimal but functional performance or failure, such as falling. The knowledge 

concerning the contribution of the sensorimotor system on postural control and the effects 

of aging on physiological systems is essential to understanding why some individuals can 

overcome this challenge better than others (ex. fallers vs nonfallers). 

Structural and functional changes in sensory systems due to the aging process 

include reduced visual acuity and accommodation, contour and depth perception, contrast 

sensitivity, peripheral vision, pupil size and agility, fluid balance in the semicircular 

canals of the inner ear, vestibular function, kinesthetic sensitivity, joint position sense at 

the ankle, and cutaneous sensation (Kelly 1993, Lewis 2002, Wiesmeier et al 2015). 

These changes reduce the redundancy of sensory information, increasing the upright 

postural instability in older adults. In addition, older adults appear to have difficulties in 

sensory reweighting, i.e., in ranking the importance of each sensory information to 

maintain balance (Horak et al 1989, Teasdale and Simoneau 2001, Eikema et al 

2012,2014).  

Age-related structural and functional changes in the neuromuscular system also 

play an important role in postural control. Some of the structural changes in skeletal 

muscles include the progressive decrease in muscle protein synthesis (myosin heavy 

chains and mitochondrial proteins) (Vandervoort 2002, Nair 2005), the increase in 

intramuscular fat (Kent-Braun et al 2000), the degeneration of muscle spindles (Skinner 

1984), the decrease in tensile stiffness of tendons indicating weaker tendons (Reeves 

2006), and the decrease in the size and number of muscle fibers (Lexell 1995). Some of 

the age-related structural changes in the nervous system include the progressive 

degeneration of the mass of the gray and white matter, leading to an atrophy of the brain 

tissue and thinning of the cortical tissue (Good et al 2001); the degeneration of alpha 

motoneurons (Campbell et al 1973, Doherty et al 1993b); the decrease in synaptic density 

(Haug and Eggers 1991); and the increase in motor unit size indicating an increased 

number of muscle fibers per motor unit (De Koning 1988).  

In addition, functional changes in the neuromuscular system include the 

progressive decrease in the number of viable motor units (Campbell et al 1973, Doherty 
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et al 1993b); the decrease in descending commands for voluntary muscle activation (Yue 

et al 1999); the decrease in axonal conduction velocity (Doherty et al 1993a, Wang 

1999); the decrease in the excitation-contraction process leading to reduced response 

amplitude (Delbono 2000, Rivner et al 2001); sarcopenia (age-related loss of skeletal 

muscle mass and strength) (Bemben et al 1991); and the reorganization of muscle 

response to balance adjustments (Papegaaij et al 2014). Regarding progressive 

sarcopenia, studies report a decrease of 20–40% in skeletal muscle mass at the age of 80 

(Rice et al 1989, Porter et al 1995) and a 20–50% decrease in skeletal muscle strength 

(Shumway-Cook and Woollacott 2001, Doherty 2003). In addition, Tsai et al (2014) 

reported a decrease in postural muscle power in older adults. The rate of mass and 

strength loss, however, differs among skeletal muscles (Doherty 2003). The lower 

extremity muscles appear to lose more strength than upper extremity muscles (Aniansson 

et al 1996, Frontera et al 2000). In addition, some studies reported a larger loss in distal 

muscles compared to proximal ones (Nakao et al 1989), whereas other studies did not 

report the same findings (Viitasalo et al 1985).  

Regarding the pattern of muscular activation, older adults seem to reorganize the 

relative contribution of cortical and spinal inputs during voluntary contraction. There is 

an increase in cortical activation (cortical mechanism) and a decrease in the modulation 

of presynaptic inhibition (spinal mechanism) (Papegaaij et al 2014). These changes seem 

to be related to the muscular co-activation pattern observed in older adults. In other 

words, a stiffening of joints by agonist-antagonist cocontraction seems to be a common 

strategy of postural control used by older adults to improve instability (Woollacott et al 

1988, Manchester et al 1989, Melzer et al 2001, Laughton et al 2003, Benjuya et al 2004, 

Klass et al 2007, Tucker et al 2008, Baudry et al 2010, Nagai et al 2011, Papegaaij et al 

2014, Lee et al 2015, Craig et al 2016). In general, this co-activation of agonist and 

antagonist muscles during upright stance associated with joint stiffness, particularly in 

distal joints (ankles), (a) increases postural rigidity and potentially restrict dynamic 

responses to postural control due to the reduced number of degrees of freedom (Ge 1998, 

Tucker et al 2008); (b) reduces the performance of agonist muscles (Pereira and 

Gonçalves 2011); (c) increases the energetic cost of transport (Mian et al 2006); and (d) 

increases chances of fatigue (Hortobagyi et al 2009). Therefore, unlike a flexible system 
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using optimal spatio-temporal patterns of reciprocal muscle activation to control posture, 

older adults tend to stiffen their lower extremity joints by antagonist cocontraction in 

order to compensate for the lack of their ability to fine-tune postural adjustments during 

upright stance. 

The increase in co-activation of antagonist postural muscles have been reported 

not only during static standing (Melzer et al 2001, Laughton et al 2003, Benjuya et al 

2004, Nagai et al 2011, 2013), but also during single-joint movements of the arms (Klein 

et al 2001), gait (Mian et al 2006, Schmitz et al 2008), stepping down (Hortogagyi and 

DeVita 2000), and, mostly, as a response to postural perturbation (Woollacott et al 1988, 

Manchester et al 1989, Lin and Woollacott 2002, Maki and McIlroy 2006, Lee et al 

2015). In general, age-related changes in compensatory postural adjustments (CPAs) may 

include increased magnitude of muscle activity and larger COP displacements (Maki and 

McIlroy 2006). Other CPAs observed in older adults include longer latency of responses 

in muscles acting in the ankle, increased cocontraction of antagonist muscles, changes in 

the temporal sequencing of the distal and proximal activation, and increased variability in 

the magnitude of activation of proximal and distal muscles in response to perturbation 

(Woollacott et al 1986,1988, Lin and Woollacott 2002, Tsai et al 2014, Lee et al 2015, 

Craig et al 2016). Tsai et al (2014) reported an asymmetrical increase in the EMG activity 

of postural muscles in response to perturbation in older adults. This asymmetric pattern 

might be a contributing factor of unstable postural responses as the individual ages. In 

another study, Lee et al (2015) reported age-related changes on CPAs when individuals 

were asked to push an object (a pendulum attached to the ceiling) using both hands. Older 

adults used co-activation of postural muscles (tibialis anterior, medial gastrocnemius, 

rectus femoris, biceps femoris, rectus abdominis, and lumbar erector spinae), whereas 

young adults used reciprocal activation of muscles. As observed, older adults co-activate 

agonist and antagonist postural muscles as their compensatory mechanism to overcome 

aging-related deficits in postural control, a typical motor strategy observed when function 

is not optimal. 

In summary, the decline in postural control due to the natural process of aging 

leads to a reorganization of sensorimotor integration and motor output to maintain 
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balance and avoid falls. Consequently, failure in feedback and feedforward mechanisms 

results in suboptimal corrective torque and possible loss of balance.  

Current efforts of health professionals to reduce episodes of fall include fall risk 

screenings and functional performance-based tests to assess balance. Fall risk screenings 

are usually based on key fall risk factors, such as age, previous falls, decreased level of 

daily physical activity, medications, vision health, risk taking behaviors, home safety 

issues, fear of falling, depression, use of assistive devices, and leg muscle strength. Some 

of the tests available to be performed in clinical settings include the following: the 

“Performance Oriented Mobility Assessment” scale (POMA) to assess balance and 

mobility; the “Timed Up and Go test” (TUG) to assess mobility; the “Berg Functional 

Balance Scale” (BBS) to assess balance; the “30-Seconds Chair Stand Test” to assess leg 

strength and endurance; the “Functional Reach Test” to measure postural control; the 

“Four Square Step Test” (FSST) to assess fall risk; the “Balance Evaluation Systems 

Test” (BESTest) and its mini version (mini-BESTest) to assess balance problems; the 

“Short Physical Performance Battery” (SPPB) to assess balance; the “4-Stage Balance 

Test” to assess balance; the “Clinical Test of Sensory Integration for Balance” (CTSIB) 

to evaluate the contribution of sensory systems to control balance; the “Activities-Specific 

Balance Confidence (ABC) Scale” to assess balance; the “Dynamic Gait Index” (DGI) to 

assess gait, balance, and fall risk; and the “Gait Assessment Rating Score” (GARS) to 

assess gait (Shumway-Cook and Horak 1986, Tinetti 1986, Duncan and Weiner 1990, 

Wolfson et al 1990, Podsiadlo and Richardson 1991, Berg et al 1992, Powell and Myers 

1995, Shumway-Cook and Woollacott 1995, Dite and Temple 2002, Herman et al 2009, 

Franshignoni et al 2010, Freire et al 2012). See Konrad et al (1999), Ambrose et al 

(2013), and Noohu et al (2013) for general information about the aforementioned tests.  

Another recognized tool to assess fall risk is the STEADI (Stopping Elderly 

Accidents, Deaths & Injuries) toolkit created by the Centers for Disease Control and 

Prevention‟s Injury Center (CDC). This tool kit includes educational brochures about fall 

prevention for both health professionals and older adults, and it can be found online at 

http://www.cdc.gov/steadi/materials.html. In addition, the “Falls Free Initiative” program 

from the National Council on Aging, a nonprofit service and advocacy organization 

representing older adults and the community organizations that serve them, promotes 

http://www.cdc.gov/steadi/materials.html
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some evidence-based programs to prevent falls (such as “A Matter of Balance”, 

“Stepping On”, “Tai-Chi: moving for better balance”, and “The Otago exercise 

program”). The Falls Free Initiative also sponsors the annual “Falls Prevention 

Awareness Day” on the first day of Fall, a national fall risk screening and fall prevention 

education event.   

All these clinical tests and fall risk screenings are valid tools to address the 

necessity of preventive and/or rehabilitative interventions to improve balance. However, 

they do not identify the underlying causes of balance deficits. Quantitative assessment of 

postural control using measures extracted from COP and EMG signals in laboratory 

settings provides advanced knowledge regarding age-related changes impacting balance 

mechanisms. Current literature on the effects of aging on muscle activation and postural 

sway behavior is presented in the next section. 

 

 

2.4. THE EFFECTS OF AGING ON MUSCLE ACTIVATION AND POSTURAL 

SWAY    

 

Electromyography and force platform systems have been used to investigate 

postural control in different populations. Traditional measures extracted from EMG and 

COP signals include magnitude and sequencing of muscle activation, sway area, sway 

amplitude, sway velocity, and sway frequency. 

Regarding the control of muscle activation during unperturbed stance, studies 

have shown age-related changes in both duration and amplitude of motor unit action 

potentials (Howard 1988, Doherty et al 1993a, Roos 1999). Increased EMG activity of 

muscles acting on the ankles (tibialis anterior and soleus) and hips (rectus femoris and 

semitendinosus) during unperturbed upright stance has been reported in older adults, 

compared to young adults (Amiridis et al 2003, Benjuya et al 2004, Nagai et al 2011). 

Studies have primarily shown a higher EMG activity of the tibialis anterior (pulling the 

body forward) and semitendinosus (keeping the hip extended) in older adults, compared 

to that in young adults, under different static stance tasks, such as wide base of support, 

narrow base of support, tandem Romberg stance, and unipedal stance (Amiridis et al 
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2003, Benjuya et al 2004). A higher activation of the muscles acting on the ankle (tibialis 

anterior and soleus) in older adults, compared to that in young adults, was also reported 

not only during unperturbed static stance, but also during dynamic stance tasks, such as 

the functional stability boundary task (Nagai et al 2011). Interestingly, Benjuya et al 

(2004) reported no significant effects of vision (eyes open or eyes closed) and the size of 

the base of support (wide or narrow) on the magnitude of activation of the muscles 

around the ankle or knee/hip in young adults during unperturbed bipedal stance. 

However, older adults increased the EMG activity of the tibialis anterior when they stood 

up with eyes closed and with a narrower base of support (Benjuya et al 2004).  

The use of EMG analysis has also confirmed the use of the cocontraction 

strategy by older adults to control balance and avoid falls (Laughton et al 2003, Benjuya 

et al 2004, Mian et al 2006, Schmitz et al 2008, Nagai et al 2011,2013, Lee et al 2015). 

Nagai and colleagues investigated the cocontraction index for the muscles around the 

ankle (tibialis anterior and soleus) in young and older adults performing static 

(unperturbed bipedal stance) and dynamic (functional reach, functional stability 

boundary, and gait) tasks. They revealed a significantly higher co-activation of these two 

muscles in older adults compared to that in young adults (Nagai et al 2011,2013). 

Moreover, older adults with less physical function presented higher muscle co-activation 

of ankle muscles compared to older adults with better physical function. Benjuya et al 

(2004) also found an increased cocontraction around the ankle (tibialis anterior and 

soleus) in older adults under different static postures (narrow and wide base of support 

with eyes either open or closed). In another study, Cattagni et al (2016) showed an 

association between ankle muscles weakness and increased body sway during upright 

stance. They suggested that postural stability impairment in older adults is highly related 

to ankle muscles weakness.  

The effects of aging on postural control can also be detected by analyzing postural 

sway behavior. Subtle changes in body sway can be measured by changes in COP 

signals. Despite discrepancies in the literature due to variation in experimental protocols 

used to measure body sway, there is general agreement that older adults present a larger 

and faster body oscillation during bipedal upright stance when compared to young adults 

(Maki et al 1990, Prieto et al 1996, Amiridis et al 2003, Choy et al 2003, Benjuya et al 
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2004, Freitas et al 2005, Maurer and Peterka 2005, Demura et al 2008, Seigle et al 2009, 

Vieira et al 2009, Silva et al 2013, Wiesmeier et al 2015). The larger postural sway in 

older adults has been verified by a larger area of COP sway (Prieto et al 1996, Benjuya et 

al 2004, Demura et al 2008, Silva et al 2013), an increased total length of the COP path 

(Benjuya et al 2004), and an increased peak-to-peak amplitude of the COP sway 

(Amiridis et al 2003, Benjuya et al 2004, Demura et al 2008, Wiesmeier et al 2015). 

These studies compared young and older adults performing between 5 to 60 seconds of 

upright stance under different conditions, such as eyes open or closed, narrow or wide 

base of support, and bipedal or unipedal stance. Interestingly, Seigle et al (2009) found a 

significantly increased length of the COP path during bipedal stance with eyes closed in 

older adults, but not during bipedal stance with eyes open. Moreover, Seigle et al (2009) 

and Vieira et al (2009) did not find significant difference in the elliptical area of the COP 

sway of older adults, compared to that for young adults, during bipedal stance with eyes 

either open or closed. The variability of the COP displacement, computed by either 

standard deviation or root mean square (RMS) of the COP displacement, also seems to 

increase with age. Amiridis et al (2003) reported higher COP standard deviation in older 

adults compared to young adults, in both directions, under either bipedal, Romberg (feet 

together) or unipedal stance for 5 seconds; Silva et al (2013) reported higher RMS of the 

COP displacement in older adults during 30 seconds of unipedal stance; and Wiesmeier 

et al (2015) reported higher RMS during 60 seconds of bipedal stance. Controversially, 

Freitas et al (2005) did not find significant difference in the RMS of the COP 

displacement among young and older adults performing bipedal stance for 60 seconds. 

Regarding the mean velocity of the COP displacement, several studies reported a 

significant higher velocity during upright stance in older adults compared to young adults 

(Maki et al 1990, Baloh et al 1994, Prieto et al 1996, Choy et al 2003, Benjuya et al 2004, 

Freitas et al 2005, Maurer and Peterka 2005, Demura et al 2008, Silva et al 2013, 

Wiesmeier et al 2015). These studies used different experimental designs to measure 

COP velocity, such as trial duration (20 to 60 seconds) and postural tasks (bipedal, 

bipedal with feet together, unipedal, eyes open, and eyes closed). Conversely, Seigle et al 

(2009) found significant difference in the mean velocity of the COP displacement only 
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when the eyes were closed, and Vieira et al (2009) found significant difference in the 

mean velocity only in the medio-lateral direction for eyes either open or closed. 

The spectral power of the COP displacement, usually overlooked, is also useful to 

detect changes in postural behavior. Traditional variables extracted from the power 

spectrum density (PSD) of the COP signal are the mean frequency and the frequency 

containing 80% of the COP spectral power. In general, older adults present higher mean 

frequency of the COP oscillation compared to young adults during unperturbed bipedal 

stance (Maki et al 1990, Wiesmeier et al 2015). In particular, for both young and older 

adults, Wiesmeier et al (2015) reported a higher mean frequency of the COP oscillation 

in the medio-lateral direction compared to the anterior-posterior direction, and also a 

higher mean frequency with eyes closed, compared to eyes open. Silva et al (2013) also 

reported an increased mean frequency of the COP oscillation in older adults during 

unipedal stance for 30 seconds, compared to young adults. Regarding the frequency band 

with 80% of the spectral power, Freitas et al (2005) reported significant higher frequency 

in the anterior-posterior direction for older adults compared to that measured in young 

adults, but no significant difference in the medio-lateral direction. Vieira et al (2009) also 

reported an increase in the frequency containing 80% of the COP spectral power in older 

adults performing bipedal stance with eyes open. However, they did not find significant 

differences when the eyes were closed. 

Recent attempts to investigate the effects of aging on the dynamical structure of 

postural sway are promising. The use of entropy analysis to measure the randomness and 

irregularity of the COP behavior is yet to be explored in both healthy individuals and 

those with balance disorders. Duarte and Sternard (2008) and Borg and Laxaback (2010) 

measured the multiscale entropy and the sample entropy, respectively, to compare the 

level of randomness of the COP displacement between young and older adults. Both 

studies found a significantly higher irregularity of the anterior-posterior COP 

displacement in older adults compared to that in young adults, and no significant 

difference in the medio-lateral direction. Borg and Laxaback (2010) and Fino et al (2015) 

used sample entropy analysis and reported a more irregular pattern of COP displacement 

when older adults closed their eyes, compared to their bipedal stance with eyes open. 

Moreover, Borg and Laxaback (2010) reported higher COP irregularity of fallers 
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compared to nonfallers among older adults performing bipedal stance with eyes closed. 

Conversely, Seigle et al (2009) measured the Shannon entropy and reported no 

significant difference between young and older adults performing bipedal stance with 

eyes open and a more repetitive pattern of COP displacement for older adults with closed 

eyes compared to young adults. Despite all these findings, the differences among studies 

lie in the difference in the form of entropy and its computations.   

Another method used to investigate the structure of the postural sway is the 

decomposition of the COP signal into rambling and trembling components (Zatsiorsky 

and Duarte 2000). Recently, Sarabon et al (2013) compared the mean velocity, mean 

frequency, and variability (root mean square) of each component of the postural sway in 

both directions between young and older adults performing bipedal stance with eyes 

either open or closed. Their results revealed stronger effects of age in the rambling 

component compared to that in the trembling component. However, it was an exploratory 

study and more research is necessary to better understand the age-related changes in the 

rambling and trembling components of the COP signal. 
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CHAPTER 3 

Multi-muscle control during bipedal stance:  

an intermuscular coherence analysis approach 

 

 

3.1. INTRODUCTION 

 

The control of the human body‟s vertical posture requires harmonic modulation of 

multiple muscles with temporal, spatial, and magnitude precision. The large and 

redundant number of muscles, the presence of multi-articular muscles, and the inherent 

vertical arrangement of major body segments during bipedal stance are some of the 

challenges to be overcome during the generation and distribution of the neural drive to 

skeletal muscles. One of the mainstays of development in motor control has been the 

hypothesis that the central nervous system (CNS) unites motor components to functional 

groups in order to overcome some of these challenges (Bernstein 1967). As a result, an 

extensive line of scientific work exploring this hypothesis has developed several 

methodological approaches to identify the existence of such functional groups as well as 

their composition. Among others, correlation techniques and methods of matrix 

factorization have been successfully used to identify small sets of variables that described 

the dynamic behavior of muscles across a variety of actions (Maier and Hepp-Reymond 

1995, D‟Avella et al 2003, Ivanenko et al 2004,2006, Weiss and Flanders 2004, Tresch et 

al 2006). In the last decades, novel methodologies have not only allowed the 

identification of functional muscle groups and their components, but also linked their 

interaction to the control of important physical variables (Scholz and Schöner 1999, 

Scholz et al 2000,2001, Krishnamoorthy et al 2003a, b,2004, Latash et al 

2002,2003,2010, Danna-dos-Santos et al 2007,2008,2009, Latash 2008). One such 

method is the Uncontrolled Manifold Analysis (UCM) applied during the execution of 

whole-body tasks in bipedal stance (Krishnamoorthy et al 2003a). These researchers 

reported three major functional muscle groups (termed muscle modes or M-modes) 

emerging and co-varying their magnitude to provide a stable trajectory of the position of 
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the body‟s center of pressure (COP). This phenomenon has been replicated for other task 

settings (Danna-dos-Santos et al 2007,2008,2009, Robert et al 2008). 

Collectively, these studies strongly suggest the involvement of muscle synergies 

controlling human posture. However, the neurophysiological mechanisms underlying the 

formation of these synergistic muscle groups remain largely unknown. Recently, it has 

been proposed that correlated neural inputs may be the mechanism used by the CNS to 

coordinate the activation of muscles forming a synergistic muscle group (Farmer 1998, 

De Luca and Erim 2002, Santello and Fuglevand 2004, Semmler et al 2004, Johnston et 

al 2005, Winges et al 2008, Boonstra et al 2009, Danna-dos-Santos et al 2010, Poston et 

al 2010). This proposition is based on the principle that the synchronization of neural 

oscillations at lower frequency bands may be the mechanism used by the CNS to achieve 

large-scale integration among its cortical and subcortical components, including those 

involved in the generation and control of movements. As a result, traces of such 

synchronizations at lower frequency bands within the CNS are likely to be embedded in 

electromyographic signals (EMG) of targeted skeletal muscles (Farmer 1998, De Luca 

and Erim 2002). Therefore, it has been proposed that synchronization features, such as 

the coherence between pairs of EMG signals, can be used to investigate the formation of 

multi-muscle synergies.  

The intermuscular coherence approach has been successfully used to determine 

the distribution of correlated neural inputs to skeletal muscles during object grasping 

tasks (Boonstra et al 2009, Danna-dos-Santos et al 2010, Poston et al 2010) and during 

the execution of whole-body tasks (Boonstra et al 2008,2009). In general, these studies 

indicated that correlated neural inputs to skeletal muscles have specific spatial 

distributions, strength, and periodicity. However, to date, no investigations have focused 

on the hypothesis of correlated neural inputs among postural skeletal muscles .  

Therefore, to further advance knowledge on the mechanisms underlying the 

organization of multi-muscle synergies, the present study was designed to investigate the 

possible existence, distribution, and strength of correlated neural inputs to three postural 

muscles previously recognized by Krishnamoorthy et al (2003a) as components of a 

synergistic muscle group. If these postural muscles are, in theory, part of the same neural 

network formed by synchronized neural oscillations within the CNS, they would be 
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synchronized at lower frequency bands. Therefore, the present study was based on the 

rationale that these synergistic muscles would exhibit signs of correlated neural inputs in 

the form of significant intermuscular coherence within a distinct lower frequency band. 

 

 

3.2. METHODS 

 

Participants. Nine healthy participants (4 females and 5 males, mean age 29.2 

years old and SD = 6.1, mean height 1.71 m and SD = 0.74, mean weight 78.8 kg and SD 

= 20.5) participated in this study. All participants were healthy and had no history of 

neurological or muscular disorder. All participants were right-handed based on their 

preferential hand usage during writing and eating. Prior to their participation, all 

participants voluntarily gave informed consent based on the procedures approved by the 

Institutional Review Board at The University of Montana and conformed to The 

Declaration of Helsinki. 

 

Apparatus. A force platform (AMTI BP400600, AMTI Inc.) was used to acquire 

the vertical and horizontal components of the ground reaction force as well as the 

moments of force around the frontal and sagittal axes. These signals were transmitted to a 

dedicated system (Vycon MX Ultranet and Vycon Nexus version 1.6.1, Vycon®) for the 

computation of the body‟s center of pressure coordinates in anterior–posterior and 

medio–lateral directions (COPap and COPml, respectively). Features of the COP were 

recorded due to previous reports relating low-frequency COP modulation to low-

frequency EMG modulation (Mochizuki et al 2006). Consistent with previous studies, 

COPap and COPml were defined by 

 

COPap = (−h * Fx – My) / Fz        (3.1) 

COPml = (−h * Fy – Mx) / Fz ,       (3.2) 

where h = the height of the base of support above the force plate; Fx = horizontal 

anterior–posterior component of the resultant force applied to the force plate; Fy = 

horizontal medio–lateral component of the resultant force applied to the force plate; Fz = 
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vertical component of the resultant force applied to the force plate; Mx = moment of 

force around the sagittal axis; and My = moment of force around the frontal axis. 

Surface electrodes were used to record the activity of the following muscles: 

soleus (SOL), biceps femoris (BF), and lumbar erector spinae (ERE). The electrodes 

were placed on the right side of the participant‟s body and over the muscle bellies based 

on recommendations reported in the literature (Basmajian, 1980): SOL electrode laterally 

below the heads of the gastrocnemius bellies, BF electrode at half way between the 

ischial tuberosity and the lateral epicondyle of the tibia, and ERE electrode 3 cm lateral to 

L1. Figure 3.1 shows the placement of the electrodes. A reference electrode was placed 

over the lateral aspect of the fibular malleolus. Signals from the electrodes were 

amplified (1,000×) and band-pass filtered (6–500 Hz). All signals were sampled at 1,200 

Hz with a 12-bit resolution. 

 

Experimental Procedures. All participants performed one control task, followed 

by ten trials of an experimental task. 

The control task consisted of an unperturbed upright bipedal stance (UStance). 

Participants were instructed to stand barefoot on the force platform with their feet parallel 

and 15 cm apart, their upper limbs crossed against their chest, and their vision focused to 

a physical static point placed at eye‟s height and at a distance of 2 m. Once this initial 

position was adopted, participants were asked to remain steady for 35 s keeping their 

body as vertical as possible, and distribute their body weight evenly between the two feet 

(Figure 3.2A). Data collection started after 5 s and lasted for 30 s. 

The experimental task consisted of upright stance under the continuous 

perturbation of holding a load (LOAD). The participants remained on the force platform 

in the same position previously described. In addition, they were asked to hold a barbell 

(5 kg) in front of their body with their shoulders flexed 90
o
 and their elbows fully 

extended (Figure 3.2B). The participants held the weight by pressing on its two circular 

ends, and a total of ten valid trials were performed. A trial was considered valid only 

when participants kept their body vertically steady during the entire length of the trial 

while keeping a vertical orientation of the major body segments (lower limbs, trunk and 

head). To avoid recording any transient effects during the initial moments of a trial, data 
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recordings started only after 5 s from the moment the participant took position. Each trial 

was then recorded for 10 s. When a trial was considered invalid, recordings were 

discarded and the trial was repeated at the end of the experiment. To avoid fatigue, a time 

interval of 60 s was provided between trials, when participants could be at ease but had to 

keep their feet at the same position on the force platform.  

The average duration of the entire experimental session was 30 min, and none of 

the participants reported fatigue.  

 

 

 

 

 

Figure 3.1. Representation of the electrodes placed on postural muscles. Note: soleus 

(SOL), biceps femoris (BF), lumbar erector spinae (ERE), and reference electrode 

(GROUND). 

