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The stable signal peptide (SSP) of the GP-C envelope glycoprotein of the Junı́n arenavirus plays a critical
role in trafficking of the GP-C complex to the cell surface and in its membrane fusion activity. SSP therefore
may function on both sides of the lipid membrane. In this study, we have investigated the membrane topology
of SSP by confocal microscopy of cells treated with the detergent digitonin to selectively permeabilize the
plasma membrane. By using an affinity tag to mark the termini of SSP in the properly assembled GP-C
complex, we find that both the N and C termini reside in the cytosol. Thus, SSP adopts a bitopic topology in
which the C terminus is translocated from the lumen of the endoplasmic reticulum to the cytoplasm. This
model is supported by (i) the presence of two conserved hydrophobic regions in SSP (h�1 and h�2) and (ii)
our previous demonstration that lysine-33 in the ectodomain loop is essential for pH-dependent membrane
fusion. Moreover, we demonstrate that the introduction of a charged side chain or single amino acid deletion
in the membrane-spanning h�2 region significantly diminishes SSP association in the GP-C complex and
abolishes membrane fusion activity. Taken together, our results suggest that bitopic membrane insertion of
SSP is centrally important in the assembly and function of the tripartite GP-C complex.

Arenaviruses are found worldwide, each with their respec-
tive rodent hosts (11, 41). Infection in humans occurs through
contact with rodents and can cause severe acute hemorrhagic
fevers (31, 40). In Africa, up to 300,000 infections by the Lassa
fever virus occur annually (32), and outbreaks of Junı́n, Ma-
chupo, and Guanarito viruses arise sporadically in South
America (40). Transplant-associated infections by lymphocytic
choriomeningitis virus (LCMV) were recently reported in the
United States (10). Without effective treatment or immuniza-
tion, the hemorrhagic fever arenaviruses remain an urgent
public health and biodefense concern.

The arenaviruses are enveloped viruses whose genomes con-
sist of two single-stranded RNA molecules that encode am-
bisense expression of four viral proteins (6, 12). The envelope
glycoprotein (GP-C) mediates entry of the virus into the host
cell and is the primary target for virus-neutralizing antibodies
(21, 42). In contrast to other viral envelope glycoproteins, the
arenavirus GP-C retains its cleaved, stable signal peptide (SSP)
as an essential element of the mature complex, in addition to
the conventional receptor-binding (G1) and transmembrane
fusion (G2) subunits (19, 22, 51). In the nascent GP-C protein,
the signal sequence acts to direct polypeptide synthesis to the
endoplasmic reticulum (ER), where it is cleaved from the
G1-G2 precursor by the cellular signal peptidase (SPase) in
the ER lumen (5, 19, 49). The mature G1 and G2 subunits are
generated through cleavage of the G1-G2 precursor glycopro-

tein by the cellular SKI-1/S1P protease (2, 26, 28) in the early
Golgi compartment (7, 14, 20). The tripartite GP-C complex is
ultimately transported to the cell surface for virion assembly
and budding (39, 44).

During virion entry, the G1 subunit interacts with cell sur-
face receptors (8, 43) and the virion is endocytosed into
smooth vesicles (4). GP-C-mediated fusion of the viral and
cellular membranes is activated upon acidification of the ma-
turing endosome to initiate viral replication (4, 9, 15, 16).
Membrane fusion is promoted by a series of structural rear-
rangements in the ectodomain of the G2 subunit to form a
highly stable six-helix bundle typical of the so-called class I
viral fusion proteins (24, 48).

SSP is distinguished from conventional signal peptides by its
length (58 amino acids) (19) and by myristate addition at its N
terminus (51). Upon coexpression of a stand-alone SSP with a
recombinant G1-G2 precursor containing a conventional sig-
nal sequence, the components are able to associate in trans to
reconstitute a functional GP-C complex (1, 17, 51). Recent
studies in our laboratory have demonstrated that SSP is spe-
cifically required for GP-C transport from the ER and to the
cell surface (1), as well as for the pH-dependent membrane
fusion activity of the mature GP-C complex (50). SSP associ-
ation overcomes endogenous ER localization signals in the
cytoplasmic domain of G2 so as to permit transit of the com-
plex through the Golgi and proteolytic maturation of the
G1-G2 precursor (1). By contrast, a positively charged side
chain in the central region of SSP (K33) is likely exposed on
the extracellular face of the membrane to modulate the pH at
which membrane fusion is activated (50). Thus, SSP appears to
interact with both the cytoplasmic tail and the ectodomain of
the G2 transmembrane fusion protein. To investigate the struc-
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ture and function of this unique subunit in GP-C, we sought to
define the topology of SSP in the membrane.

