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Abstract: This paper explores how the constructions of  mathematically gifted fifth and sixth 
grade students using Euler’s polyhedron theorem compare to those of  mathematicians as 
discussed by Lakatos (1976). Eleven mathematically gifted elementary school students were 
asked to justify the theorem, find counterexamples, and resolve conflicts between the theorem 
and counterexamples. The students provided two types of  justification of  the theorem. The 
solid figures suggested as counterexamples were categorized as 1) solids with curved surfaces, 
2) solids made of  multiple polyhedra sharing points, lines, or faces, 3) polyhedra with holes, 
and 4) polyhedra containing polyhedra. In addition to using the monster-barring method, the 
students suggested two new types of  conjectures to resolve the conflicts between 
counterexamples and the theorem, the exception-baring method and the monster-adjustment 
method. The students’ constructions resembled those presented by mathematicians as 
discussed by Lakatos.  
 
Key words: counterexample, elementary students, Euler’s polyhedron theorem, Lakatos, 
mathematically gifted 
 

1. Introduction 
 

One perspective on mathematics education states that it is important to analyze and 
reconstruct the historical development process of  mathematical knowledge for improving 
mathematics teaching and learning. A number of  scholars including Clairaut (1741, 1746), 
Branford (1908), Klein (1948), Toeplitz (1963), Lakatos (1976), Freudenthal (1983, 1991), and 
Brousseau (1997) share this perspective. This view usually assumes a close relationship 
between the historical genesis and individual learning process, and supposes that students, 
with the assistance and guidance of  a teacher are capable of  constructing knowledge similar 
to that obtained historically by mathematicians. In particular, Lakatos (1976) demonstrated 
this view in his book, Proofs and Refutations, through an imaginary conversation between a 
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teacher and pupils. The teacher and pupils support and criticize one another’s claims from the 
perspective of  various historical figures. However, the knowledge construction carried out by 
the teacher and pupils as presented by Lakatos is, in fact, the construction performed by 
prominent mathematicians including Euler, Legendre, and Cauchy. Lakatos’ (1986) 
quasi-empirical view seems to ask students to learn mathematics by working like 
mathematicians (Chazan, 1990) prompting the question, “Is it also possible for elementary 
students to carry out knowledge constructions based on Euler’s polyhedron theorem similar 
to those produced by mathematicians as discussed by Lakatos’?” In seeking a response to this 
question, this study focuses on (1) the knowledge constructions of  mathematically gifted 
elementary students in comparison to those of  mathematicians as discussed by Lakatos 
(1976), (2) how mathematically gifted fifth and sixth grade students justify Euler’s polyhedron 
theorem, (3) the figures they suggest as counterexamples to Euler’s polyhedron theorem, and 
(4) how they react when presented with counterexamples. 
 

2. Background 
 
2. 1. Literature Review 
 

Sriraman found (2003) that the problem solving behaviors of  mathematically gifted high 
school students’ and those of  non mathematically gifted students differed significantly. He 
reported that gifted students invest a considerable amount of  time in trying to understand the 
problem situation, identifying the assumptions clearly, and devising a plan that was global in 
nature. Previous studies on the cognitive processes of  mathematically gifted students have 
focused on generalization, abstraction, justification, and problem-solving (Krutetskii, 1976; 
Lee, 2005; Sriraman, 2003; 2004). Lee (2005) also found that mathematically gifted students 
have a tendency to advance to higher-level reasoning through reflective thinking. 