 

 



67 

 

 
 

Figure 3.2. Posture adopted during (A) the control task (unperturbed stance, UStance), 

and (B) the experimental task (holding a load, LOAD).  

 

 

3.3. DATA PROCESSING 

 

Center of pressure coordinates and EMG signals were analyzed off-line with 

custom-written software routines (Matlab R2012b, The MathWorks). 

 

Postural sway behavior. COPap and COPml coordinate signals were filtered with 

a 20 Hz low-pass, second-order, and zero lag Butterworth filter. Next, the relative 

position of COPap and COPml during each LOAD trial was determined with respect to 

the normalized position of these same coordinates obtained during the UStance trial. 

Normalization of coordinates recorded during the UStance trial was obtained by 

subtracting their average position from its initial values. This normalization allowed the 
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researcher to position COP coordinates at the center of an xy coordinate system and, 

therefore, draw any comparisons of basic COP features across participants. In a sequence, 

the following postural indices were extracted: the elliptical area containing 95 % of the 

entire COP path (Area); the ranges and mean velocities of the COP displacement in both 

anterior-posterior and medio-lateral directions (RangeAP, RangeML, MVAP, and MVML, 

respectively); and the mean power frequency and the maximum frequency containing 

80% of the power spectral density of the COPap signal (FmeanAP and F80AP, 

respectively). Measures of frequency were only extracted from the anterior-posterior 

component of the COP because the muscles recorded act mostly to move the body‟s COP 

in this direction. A more detailed description of these postural indices can be found in 

Chapter 7 of the dissertation. 

 

Levels and patterns of muscle activation. The EMG signals recorded from all 

three muscles were submitted to two separate analyses.  

First, the relative index of muscle activation (IndexEMG) was computed to quantify 

the amplitude of muscle activation of each muscle during the experimental trials 

(LOAD). EMG signals from both control and experimental trials were visually inspected 

to verify the presence of any signal artifacts and then filtered (20 Hz high-pass, second-

order, zero-lag Butterworth filter) and full-wave rectified. Each resulting signal from the 

LOAD trials was integrated over its entire trial length and normalized by similar integrals 

performed on the EMG signals recorded during the control trial (UStance). Since the 

duration of the UStance trial was 30 s, only the intermediate 10 s of the trials were 

integrated. IndexEMG was used to confirm that all muscles recorded were activated during 

the execution of the experimental task. Figure 3.3 shows the sequence of steps used to 

compute IndexEMG. This index indicates the relative amount of EMG activation for a 

given muscle during the LOAD trial, compared to the UStance trial. For example, a final 

IndexEMG of value 2 indicates that the muscle activation during the LOAD trial was twice 

the muscle activation during the UStance trial. 
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Figure 3.3. The sequence of steps used to compute the relative index of muscle activation 

(IndexEMG). 

 

 

 

In addition, the degree of similarity of muscle activation patterns during the 

experimental (LOAD) trial across participants was computed based on the resultant 

muscle activation vectors of the participants. The resultant muscle activation vector of 

each participant was computed as the resultant vector formed by three muscle activation 

vectors: IndexEMG_SOL, IndexEMG_BF, and IndexEMG_ERE. These three muscle activation 

vectors were orthogonally assembled and their magnitude was the respective normalized 

IndexEMG. Figure 3.4AB illustrates the resultant muscle activation vectors of two 

representative participants. Next, the cosine of the angle between resultant vectors of 

every two participants was computed (Figure 3.4C). The cosine values, ranging from 0 to 

1, were used to quantify the degree of similarity of the muscle activation pattern between 

two participants. Cosine values close to 0 indicates perpendicularity or dissimilarity of 

the patterns of muscle activation across participants, whereas cosine values close to 1 

indicate parallelism or similarity in the patterns of muscle activation across participants 

(see Danna-dos-Santos et al 2007 and Poston et al 2010 for more details for the 

computation of the cosines). This analysis was important to detect whether participants 

were using similar patterns of muscle activation throughout their experimental trials.  
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Figure 3.4. Resultant muscle activation vectors (V5 and V9) of two representative 

participants performing the experimental trial (panels A and B, respectively). The angle, 

and respective cosine, between the resultant muscle activation vectors of these two 

participants (panel C). 

 

 

The second analysis quantified the correlation of muscle activation in the 

frequency domain during the experimental trials (LOAD) by using intermuscular 

coherence analyses. Filtered EMG signals (20 Hz high-pass, second-order, zero lag 

Butterworth filter) recorded from all ten experimental trials were concatenated to create a 

long single data series (100 s; 120,000 data points). This procedure (concatenating) was 

used to increase the number of segments and the reliability of the coherence estimation 

(Maris et al 2007, Poston et al 2010). Intermuscular coherence was then estimated 

separately for each pair of EMG signals (SOL/BF, SOL/ERE, and BF/ERE) by using the 

cross-spectrum of two EMG signals (fxy) squared and normalized by the product of the 

autospectrum of each signal (fxx and fyy) at each frequency (λ), as follows: 
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       (3.3) 

 

 

Coherence was estimated from segments of 1 s duration (i.e., 1,200 samples per 

segment), resulting in a frequency resolution of 1 Hz. Since the synchronization at lower 

frequency bands was of interest of the researcher, coherence was analyzed within 0 to 55 

Hz (a more detailed description can be found in Danna-dos-Santos et al 2010 and Poston 

et al 2010). In order to compare coherence across participants and frequency intervals, all 

estimates were z-transformed using the Fisher transformation (Rosenberg et al 1989, 

Amjad et al 1997, Danna-dos-Santos et al 2010). Coherence was considered statistically 

significant when it exceeded the significance limit of the null distribution, computed as 

proposed by Rosenberg et al (1989). Analysis of the frequency distribution of correlated 

neural inputs was performed by identifying frequency intervals with significant z-scored 

coherence estimates across participants. Next, the analysis of the strength of correlated 

neural inputs was achieved by comparing integrals computed for the z-scored coherence 

estimates profiles over the frequency bands of interest. For further comparisons of these 

integrals among different frequency bands, the integrals were normalized by the length of 

each interval. Figure 3.5 shows an example of a typical z-scored coherence profile within 

the frequency band 0–55 Hz and the significance level obtained from a pair of EMG 

signals (SOL/BF) of a representative LOAD trial. Note the significant z-scored coherence 

estimates for the frequencies 0 to 4 Hz, 10 to 15 Hz, and 33 to 35 Hz. Note also that the 

SOL/BF coherence seems stronger within the frequency band 0–4 Hz, compared to that 

of the other two frequency bands.  
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Figure 3.5. Z-scored coherence profile (and significance level, dashed line) obtained 

from a single pair of EMG signals (SOL/BF) computed from a representative LOAD trial. 

 

 

In addition to the intermuscular coherence for pairs of muscles, estimates of 

coherence obtained for each muscle pair were combined to calculate the pooled 

coherence estimates across muscle pairs, as proposed by Amjad et al (1997) as follows: 
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       (3.4) 

 

Pooled coherence estimates are considered a weighted average of individual 

coherence estimates. They are used to increase statistical power of the estimate. It is 

assumed that all three muscles form a single muscle mode and, hence, share correlated 

neural inputs. As coherence between the different muscle combinations reflects the same 

underlying process, the estimate is improved by pooling coherence across all three pairs 



73 

 

(SOL/BF, SOL/ERE, and BF/ERE). Analyses of the frequency distribution and strength 

of correlated neural inputs obtained from pooled coherence calculations followed the 

same procedures as described for single-pair analyses. 

 

Statistical approach. Summaries on the averages and standard deviations are 

reported along with the text and the tables. Considering the sample size, Shapiro-Wilk 

tests were performed to verify whether responses were normally distributed. Since the 

response variables followed a normal distribution, a series of parametric tests were 

performed. Paired t-tests were conducted on the factor Task (UStance and LOAD) for 

response variables extracted from the COP signals and for the relative index of muscle 

activation (IndexEMG). For the UStance task, repeated measures ANOVAs followed by 

post hoc comparisons (paired t-tests) were performed on the factors Frequency Band and 

Muscle Pair for the variable Normalized Integrals (INTCoh). All parametric tests were 

conducted by the IBM SPSS statistics software suite (version 20, IBM® SPSS®) and the 

level of significance was fixed at 5% (α = 0.05) for individual tests.  

 

 

3.4. RESULTS 

 

All nine participants were able to perform both the UStance and LOAD trials with 

ease and without any signs of fatigue or discomfort. In addition, all participants were able 

to easily sustain a vertical position of their axial skeleton during the LOAD trials with no 

visible postural deviations. 

 

Postural sway behavior. In general, the application of the frontal weight to the 

axial skeleton generated qualitative and quantitative changes on the COP displacement 

patterns and its frequency content. As expected for the LOAD trials, there was an anterior 

migration of the body‟s COP (anterior mean displacement = 2.94 cm, SD = 2.15). This 

anterior migration was associated with a small migration to the left (mean displacement 

to the left = 0.25 cm, SD = 0.42). Figure 3.6 shows the average COP position for each 
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participant during LOAD trials (open circles), as well as the averaged COP position 

during UStance (filled triangle) and LOAD trials (filled circle) across participants. 

 

 

 
 

Figure 3.6. The average center of pressure (COP) position across trials for each 

participant during LOAD trials (open circles), the average COP position across 

participants during LOAD trials (filled circle), and the average COP position across 

participants during UStance trials (filled triangle).  

 

 

In addition to this migration, all participants oscillated more and faster when the 

frontal load was applied. Figure 3.7 shows the COPap and COPml profiles of a 

representative participant performing the UStance (panels A and B) and one 

representative LOAD trial (panels C and D). Note the larger area and amplitude of the 

COP displacement during the LOAD trial. Also visually noticeable is the increased 

presence of higher frequency oscillations embedded on both COPap and COPml profiles 

under LOAD task (panel D) compared to that for the UStance task (panel B). 
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Figure 3.7. Center of pressure (COP) displacement of one representative UStance trial 

(panels A and B) and one representative LOAD trial (panels C and D). 

 

 

 

Table 3.1 summarizes the averages across participants and the respective standard 

deviations for all seven COP variables (Area, RangeAP, RangeML, MVAP, MVML, FmeanAP, 

and F80AP). In general, participants presented a larger, faster, and increased frequency in 

their body sway when holding a frontal weight, compared to unperturbed stance. Paired t-

tests confirmed a significant increase in Area, RangeAP, MVAP, MVML, FmeanAP, and 

F80AP for the LOAD task, compared to that for the UStance task (see p values in Table 

3.1). 
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Table 3.1. Average, standard deviation, and 95% confidence interval of the difference 

across participants of seven postural indices extracted from the center of pressure 

coordinates in the anterior–posterior and medio–lateral directions (COPap and COPml, 

respectively) during unperturbed stance (UStance) and holding a load (LOAD) tasks. 

Note: * indicates a significant effect of Task (p < 0.05). 

 

 UStance LOAD 
95% confidence interval 

of the difference 
Paired t-test 

Area (cm
2
) 0.46 ± 0.20 0.94 ± 0.60 (-0.90, -0.06) 

t[8] = -2.625 

p = 0.030 * 

RangeAP (cm) 1.07 ± 0.37 1.34 ± 0.50 (-0.54, -0.01) 
t[8] = -2.371 

p = 0.045 * 

RangeML (cm) 0.55 ± 0.22 0.69 ± 0.38 (-0.39, 0.12) 
t[8] = -1.243 

p = 0.249 

MVAP (cm/s) 0.69 ± 0.21 1.17 ± 0.45 (-0.75, -0.20) 
t[8] = -3.931 

p = 0.004 * 

MVML (cm/s) 0.44 ± 0.17 0.67 ± 0.34 (-0.45, -0.01) 
t[8] = -2.373 

p = 0.045 * 

FmeanAP (Hz) 0.51 ± 0.12 0.68 ± 0.15 (-0.30, -0.06) 
t[8] = -3.421 

p = 0.009 * 

F80AP (Hz) 0.82 ± 0.21 1.05 ± 0.23 (-0.44, -0.02) 
t[8] = -2.495 

p = 0.037 * 

 

 

Levels of muscle activation. All participants revealed a relative increase in 

activation levels of all muscles during the execution of the LOAD trials. Figure 3.8 shows 

the raw EMG recordings for all 3 muscles obtained from a representative participant 

during the execution of UStance and LOAD trials (panel A), and the index of muscle 

activation (IndexEMG) of each muscle (panel B). Note the larger amplitude of the EMG 

signals for all three muscles during the LOAD trial. Note also that the lumbar erector 

spinae (ERE) muscle had the largest mean IndexEMG value across participants (mean = 

2.52, SD = 1.10) compared to that for the muscles BF and SOL (mean = 1.81, SD = 0.39 

and mean = 1.64, SD = 0.38, respectively). Table 3.2 shows the average and standard 
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deviation across participants for the index of muscle activation (IndexEMG). A two tailed 

paired t-test comparing IndexEMG across participants to a vector of ones representing 

similar level of muscle activation was performed for each muscle. These tests confirmed 

an increased muscle activation during the LOAD trials (t[8] = 4.994, p = 0.001; t[8] = 

6.159, p < 0.001; and t[8] = 4.127, p = 0.003; respectively for SOL, BF, and ERE 

muscles). 

 

 

 

 

 

 

 

 

Figure 3.8. (A) Raw EMG signals recorded from the soleus (SOL), biceps femoris (BF), 

and lumbar erector spinae (ERE) muscles in a representative participant performing the 

unperturbed stance trial (UStance) and holding an anterior load trial (LOAD). (B) The 

averages and standard deviations of the relative index of muscle activation (IndexEMG) 

across participants. Dashed line indicates the region of the graph where the relative levels 

of muscle activation would be equal between UStance and LOAD trials.  
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Table 3.2. The average and standard deviation across participants for the index of muscle 

activation (IndexEMG) for soleus (SOL), biceps femoris (BF), and lumbar erector spinae 

(ERE). 

 

 

 SOL BF ERE 

IndexEMG 1.64 ± 0.38 1.81 ± 0.39 2.52 ± 1.10 

 

 

 

Patterns of muscle activation. Participants employed similar patterns of muscle 

activation during the execution of LOAD trials. This similarity of patterns was confirmed 

by the vector analysis revealing cosine values across participants close to value 1 (mean  

= 0.94, SD = 0.04). 

 

 

Frequency domain analysis. Figure 3.9ABC shows the power spectrum density 

(PSD) of EMG signals from SOL, BF, and ERE of a representative participant 

performing a LOAD trial. Muscle activation in the frequency domain was analyzed to 

compute intermuscular coherence. Figure 3.9D shows the pooled coherence computed at 

the lower frequency band of 0–55 Hz. As observed, there was sign of intermuscular 

coherence within 0–3 Hz. 
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Figure 3.9. The power spectrum density (PSD) of EMG signals from soleus (SOL), 

biceps femoris (BF), and lumbar erector spinae (ERE) muscles of a representative 

participant performing a LOAD trial (panels A to C); and the pooled coherence profile 

(and significant limit in dashed line) within 0–55Hz (panels D). 

 

Pooled coherence. Figure 3.10A shows the average and standard deviation across 

participants for the pooled z-scored coherence profiles and the significance limit (black 

dashed line) over the frequency range of 0–55 Hz during the LOAD trials. The overall 

profile was relatively constant across participants, and two frequency intervals were 

consistently found to reach significant values of coherence: 0–5 Hz and 5–20 Hz.  

Figure 3.10B and Table 3.3 show the average (and standard deviation) across 

participants for the normalized integrals of these profiles under these two frequency 

intervals 0–5 Hz and 5–20 Hz (2.51 ± 0.93 and 2.34 ± 0.60, respectively) and under the 

frequency interval containing the remaining frequency spectrum studied 20–55 Hz (1.52 

± 0.18). As a reminder, these integrals were normalized by the length of each frequency 

interval mentioned in order to perform comparison of their values. A repeated measures 
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ANOVA confirmed the effect of Frequency Band on the variable Normalized Integral 

(Wilks‟ Lambda = 0.346, F(2,7) = 6.630, p = 0.024). Paired t-tests were used to make post 

hoc comparisons between frequency bands and revealed stronger pooled coherence 

within 0–5 Hz and 5–20 Hz, compared to that for the frequency band 20–55 Hz (t[8] = 

3.025, p = 0.016; and t[8] = 3.888, p = 0.005; respectively).  

 

 

Figure 3.10. (A) Average and standard deviation across participants of the z-scored 

pooled coherence profile during LOAD trials. Note the significance level in dashed line. 

(B) Averages and standard deviations across participants for the normalized integrals of 

the z-scored pooled coherence over the frequency intervals of 0–5 Hz, 5–20 Hz, and 20–

55 Hz. Note: * indicates a significant effect of frequency band (p < 0.05). 

 

 

Table 3.3. Averages and standard deviations across participants for the normalized 

integral of the z-scored coherence within the frequency bands 0–5 Hz, 5–20 Hz, and 20–

55 Hz (INTCoh0-5Hz, INTCoh5-20Hz and INTCoh20-55Hz, respectively) during LOAD trials. 

 

 INTCoh0-5Hz INTCoh5-20Hz INTCoh20-55Hz 

Pooled coherence 

(SOL/BF, SOL/ERE, BF/ERE) 
2.51 ± 0.93 2.35 ± 0.60 1.52 ± 0.18 

Single-pair SOL/BF 2.75 ± 0.67 1.9 ± 0.43 1.41 ± 0.25 

Single-pair SOL/ERE 1.38 ± 0.65 1.58 ± 0.32 1.25 ± 0.16 

Single-pair BF/ERE 1.39 ± 0.38 1.63 ± 0.32 1.21 ± 0.17 
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Single-pair coherence. Figure 3.11A shows the averages across participants for 

the z-scored coherence profiles computed separately for each pair of muscles formed 

between SOL, BF, and ERE over the frequency range of 0–55 Hz. The significance limit 

(dashed line) is also shown. Similar to pooled coherence results, the overall profile 

obtained for single-pair analyses was kept relatively constant across the participants with 

two frequency bands reaching levels of significance: 0–5 Hz and 5–20 Hz. Table 3.3 

shows the normalized integral of the z-scored coherence of muscle groups over different 

frequency bands (0–5 Hz, 5–20 Hz, and 20–55 Hz).  

Figure 3.11B shows the averages and standard deviations across participants for 

the normalized integral computed over the entire 0–55 Hz spectrum for all three muscle 

pairs. Note that SOL/BF pair had the largest normalized integral value (1.77 ± 0.29), 

followed by SOL/ERE and BF/ERE pairs (1.41 ± 0.16 and 1.39 ± 0.13, respectively). A 

repeated measures ANOVA confirmed the effect of Muscle Pair on the variable 

Normalized Integral within 0–55 Hz (Wilks‟ Lambda = 0.371, F(2,7) = 5.931, p = 0.031). 

Post hoc comparisons between muscle pairs (paired t-tests) revealed stronger coherence 

within 0–55 Hz for the muscle pair SOL/BF, compared to that for SOL/ERE and BF/ERE 

(t[8] = 3.131, p = 0.014; and t[8] = 3.681, p = 0.006; respectively). 

Even though the coherence strength within the frequency band 0–55 Hz for the 

muscle pair SOL/BF had been found to be significantly higher in comparison to the other 

two muscle pairs, this increase was entirely related to increased values of coherence 

found within the frequency interval of 0–5 Hz. Figure 3.11C shows the averages and 

standard deviations across participants for the variable normalized integral computed 

over the frequency bands 0–5 Hz, 5–20 Hz, and 20–55 Hz. Repeated measures ANOVAs 

found an effect of Muscle Pair on the variable Normalized Integral for the frequency 

band 0–5 Hz (Wilks‟ Lambda = 0.191, F(2,7) = 14.800, p = 0.003), and no effect within 

either 5–20 Hz or 20–55 Hz (Wilks‟ Lambda = 0.599, F(2,7) = 2.339, p = 0.167; and 

Wilks‟ Lambda = 0.565, F(2,7) = 2.692, p = 0.136; respectively). Paired t-tests showed 

stronger coherence for the muscle pair SOL/BF compared to that for the pairs SOL/ERE 

and BF/ERE within 0–5 Hz (t[8] = 4.794, p = 0.001; and t[8] = 5.539, p = 0.001; 

respectively). In addition, repeated measures ANOVAs found an effect of Frequency 

Band on the variable Normalized Integral only for the muscle pair SOL/BF (Wilks‟ 



82 

 

Lambda = 0.124, F(2,7) = 24.634, p = 0.001). Post hoc comparisons between frequency 

bands (paired t-tests) revealed stronger SOL/BF coherence within 0–5 Hz compared to 

the frequency bands 5–20 and 20–55 Hz (t[8] = -4.966, p = 0.001; and t[8] = -3.626, p = 

0.007; respectively) and within 5–20 Hz compared to that within 20–55 Hz (t[8] = 3.419, 

p = 0.009). 

 

 

 

Figure 3.11. (A) Averages across participants of the z-scored single-pair coherence 

profiles obtained for each muscle pair (SOL/BF, SOL/ERE, and BF/ERE). (B) Averages 

and standard deviations across participants of the normalized integrals computed for each 

muscle pair over the entire frequency spectrum investigated (0–55 Hz). (C) Averages and 

standard deviations across participants of the normalized integrals computed for each 

muscle pair over three different frequency intervals (0–5 Hz, 5–20 Hz, and 20–55 Hz). 

Note: * indicates a significant effect of frequency band and 
+
 represents a significant 

effect of muscle pair (p < 0.05). 
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3.5. DISCUSSION 

 

The present study investigated the intermuscular coherence as a potential 

mechanism underlying the organization of multi-muscle synergies. Consistent with the 

hypothesis of this study, correlated neural inputs were found in three posterior postural 

muscles (SOL, BF, and ERE) during bipedal stance under the continuous perturbation 

task of holding a load in front of the body. Specifically, an examination of the frequency 

bands, at which coherent muscle activity happened, revealed significant coherence within 

the frequency bands 0–5 Hz and 5–20 Hz. In addition, the results confirm significant 

correlated inputs in all postural muscles forming a single M-mode, even though these 

muscles are anatomically remote and act on different joints. Taken together, these 

findings corroborate the notion that the CNS not only unites motor effectors into smaller 

sets of controllable units, but may also use correlated neural inputs to assemble these 

modal (functional) units. In the remainder of this section, findings and their implications 

on the multi-muscle control of upright stance are discussed.  

 

M-modes and synergies. When any action, static or dynamic, is performed in 

bipedal stance, the coordination of a large number of muscles is required to counteract 

the effects of external and internal forces applied onto major body segments and to avoid 

the collapse of the body‟s vertical alignment. In terms of control design, this means 

controlling the position of multiple heavy segments (such as the head, trunk, thighs, and 

legs) vertically on top of each other and over a small base of support. This mechanical 

challenge is broadened by the increased complexity of the anatomical distribution of 

muscles along this vertical axis, where many muscles will cross multiple joints.  

To overcome some of these challenges, the proposition of a hierarchical system of 

control where the controller reduces the number of variables it manipulates was adopted 

(Gelfand and Tsetlin 1966, Bernstein 1967, Gelfand and Latash 2002). According to this 

view, at a lower level of the hierarchy, redundant muscles with similar functions are 

united into smaller groups (M-modes); whereas at a higher level, gains at the M-Modes 

are co-varied by the controller to ensure stability of the properties of important 

mechanical variables, such as the body‟s COP. One may view M-modes as “virtual 
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muscles” manipulated at a higher level of the control hierarchy for the control of relevant 

task variables. Under this view, movement control becomes more efficient by freeing 

neuronal computational power and, therefore, allowing the controller to manage the 

execution of concurrent secondary tasks, including those related to responses to 

unexpected perturbations (principle of abundance reviewed in Gelfand and Latash 2002).  

The present study was specifically interested in possible neural mechanisms 

involved in the formation of a previously recognized M-mode. Hypothetically, different 

sets of M-Modes can be created within the same space of muscle activations, and their 

formation depends mostly on the nature of the planned action (Danna-dos-Santos et al 

2008). For example, the same leg or trunk muscles can be united into sets of optimal M-

modes to ensure stabilization of a certain relevant performance variable (M-modes 

assembled for the execution of a sit-to-stand task will likely to be different from those M-

modes assembled during walking). In situations where investigations focused on upright 

standing, similar M-mode compositions have been reported and commonly include the 

emergence of three main M-modes: a posterior M-mode formed by soleus, biceps 

femoris, semitendinosus, lumbar erector spinae, and gastrocnemius; an anterior M-mode 

formed by tibialis anterior, vastus medialis, vastus lateralis, and rectus femoris; and an 

M-mode often formed solely by the rectus abdominis muscle (Krishnamoorthy et al 

2003a, Wang et al 2005,2006, Danna-dos-Santos et al 2007). These previous studies have 

provided support for the existence of a harmonic co-variation of M-modes modulation as 

a way to control the stability of the body‟s COP along the execution of standing tasks. 

The present study focused on the posterior M-mode based on the facility of 

inducing an isometric contraction of all its components by simply adding a weight to the 

body‟s anterior aspect. Therefore, no major task complications were introduced allowing 

all participants to perform the task with minimum constraints. However, the addition of 

the load disregarding variation on participant‟s anthropometrics ensured that all 

participants used similar patterns of muscle activation to maintain upright posture. 

In order to further understand the possible neural mechanisms underlying the 

coordination of muscles forming the posterior M-mode, intermuscular coherence was 

computed across all muscle pair combinations formed among the SOL, BF, and ERE. 

The strength of the coherence pooled at lower frequency bands across all muscles pairs 
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was significant for two frequency intervals (0–5 Hz and 5–20 Hz). Synchronizations 

within 0–5 Hz have been reported by previous studies and are thought to reflect 

synchronized contraction patterns of multiple muscles related to slow movements 

(Karmen and De Luca 1992, Farmer et al 1993, Vallbo and Wessberg 1993, De Luca and 

Erim 2002). According to these same studies, the neural sites responsible for the 

generation of such synchronizations at lower frequency bands are still unclear and 

unlikely to originate within the corticospinal system (Grosse et al 2002, Mochizuki et al 

2006).  

It is important to emphasize that the peak value found for the pooled coherence 

profiles within this frequency range was below 1 Hz (Figure 3.10A) and, therefore, close 

to the frequency of the COP oscillations (0.68 H z) obtained during the execution of the 

experimental task. The correlation between the oscillation of the COP and the modulation 

of the recorded EMG signals was not computed, but Mochizuki et al (2006) have 

previously demonstrated such a relationship. More specifically, their results suggest that 

very low range synchronizations (<1 H z) are likely to be the result of the coupling 

between oscillations of the COP and the EMG signals. This view is corroborated by the 

results shown for the analysis of coherence profiles obtained for each muscle pair 

separately (Figure 3.11A), in which only the most distal muscle pair exhibited such 

synchronizations. This difference of strength among the three pairs was attributed to a 

possible prevalence of the ankle strategy to counteract the body oscillations observed. 

Under this scenario (ankle strategy), most of the anterior body displacement is driven by 

angular motion around the ankle joint generated by the distal lower posterior muscles. 

Note that the mean velocity and ranges of displacement of the body‟s COP exhibited by 

the participants were relatively small and unlikely to elicit other strategies, such as the 

hip strategy (Nashner and Horak 1986). This view is supported by Gatev et al (1999), 

who examined correlations between postural muscle activity and sway events during 

unperturbed stance. These researchers also reported a significant positive correlation 

between the EMG activity of the lateral gastrocnemius muscle and the displacement of 

the body‟s COP in anterior–posterior direction. In summary, these studies suggest that the 

synchronization within this lower frequency band (0–5 Hz) was probably not driven by a 
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neural circuitry innervating multiple muscles, but may result from a coupling between the 

COP oscillations and the modulation of muscle activity of the most distal leg muscles.  