Sequence analysis of the SSP among New World and Old
World arenaviruses (Fig. 1) suggests two hydrophobic regions
(h�1 or h�2) (18, 22) that may potentially be inserted in the
lipid bilayer. The N terminus of SSP is myristoylated in the
cytosol, whereas the C terminus is generated by SPase cleavage
in the lumen of the ER (5, 19, 49). Although the C-terminal
region of SSP in the GP-C precursor obeys well-documented
rules for recognition by SPase (45), the sequence requirements
for SSP function in the mature complex are quite different.
Specifically, the invariably conserved cysteine residue at posi-
tion �2 of the SPase cleavage site (C57) is dispensable for
SPase cleavage but is absolutely essential for trans-complemen-
tation by the SSP (49). The requirement at C57 does not arise
through disulfide bond formation, as the SSP subunit is non-
covalently associated in the mature GP-C complex (49, 51).
This observation has led us to speculate that the penultimate
C-terminal C57 side chain may lie in the reducing environment
of the cytoplasm. Here, we demonstrate that SSP of the New
World Junı́n arenavirus GP-C displays bitopic membrane to-
pology with both the N and C termini residing in the cytosol.
This model will guide further investigations of the require-
ments for SSP association in the tripartite GP-C complex and
the interactions that modulate pH-dependent membrane fu-
sion.

We have used digitonin to selectively permeabilize cells ex-
pressing Junı́n virus GP-C in order to examine the intracellular
disposition of the N and C termini of SSP. Low concentrations
of digitonin permeabilize the plasma membrane (due to its
higher cholesterol content) while leaving intracellular mem-
branes intact (27). Protein epitopes that lie in the cytosol are
thus accessible in digitonin-permeabilized cells, whereas lumi-
nal targets are protected. To validate this methodology, we
confirmed the luminal localization of the G1 subunit in wild-
type GP-C using a monoclonal antibody (MAb) directed to G1
(MAb BE08) (42). As illustrated in Fig. 2A (top panel), the G1
subunit was found on the surface of intact cells using MAb

BE08 and an Alexa Fluor 488-conjugated (green) secondary
F(ab�)2 antibody. Upon complete solubilization of the cell
membranes with 0.1% Triton X-100 detergent, G1 was also
detected intracellularly in the ER and Golgi compartments
(Fig. 2A) (1). On the other hand, in cells treated with 5 �g/ml
digitonin, the G1 subunit was detected only at the plasma
membrane and not intracellularly. This pattern is in accor-
dance with the localization of G1 on the outside of the cell and
its protection from staining in the lumen of the internal mem-
branes.

As a positive control for permeabilization of the plasma
membrane, digitonin-treated cells were also stained using an
antibody directed to the cytoplasmic domain of giantin, an
integral Golgi protein (29). The cytosolic epitope was visual-
ized with a rabbit polyclonal antibody (PRB-114C; Covance
Research Products) and an Alexa Fluor 568-conjugated sec-
ondary antibody. This red staining confirms the disruption of
the plasma membrane. The green (anti-G1) and red fluores-
cence signals in digitonin-treated cells expressing wild-type
GP-C (Fig. 2A) were spatially distinct and nonoverlapping, in
keeping with their respective cell surface and cytosolic loca-
tions. Taken together, these studies confirm the utility of dig-
itonin treatment to distinguish between cytosolic and luminal
domains of transmembrane proteins.