Some researchers have analyzed the knowledge construction of  students based on 
Lakatos’ perspective (Athins, 1997; Boats et al., 2003; Borasi, 1992; Cox, 2004; Nunokawa, 
1996; Reid, 2002; Sriraman, 2006). For example, Sriraman (2006) reconstructed the 
quasi-empirical approaches of  six above average high school students' attempts to solve a 
counting problem and present the possibilities for mathematizing during classroom discourse 
in the spirit of  Lakatos. Cox (2004) reported that the ability of  high school students to proof  
improved after introducing them to the process of  ‘conjecture → proof  → critique → accept 
or reject’ in geometry classes. Borasi (1992) described the process where two high school 
students revised the definition of  polygon and concluded that working on polygon “à la 
Lakatos” provided the context for valuable mathematical thinking and for activities that 
encourage participants to make use of  their mathematical intuition and ability. Reid (2002) 
analyzed the problem-solving process of  fifth-grade students and categorized their process of  
dealing with counterexamples based on monster-barring and exception-barring into three 
reasoning patterns. Athins (1997) reported that he observed a case of  monster-barring on 
angles in a fourth grade mathematics class. 
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2.2. Euler’s polyhedron theorem in Lakatos’ Proofs and Refutations 
 

In Lakatos’ (1976) Proofs and Refutations, some justifications for Euler’s theorem such as 
Cauchy’s proof  that appeared in the history of  mathematics are shown in the dialogues 
between the teacher and pupils. For example, Lakatos has pupils Zeta and Sigma say the 
following explanation (pp.70-72). 

 
Step 1 : For a polygon, EV = . 
Step 2 : For any polygon 0=− EV  (Fig. 1 (a)). If  I fit another polygon to it (not 

necessarily in the same plane), the additional polygon has 1n  edges and 1n  vertices; 

now by fitting it to the original one along a chain of  1'n  edges and  1'1+n  vertices 

we shall increase the number of  edges by 11 'nn −  and the number of  vertices by 

)1'( 11 +− nn ; that is, in the new 2-polygonal system there will be an excess in the 

number of  edges over the number of  vertices: 1=−VE ; (Fig. 1 (b)); for an unusual 
but perfectly proper fitting see Fig. 1 (c). ‘Fitting’ a new face to the system will always 
increase this excess by one, or, for an F-polygonal system constructed in this way 

1−=− FVE . 
 

 
(a) (b) (c) 

Figure 1 

Step 3 : I can easily extend my thought-experiment to ‘closed’ polygonal systems. Such 
closure can be accomplished by covering an open case-like polygonal system with a 
polygon-cover: fitting such a covering polygon will increase F  by one without 
changing V  or E . Or, for a closed polygonal system – or closed polyhedron – 
constructed in this way, 2=+− FEV . 

 
Following the conjecture and proof, there appear counterexamples that refute the 

conjecture and proof. Lakatos called a counterexample that refutes lemma or subconjecture a 
local counterexample, and a counterexample that refutes the original conjecture itself  a global 
counterexample (pp. 10-11). He suggested six types of  counterexamples which appeared in 
the history of  mathematics as described below.  
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Figure 2. Hollow cube 
(p.13) 

 

Figure 3. Two tetrahedra with a 
common edge or vertex  (p.15) 

 

Figure 4 . Star-polyhedron 
(p.17) 

 

Figure 5. Picture-frame 
(p.19) 

 

Figure 6. Cylinder (p.22) 

 

Figure 7. Crested cube 
(p.34) 

 
When a general counterexample is presented, there are five options. The first option 

considers the refuted conjecture incorrect and rejects it. The second option is to use the 
method of  monster-barring in which the counterexample is seen as a monster, and the 
original conjecture is maintained (pp.16-23). This method generates clearer definition, but it is 
not useful from a heuristic point of  view because it does not improve the conjecture. The 
third option is the method of  exception-barring in which the original conjecture is changed 
into a revised conjecture by adding a conditional clause that mentions an exception (pp.24-27). 
This method does not guarantee that all exceptions are specified, and leaves the question of  
what is the range in which the theorem is valid. The fourth option is the method of  
monster-adjustment where the perspective under which the example was considered as a 
counterexample is seen as distorted, and the counterexample is interpreted as an example by 
readjusting the perspective (pp.30-33). The fifth option is the method of  
lemma-incorporation, where careful analysis of  the proof  is made to identify the guilty lemma. 
The lemma can then be incorporated in the conjecture to improve the refuted conjecture 
(pp.33-42). 
 