In addition to this lower frequency band, the present study reported consistent 

significant values of coherence estimations for the frequency band of 5–20 Hz. Previous 

studies have also reported intermuscular synchronization within this range for several 

different tasks and conditions including, but not limited to, grasping, quiet standing, and 

walking (McAuley et al 1997, Grosse and Brown 2003, Halliday et al 2003, Hansen et al 

2005, Sowman et al 2006, Boonstra et al 2007,2008, Danna-dos-Santos et al 2010, Poston 

et al 2010). Commonly, synchronizations at lower frequency bands found by these 

studies are most pronounced around 10 Hz and seem not to have originated cortically but 

by reticulospinal circuitry (Grosse and Brown 2003, Boonstra et al 2009). These results 

corroborate synchronizations at similar frequencies. In the present study, the strength of 

coherence was similar across posterior muscle pairs. This is an interesting finding since it 

reflects a certain independence of the distribution of correlated neural inputs from the 

anatomical placement of the muscles involved. Note that the three muscle pairs studied 

have distinct anatomical relations: the SOL–BF muscle pair is formed by two adjacent 

muscles placed relatively more distal within the M-mode; BF–ERE is a muscle pair 

formed by adjacent muscles placed proximally; and the SOL–ERE is a muscle pair 

formed by two distantly placed muscles where they are the farthest and most proximal 

muscles of the chain, respectively. These findings indicate a functional organization of 

M-modes. Poston et al (2010) also reported a functional organization for hand muscles 

involved in isometric tripod grasping. They found two major groups of muscles: one 

formed only by extrinsic hand muscles and another formed only by intrinsic hand 

muscles. These two muscle groups exhibited stronger coherence values compared to any 

other muscle pair combination. This functional modal organization during grasping was 

shown to be stable for different levels of isometric contraction (Poston et al 2010) and 

also to be fatigue resistant (Danna-dos-Santos et al 2010). The two groups described by 

Poston et al (2010) may reflect two distinct hand-dedicated M-modes assembled in a 

similar fashion to posture-dedicated M-modes. Taken together, these observations 

suggest that these patterns of intermuscular coherence likely reflect the formation of a 

dedicated neural circuitry with the goal of assembling these M-modes. 
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3.6. CONCLUSIONS 

  

The findings suggest that the coordination of postural muscles likely involve 

correlated neural inputs to anatomically distinct muscles in order to form modal units that 

can be manipulated by a high-level controller. The synchronization at lower frequency 

bands observed between muscle pairs (pooled and separately) were found to be 

concentrated within two frequency bands: 0–5 Hz and 5–20 Hz. The former frequency 

band has showed stronger synchronizations for the more distal muscle pair (SOL and BF) 

and the source for such synchronization requires further experimental testing. The latter 

frequency band showed similar strength of its synchronization among all three postural 

muscles recorded and has been interpreted as a sign of a common circuitry underlying 

multi-muscle control. In addition, the study advanced the knowledge of using a novel 

approach, the intermuscular coherence analysis, to investigate multi-muscle control 

during bipedal stance. The next logical step in the development of this approach is to 

expand it to a larger number of muscles and investigate the influence of postural 

challenges to the formation of muscle synergies. Therefore, the exploration of possible 

effects of aging to this mechanism will be possible. 
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CHAPTER 4 

Multi-muscle control during unperturbed bipedal stance and  

the effects of visual input on postural control 

 

 

4.1. INTRODUCTION 

 

The execution of bipedal stance posture involves many mechanical challenges 

imposed by the design of the musculoskeletal system. The vertical orientation of the 

head–leg–trunk segments, the high center of mass, the large number of joints, and the 

narrow base of support all together impose mechanical instability that needs to be 

counterbalanced by the precise activation of multiple muscles spanning across multiple 

joints (ankle, knee, hip, and intervertebral joints). 

Previous studies have provided important insights to the principles of multi-

muscle control, including evidence that the central nervous system (CNS) unites muscles 

into functional groups (synergists) to reduce the number of variables to be controlled 

(Bernstein 1967, reviewed in Latash 2008). According to this perspective, the control of 

the human bipedal stance can be represented by a hierarchical scheme composed of at 

least two levels: a lower level where these functional muscle groups are formed, and a 

higher level where these groups are activated in a synergistic fashion to control physical 

variables directly related to task execution (Latash 2008). Several experimental findings 

support this hypothesis. For example, Krishnamoorthy et al (2003a) reported that, during 

the execution of a whole-body voluntary sway in the anterior-posterior direction, three 

major functional muscle groups co-varied their magnitude to provide a stable trajectory 

of the position of the body‟s center of pressure (COP). These authors employed the 

method of principal components analysis to identify these muscle groups and introduced 

the term muscle mode or M-mode to describe them. One may view M-modes as “virtual 

muscles” manipulated at a higher level of the control relevant task variables. The M-

modes identified were as follows: a posterior M-mode formed by posterior postural 

muscles (soleus, biceps femoris, semitendinosus, lumbar erector spinae, and 

gastrocnemius), an anterior M-mode formed by anterior postural muscles (tibialis 
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anterior, vastus medialis, vastus lateralis, rectus femoris, and rectus abdominis muscle), 

and a third M-mode often formed solely by the rectus abdominis (Krishnamoorthy et al 

2003a). These findings have been replicated in several other studies (Krishnamoorthy et 

al 2003b, Wang et al 2005, Danna-dos-Santos et al 2007,2008,2009). However, the 

neural mechanisms related to their formation remain unclear. 

Chapter 3 focused on the hypothesis of correlated neural inputs as one of the 

neural mechanisms used by the CNS to coordinate the activation of synergistic muscles 

forming one of these M-modes. More specifically, intermuscular coherence between pairs 

of EMG signals composing a posterior M-mode (soleus, biceps femoris, and lumbar 

erector spinae muscles) was measured. The results confirmed significant intermuscular 

coherence at lower frequency bands, revealing the presence of correlated neural inputs to 

these muscles in healthy young individuals. In order to provide further evidence of this 

principle of multi-muscle control and better understand the mechanisms underlying the 

formation of functional muscle groups, studies involving additional muscles and 

experimental conditions are necessary. 

The first goal of the present study was to investigate the role of correlated neural 

inputs in the formation of multiple synergistic groups. The analyses included two major 

synergistic muscle groups involved in upright standing: the anterior and posterior M-

modes previously reported by Krishnamoorthy et al (2003a). Based on the results 

presented in Chapter 3 as well as previous studies (Krishnamoorthy et al 2003b, Wang et 

al 2005, Danna-dos-Santos et al 2007,2008,2009), it was hypothesized that muscles 

comprising each of these synergistic groups would be coordinated by correlated neural 

inputs and, hence, will exhibit significant intermuscular coherence at lower frequency 

bands. The second goal was to investigate the effects of visual information on the 

generation of correlated neural inputs to muscles forming the anterior and posterior 

synergistic muscle groups. The rationale was based on the idea that poor or absent visual 

input has a detrimental effect on postural stability (Allum and Pfaltz 1985, Fitzpatrick et 

al 1992, Simoneau et al 1992, Schumann et al 1995, Wood et al 2009). Therefore, it was 

expected that a temporary disruption of visual information would result in a significant 

reduction in correlated neural inputs, expressed by a decreased intermuscular coherence 

at lower frequency bands across synergistic muscles. 
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4.2. METHODS 

 

 

Participants. Ten healthy adults (4 females and 6 males, mean age 26.8 years old 

and SD = 2.7, mean height 175.0 cm and SD = 12.7, mean weight 80.6 kg and SD = 22.0) 

participated voluntarily in this study. All participants had no history of neurological or 

muscular disorders. All participants were right-handed and right-footed based on their 

preferred hand for writing and eating, and foot for kicking a soccer ball. Prior to 

participation, all participants voluntarily gave their informed consent based on the 

procedures approved by the Institutional Review Board at The University of Montana and 

conformed to The Declaration of Helsinki. 

 

 

Apparatus. Active surface electrodes (Delsys Bagnoli single differential DE-2.1) 

were used to record the activity of the following muscles: soleus (SOL), biceps femoris 

(BF), lumbar erector spinae (ERE), tibialis anterior (TA), rectus femoris (RF), and rectus 

abdominis (RA). The electrodes were placed on the right side of the participant‟s body 

and over the muscle bellies based on recommendations reported in the literature 

(Basmajian, 1980): TA electrode at one-third on the line between the tip of the fibula and 

the tip of the medial malleolus; SOL electrode laterally below the heads of the 

gastrocnemius bellies; RF electrode at 50% on the line from the anterior superior iliac 

spine to the superior part of the patella; BF electrode at half way between the ischial 

tuberosity and the lateral epicondyle of the tibia; RA electrode 30 cm lateral to the 

umbilicus; and ERE electrode 3 cm lateral to L1. A reference electrode was placed over 

the lateral aspect of the fibular malleolus. Figure 4.1 shows the placement of the 

electrodes. Signals from the electrodes were amplified (1,000×) and band-pass filtered 

(6–500 Hz). All signals were sampled at 1,200 Hz with a 12-bit resolution. 
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Figure 4.1. Position of the six electrodes and the reference electrode. Note: soleus (SOL), 

biceps femoris (BF), lumbar erector spinae (ERE), tibialis anterior (TA), rectus femoris 

(RF), and rectus abdominis (RA). 

 

 

Experimental procedures. All participants performed four independent 

unperturbed bipedal standing trials. Two trials were performed with opened eyes (BOE or 

Vision condition) and two with closed eyes (BCE or No Vision condition). To avoid any 

possible effects of BCE trials on the distribution of correlated neural inputs recorded 

during BOE trials, BOE trials were performed first. For all trials, participants were 

instructed to stand barefoot on a force platform with their upper limbs crossed against 

their chest, and their feet parallel and 15 cm apart for 35 s. To avoid any discrepancies 

between feet positioning across trials, the initial feet position was marked on the top of 

the platform and participants were asked not to move their feet during the entire data 

recording. For BOE trials, participants were asked to focus their vision to a physical static 

point placed at eyes height and at a distance of approximately 2 m, while they were asked 

to close their eyes during BCE trials. To avoid recording of any transient effects, the first 

5 s were discarded and the remaining 30 s were analyzed. An inter-trial interval of 60 s 

was provided to avoid fatigue or discomfort. The total duration of the experiment, 

including preparation and placement of electrodes, explanation of the tasks, and data 
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recording, was approximately 30 min and none of the participants reported fatigue as an 

issue. 

 

 

4.3. DATA PROCESING 

 

All EMG signals recorded were analyzed off-line with custom-written software 

routines (Matlab R2012b, The MathWorks).  

 

 

4.3.1. Muscle activation: a time domain analysis of EMG signals 

 

EMG signals recorded from all six muscles were submitted to two time domain 

analyses. The first analysis quantified the relative amplitude of activation of each muscle 

by computing a relative index of muscle activation (IndexEMG) as follows. First, EMG 

signals from BOE and BCE trials were visually inspected to verify the presence of any 

signal artifacts and, then, filtered (20 Hz high-pass, second-order, zero-lag Butterworth 

filter) and full-wave rectified. Each signal from BCE trials was integrated over its trial 

length and normalized by similar integrals performed on EMG signals from BOE trials as 

follows. This analysis was used to confirm that all muscles recorded had comparable 

magnitude of activation across the execution of the two experimental conditions.  

 

     (4.1) 

 

The second analysis quantified the patterns of multi-muscle activation during 

BCE trials by running a vectorial comparison separately for the anterior and posterior 

muscle groups (TA/RF/RA and SOL/BF/ERE, respectively). This analysis was 
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performed to assure that all participants used similar patterns of muscle activation under 

both experimental conditions. Therefore, the degree of similarity between patterns of 

muscle activation was based on the cosine of the angle between pairs of muscle activation 

patterns vectors obtained for BOE and BCE trials. These vectors were assembled in 3D 

space using normalized IndexEMG. The cosine of the angle between pairs of these vectors 

quantified the degree of similarity of their spatial orientation between the two 

experimental conditions (BOE and BCE). See Danna-dos-Santos et al 2007, Poston et al 

2010, and the Methods section of Chapter 3 for more details on the computation of 

muscle activation pattern vectors. The cosine values range from 0 to 1, where the former 

indicates perpendicularity or dissimilarity of muscle activation patterns between the two 

experimental conditions, and the latter indicates parallelism or similarity of muscle 

activation patterns.  

 

 

4.3.2. Muscle activation: a frequency domain analysis of EMG signals 

 

EMG signals were analyzed in the frequency domain by estimating intermuscular 

coherence for muscle pairs separately (single-pair estimations) and combined (pooled 

estimations) using similar procedures reported by Poston et al (2010) and Chapter 3. 

EMG signals from the two trials collected under each experimental condition were 

concatenated to create a single longer time series of 60 s, totalizing 72,000 data points. 

Concatenation is a standard procedure used to increase the reliability of coherence 

estimation (Amjad et al 1997, Maris et al 2007, Poston et al 2010). 

 

Single-pair coherence estimations. The study followed the functional 

relationship of the postural muscles, such as the muscles pushing the body forward 

(anterior M-mode) and the muscles pushing the body backward (posterior M-mode) as 

reported by Krishnamoorthy et al (2003a). In order to emphasize the functional role of 

the distribution of correlated neural inputs, the intermuscular coherence was also 

estimated between muscle pairs formed by one anterior and one posterior muscle with 
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and without antagonist relation (named in this study as antagonist and mixed groups, 

respectively). Table 4.1 shows all 15 muscle pairs and their relationships.     

 

Table 4.1. Fifteen muscle pairs formed by solely posterior muscles, solely anterior 

muscles, antagonist muscles, or mixed muscles (one anterior and one posterior, non-

antagonist, muscles). Note: soleus (SOL), biceps femoris (BF), lumbar erector spinae 

(ERE), tibialis anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 

 

 Muscle pair Group (anatomic position) 

1 SOL – BF  

2 SOL – ERE Posterior 

3 BF – ERE  

4 TA – RF  

5 TA – RA Anterior 

6 RF – RA  

7 TA – SOL  

8 RF – BF Antagonist 

9 RA – ERE  

10 SOL – RF  

11 SOL – RA  

12 BF – TA Mixed 

13 BF – RA  

14 ERE – TA  

15 ERE – RF  

 

 

Single-pair coherence was estimated by normalizing the cross-spectrum of two 

EMG signals (fxy) squared by the product of the auto spectrum of each signal (fxx and 

fyy) at each frequency (λ) as follows: 
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Intermuscular coherence estimates were obtained from non-overlapping 1 s data 

segments (i.e., 1,200 samples per segment), resulting in a frequency resolution of 1 Hz. 

The frequency range analyzed in this study was bounded from 0 to 55 Hz. To avoid the 

inclusion of the mechanical effects of sway and its coupling to the low-frequency content 

(0–1 Hz) of the EMG signals recorded reported by Mochizuki et al (2006), all analyses 

excluded the frequency band of 0–1Hz. Coherence estimates were considered statistically 

significant when they exceeded the significance limit of the null distribution of no 

coherence, computed based on Rosenberg et al (1989). The significance limit at α = 0.05 

was determined by 

 

1

1

)1(1)(  LSig   ,       (4.3) 

where L is the number of disjoint segments. 

 

In order to compare coherence estimates across participants and under different 

experimental conditions, all estimates were z-transformed by computing the Fisher 

transformation of the estimates as proposed by Rosemberg et al (1989) and Amjad et al 

(1997): 

 

x

x
x




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1

1
log5.0)(tanh 1  ,      (4.4) 

where x is the coherence estimate.  

 

 

Analysis of the frequency distribution of correlated neural inputs was achieved by 

identifying frequency intervals showing significant coherence values. The strength of 

correlated neural inputs was quantified by computing the integrals of the z-scored 

coherence within the frequency intervals of interest (INTCoh).  

 

Pooled coherence estimations. Four pooled coherence analyses were performed 

separately. The first included the three pairs formed solely by posterior muscles 

(SOL/BF, SOL/ERE, and BF/ERE); the second analysis included the three pairs formed 
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solely by anterior muscles (TA/RF, TA/RA, and RF/RA); the third included the three 

pairs formed by antagonist muscles (TA/SOL, RF/BF, and RA/ERE); and the fourth 

analysis included the six remaining pairs formed by one posterior and one anterior, non-

antagonist, muscles (SOL/RF, SOL/RA, BF/TA, BF/RA, ERE/TA, and ERE/RF). Pooled 

coherence estimates are considered a weighted average of individual coherence estimates 

and can be used to increase statistical power. Estimates of pooled coherence were 

obtained as proposed by Amjad et al (1997): 
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Analysis of the frequency distribution and strength of correlated neural inputs 

obtained from pooled coherence calculations were also based on the determination of 

frequency bands within significant coherence estimates and the calculation of integrals 

within these frequency bands, respectively.  

 

 

Statistical approach. Medians across participants for the integrals of the z-scored 

coherence profiles within the frequency band of 1–10Hz (INTCoh1-10) are reported and 

statistical tests were performed using the IBM SPSS statistics software suite (version 22, 

IBM
®
 SPSS

®
). Considering the small sample size, Shapiro-Wilk tests were performed to 

test for normality of the coherence variable. Since some of the response variables did not 

follow a normal distribution, non-parametric paired tests (Wilcoxon signed-rank tests) 

were used to investigate the effect of Vision (BOE and BCE) on INTCoh1-10. Since 

multiple comparisons were performed, the significant level was adjusted at 1% (α = 0.01) 

for individual tests. 
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4.4. RESULTS 

 

4.4.1. Muscle activation: time domain analysis 

 

As expected, all participants performed both visual conditions with ease. They 

also used similar muscle activation levels across the two experimental conditions. Figure 

4.2 shows the rectified EMG recordings for all six muscles obtained from a representative 

participant during unperturbed stance with open eyes and closed eyes (panel A), and the 

average across participants for the IndexEMG (panel B), which describes the ratio between 

the integrals of EMG signals recorded during the trials. Averages of the IndexEMG close to 

1 indicate that participants generally employed similar magnitudes of activation in both 

conditions. Participants also employed comparable patterns of muscle activation in both 

experimental conditions, as shown by the vector analysis. The mean cosine of the angle 

between resultant muscle activation vectors across participants were around the value of 

1, with very little deviation (mean cosine = 0.979 and SD = 0.022 for the posterior 

muscle group, and mean cosine = 0.971 and SD = 0.057 for the anterior muscle group). 

 

Figure 4.2. (A) Rectified EMG signals of six muscles recorded from a representative 

participant during unperturbed stance with open and closed eyes (BOE and BCE 

conditions, respectively). (B) Averages and standard deviations across participants of the 

ratio between the integrals of EMG signals from BOE and BCE trials (IndexEMG). Note: 

soleus (SOL), biceps femoris (BF), lumbar erector spinae (ERE), tibialis anterior (TA), 

rectus femoris (RF), and rectus abdominis (RA).   
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4.4.2. Muscle activation: frequency domain analysis 

 

 

Pooled coherences. Figure 4.3 illustrates the averaged pooled coherence profile 

across participants computed for each muscle group (anterior, posterior, antagonist, and 

mixed) and under both vision and no vision conditions (BOE and BCE, respectively). 

Note that the pooled coherence for both anterior and posterior muscle groups was 

significant within the frequency interval of 0–10 Hz during the BOE trials, while it 

decreased during BCE trials. Regarding the antagonist muscle group, its pooled 

coherence was significant not only within the frequency band of 0–10 Hz, but also within 

10–30 Hz for either BOE or BCE trials. In contrast, no significant intermuscular 

coherence was observed across all frequencies for the mixed muscle group for either 

BOE or BCE trials. Based on these findings and discarding the frequency band of 0–1 Hz 

to exclude the coupling of the mechanical effect of sway to the EMG signals, the 

frequency of interest was determined to be between 1 and 10 Hz. Medians across 

participants for the integrals of the z-scored coherence computed within the frequency 

band of interest (INTCoh1-10Hz) are displayed in Figure 4.4 and Table 4.2.  

 A significant decrease in the strength of the correlated neural inputs during BCE 

trials was observed for both anterior and posterior muscle groups. Wilcoxon signed-rank 

tests illustrated the effect of Vision (BOE and BCE) on the variable INTCoh1-10Hz for both 

anterior and posterior muscle groups. No significant effect of Vision on INTCoh1-10Hz was 

detected for either the antagonist or the mixed muscle groups. See Z and p values in 

Table 4.2. 
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Figure 4.3. Average across participants of the z-scored pooled coherence profiles 

obtained for all pairs formed between posterior, anterior, antagonist, and mixed muscles 

during unperturbed stance with and without vision (BOE and BCE conditions, 

respectively). Note: dashed line represents the significant limit at 5%. 
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Figure 4.4. Box-plots of the integrals of the z-scored pooled coherence profiles within 

the 1–10 Hz frequency band (INTCoh1-10Hz) for each muscle group (anterior, posterior, 

antagonist, and mixed) during unperturbed stance with and without vision (BOE and BCE 

conditions, respectively). Note: * indicates Vision effect (p < 0.01). 

 

 

Table 4.2. Median and 95% confidence interval of the difference of the integrals of the z-

scored pooled coherence computed over the frequency interval of 1–10 Hz (INTCoh1-10Hz) 

for each muscle group (anterior, posterior, antagonist, and mixed) during unperturbed 

stance with and without vision (BOE and BCE conditions, respectively). Note: 
+
 

represents Vision effect (p < 0.01). 

 

 INTCoh1-10Hz 95% confidence   

Muscle 

Group 

BOE 

(Vision) 

BCE 

(No Vision) 

interval of the 

difference 
Z and p values 

Anterior 19.72 11.42 (1.73, 16.56) Z = -2.803, p =.005 
+
 

Posterior 26.66 13.12 (8.96, 20.30) Z = -2.803, p =.005 
+
 

Antagonist 26.96 26.23 (-12.5, 13.4) Z = -0.255, p =.799 

Mixed 8.91 10.53 (-3.58, 4.09) Z = -0.153, p =.878 
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Single‑pair coherences. Figure 4.5 shows the average intermuscular coherence 

spectra for each anterior, posterior, antagonist, and mixed muscle pair within the 

frequency band of 0–55Hz. Figure 4.6 and Table 4.3 present the medians across 

participants for the integrals of the z-scored coherence computed within the frequency 

band of interest (INTCoh1-10Hz).  

Single-pair coherences within the frequency band of 1–10Hz for the pairs formed 

by solely anterior muscles (TA/RF, TA/RA, and RF/RA) were significant for the muscle 

pair TA/RF under both BOE and BCE conditions, and for the muscle pair TA/RA under 

the BOE condition. No significant intermuscular coherence within 1–10 Hz was observed 

for the TA/RA pair under BCE condition or for the RF/RA pair under either BOE or BCE 

conditions (Figure 4.5ABC). Wilcoxon signed-rank tests revealed a significant decrease 

in the strength of the correlated neural inputs in the frequency band 1–10 Hz when 

participants closed their eyes for both TA/RF and TA/RA muscle pairs. No effect was 

found for the muscle pair RF/RA. See figure 4.6A and Z and p-values in Table 4.3. 

Single-pair coherence estimates within 1–10Hz for the pairs formed by solely 

posterior muscles (SOL/BF, SOL/ERE, and BF/ERE) were significant for all three 

muscle pairs under the BOE condition (Figure 4.5DEF). A significant decrease in the 

strength of the correlated neural inputs within this frequency band during BCE trials 

(Figure 4.6B and Table 4.3) was confirmed by Wilcoxon signed-rank tests with factor 

Vision on INTCoh1-10Hz. See figure 4.6B and Z and p-values in Table 4.3. 

Interestingly, the single-pair coherence profiles for pairs formed by antagonist 

muscles (TA/SOL, RF/BF, and RA/ERE) were significant within a larger frequency 

band. Figure 4.5GHI shows a significant intermuscular coherence within 1–30 Hz for all 

three antagonist pairs. Wilcoxon signed-rank tests revealed no effect of Vision (BOE and 

BCE) on the variable INTCoh1-10Hz for any antagonist pair. See figure 4.6C and Z and p-

values in Table 4.3. 

Regarding the muscle pairs formed by one anterior and one posterior, non-

antagonist, muscles (the mixed muscle pairs), no significant intermuscular coherence 

was observed (Figure 4.5, panels J to O) for either BOE or BCE conditions. In addition, 

no significant effect of Vision on the variable INTCoh1-10Hz was observed according to 

Wilcoxon signed-rank tests. See Z and p-values in Table 4.3. 
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Figure 4.5. Average across participants of the intermuscular coherence profiles obtained 

separately for each pair of muscles during unperturbed stance with and without vision 

(BOE and BCE conditions, respectively). Note: soleus (SOL), biceps femoris (BF), 

lumbar erector spinae (ERE), tibialis anterior (TA), rectus femoris (RF), and rectus 

abdominis (RA). Dashed line represents the significance level for no significant 

intermuscular coherence. 
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Figure 4.6. Box-plots of the integrals of the z-scored intermuscular coherence profiles 

within the 1–10Hz frequency band (INTCoh1-10Hz) for the muscle pairs formed by solely 

anterior muscles, solely posterior muscles, and antagonist muscles during unperturbed 

stance with and without vision (BOE and BCE conditions). Note: soleus (SOL), biceps 

femoris (BF), lumbar erector spinae (ERE), tibialis anterior (TA), rectus femoris (RF), 

and rectus abdominis (RA). Note: * indicates Vision effect (p < 0.01). 
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Table 4.3. Median and 95% confidence interval of the difference of the integrals of the z-

scored intermuscular coherence computed over the frequency interval of 1–10 Hz 

(INTCoh1-10Hz) for the fifteen muscle pairs formed by solely anterior muscles, solely 

posterior muscles, antagonist, and mixed muscles during unperturbed stance with and 

without vision (BOE and BCE conditions, respectively). Note: 
+
 represents Vision effect 

(p < 0.01). 

 

 INTCoh1-10Hz 95% confidence  

 
BOE 

(Vision) 

BCE 

(No Vision) 

interval of the 

difference 
Z and p values 

Pairs formed by anterior muscles   

TA/RF 36.09 23.82 (8.6, 26.6) Z = -2.803, p =.005 
+
 

TA/RA 33.66 11.17 (8.6, 27.2) Z = -2.803, p =.005 
+
 

RF/RA 4.48 11.91 (-14.1, 5.8) Z = -1.172, p =.241 

Pairs formed by posterior muscles   

SOL/BF 28.97 18.12 (3.2, 20.3) Z = -2.701, p =.007 
+
 

SOL/ERE 21.49 12.20 (2.2, 14.3) Z = -2.803, p =.005 
+
 

BF/ERE 34.54 23.80 (1.7, 21.8) Z = -2.803, p =.005 
+
 

Pairs formed by antagonist 

muscles 

 
 

TA/SOL 18.68 20.01 (-19.2, 12.4) Z = -0.459, p =.646 

RF/BF 18.14 15.18 (-6.6, 18.2) Z = -1.070, p =.285 

RA/ERE 27.00 23.38 (-7.3, 10.9) Z = -0.255, p =.799 

Pairs formed by mixed muscles   

TA/BF 5.49 3.75 (-0.49, 3.19) Z = -1.580, p =.114 

TA/ERE 5.40 4.02 (-1.63, 3.37) Z = -0.561, p =.575 

RF/SOL 4.86 3.64 (-1.70, 3.97) Z = -0.764, p =.445 

RF/ERE 5.88 4.18 (-1.31, 3.21) Z = -1.070, p =.285 

RA/SOL 4.06 3.87 (-0.96, 1.02) Z = -0.153, p =.878 

RA/BF 3.29 2.91 (-1.33, 1.50) Z = -0.153, p =.878 

 

 

 

4.5. DISCUSSION 

 

The present study confirmed the presence of correlated neural inputs to different 

postural muscles forming synergies intended to control unperturbed stance. Antagonist 

muscles showed a significant coherence at lower frequency bands within 1–30 Hz; 

whereas the anterior and posterior muscle groups presented signs of coherence within 1–



108 

 

10 Hz and the mixed group showed no signs of synchronization at lower frequency 

bands. Note that the larger distribution of synchronization of antagonist muscles was due 

to the muscle pair RA/ERE, though. Different distribution and strength of 

synchronization of antagonist muscles were expected since agonist/antagonist pairs were 

already recognized for the level of coupling between their EMG signals (Hansen et al 

2002). Interestingly, the coherence for both anterior and posterior muscle groups was no 

longer significant when participants closed their eyes. Therefore, the study confirmed the 

hypothesis that a short-term interruption of visual input affects the generation of 

correlated neural inputs to multiple postural muscles.  