N- and C-terminally Spep-tagged SSPs reveal bitopic mem-
brane topology. A 15-amino-acid S-peptide (Spep) affinity tag
(25) was introduced into the recombinant SSP to examine the
localization of the N and C termini of SSP. We have previously
shown that Spep could be appended to the C terminus of SSP
without affecting the ability of the SSP subunit to trans-com-
plement a G1-G2 precursor bearing the conventional signal
peptide of CD4 (CD4sp-GPC) (49). This C-terminally tagged
SSP construct containing a T58R mutation (to prevent SPase
cleavage [49]) is termed C-term SSP-Spep. The Spep tag can
also be appended at the cytosolic C terminus of G2 in CD4sp-
GPC without detriment (48, 51). Both tagged molecules, C-
term SSP-Spep and CD4sp-GPC/Spep, can promote pH-de-

FIG. 1. Schematic representation of the Junı́n virus GP-C glycoprotein and SSP sequences. Amino acids of the Junı́n virus envelope
glycoprotein are numbered from the initiating methionine, and cysteine residues (�) and potential glycosylation sites (Y) are marked. The SPase
and SKI-1/S1P cleavage sites and the resulting SSP, G1, and G2 subunits are indicated. Within G2, the C-terminal transmembrane (TM) and
cytoplasmic (cyto) domains are shown, as are the N- and C-terminal heptad-repeat regions (light-gray shading). A comparison of SSP sequences
among arenavirus species is detailed below. Sequences include the New World isolates Junı́n (D10072), Tacaribe (M20304), Pichindé (U77601),
Machupo (AY129248), and Sabiá (YP_089665) and the Old World isolates Lassa-Nigeria (Lassa-N) (X52400), Mopeia (M33879), and LCMV-
Armstrong (LCMV-A) (M20869). The two hydrophobic regions (h�1 and h�2) are highlighted in gray, and critical K33 (50) and C57 (49) residues
are boxed. The N- and C-terminal sites for the insertion of the 15-amino-acid Spep are indicated.

4332 NOTES J. VIROL.



pendent membrane fusion when trans-complemented by their
respective untagged partners (49, 51).

Here, we engineered Spep into the N-terminal region of SSP
(Fig. 1), between residues I11 and P12 (N-term SSP-Spep).
This tagged SSP associated with CD4sp-GPC in trans compa-
rably to C-term SSP-Spep (Fig. 3A). N-term SSP-Spep also
supported SKI-1/S1P maturation of the G1-G2 precursor in
the Golgi (Fig. 3A, bottom panel) and transport of the GP-C
complex to the cell surface (Fig. 3B). Interestingly, the GP-C
complex containing N-term SSP-Spep was unable to mediate
pH-dependent cell-cell fusion (not shown). Nonetheless, both
N- and C-terminally tagged SSPs allow for the assembly of the
tripartite GP-C complex and its transit to the cell surface and
therefore provide biologically relevant structures for the de-
termination of SSP membrane topology.

GP-C complexes containing the N-term SSP-Spep and C-

term SSP-Spep subunits were readily detected on the surface
of intact cells with the G1-directed MAb BE08 (Fig. 2B and C,
respectively), reflecting their wild-type assembly and transport.
In contrast, a MAb raised against the S peptide (MA1-198;
ABR) was unable to detect Spep on the surface of cells ex-
pressing the trans-complemented complexes, as indicated by
the lack of green fluorescence (Fig. 2B and C, lower panels).
The cytoplasmic tag at the C terminus of G2 in CD4sp-GPC/
Spep was likewise not detected on the cell surface upon trans-
complementation (Fig. 2B). With complete solubilization of
the cell membranes by using 0.1% Triton X-100, both G1 and
Spep were visualized intracellularly by their respective MAbs.
Importantly, the Spep tag was detected inside cells selectively
permeabilized with 5 �g/ml digitonin. These cells expressing
trans-complemented N-term SSP-Spep or C-term SSP-Spep
(Fig. 2B and C) showed intracellular staining of Spep compa-