3. Methodology 
 
3.1. Participants 

 
Although there are diverse definitions of  mathematical giftedness, there is no one 

universally accepted definition (e.g., Bluton, 1983; Miller, 1990; Gagne, 1991). In this study, 
Gagne’s (1991) definition of  mathematically gifted students as “students who are 
distinguished by experts to have excellent ability and potential for great achievements” was 
applied. Eleven fifth and sixth-grade male students (aged 10 -12) from different Korean 
elementary schools in Gyeonggi province participated in the study. Five students were in the 
fifth-grade and six were in the sixth-grade. The sixth grade students were attending an 
advanced program for mathematically gifted students; three (A, B, and C) in a Korean 
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government sponsored university program, and three (D, E, and F) in an office of  education 
program. The fifth-grade students (G, H, I, J, and K), having passed a screening process 
which included a written test, an in-depth interview, and recommended from their school 
principal, were scheduled for admission to the university program. All students were 
motivated and confident of  mathematics. 
 
3.2. Tasks 
 
The participants were presented with the following tasks:  

Task 1:  Explain what you know about the relationship between vertices (V), edges (E) 
and faces (F) in polyhedra. Explain how the relationship is justified. 

Task 2:  Is 2=+− FEV  true in all polyhedra? If  not, when is it not true? 
Task 3:  If  you consider a counterexample a polyhedron, how would you revise the 

theorem?  
If  you believe a counterexample is not a polyhedron, how would you revise the 

definition of  a polyhedron? 
 

Task 1 was designed to identify the participants’ knowledge of  the polyhedral theorem 
and to determine how they justify the theorem. Task 2 was developed to establish the types 
of  counterexamples the participants identified. Task 3 was designed to observe how the 
participants resolved the disparity between the theorem and the counterexample.  

The participants were familiar with the relationship between vertices, edges and faces, 
2=+− FEV , before taking part in this study. However, they had not previously examined 

whether the theorem was true in all polyhedra, nor had they sought counterexamples to the 
theorem. 
3.3. Data Collection and Analysis 
 

This study was designed based on Yin’s (2003) multiple case study methodology. The 
eleven participants were presented with the tasks in a set order and interviewed between 
November 2005 and January 2007. Each participant was video-taped by one researcher while 
they worked on the tasks and later while being interviewed by another researcher. The 
participants completed the tasks in approximately two hours. The video clips, transcriptions, 
observation reports and participants’ worksheets were analyzed.  

The analysis was conducted on three types of  data collected: (a) the types of  justification, 
(b) types of  counterexamples, and (c) the methods for solving the conflict. The types of  
justification and counterexamples presented by the participants were analyzed using open 
coding (Strauss and Corbin, 1998). The types of  justification were divided into two categories, 
and the counterexamples were categorized into four types, three of  which were subdivided 
into two to three subtypes. The analysis of  the participants’ attempts to deal with the disparity 
between the counterexamples and the conjectures highlighted by the counterexamples was 
made using selective coding (Strauss and Corbin, 1998) which was based on “the method of  
monster-barring,” “the method of  exception-barring,” “the method of  monster-adjustment” 
and “the method of  lemma-incorporation” suggested by Lakatos (1976). Cross-tabulation 
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analysis was performed, and the results were examined by peers (Merriam, 1998). 

 
4. Results 

 
4.1. Participants’ justification of  Euler’s polyhedron theorem 
 

The participants’ justification of  the theorem can be divided in two ways; 1) to classify 
polyhedra into several categories and justify the theorem for each category of  polyhedra, and 
2) to attempt general justification without classifying polyhedra. The majority of  participants 
justified the theorem by classifying polyhedra into categories and justifying the theorem. 
Participant D, in Episode 1 below, demonstrated this by logically explaining that the theorem 
is justified in prisms, pyramids, and prismoids.  
 