The control of the human‟s bipedal stance requires the coordination of multiple 

postural muscles within temporal, spatial, and magnitude precision. Several studies based 

on the Uncontrolled Manifold (UCM) Hypothesis had provided evidence of the formation 

of synergistic muscle groups to control bipedal stance (Krishnamoorthy et al 2003a,b, 

Danna-dos-Santos et al 2008). These findings supported the idea of the CNS controlling a 

large number of possible patterns of muscle activation by forming such synergistic 

muscle groups. More importantly, the study provided initial evidence indicating that the 

generation of such groups during bipedal stance is driven by correlated neural inputs to 

different postural muscles. 

The use of the intermuscular coherence approach at lower frequency bands 

revealed significant synchronization of EMG signals within the frequency band of 1–10 

Hz for anterior (TA, RF, and RA) and posterior (SOL, BF, and ERE) postural muscles, 

representing the push-forward and push-back M-modes controlling body sway during 

unperturbed stance; and a significant synchronization of agonist/antagonist EMG signals 

within 1–30 Hz, representing another M-mode controlling body sway in the sagittal 

plane. Interestingly, the frequency profiles of correlated neural inputs were similar for the 

posterior and anterior muscle groups (Figure 4.3AB). One may suggest that these two 

synergistic muscle groups received the same correlated input. However, intermuscular 

coherence at lower frequency bands was computed across all time points and, despite 

similar intermuscular coherence spectra, the posterior and anterior muscle groups may 

have received correlated input, but at different points in time (e.g., when the body was 

swaying either backward or forward). Indeed, Boonstra et al (2009a) showed that 
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bilateral TA muscles receive correlated 10 Hz input only in the most posterior position 

when swaying in the anterior–posterior direction. In addition, synchronization of EMG 

signals within this frequency interval (<10 Hz) is consistent with previous studies that 

reported similar findings during the execution of slow movements (Kamen and De Luca 

1992, Farmer et al 1993, Vallbo and Wessberg 1993, De Luca and Erim 2002) and during 

bipedal stance tasks (Danna-dos-Santos et al 2014). 

The neural sites responsible for the generation of correlated inputs to multiple 

muscles remain unclear, and multiple origins have been proposed in the literature. For 

example, Farmer et al (1993) studied stroke survivors with damage to motor cortical 

areas and demonstrated that, despite cortical damage, intermuscular coherence at lower 

frequency bands was still present within the frequency interval of 1–12 Hz. Their 

findings suggested that synchronization within this frequency interval was unlikely to 

originate within the motor cortex. Boonstra et al (2009b) also showed that intermuscular 

coherence at 7–13 Hz between bilateral hand muscles was not synchronized with cortical 

activity, further supporting a sub-cortical origin of intermuscular coherence in the lower 

frequency band. In contrast, the collective results of Mima and colleagues (Mima and 

Hallett 1999, Mima et al 2000,2001) have not only reported significant values of cortico-

muscular coherence within the frequency interval of 3–13 Hz for hand muscles, but they 

also extended this finding to other muscles, such as the biceps brachii and abductor 

hallucis (intrinsic muscle of the foot). According to Mima et al (2000), synchronizations 

in this lower frequency band (3–13 Hz) likely reflect the involvement of the inferior olive 

and the thalamic cortical loop.  

Interestingly, Danna-dos-Santos et al (2014) reported synchronizations of postural 

muscles at lower frequency bands not only within 1 and 10 Hz, but also extended to 

frequencies up to 20 Hz. In the present study, participants stood up freely (unperturbed 

bipedal stance task), whereas participants stood under an induced generalized isometric 

contraction of their postural muscles (bipedal stance holding an anterior 5 kg load) in the 

previous study (Danna-dos-Santos et al 2014). Changes in intermuscular synchronization 

and the presence of multiple significant frequency bands as a function of the type of 

contraction due to the task have been reported by other studies (Farmer et al 1993, 
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McAuley et al 1997, Mima et al 2000, Grosse et al 2002, Latash 2008). Therefore, the 

neural mechanisms used to generate motor outputs seem to be task specific. 

The strength of correlated neural inputs within 1–10 Hz reported in the present 

study was similar across five muscle pairs (all three posterior muscles pairs and two 

anterior muscle pairs). This was interesting considering the distinct anatomical relations 

between muscle pairs: muscle pairs SOL/BF and TA/RF are formed by two adjacent 

muscles placed relatively more distally, whereas muscle pairs BF/ERE and RF/RA are 

formed by adjacent muscles placed more proximally, and muscle pairs SOL/ERE and 

RF/RA are formed by one proximal and one distal muscle. This relationship suggests that 

M-modes are likely formed based on their functional role of moving the body either 

backward or forward, rather than based on their anatomical location. The functional role 

of the distribution of correlated neural inputs is also supported by the results showing no 

significant intermuscular coherence between non-synergistic muscles (mixed group).   

Regarding the effects of visual input on the control of multiple postural muscles 

during unperturbed stance, the present study showed a significant decrease in 

intermuscular coherence at lower frequency bands when participants stood up in absence 

of vision (BCE condition). The coherence estimates not only dropped, but they were also 

not significant when visual information was temporarily removed (except for the group 

formed by antagonist muscles). The findings suggest that visual information plays an 

important role in the formation of muscle synergies during unperturbed bipedal stance. 

Previous studies have shown mixed effects of the removal of visual information on 

intermuscular coherence. Boonstra et al (2008) reported an increased coherence within 

the frequency band of 0–5 Hz between bilateral lower leg muscles (soleus and 

gastrocnemius) during quiet stance in the absence of visual inputs. In contrast, Mochizuki 

et al (2007) showed that correlated input to individual motor units of bilateral soleus 

muscles did not differ between standing with eyes opened or closed. These contrasting 

findings regarding intralimb and inter-limb coherence may reflect a change in the control 

strategy after removing visual information. In this case, the postural control strategy 

seems to depend more on proprioceptive information from the ankle joint in the absence 

of vision (cf. Saffer et al 2008). Despite different effects of vision on postural control 

reported in the literature, it is suggested that changes in the availability of visual inputs 
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interfere with the organization of neural drive to synergistic muscles involved in postural 

control. Considering that visual information appears to play an important role in the 

generation of correlated neural inputs to different postural muscles, future studies 

investigating both intra- and inter-limb coherence are needed to map the reorganization of 

muscle synergies during temporary removal of visual information. 

 

 

4.6. CONCLUSIONS 

 

These findings suggest that the coordination of postural muscles likely involves 

the distribution of correlated neural inputs to distinct muscles in order to form modal 

units (also termed synergistic muscle groups or M-modes) that can be manipulated by the 

CNS. Synchronizations of postural muscles at lower frequency bands were found to be 

concentrated within a frequency interval of 1–10 Hz when visual information was 

available. The synchronizations reported here showed similar strength among six postural 

muscles and have been interpreted as signs of correlated neural drives to multi-muscle 

control. These results also suggest that these postural muscle groups are likely formed 

based on their functional role of moving the body either backward or forward, rather than 

based on their anatomical location. In addition, the lack of visual input during 

unperturbed stance not only decreased the correlation between muscle pairs in the 

frequency domain, but coherence at lower frequency bands was no longer significant. 

These findings revealed that temporary removal of visual input affected how the CNS 

organizes correlated neural inputs to generate synergistic muscle groups. Therefore, 

visual input plays a key role on the neural mechanisms underlying postural control. 
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CHAPTER 5 

The use of coherence analysis as a novel approach to detect  

age-related changes on postural muscle control 

 

 

5.1. INTRODUCTION 

 

The central question in human movement control is related to the 

neurophysiological mechanisms used by the central nervous system (CNS) to control the 

large and redundant number of degrees of freedom. In 1967, Nicolai Bernstein suggested 

that the CNS reduces the complexity of the system by uniting motor components into 

functional groups (Bernstein 1967). Under Bernstein‟s hypothesis (commonly referred to 

as the Motor Redundancy Hypothesis), the controller is not only able to overcome the 

redundancy of the system by controlling functional groups instead of each element 

separately. The controller is also able to rearrange its elements in order to adapt its 

strategy accordingly to the necessities imposed by the individual characteristics, motor 

task, and environment. Even though the principle proposed by Bernstein sounds simple 

and elegant, confirming this hypothesis has proven to be a challenge due to many factors, 

such as (a) the many levels of analysis one can perform to test its core principle; (b) the 

difficulty in developing adequate technology to record and analyze the relationships 

emerging from its basic synergistic elements; and (c) the lack of knowledge of neural 

mechanisms responsible for the formation of these patterns of muscle activation. 

Technological development has allowed progress in the investigation of such 

functional muscle groups (Scholz and Schöner 1999, Scholz et al 2000,2001, Latash et al 

2002,2003,2010, Krishnamoorthy et al 2003a,b,2004, Latash 2008, Danna-dos-Santos et 

al 2007,2008,2009,2014). The Uncontrolled Manifold Analysis Method (UCM), for 

example, has been successfully employed to both identify the emergence of synergistic 

muscle groups and link this pattern of muscle activation to the control of performance 

variables, such as the position of the body‟s center of pressure (Krishnamoorthy et al 

2003a,b,2004, Danna-dos-Santos et al 2007,2008,2009). Even though these studies 

allowed progress in the recognition of such synergistic patterns, they did not reach the 
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means to explore the possible neural mechanisms related to the implementation of this 

control strategy. 

In Chapters 3 and 4, a novel approach (the Intermuscular Coherence Analysis) 

was used to advance knowledge in examining the mechanisms underlying the 

organization of multi-muscle synergies. In Chapter 3, signs of the presence of correlated 

neural inputs distributed across soleus (SOL), biceps femoris (BF), and lumbar erector 

spinae (ERE) corroborated previous reports that these three muscles form a synergistic 

group (Krishnamoorthy et al 2003a). This posterior muscle group has been referred to as 

the “push-back synergistic muscle group” or “push-back M-Mode”, and it is considered 

one of the important lines of defense to counter-act the tendency of the body to fall 

forward (Krishnamoorthy et al 2003a). In addition, EMG recordings presented in Chapter 

3 revealed a specific anatomic distribution of correlated neural inputs to these three 

muscles: a significantly stronger coherence for the most distal muscle pair (soleus and 

biceps femoris). Interestingly, this finding corroborates the predominant ankle strategy 

observed in young adults to control upright standing (Horak and McPherson 1996, Horak 

2006). Note that the ankle strategy is a simplistic way to describe an emphasis of 

movement around the ankle joints. However, it does not mean that other joints are not 

changing their angular position to maintain upright posture. In addition, Chapter 4 

expanded the use of intermuscular coherence by including a larger number of postural 

muscles as well as a different challenging task (upright stance with closed eyes). Once 

more, signs of synchronization at lower frequency bands among multiple postural 

muscles were revealed. These results suggested that this method is robust enough to 

continue its development in the study of human postural control in health and disease 

states. 

Older adults are well known to adopt a larger repertoire of strategies to maintain 

upright posture, when compared to the dominant ankle strategy used by young adults. For 

example, one of the strategies employed by older adults to control upright stance is the 

increased EMG activity of muscles acting on both ankles and hips (Amiridis et al 2003, 

Benjuya et al 2004, Nagai et al 2011). The higher activation of ankle muscles was also 

reported during dynamic stance tasks, such as the functional stability boundary task 

(Nagai et al 2011). Other studies have shown a higher EMG activity of the tibialis 
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anterior (pulling the body forward) and semitendinosus (keeping the hip extended) under 

different static stance tasks (such as wide base of support, narrow base of support, tandem 

Romberg stance, and unipedal stance) in older adults, compared to that in young adults 

(Amiridis et al 2003, Benjuya et al 2004). Therefore, older adults seem to use both ankle 

and hip strategies to maintain upright standing. Another well-recognized strategy 

commonly used by older adults to control upright stance is the agonist-antagonist 

cocontraction of postural muscles. This motor strategy is typically used when function is 

not optimal. Older adults seem to cocontract their postural muscles as a mechanism to 

stiffen their joints and improve balance (Woollacott et al 1988, Manchester et al 1989, 

Melzer et al 2001, Benjuya et al 2004, Nagai et al 2011,2013, Papegaaij et al 2014, Lee et 

al 2015). Benjuya et al (2004) and Nagai et al (2011, 2013) reported a higher co-

activation of muscles around the ankle (tibialis anterior and soleus) in older adults 

performing different static and dynamic standing tasks (Nagai et al 2011,2013). It is 

important to note, however, that the cocontraction strategy is not used only by older 

adults and individuals with balance disorders. This strategy has also been reported, for 

example, in young adults during the experience of fear at heights (Wuehr et al 2014), in 

elite athletes in response to unexpected perturbations (Mani et al 2014), and other 

situations. 

Taken together, these observations suggest that older individuals may explore 

other strategies to achieve postural stability when age-related physiological changes 

affect their ability to generate optimal torque. Therefore, it is hypothesized that the aging 

CNS may be able to modulate the formation of correlated neural inputs to control 

postural muscles. The present study was designed to investigate the mechanisms 

underlying the organization of multi-muscle synergies to control upright stance in older 

adults using similar procedures of synergy mapping performed in Chapters 3 and 4, the 

intermuscular coherence analysis. It was expected that older adults would reorganize the 

modulation of the synchronization at lower frequency bands of three posterior postural 

muscles previously recognized as components of a synergistic muscle group in healthy 

young adults (soleus, biceps femoris, and lumbar erector spinae). 
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5.2. METHODS 

 

Participants. Nine healthy participants (4 females and 5 males, mean age 29.2 

years old and SD = 6.1, mean height 1.71 m and SD = 0.74, mean weight 78.8 kg and SD 

= 20.5) and thirteen healthy older adults (8 females and 5 males, mean age 69.0 years old 

and SD = 3.4, mean height 1.66 m and SD = 0.08, mean weight 70.5 kg and SD = 8.9) 

participated in this study (Control and Senior groups, respectively). The exclusion criteria 

for both groups included (a) previous history of pathological sensory, musculoskeletal or 

neurological disorder, (b) history of previous surgeries, (c) history of cardiopulmonary 

disease, and (d) history of substance abuse. In addition, the senior group included only 

nonfallers with the age ranging 65 to 74 years (older adults). Prior to their participation, 

all participants voluntarily gave informed consent based on the procedures approved by 

the Institutional Review Board at The University of Montana and conformed to The 

Declaration of Helsinki. 

 

Apparatus. A force platform (AMTI BP400600, AMTI Inc.) was used to acquire 

the vertical and horizontal components of the ground reaction force as well as the 

moments of force around the frontal and sagittal axes. These signals were transmitted to a 

dedicated system (Vycon MX Ultranet and Vycon Nexus version 1.6.1, Vycon®) for the 

computation of the body‟s center of pressure coordinates in anterior–posterior and 

medio–lateral directions (COPap and COPml, respectively). Features of the COP were 

recorded due to previous reports relating low-frequency COP modulation to low-

frequency EMG modulation (Mochizuki et al 2006). COPap and COPml were defined by 

 

COPap = (−h * Fx – My) / Fz        (5.1) 

COPml = (−h * Fy – Mx) / Fz  ,      (5.2) 

 

where h = the height of the base of support above the force plate; Fx = horizontal 

anterior–posterior component of the resultant force applied to the force plate; Fy = 

horizontal medio–lateral component of the resultant force applied to the force plate; Fz = 
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vertical component of the resultant force applied to the force plate; Mx = moment of 

force around the sagittal axis; and My = moment of force around the frontal axis. 

Surface electrodes were used to record the activity of the following muscles: 

soleus (SOL), biceps femoris (BF), and lumbar erector spinae (ERE) (Figure 5.1). The 

electrodes were placed on the right side of the participant‟s body over the muscle bellies 

(see Chapter 3 for more details). A reference electrode was placed over the lateral aspect 

of the fibular malleolus. Signals from the control group were sampled at 1200 Hz and 

signals from the senior group at 2000 Hz, all with 12-bit resolution. Signals from the 

electrodes were amplified (1,000×) and band-pass filtered (6–500 Hz).  

 

 

Figure 5.1. Representation of the electrodes placed on postural muscles. Note: soleus 

(SOL), biceps femoris (BF), lumbar erector spinae (ERE), and reference electrode 

(GROUND). 

 

 

Experimental Procedures. All participants performed ten trials of an 

experimental task. The experimental task consisted of bipedal stance for 15 seconds 

under the continuous perturbation of holding a load (a barbell of 5 kg) in front of the 

body with their shoulders flexed 90
o
 and elbows fully extended (Figure 5.1). Participants 
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were also instructed to be barefoot, keep their feet parallel and separated by a distance of 

15 cm, and focus their vision at a static point placed 2 m in front and at their eye level.  

The first 5 seconds of the task were not recorded to avoid the recording of 

transient effects usually present in the first seconds of standing posture. The length of the 

trials (15 s) was stipulated to minimize the chances of back injury, discomfort, and 

fatigue while testing senior participants. A second measure to reduce these risks was to 

ensure a resting period of 60 seconds between trials. 

The average duration of the entire experimental session was 30 min (including 

skin preparation, electrodes positioning, and performance of experimental tasks), and 

none of the participants reported fatigue or discomfort.  

 

 

5.3. DATA PROCESSING 

 

All COP coordinates and EMG signals recorded were analyzed off-line with 

custom-written software routines (Matlab R2012b, The MathWorks). 

 

Postural sway behavior. COPap and COPml coordinate signals were filtered with 

a 20 Hz low-pass, second-order, and zero lag Butterworth filter. Normalization of the 

COP coordinates was obtained by subtracting their average position from initial values. 

This normalization allowed the researcher to position COP coordinates at the center of an 

xy coordinate system and, therefore, draw any comparisons of basic COP features across 

participants. In a sequence, the following postural indices were extracted from the COP 

signal: the elliptical area containing 95 % of the entire COP path (Area); the ranges and 

mean velocities of the COP displacement in both anterior-posterior and medio-lateral 

directions (RangeAP, RangeML, MVAP, and MVML, respectively); and the mean power 

frequency (FmeanAP) and the maximum frequency containing 80% of the power spectral 

density (F80AP) of the COPap signal. Measures of frequency were only extracted from 

the anterior-posterior component of the COP because the muscles recorded act mostly to 

move the body‟s COP in this direction. A more detailed description of the methods used 
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to compute these variables and their importance on the study of COP features can be 

found in Duarte and Freitas (2010) and Chapter 7 of the dissertation. 

 

Intermuscular coherence. For each participant, EMG signals from all ten trials 

were concatenated to create a long single time series (100 s; 120,000 data points). The 

process of concatenation was performed to increase the reliability of coherence 

estimations, as proposed by Maris et al (2007) and Poston et al (2010). Once 

concatenated, all three EMG signals were filtered by a 20 Hz high-pass, second-order, 

zero lag Butterworth filter.  

Due to the lower number of muscles included in this study (n = 3), only 

intermuscular coherence estimates for each pair of EMG signals (SOL/BF, SOL/ERE, 

and BF/ERE) were calculated. Subsequently, intermuscular coherence (R) was estimated 

separately for EMGs recorded from each muscle pair by using the cross-spectrum of two 

EMG signals (fxy) squared and normalized by the product of the auto spectrum of each 

signal (fxx and fyy) at each frequency (λ), as follows: 

 

       (5.3) 

 

Intermuscular coherence was estimated from segments of 1 s duration (i.e., 1,200 

samples per segment), resulting in a frequency resolution of 1 Hz. The frequency range 

analyzed in this study was bounded from 0 to 55 Hz. Coherence estimates were 

considered statistically significant when they exceeded the significance limit of the null 

distribution, computed as proposed by Rosenberg et al (1989). The significance limit for 

zero coherence at α = 0.05 and for the number of disjoint segments (L) was determined 

by the following equation: 

1
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In order to compare coherence estimates across participants, all estimates were z-

transformed by computing the arc hyperbolic tangent transformation (Fisher 
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transformation) of the estimates as proposed by Rosemberg et al (1989) and Amjad et al 

(1997): 
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log5.0)(tanh 1

  
 ,       (5.5) 

where x is the coherence estimate. 

 

Analysis of the frequency distribution of correlated neural inputs was performed 

by identifying frequency intervals with significant z-scored coherence estimates across 

participants. Next, the analysis of the strength of correlated neural inputs was achieved 

by comparing integrals computed for the z-scored coherence estimates profiles over the 

frequency band of interest. A more detailed description of intermuscular coherence 

analysis can be found in Danna-dos-Santos et al (2010,2014), Poston et al (2010), and in 

Chapter 3. 

 

Statistical approach. Averages and standard deviations of response variables 

were reported. Considering the small sample sizes, normality tests (Shapiro-Wilk tests) 

were performed on these variables. Since responses were found to be normally 

distributed, parametric tests were performed. A one-way MANOVA on factor Age was 

used to compare variables extracted from COP signals and normalized integrals of the 

intermuscular coherence within 0–10 Hz. In addition, a repeated measures ANOVA on 

factor Muscle Pair was performed to compare normalized integrals of the intermuscular 

coherence within 0–10 Hz in older adults (senior group). All parametric tests were 

performed by the IBM SPSS statistics software suite (version 20, IBM® SPSS®) and the 

level of significance fixed at 5 % (α = 0.05) for an individual test. 

 

 

5.4. RESULTS 

 

Postural sway behavior. All participants were able to perform every trial with 

relative ease and without any signs of fatigue or discomfort. In addition, all participants 
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were able to easily sustain a vertical position of their axial skeleton with no visible 

postural deviations. Table 5.1 and Figure 5.2 show the averages across participants and 

respective standard deviations of all nine COP variables (Area, RangeAP, RangeML, MVAP, 

MVML, FmeanAP, FmeanML, F80AP, and F80ML) for both control and senior groups.  

As expected, the postural behavior of young and older adults was found to be 

dissimilar. In general, older adults swayed more and faster compared to young adults 

during the holding the load trials. This effect of aging on the behavior of body sway was 

confirmed by a one-way MANOVA on all nine COP variables (F[9,12] = 7.535, Wilks‟ 

Lambda = 0.150, p = 0.001). Follow-up univariate analyses confirmed significant larger 

values for Area, RangeAP, RangeML, MVAP, and MVML, and significant smaller values for 

FmeanAP, FmeanML, F80AP, and F80ML for older adults (see p-values in Table 5.1). 

 

Table 5.1. Averages and standard deviations across participants of the (A) COP area 

(Area), (B) range (Rangeap and Rangeml), (C) mean velocity (MVap and MVml), (D) 

mean frequency (FmeanAP and FmeanML), and (E) frequency at which 80% of the COP 

spectral power is lower than (F80ap and F80ml) for young (control) and older (senior) 

adults. Note: * indicates a significant Age effect (p < 0.05). 

 

 
Control 

group 

Senior 

group 

95% 

confidence 

interval of the 

difference 

ANOVA 

Area (cm
2
) 0.94 ± 0.60 3.38 ± 2.43 (-4.17,-0.70) F[1,20] = 8.560,   p =.008* 

RangeAP (cm) 1.34 ± 0.50 3.26 ± 1.11 (-2.75,-1.09) F[1,20] = 23.22,  p <.001* 

RangeML (cm) 0.69 ± 0.38 2.37 ± 1.25 (-2.58,-0.78) F[1,20] =15.167,  p =.001* 

MVap (cm/s) 1.17 ± 0.45 1.60 ± 0.41 (-0.82,-0.05) F[1,20] = 5.488,   p =.030* 

MVml (cm/s) 0.67 ± 0.34 0.91 ± 0.19 (-0.47,-0.00) F[1,20] = 4.440,   p =.048* 

FmeanAP (Hz) 0.68 ± 0.15 0.49 ± 0.16 (0.05,0.34) F[1,20] = 7.998,   p =.010* 

FmeanML (Hz) 0.69 ± 0.23 0.37 ± 0.14 (0.16,0.48) F[1,20] =17.186,  p =.001* 

F80ap (Hz) 1.05 ± 0.23 0.74 ± 0.29 (0.07,0.55) F[1,20] = 7.185,   p =.014* 

F80ml (Hz) 0.96 ± 0.30 0.42 ± 0.13 (0.34,0.73) F[1,20] = 33.467, p <.001* 
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Figure 5.2. Average and standard deviation across participants of the (A) COP area 

(Area), (B) range (Rangeap and Rangeml), (C) mean velocity (MVap and MVml), (D) 

mean frequency (FmeanAP and FmeanML), and (E) frequency at which 80% of the COP 

spectral power is below (F80ap and F80ml) for young (control) and older (senior) adults. 

Note: anterior-posterior direction (AP) and medio-lateral direction (ML). 
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Intermuscular coherence estimates. Figure 5.3A,B,C shows the average across 

participants for the z-scored coherence profiles obtained for all three pairs of muscles 

studied (SOL/BF, SOL/ERE, and BF/ERE) in both young and older adults (gray and 

black lines, respectively). Note the presence of significant estimates within the frequency 

band of 0–10 Hz. Due to this focal distribution, further computations of integrals aiming 

to quantify the strength of correlated neural inputs were performed within this frequency 

band and referred to as INTCoh0-10Hz. 

Table 5.2 and Figure 5.3D show the INTCoh0-10Hz of each muscle pairs in young 

and older adults. A one-way MANOVA revealed a significant effect of Age (Control and 

Senior) on the INTCoh0-10Hz (F[3,18] = 4.512, Wilks‟ Lambda = 0.571, p = 0.016). Follow-

up univariate analyses confirmed significantly larger INTCoh0-10Hz in older adults for both 

muscle pairs SOL/ERE and BF/ERE, compared to young adults (F[1,20] = 5.582, p = 

0.028, and F[1,20] = 5.582, p = 0.004, respectively). No significant effect of Age on 

INTCoh0-10Hz was observed for the muscle pair SOL/BF (F[1,20] = 0.902, p = 0.354). In 

addition, a repeated measures ANOVA revealed no effect of Muscle pair (SOL/BF, 

SOL/ERE, and BF/ERE) on the INTCoh0-10Hz for older adults (Wilks‟ Lambda = 0.960, 

F(2,11) = 0.230, p = 0.798). 

 

 

Table 5.2. Averages and standard deviations across participants for the integrals of the z-

scored coherence within 0–10 Hz (INTCoh0-10Hz) for each muscle pair. Note: soleus (SOL), 

biceps femoris (BF), and lumbar erector spinae (ERE). Note: * indicates a significant 

effect of Age (p < 0.05). 