FIG. 2. Confocal microscopy of digitonin-permeabilized cells. Vero cells on two-well chambered coverglasses (Lab Tek II) were infected with
the recombinant vaccinia virus vTF7-3 expressing T7 polymerase (23), transfected to express the indicated GP-C proteins, and grown for 6 h in
growth medium containing 10 �M araC (1). Intact cells (Int) were incubated in the cold with anti-G1 MAb BE08 (anti-G1) or anti-Spep MAb
MA1-198 (anti-Spep) and an Alexa Fluor 488-conjugated (green) anti-mouse immunoglobulin secondary F(ab�)2 fragment (Molecular Probes)
prior to fixation with 2% formaldehyde. For staining of cells treated with 0.1% Triton X-100 (Tx), cultures were fixed prior to permeabilization.
Selective permeabilization with 5 �g/ml digitonin (Dig) was done in the cold using live cells, prior to incubation with primary and secondary
antibodies and fixation. Intact and digitonin-treated cells were also incubated with a rabbit polyclonal antibody directed against the cytoplasmic
domain of giantin (PRB-114C; Covance Research Products) and an Alexa Fluor 568-conjugated (red) secondary antibody (Molecular Probes) in
parallel with the respective anti-G1 and anti-Spep antibodies to detect permeabilization of the plasma membrane. Chambers were covered with
Slow Fade Gold (Molecular Probes) and visualized using an inverted Nikon TE-300 microscope. Fluorescence was examined using a Bio-Rad
Radiance 2000 confocal laser scanning microscope, and images were merged using LaserSharp software (Bio-Rad). Note that the leftmost image
in panel F was captured at a greater laser power than the others to enhance visibility; the intensity of cell surface anti-G1 staining in the F49K
mutant was approximately 25% of wild-type levels. The images omitted in the layout of panel F were all unremarkable.
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rable to that of trans-complemented CD4sp-GPC/Spep (Fig.
2D), indicating cytosolic localization of the Spep tags. Colo-
calization of some of the Spep tag (in green) with the Golgi
marker giantin (red) is indicated by the orange-yellow color
(Fig. 2D).

Collectively, these results suggest that SSP assumes a bitopic
topology in the membrane with both the N and C termini in the
cytosol (Fig. 4). In this model, h�1 and h�2 span the mem-
brane in opposite orientations. The intervening central region
of SSP forms a short ectodomain loop that includes the K33
residue critical for pH-dependent membrane fusion (50).

Bitopic topology of SSP is independent of G1-G2 expression.
Our model for membrane insertion of SSP requires that the C
terminus of SSP be translocated across the membrane follow-
ing SPase cleavage. To determine whether this translocation is
dependent on SSP interaction with the G1-G2 precursor, we
examined the intracellular localization of the C terminus of
C-term SSP-Spep upon expression without CD4sp-GPC. As
shown in Fig. 2E, the pattern of Spep staining in digitonin-
permeabilized cells was indistinguishable in the presence and
absence of the G1-G2 precursor. The SSP amino acid se-

quence alone is sufficient for the translocation of the C termi-
nus of SSP into the cytosol. Because our methods do not
specifically detect Spep in the lumen, we cannot exclude the
possibility that the SSP C terminus is distributed on both sides
of the membrane. If so, small effects of the G1-G2 precursor
on this balance may be difficult to visualize.

The orientation of membrane-spanning protein segments is
thought to be determined cotranslationally during passage of
the nascent protein through the channel of the translocon
machinery (38, 47). In membrane proteins with type II topol-
ogy, the N terminus generated by SPase cleavage is likely
translocated to the cytosol prior to the insertion of the trans-
membrane domain into the lipid bilayer. Similarly, the C ter-
mini of the signal sequences of the hepatitis C virus envelope
glycoproteins are reoriented into the cytosol upon SPase cleav-
age (13). In some polytopic proteins, transmembrane segments
can be reoriented posttranslationally (30, 37). This dynamic
flexibility in membrane insertion allows certain proteins to
assume two distinct membrane topologies (30, 33, 35, 37). We
surmise that the short cytoplasmic C terminus of SSP is trans-
located to the cytosol prior to SSP insertion in the membrane.