  Episode 1: 

Participant D: First, in prisms, it seems to be justified in all cases.  
Interviewer: Why is that? 
Participant D: (Drawing figures) Well, look at an n -angle prism. A rectangular prism, it’s 

called that because the bases are rectangles. So, there are four vertices on the top 
face and four on the bottom face, so, the number of  vertices is n2 . Also, the 
number of  edges is n3  because there are four edges on the top face, four on the 
bottom face, and four on the lateral sides. And, the number of  faces is 2+n  
because there are four faces on the lateral sides plus the top and bottom faces. In 
the case of  a pentagonal prism, also, the number of  faces is 2+n , as there are 
five lateral faces plus the bases (top and bottom faces). ‘ FEV +− ’ stands for 
‘number of  vertices – number of  edges + number of  faces,’ and in n-angle 

prisms, it is ‘ )2(32 ++− nnn ,’ so ‘ FEV +− ’ equals 2. 

Interviewer: Yes. 
Participant D: So, I’m done with prisms... in pyramids, too, it is justified all the time. 
Interviewer: Please explain. 
Participant D: ..... an n -angle pyramid. It’s justified because the number of  its vertices is 

1+n , and it has n2  edges and 1+n  faces. If  you add the number of  vertices 
and the number of  faces, and then subtract the number of  edges, you get 2. 

         
Participant D provided explanations using polyhedra such as rectangular prism in the 

case of  prisms, pyramids, and prismoids. Rectangular prism is a generic example (Mason and 
Pimm, 1984) which represents general n -angle prism. In the case of  regular polyhedra or a 
polyhedron like the soccer ball, D investigate the theorem application by counting the 
numbers of  points, edges, and faces of  specific solids.  

Participant B did not categorize solid figures but instead attempted generalized 
justification. He started with a point and verified FEV +−  as the number of  points, lines, 
and faces gradually increased. According to him there is only one V  at first, but V  and E  
or E  and F  increases by 1 respectively as procession is made from (a) to (g) and, 
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FEV +−  is maintained at 1. In the last stage, when one face is covered in (g), he proved 
that 2=+− FEV , based on the fact that the number of  F  increases by 1. This 
justification is similar to the explanation of  pupils Zeta and Sigma in Lakatos (1976, pp. 
70-72).  

 

 
 (a)        (b)             (c)            (d)          (e)          (f)          (g) 

Figure 8 

After justifying Euler’s theorem, all the participants expressed the view that there might 
be a polyhedron with which Euler’s theorem was not true. For example, participant D, as 
indicated in Episode 2, thought that the theorem would not hold in all polyhedra. 
 
Episode 2: 

Participant D: Well... first, it is justified in regular polyhedra without exception, because 
there are only five kinds of  regular polyhedra. I think it is justified in all of  the 
five, and then, it is justified, first, in prisms and pyramids. So, I think it is justified 
in the majority of  general polyhedra... 

Interviewer: Then, do you think there are some cases in which it doesn’t apply? 
Participant D : In some cases... I think it won’t apply in all cases. (Starts drawing figures to find 

solids with which the polyhedral theorem is not true)  
 

Although participant B justified the theorem using a general method, he tried to find a 
counterexample, thinking that there still might be one. All the participants express the view 
that there had to be an example in which the theorem does not apply.  
 
4.2. Solid figures suggested by participants as counterexamples 
 

Participants suggested various types of  solid figures as counterexamples to the theorem. 
The solid figures suggested by the participants were categorized into the four groups below.   
 
4.2.1. Solids with curved surfaces 
 

Six participants (B, C, E, F, H and I) suggested solids with curved surfaces such as a 
cone (Fig. 9), a cylinder (Fig. 10) and a sphere (Fig. 11) as counterexamples. Each participant 
had a different reason for suggesting the cone as a counterexample. Participant F drew the net 
of  a cone in order to count the points, lines, and faces. He claimed that the circle in the net 
was not counted as an edge because it was a curve, but the radius of  the sector had to be 
counted as an edge because it was a straight line ( 1=V , 2=E , 2=F , 1=+− FEV ). 
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Participant E insisted that the radius of  the sector in the net could not be counted as an edge 
because it was not actually seen in the solid, and thus, 1=V , 0=E , 2=F , 

3=+− FEV . Participant H said that a cone provided a counterexample, “Because you can’t 
say how many edges there are in a circle.”  