 

 CONTROL SENIOR 

95% confidence 

interval of the 

difference 

p value 

INTCoh0-10Hz (SOL/BF) 25.74 ± 5.22 32.95 ± 22.20 (-23.0, 8.6) .354 

INTCoh0-10Hz (SOL/ERE) 17.68 ± 7.17 37.02 ± 23.66 (-36.4, -2.3) .028 * 

INTCoh0-10Hz (BF/ERE) 18.35 ± 3.05 38.08 ± 17.84 (-32.4, -7.1) .004 * 
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Figure 5.3. (A) (B) (C) The average z-scored coherence profiles across participants over 

the frequency band of 0–55 Hz for the muscle pairs SOL/BF, SOL/ERE, and BF/ERE, 

respectively. (D) Integrals of the z-scored coherence within 0–10 Hz (INTCoh0-10Hz) for the 

three muscle pairs in young (control) and older (senior) participants. Note: * indicates a 

significant effect of Age (p < 0.05). 

 

5.5. DISCUSSION 

 

This study was designed to test the hypothesis that the natural process of aging 

modulates the distribution of correlated neural inputs generated by the CNS and sent to 

postural muscles. In fact, the results presented provide evidence to support this 

hypothesis.  
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This study corroborates changes in postural sway behavior as the individual 

grows older. Healthy nonfaller seniors presented a larger and faster upright body sway 

during the task of holding an anterior load, compared to young adults. Older adults also 

showed reductions in the energy content of the power spectral density of both COP 

signals (COPap and COPml). The effects of aging on postural sway behavior are 

discussed at length in Chapter 7 of the dissertation. Many age-related factors may be 

responsible for changes in postural sway, such as muscle weakness and vision 

impairments. The results of the present study corroborate the idea of the relationship 

between the extensive structural changes on COP signals and the basic neural 

mechanisms driving postural sway suggested by Zatsiorsky and Duarte (2000). Changes 

in postural sway expressed by changes in the behavior of the COP displacement were 

accompanied by changes in motor outputs generated by the CNS. The effects of aging on 

the distribution of correlated neural inputs to posterior postural muscles are discussed as 

follows. 

Results from intermuscular coherence analysis in older adults are in line with the 

principle proposed by Bernstein (1967), in which muscles with a similar function are 

grouped into functional groups controlled by the CNS. Considering that all three 

posterior muscles studied have the similar function of counter-acting the tendency of the 

body to fall forward, one could expect that correlated neural inputs to these muscles 

would be embedded in their EMG signals. This was the case for both young and older 

participants. In general, significant intermuscular coherence at lower frequency bands 

was found within 0–10Hz. Compared to young adults, older adults presented a stronger 

synchronization of the muscle pairs SOL/ERE and BF/ERE within this frequency band 

(0–10 Hz). In addition to the increased coherence for these muscle pairs, significant 

correlated neural inputs for these muscle pairs emerged in older adults. These 

observations suggest that older adults also generate correlated neural inputs to postural 

muscles to control posture. However, the strategies used by older individuals to organize 

synergistic muscle groups seem to change. 

Note that the general spectra of the coherence at lower frequency bands for all 

three muscle pairs became similar in older adults: a significant intermuscular coherence 

within 0–10 Hz with similar peak magnitude around 4 Hz (Figure 5.3ABC). This result 
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may indicate the tendency of the aging CNS to act conservatively by reinforcing a 

synergistic pattern with distal and proximal muscles, corroborating the hypothesis of 

older adults using ankle and hip strategies to control upright posture. This finding may 

also be associated with the increase in cocontraction of all postural muscles during 

perturbed situations observed in older adults. Lee et al (2015) reported age-related 

changes on compensatory postural adjustments (CPAs) under the continuous perturbed 

task of pushing a load. They observed an agonist-antagonist co-activation as a 

compensatory mechanism to overcome balance deficits as the individual grows older, 

whereas young adults showed reciprocal muscle activation patterns as their CPAs to the 

continuous perturbation. It is important to note, however, that results showed in the 

present study comes from coherence analysis at lower frequency bands, rather than from 

frequency analysis at higher frequency bands involving firing rates of muscle activation.  

Considering that the experimental task of upright stance holding a load is, by 

nature, a continuous perturbation trying to displace the axial body forward, the results 

also suggest that older adults adopted similar distributions of correlated neural inputs to 

all three posterior muscles as a compensatory adjustment to the constant mechanical 

perturbation imposed by the load. Even though this suggestion is merely speculative, it 

finds a basis for its rationale in the fact that many of the sensory functions become 

partially impaired after the 6th decade of life. This factor alone can induce longer delays 

to the generation of a motor response intended to counter-act mechanical perturbation. In 

addition, the EMG activity in postural muscles increases asymmetrically in response to 

perturbation (Tsai et al 2014). This asymmetric pattern might be another contributing 

factor to unstable postural responses in older individuals. Therefore, changes in the 

organization of postural muscle synergies may be the solution adopted by the aging CNS 

to compensate for its progressive sensorimotor impairments.    

 

 

5.6. CONCLUSIONS 

 

This exploratory study advances the understanding of multi-muscle control 

principles based on the distribution of correlated neural inputs to postural muscles. 
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Findings using a novel approach (the Intermuscular Coherence Analysis) to detect age-

related changes on postural muscle control suggest the presence of correlated neural 

inputs within 0–10 Hz for both young and older individuals. Interestingly, older adults 

showed significant synchronization at lower frequency bands not only for the most distal 

muscle pair (SOL/BF), as observed in young adults. Moreover, they revealed significant 

synchronization at lower frequency bands for two other muscle pairs: SOL/ERE and 

BF/ERE. This finding not only corroborates the functional drive of the formation of 

correlated inputs, it also corroborates the use of both ankle and hip strategies by older 

adults to control upright stance. 

Therefore, it is suggested that neurophysiological age-related changes affect the 

organization and strength of neural drive to multiple postural muscles. Further studies are 

necessary to explore how the CNS organizes multiple muscles into functional groups to 

control upright stance and what the effects of the natural aging on this process are. 
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CHAPTER 6 

The effects of aging on the distribution and strength of  

correlated neural inputs to postural muscles during unperturbed stance 

 

 

6.1. INTRODUCTION 

 

Loss of skeletal muscle strength is a commonly recognized consequence of the 

aging of the human neuromuscular system (Doherty 2003). Previous studies have 

reported age-related declines in the strength of skeletal muscles to be between 20% and 

40% for individuals after their sixth decade of life, and up to 50% for those in their ninth 

decade (Larsson et al 1979, Murray et al 1980,1985). The causes of this progressive 

weakening include the progressive loss of muscle mass and strength (sarcopenia), 

reductions in the average size of the remaining muscle fibers, and reposition of 

contractile proteins by connective tissue (Zimmerman et al 1993, Bemben 1998). In 

addition, these declines occur in a non-homogenous fashion, where distal muscles 

weaken faster compared to proximal groups (Vitasalo et al 1985, Nakao et al 1989, 

Shinohara et al 2003). The fact that some muscles weaken faster than others creates a 

scenario where forces applied to body segments become unbalanced. As a result, motor 

performance is affected and the controller (CNS) is forced to adapt its muscle control 

strategies. In fact, this progressive and unbalanced decline in muscle strength is 

considered to be one of the contributing factors to the development of motor impairments 

among older adults (O‟Sullivan and Schmitz 2006, Shumway-Cook and Woollacott 

2011), leading to potential episodes of fall and its consequent comorbidities, such as hip 

fractures and traumatic brain injuries. 

It is also important to emphasize previous observations indicating that the healthy 

aged body is indeed able to adapt its postural strategies to cope with such age-related 

declines (Inglin and Woollacott 1988, Woollacott et al 1988, Tang and Woollacott 1998). 

A typical neuromotor adaptation is the agonist/antagonist cocontraction mechanism 

adopted by older adults either to maintain unperturbed standing or to prepare and respond 

to an external mechanical perturbation applied to the body (Inglin and Woollacott 1988, 



133 

 

Woollacott et al 1988, Tang and Woollacott 1998, Laughton et al 2003, Lee et al 2015). 

Another adaptive change in motor behavior reported in the literature is related to the 

postural reaction to a sudden translation of the body‟s base of support. In general, young 

adults use the ankle strategy in response to such small perturbation, while older adults 

might also generate a hip strategy or even a step strategy to avoid falls and restore 

equilibrium under the same challenging situation. The larger proximal joint rotation and 

larger center of mass sway in older adults in response to postural perturbations, reported 

by Tsai et al (2014), corroborate the use of the hip strategy in conjunction with the ankle 

strategy by older adults. 

Although these behavioral adaptations have been well reported, the mechanisms 

underlying the strategies adopted by the aging CNS to generate and distribute the neural 

commands to multiple postural muscles have not yet been explored. Therefore, the 

present study was centered on the hypothesis that the CNS uses correlated neural inputs 

to coordinate the activation of multiple muscles forming a synergistic group (Farmer 

1998, De Luca and Erim, 2002, Santello and Fuglevand 2004, Semmler et al 2004, 

Johnston et al 2005, Winges et al 2008, Boonstra et al 2009, Poston et al 2010, Danna-

dos-Santos et al 2010,2014,2015). According to this idea, the synchronization of neural 

oscillations at lower frequency bands may also be the mechanism used by the aging CNS 

to achieve large-scale integration among its cortical and subcortical components, 

including those involved in the generation and control of movements. According to 

Farmer (1998) and De Luca and Erim (2002), traces of underlying synchronization at 

lower frequency bands occurring within the CNS are embedded in the electromyographic 

signals of the targeted muscles and synchronization features, such as the coherence 

estimations between pairs of electromyography (EMG) signals, can be used to investigate 

the formation (or dissolution) of multi-muscle synergies. In fact, the intermuscular 

coherence analysis at lower frequency bands has been successfully used to investigate the 

distribution of correlated neural inputs to skeletal muscles during the execution of whole-

body tasks (Boonstra et al 2008,2009,2015). Chapters 3 and 4 also indicated the presence 

of correlated neural inputs to postural muscles crossing the ankle, knee, hip, and lower 

lumbar intervertebral joints during unperturbed standing in healthy young adults. Taken 

together, the findings corroborate observations from Boonstra and colleagues, indicating 
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that correlated neural inputs to skeletal muscles are not only present, but they also have 

specific spatial distributions and strength .  

To further advance knowledge on age-related changes in the organization of 

postural multi-muscle synergies, the present study aimed to investigate the distribution 

and strength of correlated neural inputs among six aging postural muscles (Tibialis 

Anterior - TA, Soleus - SOL, Rectus Femoris - RF, Biceps Femoris - BF, Rectus 

Abdominis – RA, and Erector Lumbar Spinae – ERE). These muscles were selected for 

several reasons. First, these muscles act mainly in the sagittal plane, which is the plane 

where most of the body sway happens during upright stance. Second, they have a crucial 

role on the control of the vertical posture since they cross the ankle, knee, hip, and lower 

trunk joints. They are also considered the primary movers for these joints. Third, these 

muscles act on joints placed at different proximity levels of the body‟s center of mass and 

base of support, making them ideal to study the spatial distribution of correlated neural 

inputs to multiple muscles. And fourth, these muscles have been previously reported as 

the primary components of synergistic groups (often referred to as muscle modes or M-

modes) in healthy young adults, acting in the stabilization of the center of pressure (COP) 

trajectory within the base of support (Krishnamoorthy et al 2003a,b, Danna-dos-Santos et 

al 2007,2008,2009).   

Based on the observations that postural muscles are organized synergistically 

according to their mechanical function, it was expected that aging postural muscles 

would exhibit signs of correlated neural inputs in the form of significant intermuscular 

coherence at lower frequency bands (hypothesis #1). In addition, it was expected that the 

physiological neuromuscular decline due to the natural process of aging would affect the 

organization of muscle synergies. More specifically, the researcher expected (a) a 

significant general increase in the strength of correlated neural inputs to postural muscles 

in older adults reflected in significant increased intermuscular coherence at lower 

frequency bands across postural muscle pairs (hypothesis #2); and (b) a different 

distribution of correlated neural inputs between distal and proximal muscles in older 

adults, compared to young adults (hypothesis #3). 
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6.2. METHODS 

 

Participants. Ten (10) healthy young adults (mean age 26.8 years old and SD = 

2.7) and ten (10) healthy older adults (mean age 68.7 years old and SD = 3.5) volunteered 

in this study. The exclusion criteria for both Control and Senior groups included previous 

history of sensory, musculoskeletal, neurological, or cardiopulmonary disorder; surgeries; 

or substance abuse. In addition, the senior group included only nonfallers with the age 

ranging 65 to 74 years (older adults). Therefore, exclusion criteria for the senior group 

included history of falls (fallers) and age between 75–84 years (older old adult) or over 

85 years (oldest old adult).  

All volunteers gave their informed consent based on the procedures approved by 

the local Institutional Review Board and conforming to The Declaration of Helsinki prior 

to their participation in the study. Table 6.1 describes the general demographics of the 

participants. 

 

Table 6.1. General demographics of the participants (average and standard deviation 

across participants). 

 

Group Age (years) Weight (kg) Height (cm) Gender 

Control 26.8 ± 2.7 80.6 ± 22.0 175.0 ± 12.7 4 females and 6 males 

Senior 68.7 ± 3.5 71.9 ± 7.7 168.5 ± 8.5 5 females and 5 males 

 

 

Apparatus. Six active surface electrodes (Delsys Bagnoli single differential DE-

2.1) were used to record electromyographic signals (EMG) of the following muscles: 

tibialis anterior (TA), soleus (SOL), rectus femoris (RF), biceps femoris (BF), rectus 

abdominis (RA), and lumbar erector spinae (ERE). These electrodes were placed on the 

right side of the body over the muscle bellies according to manufacturer instructions and 

Criswell (2010). The distance between electrode pairs was kept at 1 cm, and total area of 

surface recording was 10 mm
2
 for each electrode. A reference electrode was placed over 

the lateral aspect of the fibular malleolus. EMG signals were amplified (1,000×) and 

band-pass filtered (6–450 Hz). Signals from the control group were sampled at 1200 Hz 
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and signals from the senior group were sampled at 2000 Hz, all with a 12-bit resolution. 

Figure 6.1 illustrates the position of the electrodes. 

 

 

 

Figure 6.1. Representation of the electrodes placed on (A) anterior and (B) posterior 

postural muscles. Note: tibialis anterior (TA), soleus (SOL), rectus femoris (RF), biceps 

femoris (BF), rectus abdominis (RA), lumbar erector spinae (ERE), and reference 

electrode (GROUND). 

 

 

Experimental procedures. All participants performed two tasks: unperturbed 

bipedal stance with open eyes (BOE or Vision condition) and unperturbed bipedal stance 

with closed eyes (BCE or No Vision condition). For both tasks, participants were 

instructed to stand barefoot with their feet 10 cm apart and parallel for 60 seconds. For 

the BOE task, participants were asked to focus their vision on a physical static point 

placed at eye level and at a distance of approximately two meters; the BCE task, 

however, required participants to close their eyes. An interval of 60 seconds was 

provided between the two tasks. The total duration of the experiment was approximately 

30 minutes. 
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6.3. DATA PROCESSING 

 

 

EMG signals recorded from 6 muscles were submitted to off-line analyses with a 

series of custom-written software routines in Matlab R2012b (MathWorks Inc., Natick, 

MA). All EMG signals were down sampled to 1000 Hz and, subsequently, filtered with a 

band-pass (6–450 Hz), second-order, zero lag Butterworth filter. The correlation of 

muscle activation in the frequency domain was quantified using similar procedures to 

Boonstra et al (2009) and Poston et al (2010). Specifically, intermuscular coherence was 

estimated between all pairs of filtered EMG signals recorded from each participant and 

organized according to their relationship (Table 6.2). The pairs of muscles analyzed in 

this study included pairs formed by solely anterior muscles, solely posterior muscles, 

antagonist muscles, and other pairs formed by one anterior and one posterior non-

antagonist muscles. 

 

Table 6.2. Fifteen muscle pairs formed by solely anterior muscles, solely posterior 

muscles, antagonist muscles, or mixed muscles (one anterior and one posterior, non-

antagonist, muscles). Note: soleus (SOL), biceps femoris (BF), lumbar erector spinae 

(ERE), tibialis anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 

 

 Muscle pair Group (anatomic position) 

1 TA – RF  

2 TA – RA Anterior 

3 RF – RA  

4 SOL – BF  

5 SOL – ERE Posterior 

6 BF – ERE  

7 TA – SOL  

8 RF – BF Antagonist 

9 RA – ERE  

10 TA – BF  

11 TA – ERE  

12 RF – SOL Mixed 

13 RF – ERE  

14 RA – SOL  

15 RA – BF  
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Single-pair coherence estimate. The intermuscular coherence was estimated for 

pairs of EMG signals by normalizing the cross-spectrum of the two signals (fxy) squared 

and normalized by the product of the auto spectrum of each signal (fxx and fyy) at each 

frequency (λ), that is: 

 

       (6.1) 

 

Intermuscular coherence estimates were obtained from non-overlapping 1 second 

data segments, resulting in a frequency resolution of 1 Hz. The initial frequency range 

analyzed in this study was bounded from 0 to 55 Hz. However, to avoid the inclusion of 

the mechanical effects of sway and its coupling to the low-frequency content previously 

observed by Mochizuki et al (2006), all analyzes excluded the frequency band of 0–1 Hz. 

Coherence estimates were considered statistically significant when they exceeded 

the significance limit of the null distribution, as proposed by Rosenberg et al (1989). The 

significance limit at α = 0.05 was determined by 
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where L is the number of disjoint segments. 

 

In order to compare coherence estimations across participants and different 

experimental conditions, all estimates were z-transformed using the Fisher 

transformation, as proposed by Rosemberg et al (1989) and Amjad et al (1997): 
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where x is the coherence estimate. 

 

Analysis of the frequency distribution of correlated neural inputs was achieved by 

identifying frequency intervals showing significant z-scored coherence estimations. The 
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quantification of the strength of correlated neural inputs was achieved by computing the 

integrals within the frequency intervals of interest. Since significant estimates across 

participants were more prevalent within the frequency interval of 1–10 Hz, the strength 

of correlated neural inputs was obtained by comparing integrals computed for the z-

scored coherence estimate profiles over the mentioned frequency bands of interest 

(INTcoh1-10). 

 

Pooled coherence estimations. In addition to the fifteen intermuscular coherence 

analyses, four pooled coherence analyses were performed separately. The first analysis 

included the three pairs formed by posterior muscles (Posterior group: SOL/BF, 

SOL/ERE, and BF/ERE); the second analysis included the three pairs formed by anterior 

muscles (Anterior group: TA/RF, TA/RA, and RF/RA); the third analysis included the 

three pairs formed by antagonist muscles (Antagonist group: TA/SOL, RF/BF, and 

RA/ERE); and the fourth analysis included the remaining six pairs formed by one 

posterior and one anterior non-antagonist muscles (Mixed group: TA/BF, TA/ERE, 

RF/SOL, RF/ERE, RA/SOL, and RA/BF).  

Since pooled coherence estimates are considered a weighted average of individual 

coherence estimates, they can be used to increase statistical power. That is, it is assumed 

that all muscles forming a single muscle mode share the same neural inputs. Estimates of 

pooled coherence were obtained as proposed by Amjad et al (1997): 
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Analysis of the frequency distribution and strength of correlated neural inputs 

obtained from pooled coherence estimations was also based on the determination of 

frequency bands of interest and on the computation of integrals within specific frequency 

bands. 
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Statistical Approach. Medians across participants of the integrals computed from 

the z-scored coherence estimates profiles between 1 and 10 Hz (INTCoh1-10Hz) are reported 

in Tables 6.3 and 6.4. Considering the sample size, Shapiro-Wilk tests were performed to 

test for normality of the coherence variable. Since INTCoh1-10Hz did not follow normal 

distribution, non-parametric tests for comparisons on the variable INTCoh1-10Hz were 

performed. More specifically, Mann-Whitney U tests were used to investigate the effect 

of Age (Control and Senior groups) on INTCoh1-10Hz for each condition (Vision and No 

Vision), whereas paired tests (Wilcoxon signed-rank tests) were used to investigate the 

effect of Vision (BOE or Vision and BCE or No Vision condition) on INTCoh1-10Hz for each 

age group (Control and Senior).  

Statistical tests were performed using the IBM SPSS statistics software suite 

(version 22, IBM
®
 SPSS

®
). Since multiple comparisons were performed, the significant 

level was adjusted at 2% (α = 0.02) for individual tests. 

 

 

6.4. RESULTS 

 

Since most results regarding intermuscular coherence in healthy young adults 

have already been presented and discussed in Chapters 3 and 4, this chapter will focus on 

the findings regarding the distribution and strength of correlated neural inputs in older 

adults and the effects of vision on the muscle activation in these individuals.  

 

 

6.4.1. Intermuscular coherence estimations: pooled analyses 

 

Figure 6.2 shows the average pooled coherence profiles (transformed into z-

scores) across young and older participants computed for each muscle group (anterior 

posterior, antagonist, and mixed) and under both vision and no vision conditions (BOE 

and BCE, respectively). Considering significant coherences those with values above the 

significance level (dashed line), note that significant pooled estimations were found 

mostly within the frequency interval of 0 to 10 Hz. However, the frequency band 0–1 Hz 
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was discarded to avoid the inclusion of the coupling of mechanical effects of body sway 

to the EMG signals. Therefore, the frequency band of interest in the present study was 

bounded between 1 and 10 Hz. 

In general, there was an increase in the strength of correlated neural inputs to 

multiple postural muscles with age. The effect of Age on the pooled coherence 

estimations is shown in Figure 6.3 and Table 6.3. A significant increase in the strength of 

the correlated neural inputs within 1–10 Hz in older adults was observed for the anterior, 

posterior, and antagonist muscle groups. Mann-Whitney U tests confirmed the effect of 

Age on INTCoh1-10Hz for the groups formed by anterior, posterior, and antagonist muscles 

during upright stance with eyes open, while no significant effect was detected for the 

mixed muscle group (see p-values in Table 6.3) The increase in the coherence strength of 

both anterior and posterior muscle groups in older adults with eyes open was also 

observed when they performed unperturbed stance with eyes closed. Mann-Whitney U 

tests revealed a significantly stronger coherence for the anterior and posterior muscle 

groups in older adults performing unperturbed stance with eyes closed, compared to that 

for young adults (p < 0.001 for both). No significant effect of Age on INTCoh1-10Hz during 

the BCE condition was detected for either antagonist or mixed muscle groups (p = 0.190 

and p = 0.739, respectively). 

Regarding visual information (BOE or Vision and BCE or No Vision conditions), 

seniors presented similar strength of correlated neural inputs to anterior, posterior, 

antagonist, and mixed muscle groups when visual input was not allowed. Wilcoxon 

signed-rank tests confirmed no Vision effect for the anterior, posterior, or mixed muscle 

groups (p = 0.646, p = 0.878, p = 0.022, and p = 0.333, respectively). On the other hand, 

healthy young controls presented similar coherence strength for the antagonist and mixed 

muscle groups and decreased the strength of correlated neural inputs to their anterior and 

posterior muscle groups. Wilcoxon signed-rank tests confirmed a significant effect of 

Vision (BOE and BCE conditions) on INTCoh1-10Hz for both anterior and posterior muscle 

groups (p = 0.005 for both) and no effect for either antagonist or mixed muscle groups (p 

= 0.799 and p = 0.878, respectively).  
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Figure 6.2. Average across young and older participants (Control and Senior groups, 

respectively) of the pooled coherence profiles obtained for all pairs formed between 

posterior, anterior, antagonist, and mixed muscles during unperturbed stance with and 

without vision (BOE and BCE conditions, respectively). Note: dashed line represents the 

significance level. 
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Figure 6.3. Box-plots of the integrals of the z-scored pooled coherence profiles within 

the 1–10Hz frequency band (INTCoh1-10Hz) for each muscle group (anterior, posterior, 

antagonist, and mixed) of young and older adults (control and senior groups, 

respectively) during unperturbed stance with and without vision (BOE and BCE 

conditions). Note: * indicates age effect (p < 0.02). Vision effect is not presented here.  

 

Table 6.3. Median of the integrals of the z-scored pooled coherence computed over the 

frequency interval of 1–10 Hz (INTCoh1-10Hz) for each muscle group (anterior, posterior, 

antagonist, and mixed) of young and older adults (control and senior groups, 

respectively) during unperturbed stance with and without vision (BOE and BCE 

conditions). Note: * indicates Age effect (p < 0.02). Vision effect is not presented here. 

 

 INTCoh1-10Hz 

Muscle 

group 
BOE (Vision) 

95% 

confidence 

interval of the 

difference  

BCE (No Vision) 

95% 

confidence 

interval of the 

difference  

 Control Senior and p value Control Senior and p value 

Anterior 19.72 48.52 (-50.8,-8.4) 

.009 *
 

11.42 52.70 (-52.1,-20.5) 

<.001 * 

Posterior 26.66 53.46 (-46.2,-15.6) 

<.001 * 

13.12 52.80 (-62.2,-28.5) 

<.001 * 

Antagonist 26.96 48.94 (-64.1,-6.0) 

.003 * 

26.23 32.26 (-47.9,6.4) 

.190 

Mixed 8.91 10.45 (-7.6,3.0) 

.579 

10.53 9.89 (-8.0,3.9) 

.739 
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6.4.2. Intermuscular coherence estimations: single-pair analyses 

 

Figures 6.4 and 6.5 show the averaged intermuscular coherence spectra 

(expressed as z-scores) across participants computed separately for all 15 muscle pairs 

within the frequency band of 0–55 Hz. According to these spectra, there is a clear 

prevalence of significant estimates within the frequency band of 1–10 Hz. Also, values 

are clearly greater for the senior group. Note the significant coherence between RA and 

ERE (an antagonist muscle pair) not only within 0–10 Hz, but also within 10–30 Hz. 

Figure 6.6 and Table 6.4 present the medians across participants for the integrals 

of the z-scored coherences computed for each muscle pair within the frequency band of 

1–10 Hz (INTCoh1-10Hz). There is a general increase in the strength of correlated neural 

inputs to postural muscles with age, in particular for the anterior, posterior, and 

antagonist muscle pairs. Mann-Whitney U tests showed significant effects of Age (control 

and seniors) on the variable INTCoh1-10Hz for all three anterior and antagonist muscle pairs 

during both BOE and BCE conditions, except for the anterior muscle pair TA/RF under 

the BCE condition. Mann-Whitney U tests also showed the effect of Age on the variable 

INTCoh1-10Hz for the posterior pairs SOL/BF and SOL/ERE pairs during the BOE 

condition, and for all three posterior muscle pairs (SOL/BF, SOL/ERE, and BF/ERE) 

during the BCE condition. Regarding mixed pairs, Mann-Whitney U tests showed that 

only the muscle pair RA/BF during the BOE condition and the muscle pair RA/SOL 

during the BCE condition presented significantly stronger coherence in older adults, 

compared to young adults (see all p-values for the effect of Age on INTCoh1-10Hz in Table 

6.4). 