Genetic analysis of the h�2 amino acid sequence. We uti-
lized site-directed mutagenesis to further investigate the role
of h�2 as a membrane-spanning region and to identify se-
quence determinants of SSP association in the GP-C complex.
Previous studies have shown that charged residues flanking
h�2 (K40 and R55) are dispensable for SSP function (50). In
this study, we individually replaced positions F44, Q45, F46,
F47, and F49 at the center of h�2 with alanine in order to
examine the effects of sequence alterations. In all five mutants,
SSP associated with the GP-C complex (Fig. 5A, left) and
supported wild-type levels of pH-dependent membrane fusion
(Fig. 5B). We subsequently replaced these residues in blocks of

FIG. 3. Expression of the GP-C complex containing terminally
tagged SSP. (A) Vero cells were transfected to express CD4sp-GPC
alone or in trans with wild-type (wt) SSP, C-term SSP-Spep, or N-term
SSP-Spep (50). In all cases, transcription was directed by the T7 poly-
merase of vTF7-3 (23, 51). Metabolically labeled glycoproteins were
immunoprecipitated using a G1-specific MAb, BF11 (42), and sepa-
rated on NuPAGE (Invitrogen) 4 to 12% bis-Tris gels under denatur-
ing and reducing conditions (top panel). The G1 glycoprotein migrates
heterogeneously with the discrete G2 subunit, and together, they are
labeled G1,G2. In the bottom panel, the glycoproteins were first
treated with PNGase F to resolve the G1 and G2 polypeptides (51).
[14C]-labeled protein markers (Amersham Biosciences) are indicated
(in kilodaltons). (B) Cell surface expression of the GP-C complex was
determined by flow cytometry using MAb BE08 (1, 50). The cell pop-
ulation was subsequently stained using propidium iodide (1 �g/ml) to
exclude dead cells. Formaldehyde-fixed cells were analyzed using a
FACSCalibur flow cytometer (BD Biosciences).

FIG. 4. Model for bitopic topology of SSP in the GP-C complex. In
this drawing, the insertion of the h�1 and h�2 regions of SSP in the
membrane results in both N and C termini of SSP residing in the
cytosol (cyto). The intervening ectodomain of SSP includes the K33
side chain that is critical for pH-dependent membrane fusion (50),
perhaps through interaction with the membrane-proximal or heptad
repeat (thicker lines) region of the G2 ectodomain. The drawing is not
to scale.
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three (44FQF46 and 47FVF49) with alanine and again did not
observe a defect in SSP function (Fig. 5B). Only when all six
residues in SSP were changed to alanine (44-49A) did the
mutant show a deficiency in SSP association and abrogation of
GP-C-mediated cell fusion activity. We conclude that the side
chain requirements in h�2 for SSP association in the GP-C
complex and membrane fusion are minimal, consistent with
h�2 insertion in the lipid bilayer.

Introducing a charged residue within the h�2 region of SSP
would, however, be expected to be disruptive. In fact, F46K
and F49K mutants of SSP were markedly reduced in their
ability to associate with GP-C (Fig. 5A, right). Nonetheless, the
lysine side chain did not prevent the insertion of h�2 into the
membrane, as judged by the retention of bitopic topology in
digitonin-permeabilized cells expressing a C-terminally tagged
F49K mutant of SSP (Fig. 2F, anti-Spep). Positively charged
residues have been reported to be accommodated in other
naturally occurring and model transmembrane helices (34, 46).

Interestingly, SSP association in GP-C was not completely
abrogated by the F46K and F49K mutations and could be
detected in overly darkened images from Fig. 5A (not shown).
Notably, the level of F49K SSP association was sufficient to
enable limited transport of the assembled GP-C complex to the
cell surface (Fig. 2F, anti-G1). Residual cell surface expression
was approximately 25% of wild-type levels and was also ob-
served in complexes containing 44-49A SSP (not shown). By
comparison, no G1-G2 glycoprotein is detected on the surface
of intact cells in the absence of SSP (1). Despite transit of the
complex to the cell surface, the F46K and F49K mutants were
largely unable to support membrane fusion activity (Fig. 5B).
F46K SSP allowed fusion at 10% of wild-type levels, whereas
the complex containing F49K SSP was entirely defective. The
elimination of membrane fusion activity by the F49K mutation
is likely not due to the low level of GP-C on the cell surface, as
cell-cell fusion by the wild-type complex is retained at far lower
levels of expression (48; unpublished data). Although the mu-

tation at F49K is compatible with a bitopic topology of SSP and
with limited assembly and transport of the GP-C complex, we
infer that the placement of the mutant SSP in the membrane is
sufficiently perturbed to abolish membrane fusion activity.