 

Figure 9 

 

Figure 10 

 

Figure 11 

 
4.2.2. Solids made of  multiple polyhedron sharing points, lines, or faces 
 

Nine participants (A, B, C, D, E, F, G, H and I) cited solids made of  two polyhedra 
sharing points, lines, and faces as counterexamples. These solids can be divided into (1) solids 
that completely share some points, lines, or faces (Fig. 12 through Fig. 15), and (2) solids that 
only partially share lines or faces (Fig. 16 through Fig. 19). 
 
4.2.2.1. Solids that completely share points, lines, or faces  

In solids that share one point as shown in Fig. 12, the theorem holds in each polyhedron 
and two polyhedra share a point, 3=+− FEV . Participants also suggested solids that share 
an edge (Fig. 13) and those that share a face completely (Fig. 14 or Fig. 15) are 
counterexamples.  
  

 

Figure 12 
 

Figure 13 

 

Figure 14 
 

Figure 15 

 
4.2.2.2. Solids that partially share lines or faces 

Solids such as in Fig. 14 and Fig. 15 raised the issue with participants of  whether it is 
appropriate to consider shared faces as separated faces. Participants suggested that modified 
solids that partially share lines or faces were counterexamples.  
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Figure 16 

 

Figure 17 

 

Figure 18 

 

Figure 19 

 
Where edges are partially shared (Fig. 16) and where an edge is divided (Fig. 17) the 

participants reflected on how to count the number of  edges. And a counterexample such as 
Fig. 19 led the participants to contemplate the question, “Is it appropriate to consider the face 
created by joining two faces a face?” Lakatos (1976, p.74) called this a “ring-shaped face.”  

 

 

Figure 20. Ring-shape face 

 
4.2.2.3. Polyhedra with holes 

The third type of  solids that the participants ( A, B, C, G, J and K) suggested as 
counterexamples is solids with holes as shown in Fig. 21 through Fig. 23. These 
counterexamples also prompted the participants to rethink the definition of  face.  
 

 

Figure 21 

 

Figure 22 
 

Figure 23 

 
4.2.2.4. Polyhedra containing other polyhedra 

Eight participants (A, B, C, D, F, G, J and K) also suggested solids that are polyhedra 
containing other polyhedra are counterexamples. Counterexamples of  this type can be 
subdivided into three subtypes. The first is the type in which other solids -not sharing any 
face, point or line- exist in certain solids (Fig. 24). The second is the type in which two solids 
completely share a face (Fig. 25). The third type is one in which a figure exists inside another 



Yim, Song & Kim 
 
and the two figures share part of  a face.  
 

 

Figure 24 

 

Figure 25 
 

Figure 26 

 
 
4.2.3. Participants’ responses to the disparity created by counterexamples 
 

The participants’ responses to the disparity between counterexamples and the theorem 
are divided into four categories; the method of  monster-barring, the method of  exception 
barring; the method of  monster adjustments and new conjectures. 

 
4.2.3.1. The method of  monster-barring 

Participants D and E used the method of  monster-barring. In Episode 3, participant E, 
suggested cones, cylinders, and spheres as counterexamples, and wondered how to determine 
the numbers of  points, lines, and faces in these figures. He then stated, “A polyhedron is a solid 
figure made of  multiple polygons”, and that the curved surface is not a polygon, and thus, solids 
with curved surfaces are not polyhedra but monsters. 
 
Episode 3: 

Participant E: Cones have curved surfaces, so I think they will not work. 
Interviewer: What’s wrong with curved surfaces? 
Participant E: Because in a curved surface, you can’t count the number of  edges, and 

faces... Can you count the number of  faces? But the number of  vertices is one... I 
think there is no edge, in the definition that I think of.  

Interviewer: Can you say a cone is a polyhedron? Euler’s theorem is about polyhedra. 
Participant E: When you talk about curved surfaces, a sphere has a curved surface, and a 

sphere has one face, ... but no distinguishable edge or point, I guess there are 
none.  