Regarding visual information, Table 6.5 presents the Vision effect of the 

intermuscular coherence for each group (control and senior). Seniors presented no 

significant changes on the coherence strength between 1 and 10 Hz when they closed 

their eyes for any muscle pair. Wilcoxon signed-rank tests confirmed no significant 

effects of Vision (BOE and BCE) on the variable INTCoh1-10Hz for all anterior, posterior, 

antagonist, and mixed muscle pairs. The effects of temporary removal of visual input in 

young adults were presented in Chapter 5. As a reminder, Wilcoxon signed-rank tests 

revealed that young adults presented a significant decrease in the strength of correlated 
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neural inputs in the frequency range of 1–10 Hz for the anterior muscle pairs TA/RF and 

TA/RA and for the three posterior muscle pairs SOL/BF, SOL/ERE, and BF/ERE. No 

significant Vision effect was found for the other muscle pairs on the variable INTCoh1-10Hz 

(see all p-values for the effect of Vision on INTCoh1-10Hz in Table 6.5). 

 

 
Figure 6.4. Average across young and older participants (Control and Senior group, 

respectively) of the coherence profiles obtained for muscle pairs formed by anterior and 

posterior muscles during unperturbed stance with and without vision (BOE or Vision, and 

BCE or No Vision conditions, respectively). Note: dashed line represents the significance 

level. Note: soleus (SOL), biceps femoris (BF), lumbar erector spinae (ERE), tibialis 

anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 
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Figure 6.5. Average across young and older participants (Control and Senior group, 

respectively) of the coherence profiles obtained for muscle pairs formed by antagonist 

and mixed muscles during unperturbed stance with and without vision (BOE or Vision, 

and BCE or No Vision conditions, respectively). Note: dashed line represents the 

significance level. Note: soleus (SOL), biceps femoris (BF), lumbar erector spinae 

(ERE), tibialis anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 



147 

 

 

Figure 6.6. Box-plots of the integrals of the z-scored coherence profiles within the 1–

10Hz frequency band (INTCoh1-10Hz) for each muscle pair of young and older adults 

(control and senior groups, respectively) during unperturbed stance with and without 

vision (BOE and BCE conditions). Note: * indicates Age effect (p < 0.02). Vision effect is 

not presented here. Note: soleus (SOL), biceps femoris (BF), lumbar erector spinae 

(ERE), tibialis anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 
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Table 6.4. Median of the integrals of the z-scored intermuscular coherence computed 

over the frequency interval of 1–10 Hz (INTCoh1-10Hz) for each muscle pair of young and 

older adults (control and senior groups, respectively) during unperturbed stance with and 

without vision (BOE and BCE conditions). Note: * indicates Age effect (p < 0.02). Vision 

effect is not presented here. Note: soleus (SOL), biceps femoris (BF), lumbar erector 

spinae (ERE), tibialis anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 

 

 INTCoh1-10Hz   

 BOE (Vision) BCE (No Vision)   

 Control Seniors 95% 

confidence 

interval of the 

difference  

and p value 

Control Seniors 95% 

confidence 

interval of the 

difference  

and p value 

Pairs formed by anterior muscles   

TA/RF 36.09 61.69 (-39.5,-6.4) 

.015 * 

23.82 68.92 (-63.4,-14.9) 

.023 

TA/RA 33.66 56.56 (-60.9,-8.6) 

.011 * 

11.17 49.65 (-76.3,-22.0) 

<.001 * 

RF/RA 4.48 62.19 (-77.3,-31.3) 

<.001 * 

11.91 49.49 (-61.3,-15.9) 

.005 * 

Pairs formed by posterior muscles    

SOL/BF 28.97 79.97 (-66.9,-19.1) 

.003 * 

18.12 64.75 (-59.3,-21.1) 

<.001 * 

SOL/ERE 21.49 48.45 (-56.2,-6.5) 

.015 * 

12.20 47.77 (-63.7,-19.9) 

<.001 * 

BF/ERE 34.54 60.80 (-74.6,-3.8) 

.032 

23.80 53.03 (-94.1,-9.9) 

.011* 

Pairs formed by antagonist muscles   

TA/SOL 18.68 74.95 (-87.8,-35.8) 

<.001 * 

20.01 63.57 (-62.4,-12.7) 

.005 * 

RF/BF 18.14 82.69 (-79.6,-26.2) 

.001 * 

15.18 65.18 (-106.6,-22.6) 

<.001 * 

RA/ERE 27.00 80.62 (-93.6,-34.9) 

<.001 * 

23.38 72.95 (-81.7,-23.0) 

.001 * 

Pairs formed by mixed muscles   

TA/BF 5.49 4.74 (-3.3,1.9) 

.796 

3.75 5.13 (-4.7,0.5) 

.165 

TA/ERE 5.40 6.93 (-5.2,1.4) 

.280 

4.02 7.36 (-6.2,-0.05) 

.075 

RF/SOL 4.86 7.81 (-6.3,0.2) 

.075 

3.64 6.87 (-7.1,-0.5) 

.023 

RF/ERE 5.88 5.14 (-4.8,2.1) 

.853 

4.18 7.47 (-6.3,0.2) 

.075 

RA/SOL 4.06 7.07 (-7.0,-0.9) 

.035 

3.87 8.76 (-6.5,-2.6) 

<.001 * 

RA/BF 3.29 8.41 (-8.3,-1.9) 

.009 * 

2.91 6.78 (-6.4,-0.7) 

.035 
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Table 6.5. Median of the integrals of the z-scored intermuscular coherence computed 

over the frequency interval of 1–10 Hz (INTCoh1-10Hz) for each muscle pair of young and 

older adults (control and senior groups, respectively) during unperturbed stance with and 

without vision (BOE and BCE conditions). Note: 
+
 represents Vision effect (p < 0.02). 

Age effect is not presented here. Note: soleus (SOL), biceps femoris (BF), lumbar erector 

spinae (ERE), tibialis anterior (TA), rectus femoris (RF), and rectus abdominis (RA). 

 

 INTCoh1-10Hz   

 Control group Senior group   

 BOE 

(Vision) 

BCE 

(No 

Vision) 

95% 

confidence 

interval of the 

difference  

and p value 

BOE 

(Vision) 

BCE 

(No 

Vision) 

95% 

confidence 

interval of the 

difference  

and p value 

Pairs formed by anterior muscles   

TA/RF 36.09 23.82 (8.6,26.6) 

.005 
+ 

61.69 68.92 (-26.6,29.3) 

.878 

TA/RA 33.66 11.17 (8.6,27.2) 

.005 
+ 

56.56 49.65 (-33.1,40.0) 

.333 

RF/RA 4.48 11.91 (-14.1,5.8) 

.241 

62.19 49.49 (-19.2,42.3) 

.169 

Pairs formed by posterior muscles    

SOL/BF 28.97 18.12 (3.2,20.3) 

.007 
+ 

79.97 64.75 (-14.8,44.0) 

.139 

SOL/ERE 21.49 12.20 (2.2,14.3) 

.005 
+ 

48.45 47.77 (-34.7,30.4) 

.646 

BF/ERE 34.54 23.80 (1.7,21.8) 

.005 
+ 

60.80 53.03 (-55.1,53.0) 

.878 

Pairs formed by antagonist muscles   

TA/SOL 18.68 20.01 (-19.2,12.4) 

.646 

74.95 63.57 (-11.5,53.2) 

.114 

RF/BF 18.14 15.18 (-6.6,18.2) 

.285 

82.69 65.18 (-54.1,42.2) 

.959 

RA/ERE 27.00 23.38 (-7.3,10.9) 

.799 

80.62 72.95 (-26.7,54.2) 

.093 

Pairs formed by mixed muscles   

TA/BF 5.49 3.75 (-0.5,3.2) 

.114 

4.74 5.13 (-3.22,3.13) 

.878 

TA/ERE 5.40 4.02 (-1.6,3.4) 

.575 

6.93 7.36 (-4.09,3.4) 

.646 

RF/SOL 4.86 3.64 (-1.7,4.0) 

.445 

7.81 6.87 (-3.3,4.1) 

.575 

RF/ERE 5.88 4.18 (-1.3,3.2) 

.285 

5.14 7.47 (-4.9,3.2) 

.285 

RA/SOL 4.06 3.87 (-1.0,1.0) 

.878 

7.07 8.76 (-4.1,2.9) 

.445 

RA/BF 3.29 2.91 (-1.3,1.5) 

.878 

8.41 6.78 (-2.4,5.7) 

.169 
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6.5. DISCUSSION 

 

Age-related degenerative processes have a direct impact on the performance of 

functional daily tasks, such as the simple task of standing upright. As a consequence, 

balance becomes more challenging and susceptibility to falls increases as the individual 

grows older. Among several age-related physiological changes, the progressive and non-

homogeneous degeneration of both white and gray matter, decline of sensory functions, 

and sarcopenia, seem to impact motor control in older adults. Several studies have 

reported not only changes in the magnitude and sequencing of muscle activation in older 

adults (Howard 1988, Doherty 1993a, Roos 1999, Amiridis et al 2003, Benjuya et al 

2004, Nagai et al 2011), but also an increased cortical activation and a decreased 

modulation of presynaptic inhibition associated with a cocontraction pattern (Woollacott 

et al 1988, Manchester et al 1989, Melzer et al 2001, Laughton et al 2003, Benjuya et al 

2004, Klass et al 2007, Tucker et al 2008, Baudry et al 2010, Nagai et al 2011,2013, 

Papegaaij et al 2014, Lee et al 2015, Craig et al 2016). 

The effects of aforementioned age-related changes on postural sway behavior are 

discussed in Chapter 7. The discussion in this chapter focuses on the effects of 

physiological age-related changes on multi-muscle control during upright stance. In 

general, the findings suggest a reorganization of how the aging CNS controls multiple 

postural muscles during upright stance as a possible way to cope with physiological 

changes induced by aging. 

 

The effects of aging on multiple postural muscle control. 

 

The formation of synergistic muscle groups was previously reported for healthy 

young individuals (Chapters 3 and 4 of the dissertation, Krishnamoorthy et al 2003a,b, 

Danna-dos-Santos et al 2008). The present study revealed interesting findings regarding 

changes in the control of multiple postural muscles as the individual grows older. The 

first finding was the presence of significant levels of muscle synchronization at lower 

frequency bands, indicating the presence of correlated neural inputs to aging skeletal 

muscles responsible for controlling upright stance. This finding resonates with the 
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principles of multi-muscle control based on Bernstein‟s school of thought and the 

contemporary developments of his rationale. More specifically, older individuals showed 

signs of synchronization at lower frequency bands for three distinct postural muscle 

groups: (a) group formed by solely anterior muscles (tibialis anterior, rectus femoris, and 

rectus abdominis); (b) group formed by solely posterior muscles (soleus, biceps femoris, 

and lumbar erector spinae); and (c) group formed by antagonist muscle pairs (tibialis 

anterior and soleus, rectus femoris and biceps femoris, rectus abdominis and lumbar 

erector spinae). The presence of signs of synchronization for these three muscle groups 

was also found in young individuals (see Results section in this chapter and in Chapter 

4). Moreover, these three muscle groups were previously recognized as synergistics and 

referred to as the “push-forward M-mode”, “push-back M-mode”, and M-mode 

controlling body sway in the sagittal plane by Krishnamoorthy et al (2003a,b). On the 

other hand, no significant coherence at lower frequency bands was found for mixed 

muscle pairs formed by one anterior and one posterior non-antagonist muscles for either 

young or older individuals. Therefore, findings described in this chapter suggest that the 

aging CNS is able to control a large number of degrees of freedom by forming synergistic 

muscle groups. 

Despite the presence of synchronization at lower frequency bands of postural 

muscles in young and older adults, a second finding in this study revealed the effects of 

age on the distribution of such synchronizations. During bipedal stance with eyes open, 

correlated neural inputs to posterior muscles occurred in a larger frequency band (1–10 

Hz) in older adults, compared to that in young adults (1–5 Hz); and correlated neural 

inputs to antagonist muscles occurred in a smaller frequency band (1–10 Hz) in older 

adults, compared to that in young adults (1–25 Hz). The frequency band of significant 

intermuscular coherence for anterior muscles was kept similar between young and older 

adults (1–10 Hz), and no significant intermuscular coherence was found among mixed 

muscles for either young or older adults. These findings suggest that differences in the 

frequency distribution of correlated neural inputs to postural muscles may be age 

specific. In addition, the intermuscular coherence spectra for these three synergistic 

muscle groups (push-forward, push-back, and antagonist groups) looked similar in older 

adults. However, this does not mean that the aging CNS sent the same neural input to 
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these three groups since the coherence profile represents the correlation in the frequency 

domain rather than in the time domain.  

When analyzing the strength of the correlated neural inputs within the frequency 

band with significant intermuscular coherence (1–10 Hz), all three synergistic muscle 

groups (push-forward, push-back, and antagonist groups) presented a stronger coherence 

in older adults, compared to that in young adults. Such increased synchronization may 

reflect changes in the control strategy of older adults, such as the increased activation of 

muscles acting on ankles and hips, the use of cocontraction pattern, and the use of both 

ankle and hip strategies to control upright stance reported in the literature (Amiridis et al 

2003, Laughton et al 2003, Benjuya et al 2004, Nagai et al 2011,2013, Lee et al 2015, 

Craig et al 2016). In addition, age-related changes in the strength of correlated neural 

inputs to these three synergistic groups may also be related to the asymmetric pattern of 

increased muscle activation in older adults reported by Tsai et al (2014). 

 

The effects of a sensory challenging task (temporary visual removal) on the 

formation of synergistic muscle groups in older adults. 

 

When older adults stood upright with eyes closed, only the frequency distribution 

of correlated neural inputs to antagonist muscle pairs in older adults reduced from the 

interval 1–10 Hz to 1–5 Hz. The fact that there were no significant effects of temporary 

disruption of visual information in older adults on the strength of correlated neural inputs 

to each muscle group suggests minimal effect of visual input in the control strategy in 

these individuals. Although these results corroborate the hypothesis of the decreased 

contribution of visual input on balance control as the individual ages suggested by Lord 

and Ward (1994) and Turano et al (1994), it is important to note that our senior 

participants were healthy nonfaller individuals aged 65 to 74 years old.  

Interestingly, the effects of temporary visual removal on the formation of 

synergistic muscle groups in healthy nonfaller older adults differed from that in healthy 

young adults. The effects of visual input on the formation of postural muscle synergies in 

young adults were previously discussed in Chapter 4. In general, young adults presented 

a decrease in the strength of correlated neural inputs to both anterior and posterior muscle 
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groups, and only the antagonist muscles presented significant synchronization when 

vision was temporarily absent. The fact that only antagonist muscles showed significant 

coherence under both conditions (open and closed eyes) is not surprising, considering a 

previous report of central input co-activating antagonist motoneurons (Hansen et al 

2002). This greater effect of vision on the formation of correlated neural inputs to 

postural muscles in young adults compared to that in older adults suggests changes in 

sensory weighting as the individual grows older.  

In addition, the researcher investigated the effects of aging on the formation of 

correlated neural inputs to postural muscles when visual input was not allowed. Under the 

task of upright stance with closed eyes, older adults showed signs of correlated neural 

inputs not only to antagonist muscles, but also to anterior muscles and posterior muscles, 

whereas young adults showed no significant coherence for either anterior muscles or 

posterior muscles. The temporary removal of visual input in older adults did not abolish 

neural drive to either push-forward or push-back M-modes. This finding corroborates the 

idea of differences in sensory reweighting between young and older adults (Horak et al 

1989, Teasdale and Simoneau 2001, Wiesmeier et al 2015). 

 

 

6.6. CONCLUSIONS 

 

The use of intermuscular coherence analysis at lower frequency bands provided 

new knowledge on the mechanisms underlying strategies adopted by the aging CNS to 

generate and distribute correlated neural commands to multiple postural muscles, as 

happens in young adults. However, the frequency distribution of such neural drives in 

healthy nonfaller older adults differed from that in healthy young adults. In addition, 

intermuscular coherence at lower frequency bands was stronger in older adults. 

Therefore, the aging CNS seems to reorganize the formation of such correlated neural 

inputs to form synergistic muscle groups responsible for controlling upright stance and 

avoiding falls.   
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CHAPTER 7 

Age-related changes on postural sway: 

a balance assessment using postural indices from multiple domains 

 

 

7.1. INTRODUCTION 

 

Falls in the elderly are the leading cause of fatal and nonfatal injuries, such as 

traumatic brain injury and hip fractures (Center for Disease Control and Prevention 

2014). Current efforts to reduce falls and fall-related injuries include assessments of fall 

risk and interventions to improve balance. However, the lack of knowledge about the 

effects of aging on neurophysiological mechanisms of postural control has limited the 

advance in the field of fall prevention and rehabilitation of balance disorders. 

Aging is associated with progressive and non-homogeneous degeneration of 

multiple physiological systems, affecting functional activities such as the simple task of 

upright standing. In an effort to assess balance in older adults, several studies have 

investigated body sway by extracting features from the body‟s center of pressure (COP) 

signals. Traditional measures extracted from COP signals include body sway area, peak-

to-peak sway amplitude, signal variability, sway velocity, and signal frequency contents. 

In general, previous studies have suggested that the upright stance in older adults is 

characterized by a larger, faster, and more variable body oscillation, when compared to 

young adults (Prieto et al 1996, Amiridis et al 2003, Benjuya et al 2004, Demura et al 

2008, Wiesmeier et al 2015). Although the frequency contents of the COP signal are 

often overlooked, a few studies reported age-related changes in the power spectrum 

density of this signal (Maki et al 1990, Vieira et al 2009, Wiesmeier et al 2015). 

In the past decades, a few innovative methods for investigating the structure of 

postural sway were proposed. Richman and Moorman (2000) applied Sample Entropy 

Analysis to investigate and quantify the unpredictability level of the COP fluctuation in 

time. This analysis has been successfully used to address the irregularity and randomness 

of body sway (Ramdani et al 2009, Borg and Laxaback 2010, Mei et al 2013, Rigoldi et 

al 2013, Clark et al 2014, Perez et al 2014, Fino et al 2015, Degani et al 2016). In 
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general, smaller sample entropy estimates indicate a more predictable and regular pattern 

of COP displacement in time, whereas higher estimates indicate a more irregular and 

random postural sway. However, the use of entropy analysis to measure the randomness 

and irregularity of the COP behavior is still to be explored in both healthy individuals and 

those with balance disorders. 

Another novel method for investigating the structure of postural sway is the 

Rambling and Trembling Method, introduced by Zatsiorsky and Duarte (2000). Based on 

the hypothesis that the body sways from one equilibrium point to another during upright 

stance (Equilibrium Point Hypothesis of motor control proposed by Feldman 1986, 

Feldman and Levin 1995), the stabilogram may be decomposed into two components, 

termed rambling and trembling. The rambling component of the COP signal represents 

the migration of the reference point from one instant equilibrium point to the subsequent 

one, whereas the trembling component represents the oscillation around this moving 

reference point. A few studies investigated the Rambling-Trembling Hypothesis 

(Mochizuki et al 2006, Danna-dos-Santos et al 2008, Shin et al 2011, Tahayori et al 2012, 

Sarabon et al 2013) and its reliability was reported by Slomka et al (2013).   

In an effort to advance knowledge and increase awareness of the importance of 

including variables from different domains when assessing balance in the elderly, the 

present study was designed to investigate body sway in older adults from different 

perspectives. The study included postural indices from spatio-temporal, frequency, and 

structural domains. In general, it was hypothesized that the inclusion of multiple domains 

would allow observations of subtle changes in postural control that are likely missed 

when a single domain approach is employed. In addition, the use of multiple domains is 

likely to convey a more comprehensive panel of results leading to a better understanding 

of the neural mechanisms to be explored in later chapters of this dissertation. It was 

expected that older individuals would present a more random pattern of postural sway, 

when compared to young individuals. Changes in both rambling and trembling 

components of COP sway based on the rationale that physiological age-related changes 

affect both central and peripheral mechanisms of postural control were also expected. 
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7.2. METHODS 

 

Participants. A total of twenty five (25) healthy participants volunteered for this 

study, forming two distinct groups according to their age: eleven (11) healthy young 

adults forming the Control Group (mean age = 27.1 years old, SD = 3.8), and fourteen 

(14) healthy older adults forming the Senior Group (mean age = 68.8 years old, SD = 

3.2). The exclusion criteria for both groups included (a) previous history of sensory, 

musculoskeletal or neurological disorder, (b) history of previous surgeries, (c) history of 

cardiopulmonary disease, and (d) history of substance abuse. Additionally, the senior 

group included only nonfallers with age ranging 65 to 74 years (older adults). Therefore, 

additional exclusion criteria for the senior group included (a) history of falls (fallers) and 

(b) age between 75–84 years (older old adults) or over 85 years (oldest old adults). Prior 

to their participation, all volunteers gave their informed consent based on the procedures 

approved by the local Institutional Review Board and conforming to The Declaration of 

Helsinki. Table 7.1 describes the general demographics of the participants. 

 

Table 7.1. General demographics (mean and standard deviation) of the participants 

forming both control and senior groups. 

 

Group Age (years) Weight (kg) Height (cm) Gender 

Control 27.1 ± 3.8 69.8 ± 9.9 1.73 ± 0.10 7 females and 4 males 

Senior 68.8 ± 3.2 73.0 ± 12. 9 1.68 ± 0.09 8 females and 6 males 

 

Apparatus. A force platform (AMTI BP400600, AMTI Inc.) was used to acquire 

the horizontal and vertical components of the ground reaction force (Fx, Fy, and Fz) as 

well as the moments of force around the frontal, sagittal, and vertical axes (Mx, My, and 

Mz). These signals were used to compute the body‟s center of pressure coordinates in 

anterior-posterior and medio-lateral directions (COPap and COPml, respectively) 

according to manufacturer‟s directions:  

COPap = ( - h *Fx – My) / Fz        (7.1) 

COPml = ( - h *Fy – Mx) / Fz,       (7.2) 

where h is the height of the base of support above the force platform.  
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Data from participants of the control group were collected at a sampling 

frequency of 50 Hz, while data from participants of the senior group were collected at a 

sampling frequency of 2000 Hz since muscle activity was also recorded for future 

studies. 

 

Experimental procedures. All participants were asked to perform three upright 

standing tasks: bipedal stance with opened eyes for 120 seconds (BOE or Vision 

condition), bipedal stance with closed eyes for 120 seconds (BCE or No Vision 

condition), and body oscillation to the limits of stability (BOUNDARIES). For all tasks, 

participants were instructed to stand barefoot in the force platform with their arms 

crossed and their feet 15 cm apart and parallel. For the BOE task, participants were asked 

to focus their vision on a physical static point placed at eye level and at a distance of 

approximately 2 meters. For the BCE task, participants were asked to maintain the same 

posture adopted for the BOE task, but with their eyes closed. The BCE task was 

purposefully performed to impose a sensory challenge on upright stance. The rationale 

was that the natural unperturbed stance may be too simple to detect subtle age-related 

balance deficits, though the individual may already have problems with chronic 

disequilibrium and falls. For the BOUNDARIES task, participants were asked to stand on 

both feet and move their whole body around their ankle joints as far as possible forward, 

backward, to the right, and to the left. This task was performed to measure the limits of 

body sway without losing balance. The duration of the entire experimental session lasted 

approximately twenty minutes, and none of the participants reported fatigue. 

 

 

7.3. DATA PROCESSING 

 

Center of pressure coordinates in both anterior-posterior and medio-lateral 

directions (COPap and COPml, respectively) were analyzed off-line with a series of 

custom-written software routines (BalanceLab vs 1.1) in Matlab R2012b (Mathworks Inc, 

Natick, MA). 
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Before extracting the response variables of interest from the COP coordinates, the 

COPap and COPml signals were down sampled to 10 Hz, normalized by bringing the 

average position of the COP to the zero line and, next, detrended by the mean of each 

time series. These two last processes were performed to allow positioning the COP 

coordinates at the center of an xy coordinate system and draw any comparisons of basic 

COP features across participants. Postural indices of interest selected to assess postural 

control were extracted from COP signals and computed using the BalanceLab software. 

Two spatial variables expressing the maximum magnitude of postural sway were 

extracted from the BOUNDARIES task: the limits of the stability in the anterior-posterior 

and medio-lateral directions (LOSap and LOSml, respectively). These postural indices 

were computed as the difference between the maximum and minimum COP displacement 

in each direction. The LOS expresses the functional base of support. 

For the other two tasks (BOE and BCE), balance was measured using postural 

indices in the spatio-temporal, frequency, and structural domains. The spatio-temporal 

variables included the following:  

 

- StabArea (cm
2
): instead of using traditional methods to measure the elliptical 

area containing 90% to 95% of the COP displacement, the stabilometric area of the entire 

COP displacement was computed using the approach of the sector formula of Leibniz. 

The COP plot was divided into equal angles from the center ranging from 0° to 360°. 

Within each of these 360 sectors, the maximal distance between the center and the COP 

coordinates was calculated. Subsequently, each maximal position was considered as 

vertices of a 360-side polygon. Finally, the area of the resulting polygon was computed 

reflecting the area containing the whole COP trajectory (see Schubert et al 2012 for more 

details). Figure 7.1A illustrates the COP signal and the polygon representing the 

stabilometric area of the COP sway. 

- TotalSway (cm): the total length of the COP trajectory. 

- Rangeap and Rangeml (cm): the amplitude of the COP displacement in each 

direction, computed by the difference between the maximum and minimum values 

(Figure 7.1A). 
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- RMSap and RMSml (cm): the root mean square (RMS) of the COP displacement, 

computed as the square root of the mean of the squares of the COP displacement for each 

direction. Considering that the RMS represents the variability of the COP around zero 

and the COP signals were previously normalized and detrended, the RMS computed in 

this study represented the variability of the COP around its mean value.   

- TMV (cm/s): the total mean velocity of the COP displacement, computed as the 

total length of the COP trajectory (TotalSway, in cm) divided by the duration of the trial 

(120 seconds). 

- MVap and MVml (cm/s): the mean velocity of the COP displacement, computed 

separately for each direction. 

- TMJerk (cm/s
3
): the total sway jerkiness of the COP displacement is the rate of 

change of the COP acceleration. Total mean jerkiness was computed as the third 

derivative of the COP position with respect to time. Although the use of sway jerkiness is 

not usual, Mancini et al (2011,2012) showed the sensitivity of this measure in detecting 

changes in postural sway. 

- MJerkap and MJerkml (cm/s
3
): the mean sway jerkiness of the COP 

displacement, computed separately for each direction.  

 

The selected response variables in the frequency domain included the following: 

 

- Fmeanap and Fmeanml (Hz): the mean power frequency , computed as the mean 

frequency on the power spectrum density (PSD) of the COP signal in each direction. The 

power spectrum density was estimated using Fast Fourier Transformation (see Duarte and 

Freitas 2010 for more details). Figure 7.1B illustrates the PSD of the COPap signal in a 

representative trial, along with variables in the frequency domain, including Fmeanap. 

   

- F80COPap and F80COPml (Hz): the frequency band of the stabilogram containing 

80% of the PSD for each direction. This variable was selected based on studies showing 

that it is one of the best spectral measurements to characterize postural sway (Baratto et 

al 2002). Figure 7.1B illustrates F80ap in a representative trial. 
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Figure 7.1. (A) The center of pressure (COP) displacement, the polygon containing the 

stabilometric area (StabArea) of the COP sway, and the amplitude of the COP 

displacement in each direction (Rangeap and Rangeml). (B) The power spectrum density 

(PSD) of the anterior-posterior COP oscillation with respective mean power frequency 

(Fmeanap), and frequency at which 80% of the COPap spectral power is lower than 

(F80ap) in a representative trial. 