Further evidence that h�2 spans the membrane was ob-
tained by examining the effects of single amino acid deletions.
These changes would shorten the putative transmembrane do-
main and may preclude proper positioning in the membrane.
Additionally, the deletions will affect the register of any trans-
membrane helical regions. Single amino acid deletions at F44
and F47 (F44� and F47�) markedly reduced SSP association
with GP-C (Fig. 5A, left) and ablated its membrane fusion
activity (Fig. 5B). Taken together, these results are consistent
with the h�2 region spanning the membrane to bring the C
terminus of SSP to the cytosol and suggest an important role
for this region in the assembly and function of the GP-C
complex.

SSP topology in the Old World arenaviruses. Previous at-
tempts to determine the membrane topology of the SSP of the
Old World LCMV and Lassa fever virus have yielded different
and mutually conflicting results (18, 22). Our model for a
bitopic topology in the New World Junı́n arenavirus SSP differs
from both previous suggestions. These differences may reflect
the phylogenetic division between New World and Old World
arenaviruses (11) or the use of different recombinant SSP
constructs. In our studies of the Junı́n virus SSP, we have
confirmed the functional integrity of the Spep-tagged N-termi-
nal and C-terminal SSPs in assembly and transport and thus
the biological relevance of their membrane disposition. How-
ever, our studies do not assess whether termini of SSP also
reside in the ER lumen. Because membrane insertion can be
dynamic, it remains possible that the hydrophobic regions in
SSP can display mixed orientations, some of which give rise to
the luminal C terminus proposed for the Old World viruses
(18, 22). If so, none of these alternative topologies are found

FIG. 5. Genetic analysis of the h�2 region of SSP. (A) SSP mutants without Spep tags were expressed in trans with CD4sp-GPC, and the
radiolabeled GP-C complex was immunoprecipitated using the anti-G1 MAb BF11 as described in the legend of Fig. 3. The stable association of
SSP in the GP-C complex is demonstrated by coprecipitation of the SSP subunit. The right and left panels were imaged at comparable settings;
excessive darkening of the right panel reveals low levels of SSP (see text). (B) pH-dependent cell-cell fusion by the trans-complemented GP-C
complex was initiated by a pulse of medium at pH 5.0 and detected using a recombinant vaccinia virus-based �-galactosidase reporter assay (36)
as previously described (50, 51). The �-galactosidase expression induced upon syncytium formation was quantitated using the chemiluminescence
substrate GalactoLite Plus (Tropix), and the percentage of pH-dependent fusion relative to that of the wild-type (wt) GP-C complex is indicated.
Error bars (�1 standard deviation) are drawn where discernible on the scale of the graph.
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on the surface of cells expressing the GP-C complex of Junı́n
virus.

Role of bitopic topology in the stable association of SSP.
Although the C terminus of SSP is able to translocate to the
cytosol in the absence of the G1-G2 precursor, it is plausible
that interactions in the GP-C complex may stabilize the bitopic
form of SSP under natural conditions. The cytoplasmic domain
of G2 is itself required for SSP association (1). Here, we
demonstrate that SSP mutations that likely perturb the place-
ment of h�2 in the membrane (F46K, F49K, F44�, and F47�)
greatly reduce SSP association in the GP-C complex. Stable
association of SSP in GP-C is also dependent on the penulti-
mate C-terminal residue in SSP, C57 (49). Although C57 does
not participate in disulfide bond formation in the mature GP-C
complex, the requirement for the thiol side chain at this cyto-
solic position is absolute. The C57S mutant of SSP, for in-
stance, is unable to associate with the G1-G2 precursor (49). In
the absence of precedents from other viral envelope glycopro-
teins, the structure and function of SSP remain to be fully
defined. It is possible that the critical C57 residue interacts
noncovalently with the cytoplasmic domain of G2 to stabilize
the bitopic form of SSP and thus position the ectodomain loop
for its role in pH-dependent membrane fusion. The unique
organization of the arenavirus GP-C complex may also present
novel opportunities for antiviral intervention (3).

We are grateful to Min Lu (Weill Medical College of Cornell Uni-
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