Interviewer: What do you think is the definition of  a polyhedron? 
Participant E: I think it is made of  faces that have angles. (Writing down the definition) 

“Polyhedron = solid figure made of  multiple polygons” 
 

Participant D also used the method of  monster-barring where polyhedra existed in other 
polyhedra. He used the method of  monster-barring stating that a polyhedron signified “one” 
solid figure, and that the polyhedron in which there is another polyhedron meant two 
different solid figures. He modified the definition of  polyhedron as “one solid figure 
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surrounded by multiple polygons.” 
 
4.2.3.2. The method of  exception-barring 

Participants A, D, F, G, and I were observed attempting the method of  
exception-barring. Participant F defined a polyhedron as a “figure made of  faces.” So the 
solid figures with curved surfaces are polyhedra because curved surfaces are faces. To exclude 
cones, cylinders, and spheres as exceptions, participant F modified the original conjecture to 
“In all polyhedra excluding those made of  curved faces,  2=+− FEV .” Participant I, Episode 4, 
also used the method of  exception-barring by modifying the theorem to “In polyhedra that do 
not include a circle, 2=+− FEV .”  
 
Episode 4: 

Interviewer: (Pointing to the sphere and cylinder.) Then, can we call them polyhedra, too? 
Participant I: It has one or more faces... We can call them polyhedra. 
Interviewer: Then, don’t we need to modify this ( 2=+− FEV ) ?  
Participant I: Yeah... 
Interviewer: How can we change it? 
Participant I: (Thinking hard) So, if  a circle is included... I guess only the polyhedra 

without any circles belong to this category ( 2=+− FEV ), don’t they? 
 

Participant I suggested two rectangular solids that share one edge (Fig. 27) are another 
counterexample. Then he redefined the theorem to “In polyhedra that do not include a circle 
and are not attached to other polyhedra, 2=+− FEV .” Participant G found solid figures 
with holes as counterexamples, and modified the theorem to “In polyhedra which are not 
completely penetrated by a hole, 2=+− FEV .”  

 
Figure 27 

 
4.2.3.3. The method of  monster-adjustment 

Participants B, D, E, F, and G tried the method of  monster-adjustment to convert a 
counterexample into an example. Participant B thought, after finding the counterexample in 
which part of  a face was shared by two figures, that the justification of  Euler’s theorem 
depended on whether to consider the edge divided by a point as one or two. 
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(a)                           (b)                    (c) 

Figure 28 
 

Participant B compared the results when the edge (line A in Fig. 28(a)) divided by a 
point was counted as one (A=1) and when it was counted as two (A=2). Then, B, Episode 5, 
explained the reason why the edge divided by a point in this solid figure should be counted as 
two. 
 
Episode 5: 

Interviewer: Is the solid a polyhedron? 
Participant B: It is a polyhedron. 
Interviewer: Then, what can we do?  
(Participant B is writing) 
Participant B: If  there is a vertex in the middle of  an edge (even when it is not on the 

exact center), the left and right sides of  the vertex should be separately 
counted… It is absolutely necessary to separately count this part (left part of  line 
A) and that part (right part of  line A). In the case of  plane figures, we count any 
line between two points separately… In solids, to make it (the value of  

FEV +− ) become 2, you need to count the left and right sides of  the point 
separately. 

 
Two polyhedra that completely share a face, with one inside the other (Fig. 25) were also 

considered not to be a counterexample by one of  the participants after the method of  
monster-adjustment was used. Participant D claimed that the figure was not a counterexample 
because it was considered a sunken solid without a lid, rather than two solids sharing one face. 

For the ring-shaped face (Fig. 20), some participants preferred to use the method of  
monster-barring by not considering it as a face, and subsequently, employed the method of  
monster-adjustment by not considering the solid figures with ring-shaped faces as 
counterexamples (e.g. 16=V , 24=E , 10=F , and thus, 2=+− FEV  in Fig. 19 ). 
Participant I, who used the method of  exception-barring for cylinders and spheres, used the 
method of  monster-adjustment for the cone, considering the polyhedral theorem to be 
justified under the condition of  1=V , 1=E , and 2=F .  
 