 

 

Finally, the postural sway was assessed in the structural domain using the 

following variables:  
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- SEntap and SEntml: the sample entropy (SEnt) of the COP trajectory in each 

direction, computed by an algorithm that measures correlation, persistence, and regularity 

of the COP signal in time.  The output of the sample entropy analysis is a single, 

nonnegative real number indicating the level of irregularity of the time series. Smaller 

sample entropy estimates indicate many repetitive patterns of COP fluctuation in time, 

e.g., a more predictable and regular postural sway, whereas larger sample entropy 

estimates indicate a more irregular and random pattern of COP displacement (see Pincus 

1991 and Richman and Moorman 2000 for more details regarding the sample entropy 

computational method).     

 

- CrossSEnt: the cross-sample entropy, computed to measure the degree of 

asynchrony or dissimilarity between COPap and COPml signals in time (see Richman 

and Moorman 2000 for more details). The difference between SEnt and CrossSEnt 

computational methods is that the SEnt compares a series with itself, whereas the 

CrossSEnt compares two related time series (COPap and COPml). Higher CrossSEnt 

values indicate more asynchrony of the postural sway between the two directions; lower 

values, in contrast, indicate more co-dependence of the postural sway dynamics between 

the two directions. 

 

- Variables extracted from the rambling and trembling components of the COP: 

the horizontal forces (Fx and Fy) and the COP signals were filtered (0.9 Hz low-pass, 

zero-lag Butterworth second-order filter) and, next, COPap and COPml were 

decomposed into rambling (RM) and trembling (TR) components. The rambling 

trajectory was computed by interpolating the discrete instant equilibrium point trajectory 

with cubic spline function, while the trembling component was computed as the 

difference between the approximated rambling trajectory and the original COP trajectory 

(see Duarte and Zatsiorsky 1999, and Zatsiorsky and Duarte 2000 for more details). 

Figure 7.2 illustrates the decomposition of the COPap signal into rambling and trembling 

from a representative senior participant performing a BOE trial. Rambling and trembling 

signals in each direction were analyzed using spatio-temporal, frequency, and structural 

measures as follows: 
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- StabAreaRM and StabAreaTR (cm
2
): the stabilometric area of the rambling 

and trembling trajectories, respectively. 

- RangeRMap, RangeTRap, RangeRMml, and RangeTRml (cm): the amplitude of 

the rambling and trembling displacements in each direction. 

- RMSRMap, RMSTRap, RMSRMml, and RMSTRml (cm): the root mean square 

(RMS) of the rambling and trembling displacements in each direction. 

- MVRMap, MVTRap, MVRMml, and MVTRml (cm/s): the mean rambling and 

trembling velocities in each direction. 

- MJerkRMap, MJerkTRap, MJerkRMml, and MJerkTRml (cm/s
3
): the mean sway 

jerkiness of the rambling and trembling displacements in each direction. 

- FmeanRMap, FmeanTRap, FmeanRMml, and FmeanTRml (Hz): the mean power 

frequency of the rambling and trembling displacements in each direction. 

- F80RMap, F80TRap, F80RMml, and F80TRml (Hz): the frequency at which 80% 

of the PSD of the rambling and trembling displacements in each direction is 

reached. 

- SEntRMap, SEntTRap, SEntRMml, and SEntTRml: the sample entropy of the 

rambling and trembling displacements in each direction. 
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Figure 7.2. (A) The center of pressure displacement and its rambling component in the 

anterior-posterior direction (COPAP and RamblingAP, respectively). (B) The trembling 

component (TremblingAP) of the COPAP displacement of a representative participant from 

the senior group performing unperturbed bipedal stance with eyes open.  

 

Statistical Approach. For all response variables, medians across participants were 

reported. Statistical tests were performed using the IBM SPSS statistics software suite 

(version 22, IBM
®
 SPSS

®
). 

Considering the number of variables measured in this study, Shapiro-Wilk tests 

were used to verify whether data from each domain were normally distributed. Since 

some of the variables did not follow a normal distribution, non-parametric Mann Whitney 

U tests were used to investigate the effects of Age (Control and Senior groups), and 

Wilcoxon signed-rank tests were used to investigate the effects of Vision (BOE and BCE 

conditions) on the variables of interest. 

Since multiple comparisons were performed, an adjustment of the significance 

level is recommended. However, such correction could be somewhat too conservative 

considering the large number of tests performed and the positive correlation among these 

tests. In addition, this adjustment could increase the probability of producing false 

negatives and, consequently, reduce the statistical power. Therefore, the significant level 

was fixed at 0.02. 
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7.4. RESULTS 

 

All participants were able to successfully accomplish all tasks without losing their 

balance. Figure 7.3 shows the COP displacement of one typical control participant and 

one typical senior participant performing the BOUNDARIES task. Regarding the limits of 

stability, the functional base of support for young and older adults was not significantly 

different for either the anterior-posterior or medio-lateral directions (Table 7.2). This 

finding was confirmed by Mann Whitney U tests with factor Age on LOSap and LOSml 

(p=0.702 and p=0.125, respectively). 

 

 

Figure 7.3. The displacement of the center of pressure (COP) of one typical control 

participant (panel A) and one typical senior participant (panel B) performing the 

BOUNDARIES task. 

 

 

 

Table 7.2.  Median and 95% confidence interval of the difference across participants 

(Control and Senior) of the limits of stability in the anterior-posterior (AP) and medio-

lateral (ML) direction (LOSAP and LOSML, respectively). Note: * indicates significant Age 

effect (p < 0.02). 

 

 Control Senior 
95% confidence interval  

of the difference 
p value 

LOSAP (cm) 14.9 13.7 (-1.9, 2.8) p = 0.702 

LOSML (cm) 17.8 15.3 (-0.8, 3.9) p = 0.125 
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Figure 7.4 shows the COP displacement of one typical control participant and one 

typical senior participant performing both BOE and BCE tasks. Note visual differences in 

the magnitude of the postural sway between these two participants and between bipedal 

stance with eyes open and closed. Figures 7.5 and 7.6 present boxplots of COP spatio-

temporal, frequency, and structural variables of young and older adults performing both 

tasks. 

 

Figure 7.4. The displacement of the center of pressure (COP) and its components 

(rambling and trembling) of one typical control participant (panels A to H) and one 

typical senior participant (panels I to P) performing bipedal standing tasks with open 

eyes (BOE task) (panels A to D and I to L) and closed eyes (BCE task) (panels E to H 

and M to P). 
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Figure 7.5. Boxplot with spatio-temporal variables of young adults (control group) and 

older adults (senior group) performing unperturbed stance with eyes open (Vision) and 

closed (No Vision).    
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Figure 7.6. Boxplot with frequency (panels A and B) and structural (panels C and D) 

variables of young adults (control group) and older adults (senior group) performing 

unperturbed stance with eyes open (Vision) and closed (No Vision).    

 

 

The effects of aging on balance control.    

 

Tables 7.3, 7.4 and 7.5 present the median across participants (Control and 

Senior) of postural indices extracted from the COP signal and from both rambling and 

trembling components of the COP during upright stance with eyes open and closed (BOE 

and BCE, respectively), along with p-values from Mann Whitney U tests on factor Age 

for these response variables. 
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Table 7.3.  Median and 95% confidence interval of the difference across participants 

(Control and Senior) of postural indices extracted from the center of pressure signal 

during upright stance with eyes open and closed (BOE and BCE, respectively). Note: * 

indicates significant Age effect (p < 0.02). 

 

 Vision (BOE)  No Vision (BCE)  
 

Control Senior 

95% CI of 

the difference 

and p value 
Control Senior 

95% CI of  

the difference 

and p value 

StabArea (cm
2
) 0.80 1.53 (-1.58,-0.31) 

.001 * 

1.25 2.07 (-1.10,0.35) 

.101 

TotalSway (cm) 344 499 (-235,-36) 

.002 * 

472 550 (-143,11) 

.112 

Rangeap (cm) 1.90 2.96 (-1.26,-0.6) 

.009 * 

2.41 3.05 (-0.87,0.24) 

.171 

Rangeml (cm) 0.89 1.25 (-0.78,-0.07) 

.014 * 

1.40 1.47 (-0.78,0.74) 

.352 

RMSap (cm) 0.32 0.46 (-0.20,-0.03) 

.003 * 

0.40 0.45 (-0.12,0.03) 

.273 

RMSml (cm) 0.15 0.19 (-0.13,0.00) 

.027 

0.19 0.22 (-0.09,0.05) 

.547 

TMV (cm/s) 0.63 1.47 (-0.99,-0.63) 

<.001 * 

1.00 1.53 (-0.95,-0.34) 

<.001 * 

MVap (cm/s) 0.53 1.05 (-0.71,-0.44) 

<.001 * 

0.83 1.22 (-0.74,-0.17) 

.002 * 

MVml (cm/s) 0.24 0.73 (-0.55,-0.33) 

<.001 * 

0.33 0.78 (-0.47,-0.24) 

<.001 * 

TMJerk (cm/s
3
) 89 375 (-329,-223) 

<.001 * 

133 404 (-323,-193) 

<.001 * 

MJerkap (cm/s
3
) 74 261 (-219,-143) 

<.001 * 

111 282 (-231,-115) 

<.001 * 

MJerkml (cm/s
3
) 36 199 (-198,-134) 

<.001 * 

46 205 (-179,-124) 

<.001 * 

Fmeanap (Hz) 0.18 0.24 (-0.16,-0.01) 

.063 

0.29 0.37 (-0.16,0.03) 

.208 

Fmeanml (Hz) 0.23 0.42 (-0.51,-0.00) 

.007 * 

0.28 0.41 (-0.40,-0.02) 

.029 

F80ap (Hz) 0.05 0.11 (-0.26,0.12) 

.316 

0.13 0.21 (-0.14,0.13) 

.956 

F80ml (Hz) 0.42 0.46 (-0.74,0.28) 

.827 

0.44 0.48 (-0.64,0.13) 

.351 

SEntap 0.66 0.96 (-0.51,-0.20) 

<.001 * 

0.78 1.15 (-0.49,-0.14) 

.003 * 

SEntml 0.68 1.28 (-0.81,-0.35) 

<.001 * 

0.68 1.25 (-0.80,-0.39) 

<.001 * 

CrossSEnt 1.40 1.66 (-0.62,0.02) 

.080 

1.37 1.68 (-0.85,-0.14) 

.016 * 
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Table 7.4. Median and 95% confidence interval of the difference across participants 

(Control and Senior) of postural indices extracted from the rambling component of the 

center of pressure (COP) signal during upright stance with eyes open and closed (BOE 

and BCE, respectively). Note: * indicates significant Age effect (p < 0.02). 

 

 

 Vision (BOE)  No Vision (BCE)  

 Control Senior 
95% CI of 

the difference 

and p value 
Control Senior 

95% CI of  

the difference 

and p value 

StabAreaRM (cm2) 0.62 1.06 (-1.22,-0.03) 

.014* 

0.94 1.52 (-0.95,0.98) 

.381 

Rambling component of the COPap 

RangeRMap (cm) 1.74 2.22 (-1.04,-0.07) 

.035 

2.18 2.55 (-0.78,0.36) 

.352 

RMSRMap (cm) 0.31 0.44 (-0.18,-0.01) 

.006 * 

0.37 0.44 (-0.12,0.04) 

.476 

MVRMap (cm/s) 0.21 0.30 (-0.16,-0.06) 

<.001 * 

0.35 0.42 (-0.16,0.00) 

.067 

MJerkRMap (cm/s3) 2.20 3.33 (-2.00,-0.52) 

.003 * 

3.22 4.64 (-2.42,0.06) 

.063 

FmeanRMap (Hz) 0.09 0.10 (-0.05,0.01) 

.427 

0.15 0.17 (-0.04,0.03) 

.805 

F80RMap (Hz) 0.12 0.17 (-0.08,0.03) 

.763 

0.29 0.30 (-0.06,0.05) 

1.000 

SEntRMap 0.29 0.32 (-0.11,0.01) 

.112 

0.43 0.43 (-0.08,0.02) 

.412 

Rambling component of the COPml 

RangeRMml (cm) 0.76 1.09 (-0.59,0.04) 

.125 

1.13 1.16 (-0.57,0.87) 

.642 

RMSRMml (cm) 0.14 0.18 (-0.12,0.00) 

.049 

0.19 0.21 (-0.09,0.06) 

.642 

MVRMml (cm/s) 0.12 0.16 (-0.10,0.00) 

.112 

0.19 0.19 (-0.06,0.05) 

.870 

MJerkRMml (cm/s3) 1.73 1.63 (-0.76,0.42) 

.743 

2.10 2.00 (-0.47,1.17) 

.702 

FmeanRMml (Hz) 0.13 0.13 (-0.03,0.04) 

.763 

0.17 0.17 (-0.02,0.06) 

.603 

F80RMml (Hz) 0.27 0.23 (-0.04,0.12) 

.365 

0.37 0.33 (-0.03,0.12) 

.311 

SEntRMml 0.39 0.40 (-0.05,0.05) 

.784 

0.42 0.45 (-0.10,0.05) 

.722 
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Table 7.5. Median and 95% confidence interval of the difference across participants 

(Control and Senior) of postural indices extracted from the trembling component of the 

center of pressure (COP) signal during upright stance with eyes open and closed (BOE 

and BCE, respectively). Note: * indicates significant Age effect (p < 0.02). 

 

 

 Vision (BOE)  No Vision (BCE)  

 Control Senior 
95% CI of 

the difference 

and p value 
Control Senior 

95% CI of  

the difference 

and p value 

StabAreaTR (cm2) 0.07 0.21 
(-0.27,-0.05) 

<.001 * 
0.18 0.43 

(-0.33,-0.04) 

.012 * 

Trembling component of the COPap 

RangeTRap (cm) 0.71 1.48 (-1.12,-0.35) 

.001 * 

1.47 2.01 (-1.06,0.38) 

.228 

RMSTRap (cm) 0.08 0.16 (-0.13,-0.05) 

<.001 * 

0.16 0.23 (-0.11,0.01) 

.171 

MVTRap (cm/s) 0.23 0.35 (-0.25,-0.07) 

<.001 * 

0.44 0.49 (-0.23,0.07) 

.412 

MJerkTRap (cm/s3) 9.58 14.87 (-9.19,-2.44) 

.001 * 

15.38 18.59 (-9.05,2.29) 

.352 

FmeanTRap (Hz) 0.53 0.41 (0.03,0.18) 

.007 * 

0.49 0.38 (-0.01,0.16) 

.040 

F80TRap (Hz) 0.84 0.67 (0.04,0.29) 

.012 * 

0.78 0.61 (-0.00,0.23) 

.080 

SentTRap 0.54 0.48 (-0.01,0.15) 

.037 

0.55 0.45 (0.01,0.15) 

.016 * 

Trembling component of the COPml 

RangeTRml (cm) 0.53 0.63 (-0.32,0.11) 

.208 

0.67 0.81 (-0.37,0.18) 

.443 

RMSTRml (cm) 0.05 0.07 (-0.04,0.00) 

.031 

0.07 0.08 (-0.04,0.00) 

.208 

MVTRml (cm/s) 0.11 0.16 (-0.08,-0.00) 

.023 

0.15 0.19 (-0.08,0.03) 

.273 

MJerkTRml (cm/s3) 3.78 7.06 (-3.83,-0.94) 

.004 * 

5.15 7.30 (-3.47,0.89) 

.063 

FmeanTRml (Hz) 0.46 0.41 (-0.00,0.10) 

.208 

0.49 0.42 (0.02,0.15) 

.010 * 

F80TRml (Hz) 0.74 0.68 (-0.02,0.16) 

.198 

0.76 0.63 (0.04,0.23) 

.009 * 

SentTRml 0.42 0.46 (-0.07,0.00) 

.080 

0.41 0.47 (-0.08,0.12) 

.055 

 

In general, older adults presented a larger, faster, and more irregular body 

oscillation during bipedal stance with eyes open (BOE task), compared to young adults 
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(control group). Mann Whitney U tests confirmed the effects of Age (control and senior) 

on most of the spatio-temporal variables (StabArea, TotalSway, Rangeap and, Rangeml, 

RMSap, TMV, MVap and MVml, TMJerk, MJerkap and MJerkml). No significant effect on 

variable RMSml was observed. In the frequency domain, statistical tests revealed that 

older adults presented only a significantly higher mean frequency of COP sway in the 

medio-lateral direction, compared to young adults. In the structural domain, the 

significant increase in the irregularity of the pattern of body sway was confirmed by 

statistical tests on Age for the variables SEntap and SEntml. No significant difference 

existed for the asynchrony level between COPap and COPml in older adults, compared to 

young adults. See all p-values for the effects of Age on postural indices extracted from 

the COP in Table 7.3. 

Regarding the age-related changes in the rambling and trembling components of 

the COPap and COPml trajectories during unperturbed stance with eyes open (BOE 

task), Mann Whitney U tests revealed higher values for both rambling and trembling 

areas in older adults, compared to that in young adults. In the anterior-posterior direction, 

older adults presented faster and less smooth rambling and trembling trajectories. 

Statistical tests confirmed higher rambling variability, mean velocity, and jerkiness, as 

well as higher trembling amplitude, variability, mean velocity, and jerkiness in older 

adults. In addition, the trembling component of the COPap in older adults presented 

lower mean frequency and lower frequency at which 80% of the spectral power is 

reached, confirmed by statistical tests. No significant effects of Age were found for the 

other variables extracted from the rambling component of the COP in the anterior-

posterior direction. See all p-values for the effects of Age on postural indices extracted 

from the rambling and trembling components of the COP in Tables 7.4 and 7.5. 

In the medio-lateral direction, there was only a significant increase in the 

jerkiness of the trembling component of the COP signal (MJerkTRml) in older adults, 

compared to young adults. Statistical tests revealed no effects of Age on the remaining 

variables (RangeRMml, RMSRMml, MVRMml, MJerkRMml, FmeanRMml, F80RMml, SEntRMml, 

RangeTRml, RMSTRml, MVTRml, FmeanTRml, F80TRml, and SEntTRml). See all p-values for the 

effects of Age on postural indices extracted from the rambling and trembling components 

of the COP in Tables 7.4 and 7.5. 
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Additional statistical tests were performed to investigate the effects of aging on 

postural behavior when visual input was not allowed by asking the participants to close 

their eyes while standing upright (BCE task). Regarding spatio-temporal variables, a 

faster and less smooth COP displacement in older adults was confirmed by Mann 

Whitney U tests on Age for TMV, MVap, MVml, TMJerk, MJerkap, and MJerkml. No 

significant differences between older and young adults were found for the area, 

amplitude, and variability of the COP displacement. In the frequency domain, statistical 

tests revealed no effects of Age on Fmeanap, Fmeanml, F80ap, and F80ml when participants 

closed their eyes. In the structural domain, older adults presented a more irregular pattern 

of COP displacement in time for both directions and an increased asynchrony between 

COPap and COPml, compared to that for young adults. This result was confirmed by 

significant effects of Age on SEntap, SEntml, and CrossSEnt. See all p-values for the 

effects of Age on postural indices extracted from the COP in Table 7.3. 

In addition, the effects of age on the rambling and trembling components of the 

postural sway during bipedal stance with eyes closed (BCE task) differed from that with 

eyes open. Mann Whitney U tests revealed only a significantly larger trembling 

(StabAreaTR), a significant increase in the irregularity of the anterior-posterior trembling 

(SEntTRap), and a significant decrease in the frequency of the medio-lateral trembling 

(FmeanTRml and F80TRml) in older adults with eyes closed, compared to that for young 

adults. No significant difference was found for the other variables extracted from the 

trembling component and for any variable extracted from the rambling component of the 

COP. See all p-values for the effects of Age on postural indices extracted from the 

rambling and trembling components of the COP in Tables 7.4 and 7.5. 

 

The effects of visual input on balance control.     

 

Tables 7.6, 7.7 and 7.8 present the median across participants (Control and 

Senior) of postural indices extracted from the COP signal and from both rambling and 

trembling components of the COP during upright stance with eyes open and closed (BOE 

and BCE, respectively), along with p-values from Wilcoxon signed-rank tests on factor 

Vision (BOE and BCE conditions) for these response variables. 
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Table 7.6.  Median and 95% confidence interval of the difference across participants 

(Control and Senior) of postural indices extracted from the center of pressure signal 

during upright stance with eyes open and closed (Vision and No Vision conditions, 

respectively). Note: 
+
 represents significant Vision effect (p < 0.02). 

 

 Control Group  Senior Group  
 

Vision 
No 

Vision 

95% CI of 

the difference 

and p value 
Vision 

No 

Vision 

95% CI of  

the difference 

and p value 

StabArea (cm
2
) 0.80 1.25 (-1.44,-0.12) 

.003
+
 

1.53 2.07 (-0.89,0.46) 

.233 

TotalSway (cm) 344 472 (-171,12) 

.041 

499 550 (-94,76) 

.510 

Rangeap (cm) 1.90 2.41 (-1.18,0.03) 

.062 

2.96 3.05 (-0.60,0.32) 

.551 

Rangeml (cm) 0.89 1.40 (-1.37,0.12) 

.016 
+ 

1.25 1.47 (-0.69,0.24) 

.198 

RMSap (cm) 0.32 0.40 (-0.16,0.03) 

.062 

0.46 0.45 (-0.06,0.07) 

.730 

RMSml (cm) 0.15 0.19 (-0.10,-0.02) 

.016 
+
 

0.19 0.22 (-0.09,0.06) 

.414 

TMV (cm/s) 0.63 1.00 (-0.64,-0.22) 

.003 
+
 

1.47 1.53 (-0.53,-0.00) 

.006 
+
 

MVap (cm/s) 0.53 0.83 (-0.58,-0.23) 

.003 
+
 

1.05 1.22 (-0.53,-0.04) 

.002 
+
 

MVml (cm/s) 0.24 0.33 (-0.21,0.00) 

.004 
+
 

0.73 0.78 (-0.13,0.10) 

.551 

TMJerk (cm/s
3
) 89 133 (-86.-16) 

.003 
+
 

375 404 (-102,35) 

.074 

MJerkap (cm/s
3
) 74 111 (-80.-17) 

.003 
+
 

261 282 (-96,15) 

.041 

MJerkml (cm/s
3
) 36 46 (-24,-0.05) 

.003 
+
 

199 205 (-33,-39) 

.826 

Fmeanap (Hz) 0.18 0.29 (-0.24,-0.06) 

.006 
+
 

0.24 0.37 (-0.22,-0.05) 

.002 
+
 

Fmeanml (Hz) 0.23 0.28 (-0.16,0.07) 

.286 

0.42 0.41 (-0.26,0.27) 

.510 

F80ap (Hz) 0.05 0.13 (-0.24,0.05) 

.216 

0.11 0.21 (-0.20,0.14) 

.286 

F80ml (Hz) 0.42 0.44 (-0.27,0.15) 

.386 

0.46 0.48 (-0.60,0.48) 

.311 

SEntap 0.66 0.78 (-0.38,-0.03) 

.004 
+
 

0.96 1.15 (-0.32,-0.02) 

.006 
+
 

SEntml 0.68 0.68 (-0.10,0.20) 

.182 

1.28 1.25 (-0.21,0.28) 

.638 

CrossSEnt 1.40 1.37 (-0.14,0.56) 

.131 

1.66 1.68 (-0.31,0.34) 

.730 
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Table 7.7. Median and 95% confidence interval of the difference across participants 

(Control and Senior) of postural indices extracted from the rambling component of the 

center of pressure (COP) signal during upright stance with eyes open and closed (Vision 

and No Vision, respectively). Note: 
+
 represents significant Vision effect (p < 0.02). 

 

 

 Control Group  Senior Group  

 Vision 
No 

Vision 

95% CI of 

the difference 

and p value 
Vision 

No 

Vision 

95% CI of  

the difference 

and p value 

StabAreaRM (cm2) 0.62 0.94 
(-1.80,0.17) 

.004 
+
 

1.06 1.52 
(-0.82,0.48) 

.272 

Rambling component of the COPap 

RangeRMap (cm) 1.74 2.18 (-1.00,0.15) 

.131 

2.22 2.55 (-0.57,0.40) 

.551 

RMSRMap (cm) 0.31 0.37 (-0.14,0.05) 

.168 

0.44 0.44 (-0.06,0.08) 

.826 

MVRMap (cm/s) 0.21 0.35 (-0.21,-0.10) 

.003 
+
 

0.30 0.42 (-0.19,-0.04) 

.001 
+
 

MJerkRMap (cm/s3) 2.20 3.22 (-2.40,-0.47) 

.003 
+
 

3.33 4.64 (-2.40,-0.36) 

.002 
+
 

FmeanRMap (Hz) 0.09 0.15 (-0.11,-0.04) 

.003 
+
 

0.10 0.17 (-0.09,-0.03) 

.004 
+
 

F80RMap (Hz) 0.12 0.29 (-0.19,-0.09) 

.003 
+
 

0.17 0.30 (-0.18,-0.06) 

.002 
+
 

SEntRMap 0.29 0.43 (-0.17,-0.05) 

.003 
+
 

0.32 0.43 (-0.14,-0.04) 

.003 
+
 

Rambling component of the COPml 

RangeRMml (cm) 0.76 1.13 (-1.29,0.20) 

.050 

1.09 1.16 (-0.50,0.27) 

.470 

RMSRMml (cm) 0.14 0.19 (-0.10,-0.01) 

.016 
+
 

0.18 0.21 (-0.09,0.06) 

.330 

MVRMml (cm/s) 0.12 0.19 (-0.11,-0.02) 

.003 
+
 

0.16 0.19 (-0.08,0.03) 

.074 

MJerkRMml (cm/s3) 1.73 2.10 (-1.58,0.25) 

.033 

1.63 2.00 (-0.69,0.40) 

.300 

FmeanRMml (Hz) 0.13 0.17 (-0.08,0.01) 

.248 

0.13 0.17 (-0.06,0.01) 

.177 

F80RMml (Hz) 0.27 0.37 (-0.17,0.01) 

.155 

0.23 0.33 (-0.14,-0.01) 

.035 

SEntRMml 0.39 0.42 (-0.08,0.07) 

.859 

0.40 0.45 (-0.08,0.03) 

.414 
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Table 7.8. Median and 95% confidence interval of the difference across participants 

(Control and Senior) of postural indices extracted from the trembling component of the 

center of pressure (COP) signal during upright stance with eyes open and closed (Vision 

and No Vision, respectively). Note: 
+
 represents significant Vision effect (p < 0.02). 

 

 

 Control Group  Senior Group  

 Vision 
No 

Vision 

95% CI of 

the difference 

and p value 
Vision 

No 

Vision 

95% CI of  

the difference 

and p value 

StabAreaTR (cm2) 0.07 0.18 
(-0.23,-0.06) 

.004 
+
 

0.21 0.43 
(-0.32,-0.02) 

.005 
+
 

Trembling component of the COPap 

RangeTRap (cm) 0.71 1.47 (-1.57,-0.40) 

.006 
+
 

1.48 2.01 (-1.16,-0.04) 

.008 
+
 

RMSTRap (cm) 0.08 0.16 (-0.12,-0.05) 

.003 
+
 

0.16 0.23 (-0.10,0.00) 

.021 

MVTRap (cm/s) 0.23 0.44 (-0.26,-0.13) 

.003 
+
 

0.35 0.49 (-0.26,0.02) 

.012 
+
 

MJerkTRap (cm/s3) 9.58 15.38 (-10.5,-4.2) 

.003 
+
 

14.87 18.59 (-10.2,0.3) 

.002 
+
 

FmeanTRap (Hz) 0.53 0.49 (-0.03,0.11) 

.131 

0.41 0.38 (-0.08,0.10) 

.470 

F80TRap (Hz) 0.84 0.78 (-0.03,0.18) 

.182 

0.67 0.61 (-0.11,0.15) 

.363 

SentTRap 0.54 0.55 (-0.07,0.07) 

.790 

0.48 0.45 (-0.06,0.09) 

.245 

Trembling component of the COPml 

RangeTRml (cm) 0.53 0.67 (-0.40,0.15) 

.424 

0.63 0.81 (-0.34,0.10) 

.158 

RMSTRml (cm) 0.05 0.07 (-0.04,0.01) 

.308 

0.07 0.08 (-0.03,0.01) 

.046 

MVTRml (cm/s) 0.11 0.15 (-0.10,0.02) 

.155 

0.16 0.19 (-0.06,0.02) 

.152 

MJerkTRml (cm/s3) 3.78 5.15 (-3.96,0.70) 

.026 

7.06 7.30 (-1.97,0.90) 

.158 

FmeanTRml (Hz) 0.46 0.49 (-0.10,0.03) 

.110 

0.41 0.42 (-0.04,0.06) 

.950 

F80TRml (Hz) 0.74 0.76 (-0.13,0.07) 

.131 

0.68 0.63 (-0.06,0.12) 

.382 

SentTRml 0.42 0.41 (-0.05,0.03) 

.790 

0.46 0.47 (-0.05,0.03) 

.826 
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When visual input was not available, older adults kept fairly similar body sway 

characteristics as they presented when standing with eyes open, except for a faster and 

more irregular anterior-posterior sway. Wilcoxon signed-rank tests revealed significant 

higher TMV, MVap, Fmeanap, and SEntap during bipedal stance with eyes closed compared 

to eyes open. No effects of visual input in older adults were found for the other spatio-

temporal, frequency, and structural variables. See all p-values for the effects of Vision on 

postural indices extracted from the COP in Table 7.6. 

The effects of visual input on the rambling and trembling components of the 

postural sway in older adults revealed a faster, more irregular, and less smooth anterior-

posterior rambling; and a larger, faster, more variable, and more irregular anterior-

posterior trembling. Wilcoxon signed-rank tests revealed a significant increase on 

MVelRMap, MJerkRMap, FmeanRMap, F80RMap, and SEntRMap when older adults closed their 

eyes. No effects of Vision were found for the other rambling variables. Regarding the 

variables extracted from the trembling component of the COP, statistical tests revealed a 

significant increase on StabArea, RangeTRap, MVTRap, and MJerkTRap. No effects of Vision 

were found for the other trembling variables. See all p-values for the effects of Vision on 

postural indices extracted from the rambling and trembling components of the COP in 

Tables 7.7 and 7.8. 

Finally, additional statistical tests revealed different effects of visual input on 

postural behavior of young adults compared to the findings in seniors. In general, young 

adults presented a larger, faster, less smooth, and more irregular sway when visual input 

was not available. Wilcoxon signed-rank tests confirmed significant effects of Vision on 

StabArea, Rangeml, RMSml, TMV, MVap, MVml, TMJerk, MJerkap, MJerkml, Fmeanap, and 

SEntap. No effects of Vision were shown for the other postural indices in control 

participants. See all p-values for the effects of Vision on postural indices extracted from 

the COP in Table 7.6. 

The effects of temporary removal of visual input in young adults were also 

observed in changes in both rambling and trembling components of postural sway. 

Statistical tests revealed that young adults significantly increased the rambling and 

trembling areas when they performed bipedal stance with eyes closed, compared to open 

eyes. In the anterior-posterior direction, young adults presented a faster, less smooth, and 
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more irregular rambling and a larger, faster, more variable and less smooth trembling 

when they closed their eyes. These results were confirmed by Wilcoxon signed-rank tests 

on factor Vision for MVRMap, MJerkRMap, FmeanRMap, F80RMap, SEntRMap, RangeTRap, 

RMSTRap, MVTRap, and MJerkTRap. In the medio-lateral direction, young adults 

significantly increased their rambling variability (RMSRMml) and velocity (MVRMml). No 

significant effects of Vision in control participants were found for the remaining variables 

extracted from the rambling and trembling components of the COP signal. See all p-

values for the effects of Vision on postural indices extracted from the rambling and 

trembling components of the COP in Tables 7.7 and 7.8. 

 

 

7.5. DISCUSSION 

 

The present study investigated the age-related changes in features of human body 

sway underlying postural control of unperturbed stance. The postural indices selected to 

assess body sway represented multiple dimensions of analysis and were able to detect 

subtle changes in postural control of upright stance. In general, older adults tend to 

oscillate more and faster in both directions, increase their medio-lateral sway frequency, 

present a more irregular and random body sway pattern in both directions, and modify 

both rambling and trembling components of their postural sway. 

 

Age-related changes in postural sway during unperturbed stance.   

 

As the individual grows older, changes in the physiological systems and 

sensorimotor integration have a negative impact on postural control. Gross motor changes 

can be evaluated clinically by observing movement strategies when a challenging 

situation is presented to the individual. For example, a balance deficit while standing on 

one leg can be visually observed by a large sway of the trunk and a high guard of the 

arms to maintain equilibrium. In this study, biomechanical tools were used to examine 

aspects of postural control that are not detected during clinical examination. Traditional 

and novel postural indices in spatio-temporal, frequency, and structural domains were 
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extracted from the COP signal recorded from healthy young and older adults performing 

unperturbed stance.  

Regarding the functional base of support, King et al (1994) reported a significant 

decrease in the anterior-posterior direction in women after the age of 60 years, with a 

reduction of 16% per decade thereafter. Duncan et al (1990) also reported an age-related 

decline in the maximum anterior-posterior body oscillation. However, the results from 

the present study found no evidence of a significant difference between the maximum 

anterior-posterior and medio-lateral limits of stability between young and older adults. 

These discrepant findings may be due to the fact that the senior group in the present study 

included only healthy nonfaller older adults; whereas other studies may have had mixed 

nonfallers and fallers, older (65–74 years), older old (75–84 years) and oldest old (over 

85 years) adults; or healthy individuals with health comorbidities. Therefore, it is 

suggested that the functional base support tends to decline as the individual ages, but it 

seems to still be preserved in healthy nonfaller older adults.     

Most of the spatio-temporal variables were sensitive to detecting the effects of 

age-related physiological changes on postural sway. The larger, faster, and more variable 

body sway in older adults has been previously described in the literature (Maki et al 

1990, Prieto et al 1996, Amiridis et al 2003, Choy et al 2003, Benjuya et al 2004, Freitas 

et al 2005, Seigle et al 2009, Vieira et al 2009, Sarabon et al 2013, Silva et al 2013, 

Wiesmeier et al 2015). The natural age-related decline in sensory function may contribute 

to older adults oscillating more before the system recognizes that the COP is getting 

closer to the limits of stability. The system, then, seems to correct the unstable position of 

the COP by moving it back faster to restore equilibrium. Overshooting corrections may 

also explain the larger and more variable body sway in older adults. Interestingly, the 

sway jerkiness, suggested by Mancini et al (2011,2012) as an alternative measure of body 

sway, was able to detect age-related changes on postural control. The higher sway 

jerkiness in older adults revealed a less smooth and shakier body sway compared to 

young adults. This pattern of broken and shaky postural sway in older adults could also 

be observed during voluntary movements, such as the performance of the BOUNDARIES 

task (see Figure 7.3). 
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Despite common agreement that older adults sway faster in both directions, 

different findings about the effects of aging on the mean frequency of the COP sway have 

been reported. In this study, only the sway frequency in the medio-lateral direction 

increased with aging. This finding agrees with other studies (McClenagham et al 1996, 

Winter et al 1996), but it is contradictory to the decreased medio-lateral frequency in 

older adults reported by Sarabon et al (2013) and the increased sway frequency in the 

anterior-posterior direction reported by Maki et al (1990), Freitas et al (2005), and 

Wiesmeier et al (2015). Divergences in the literature may be explained by the age of the 

participants, their health status, and the duration of the bipedal stance in each study. 

Based on the findings from the present study, it is suggested that, in the first stage of 

natural aging (65 to 74 years old), postural instability in the medio-lateral direction is 

more affected than in the anterior-posterior direction. This idea is supported by 

Wiesmeier et al (2015), who reported a significant higher age-related increase in the 

medio-lateral sway frequency compared to that for the anterior-posterior direction.  

Another major finding in the present study was the effect of the natural process of 

aging on the dynamics of the postural sway. The sample entropy estimate was extremely 

sensitive to changes in the pattern of the COP displacement in time for both directions (p 

< 0.001). This novel biomechanical tool revealed a more irregular and random postural 

sway in older adults, compared to young adults. Previous studies using Multiscale 

Entropy and Sample Entropy (Duarte and Sternard 2008 and Borg and Laxaback 2010, 

respectively) reported an increased irregularity of the anterior-posterior postural sway in 

older adults, but no significant difference in the medio-lateral sway. However, the short 

length of the COP data analyzed (60 and 30 seconds, respectively) could explain their 

different findings.  

A few other studies have reported other applications of entropy analysis in a 

different population. Rényi entropy revealed an increased irregularity of the COP sway in 

the first day of a concussion episode (Gao et al 2011). Conversely, individuals with 

Ehlers-Danlos Syndrome (hypermobility type) presented a less random COP sway, 

measured by smaller approximate and sample entropies (Rigoldi et al 2013). In addition, 

contradictory findings using sample entropy estimates were reported for the irregularity 

and randomness of the postural sway in dancers. Stins et al (2009) reported increased 



184 

 

irregularity of body sway in dancers compared to nondancers, whereas Perez et al (2014) 

reported no significant difference in the regularity and randomness of the body sway 

between dancers and nondancers. Once more, different findings among studies may be 

due to the computational approach used and the duration of the task analyzed. 

In summary, despite the promising usefulness of entropy estimates to measure the 

dynamics of the postural sway, more studies are needed to investigate the structural 

mechanisms behind postural control in different populations and under different tasks and 

conditions. We speculate that higher COP entropies showing increased body sway 

irregularity may be related to the use of more feedback mechanisms of postural control, 

whereas lower entropies showing a less random and more regular body sway may be 

related to not only feedback mechanisms but also feedforward (anticipatory adjustments) 

mechanisms of postural control. 

Finally, the use of rambling and trembling decomposition to investigate postural 

control in older adults revealed increased rambling and trembling oscillations. In general, 

the rambling-trembling hypothesis suggests a superposition of two processes of upright 

stance control. Zatsiorsky and Duarte (2000) suggested that the rambling mechanism 

reflected neural mechanisms of supraspinal origin, while the trembling component 

reflected spinal reflexes and changes in the intrinsic mechanical properties of muscles 

and joints. Most of the age-related changes in the spatio-temporal domains happened for 

the rambling and trembling components in the anterior-posterior direction. Sarabon et al 

(2013) also found age-related changes on both components, such as increased rambling 

and trembling mean velocity in the anterior-posterior direction. Despite the lack of 

studies using this innovative approach to investigate postural control in older adults, 

some studies reported changes in rambling and trembling signals under different 

experimental conditions. Danna-dos-Santos et al (2008) asked healthy adults to maintain 

their upright stance while an online feedback of the COP displacement was provided. In 

order to maintain their COP inside different targets in the screen, participants decreased 

their rambling sway area and increased their trembling area as the target difficulty 

increased. In another study, the manipulation of the base of support also imposed changes 

in the behavior of rambling and trembling trajectories (Mochizuki et al 2006). In 

addition, Shin et al (2011) reported a higher ratio of trembling to COP in individuals with 
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multiple sclerosis compared to age and gender matched controls, but no differences in the 

ratio of rambling to COP. These studies support the hypothesis that the rambling 

mechanism is activated by central processes searching for postural stability, whereas the 

trembling mechanism is activated by peripheral processes and reflexes. Therefore, it is 

suggested that the increased anterior-posterior rambling in older adults may reflect 

impaired or declined sensorimotor integration. It seems that older adults have some 

difficulty in integrating information of the body deviation from the vertical with motor 

commands for corrective actions. As a result, there is an increase in the trajectory of 

consecutive reference points, which oscillate faster, less smoothly, and closer to the limits 

of the base of support. The findings also support the idea of the trembling component of 

the COP signal reflecting the peripheral mechanism of upright stance control. It is 

suggested that the increased trembling trajectory may be due to the natural age-related 

changes in the modulation of spinal reflex gains, in the peripheral mechanical properties, 

and in the pattern of multiple postural muscles contraction. 

 

The effects of a sensory challenging task (temporary visual removal) on 

postural sway in older adults.  

 

Considering that the simplicity of the unperturbed stance may not be able to 

detect some age-related changes on postural control mechanisms, a sensory challenging 

task was included by asking the participants to stand still with their eyes closed. Several 

studies had reported increased body sway under conditions of reduced or conflicting 

sensory information in older adults compared to young adults (Woollacott et al 1986, 

Horak et al 1989, Teasdale et al 1991). When visual input was manipulated in older 

adults, they increased the velocity, frequency, and randomness of their postural sway 

only in the anterior-posterior direction. Interestingly, the magnitude of the anterior-

posterior sway did not significantly change. The increased postural sway frequency and 

randomness in older adults when visual input was not available were also identified by 

Weismeier et al (2015) and Fino et al (2015), respectively. Conversely, Benjuya et al 

(2004) reported increased anterior-posterior sway amplitude and medio-lateral sway 

velocity when older adults performed stance with eyes closed, compared to eyes open, 
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but they analyzed only 20 seconds of unperturbed stance. This greater impact of visual 

input on the anterior-posterior sway may be explained by the larger range of motion of 

movements around ankles, knees, and hips in the sagittal plane compared to that in the 

frontal plane. Furthermore, the rambling-trembling decomposition revealed that the 

absence of visual input in older adults had more effect on the rambling component of the 

COPap. The findings reinforce the idea of the rambling trajectory representing a central 

mechanism of postural control, since sensorimotor integration was challenged during 

upright stance with eyes closed. 

In contrast, young adults presented similar effects of visual input on the frequency 

and structural variables as older adults: increased sway frequency and randomness in the 

anterior-posterior direction. However, young adults presented more changes in the spatio-

temporal domain compared to that for older adults. Under temporary removal of visual 

information, young adults increased not only their anterior-posterior sway velocity and 

jerkiness like the older adults, but also their medio-lateral sway magnitude, variability, 

and jerkiness. Likewise, Benjuya et al (2004) pointed out more spatio-temporal changes 

in postural sway in young adults compared to older adults when visual input was not 

allowed.  

This greater effect of visual input in young adults compared to older adults 

suggests changes in sensory weighting in older adults. Taken together, these findings 

agree with the increase in the reliance on visual input to control balance up to 65 years 

old, followed by a decrease in the contribution of visual input on balance control reported 

by Lord and Ward (1994). In another study, a greater contribution of vision in nonfallers 

compared to fallers was reported (Turano et al 1994), which may add to the hypothesis 

that individuals rely less on visual input as they age and present signs of balance deficits, 

such as fall episodes. An alternative explanation for this greater effect of visual input in 

young adults might be due to the pattern of cocontraction of muscles acting around the 

ankle joints in older adults. The agonist-antagonist cocontraction, previously reported 

during bipedal stance with eyes either open or closed (Benjuya et al 2004), might be the 

mechanism used by older adults to avoid bringing their COP closer to the limits of 

stability. In addition to this, the fear of reaching the limits of stability may also represent 

another factor to explain why older adults do not increase the magnitude of postural sway 
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when they close their eyes. Contrary to older adults, young adults seemed to be 

comfortable to explore their base of support by increasing their postural sway when 

standing with eyes closed.  

In addition to different effects of visual information in young and older adults, 

age-related changes in postural control of unperturbed stance were found even with eyes 

closed. Regarding spatio-temporal variables, only the mean velocity and mean jerkiness 

responses were sensitive enough to detect change in postural sway between young and 

older adults. The faster postural sway when eyes were either open or closed has been 

reported before (Baloh et al 1994, Prieto et al 1996, Benjuya et al 2004, Seigle et al 

2009). Interestingly, the effects of age on sway area and ranges differ among studies. 

Benjuya et al (2004) found an increased length of the COP path and sway amplitude in 

older adults with eyes closed compared to young adults. Conversely, Seigle et al (2009), 

Vieira et al (2009), and the present study found no significant effect of age when 

performing unperturbed stance with eyes closed. Such disparity in results may be due to 

different methods used to compute the sway area. In addition, the findings reported here 

regarding the increased irregularity of the anterior-posterior COP pattern as the individual 

ages is consistent with the higher sample entropy of the COPap displacement in older 

adults reported by Borg and Laxaback (2010). They also reported that fallers have a more 

irregular sway than nonfallers when standing with eyes closed. 

 

 

7.6. CONCLUSIONS 

 

The study reinforces the role of the COP sway as a crucial tool to assess postural 

control in older adults. Not only traditional measures, but also innovative postural indices 

were included to cover different aspects underlying the mechanisms of balance control. 

The effects of the natural process of aging on balance control can be detected even in the 

first stages of aging (65 to 74 years old) using spatio-temporal, frequency, and structural 

variables. As the individual gets older, they tend to increase their body sway amplitude, 

irregularity, velocity, jerkiness, and frequency to control unperturbed stance. They also 
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seem to move faster and less smoothly among more distant reference points, in addition 

to an increased movement around this moving reference point. 

Interestingly, the challenging condition of removing visual input in older adults 

led to an increased velocity, irregularity, and frequency of postural sway in the anterior-

posterior direction. This very noticeable effect of visual input on the anterior-posterior 

sway also was observed in young adults, indicating an increased reliance on visual input 

compared to older adults. In addition, a few effects of the natural process of aging on 

postural control were still present when young and older adults were standing without 

visual input. 

In conclusion, balance assessment using force platforms are of the utmost 

importance to identifying characteristics of postural sway affected by natural aging. The 

objective postural indices extracted from COP signals in this study provided useful 

knowledge regarding postural markers for potential balance instability and risk of falls. 

Moreover, the findings also advance knowledge for health professionals to direct 

interventional protocols focusing on balance control in older adults. 
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CHAPTER 8 

SUMMARY OF CONCLUSIONS  

 

 

The dissertation focused on the investigation of the effects of aging on the 

mechanisms of multi-muscle control and on postural sway behavior during upright 

stance. A series of studies were performed and each chapter presented a discussion of its 

results. In general, the findings corroborate the plasticity of the aging CNS in using 

compensatory mechanisms to control upright stance and avoid falls. The purpose of this 

chapter was to present the main conclusions from the dissertation. 

 

 

8.1. Intermuscular Coherence Analysis as a novel approach to investigate the 

formation of postural muscle synergies    

 

Based on the Motor Redundancy (Abundance) Hypothesis, the CNS unites motor 

components into functional groups to overcome the large number of degrees of freedom 

of the system. The intermuscular coherence approach used in the dissertation provided 

new information on the strategies used by the CNS of both young and older adults to 

generate and distribute neural commands to multiple postural muscles. 

Intermuscular coherence analysis at lower frequency bands revealed to be a 

promising tool to advance studies in the mechanisms underlying human postural control. 

Findings from the dissertation opened a broad horizon of possibilities to study the 

formation of postural muscle synergies. Further studies are needed to advance knowledge 

on how the aging CNS reorganizes correlated neural inputs to multiple postural muscles 

under a variety of challenging tasks. This novel approach should also be expanded to 

study the generation of synergistic muscle groups in individuals with different levels of 

balance deficits.    
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8.2. Aging is associated with a reorganization of correlated neural inputs to 

postural muscles forming synergistic muscle groups    

 

Healthy nonfaller older adults present signs of correlated neural drive to 

postural muscles. 

 

Studies presented in Chapters 5 and 6 suggested that the formation of synergistic 

muscle groups during unperturbed stance in older adults was driven by correlated neural 

inputs to different postural muscles, as happened in young adults (see Chapters 3 and 4). 

Older adults showed signs of synchronization at lower frequency bands for three distinct 

muscle groups (push-forward M-mode, push-back M-mode, and antagonist group). No 

correlated neural drive was found for muscles pairs formed by one anterior and one 

posterior, non-antagonist, muscles. These findings suggested that the aging CNS was able 

to control a large number of degrees of freedom by forming synergistic muscle groups, as 

young adults did. 

 

The frequency distribution of correlated neural inputs to postural muscles 

changes with age. 

 

A few age-related changes in the frequency distribution of neural drive to postural 

muscles were observed. Results presented in Chapter 6 revealed synchronization at lower 

frequency bands of posterior muscles in a larger frequency band, as well as 

synchronization of antagonist muscles in a smaller frequency band, compared to that in 

young adults. In contrast, the frequency band of the synchronization at lower frequency 

bands of anterior muscles in older adults was similar to that observed in young adults, 

and no significant synchronization at lower frequency bands of mixed muscles was 

observed for either older or young adults. These findings suggested that the aging CNS 

reorganized the neural drive to postural muscles during upright stance. 

 

Healthy nonfaller older adults present stronger intermuscular coherence at 

lower frequency bands, compared to young adults. 
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In general, intermuscular coherence at lower frequency bands was stronger in 

healthy nonfaller older adults, compared to that in healthy young adults (see results in 

Chapter 6). Age-related increase in the magnitude of correlated neural inputs within the 

frequency band of 1–10 Hz was reported for three synergistic muscle groups (push-

forward, push-back, and antagonist muscle groups). Once more, such increased 

synchronization at lower frequency bands may reflect changes in the control strategy and 

compensatory postural adjustments in older adults. These findings corroborate the 

plasticity of the aging CNS in reorganizing the formation of synergistic postural muscle 

groups in order to control upright stance and avoid falls. 

 

Healthy nonfaller older adults keep similar control of multiple muscles under 

the sensory challenging task of upright stance without visual input. 

 

Despite reduced frequency distribution and strength of the synchronization at 

lower frequency bands of antagonist postural muscles observed in older adults when they 

closed their eyes, no significant change in correlated neural inputs to the other synergistic 

muscle groups suggested minimal effects of visual input on the control strategy in older 

adults (see results in Chapter 6). Interestingly, young adults presented a reorganization of 

neural drive to postural muscles when visual input was temporarily absent (see results in 

Chapters 4 and 6). When healthy young adults closed their eyes, their intermuscular 

coherence at lower frequency bands decreased and was no longer significant. Taken 

together, these findings corroborate age-related difficulty in sensory reweighting and 

suggest that healthy nonfaller older adults rely less in visual information than healthy 

young adults. 

 

 

8.3. The importance of multiple postural indices to understand the mechanisms 

underlying age-related changes in postural sway    

 

Balance assessment using force platform to record COP displacement is crucial to 

characterize postural sway in different populations. Several studies have shown reliable 
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variables extracted from COP signals to measure postural control. However, one variable 

alone may describe only part of the behavior. For example, how does one explain the 

balance of dancers and older adults based only on their larger body sway compared to 

healthy young non-dancer adults?  

The study presented in Chapter 7 used not only traditional variables to quantify 

postural sway, but also novel measurements. The use of a force platform and the 

BalanceLab software to extract postural indices from multiple domains enabled a more 

comprehensive insight of the effects of aging on postural sway behavior. The results 

suggested the use of postural indices from multiple domains to cover different aspects 

underlying the mechanisms of postural control of individuals with different levels of 

balance control.  

This new knowledge is crucial to direct efforts of health professionals to optimize 

treatment and rehabilitation of age-related balance disorders. The use of such postural 

indices characterizing body sway behavior of older adults during unperturbed upright 

stance should also be expanded to different functional and challenging situations, such as 

unipedal stance, tandem stance, and reaching or releasing an object. Moreover, this 

approach should be explored to advance knowledge of the mechanisms used by other 

populations with different levels of balance deficits, such as individuals with a history of 

traumatic brain injury, Parkinson, cerebral vascular accident, diabetes, and other 

orthopedic and neurological disorders. 

 

 

8.4. Aging is associated with changes in body sway behavior   

 

Healthy nonfaller older adults present a larger, faster, less smooth, and more 

irregular body sway, compared to healthy young adults.  

 

The effects of aging on postural control can be observed by changes in the 

behavior of body sway. Postural indices extracted from COP displacements in spatio-

temporal, frequency, and structural domains are able to detect such effects. Although 

healthy nonfaller older adults (65 to 74 years old) preserved their functional base of 
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support during unperturbed bipedal stance, they increased their sway variability, 

amplitude, velocity, and frequency. In addition, body sway in older participants was 

characterized by jerky movements and a more irregular pattern of body oscillation in time 

compared to that in young adults. Both declines in sensorial and motor functions seem to 

impact the control of the position of the center of pressure (COP) within the base of 

support. It seems that older individuals tend to oscillate closer to the limits of stability 

and, when trying to move the COP back to a safer position, they do it fast. In addition, it 

was suggested that overshooting postural corrections may be one reasons for increased 

sway variability, shaky sway pattern, and decreased predictability of the COP position in 

time observed in older individuals. 

Postural control adjustments in older adults were also detected by changes in both 

rambling and trembling components of the COP displacement in the anterior-posterior 

direction. This finding corroborates the decline in both central and peripheral processes 

involved in postural control as the individual grows older. 

Interestingly, the aforementioned changes in the mechanisms of postural control 

can be detected even in the early stage of aging. They may be interpreted as 

compensatory adjustments to the progressive and non-homogeneous decline of 

physiological functions. One can speculate that the aging system may be over-activating 

postural reactions to avoid falls, resulting in ongoing overshooting responses. 

 

Healthy nonfaller older adults present a faster and more irregular body sway 

under the sensory challenging task of upright stance without visual input.  

 

Under temporary visual removal, older adults kept similar magnitude of body 

sway, but their body oscillated faster and in a more irregular pattern compared to upright 

stance with eyes open. The temporary absence of visual input also seems to affect the 

sensorimotor integration in older adults. The resulting changes in the rambling 

component of the body sway when older adults closed their eyes corroborate the idea of 

the link between rambling and central processes of control. 

Interestingly, young adults presented more changes in postural indices when they 

closed their eyes than older adults did. It was suggested that such differences may be due 
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to age-related changes in multisensory inputs and sensorimotor integration. The natural 

decline in visual function and the difficulty on sensory reweighting experienced by older 

adults may explain some of the reasons why they did not rely in visual inputs as much as 

young adults. 

 

 

8.5. Contributions to science  and clinical relevance     

 

A variety of traditional and novel objective techniques to quantify different 

features of the human postural control, such as the center of pressure and center of mass 

behavior, forces at the surface, torques around body joints, muscle activity, joint 

displacement, body segment position, and brain (electrical) activity, are available. 

However, two gaps hinder full application of research findings to clinical settings. The 

first gap regards the interpretation of data. Simple descriptions of recorded data have no 

value if they are not translated into functional meanings. The second gap regards the 

application of research findings by health professionals. Physical therapists, physicians, 

and other health professionals should benefit from posturography and other techniques in 

order to customize their interventions according to their client‟s needs. 

In general, the methodological approaches used in the dissertation to 

quantitatively analyze muscle synergy and body sway behavior provided a step forward 

to understanding the mechanisms underlying postural control in older adults. The 

application of postural control research findings to clinical assessment, prevention, and 

rehabilitation of balance disorders are fundamental to improve the individual‟s quality of 

life. In conjunction with clinical functional and systems assessment, findings reported in 

the dissertation regarding quantitative posturography may be used not only to identify 

balance problems and predict fall risk. They also provide valuable information regarding 

the causes of age-related balance problems and the mechanisms adopted by the CNS to 

compensate for an individual‟s balance deficits.  
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