4.2.3.4. New Conjectures 

The participants’ approaches were not limited to monster-barring, exception-barring, 
and monster-adjustment which are similar in the sense that they are used to support the 
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formula of  2=+− FEV . Participants also suggested two types of  new conjectures. One 
involved the participants searching for a new formula about the value of  FEV +−  with 
which to express the relationships between the points, lines, and faces in solid figures 
including the counterexamples they found. New conjectures suggested by participants are 
summarized in Table 1. 
 

FEV +−  Conditions Participants 

0 
If  the ring-shaped face is not a face, in polyhedra with 
hole(s) 

G 

1 In polyhedra including a circle I 
In polyhedra that completely share either a point or a line 
with other polyhedra 

 E and F 
3 

If  solid figures are attached at a vertex, edge, or face H 

4 
In polyhedra which contained other polyhedra such as a 
hollow cube 

F 

Table 1 Summary of  Participants Conjectures 

 
The other type of  conjecture, suggested by participant A, relates to the necessity of  

considering new elements other than points, lines, and faces. He proposed, Episode 6, that a 
formula that including three-dimensional elements be developed.  
 
Episode 6: 

Participant A: In the two-dimensional circumstance, a rule can be easily found using just 
V , E  and F , but in the three dimensions, a new element of  space is added. So, 
if  Euler’s theorem is a formula established using two-dimensional elements, I 
guess we can make a new formula that exclusively applies to the third dimension 
including space, can’t we?  

Interviewer: The new element of  three dimensions. Can we really do it if  we consider 
that? 

Participant A: Yes, I think so. 
Interviewer: Then how can we determine the numbers in the three dimensions? 
Participant A: Space. 
 

 
(a) (b) 

Figure 29 
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After that, 1=−+− SFEV  and 3=++− SFEV  were proposed as new 
conjectures, and it was confirmed that 1=−+− SFEV  is justified with the type of  solid 
figures in Fig. 29 ((a) : 15=V , 24=E , 12=F , 2=S , 1=−+− SFEV , (b) : 10=V , 

17=E , 10=F , 2=S , 1=−+− SFEV ). This conjecture led participant A to think that 
the polyhedral theorem could be expanded to four-dimensional solids. 
 

5. Discussion 
 

Polyhedra, which the participants studied prior to the research, were limited to the 
category of  regular polyhedra, prisms, pyramids, prismoids, and semi-regular polyhedra such 
as soccer balls, all satisfied Euler’s theorem. Nevertheless, the participants thought that there 
must be some polyhedra for which the theorem was not valid. This belief  appears to resulted 
from the method of  justification that the majority of  participants used. The value of  

FEV +−  can be obtained by counting the numbers of  points, edges, and faces in the case 
of  prisms, pyramids, and prismoids (e.g. in n-angle prism, nV 2= , nE 3= , 2+= nF , and 
thus, 2=+− FEV ). However, this justification fails to provide information about new 
kinds of  solids that have yet to pass this test. The participants’ view that there must be 
polyhedra with which the polyhedral theorem was not valid indicates they belive that the 
scope of  polyhedra is extensive. This view is supported by the various types of  solids that the 
participants presented as counterexamples. 

A strong similarity exists between solid figures suggested by the participants as 
counterexamples and those discussed by Lakatos (1976). The first type of  counterexample 
that participants found, solids with curved surfaces, appeared as cylinders in Lakatos (p.22). 
The second type, two or more polyhedra that shares points, lines, or faces, was discovered by 
mathematicians Hessel (figures that share points or lines) and Lhulier (cube with crest) in 
1832 and 1813, respectively (p.15, p.34). The third type of  counterexample was first 
discovered by Lhuilier (p.19). In addition to the tunnel and picture frame mentioned in 
Lakatos, participants also found a polyhedron which is not completely penetrated. The fourth 
type, polyhedra within polyhedra, was discovered by Lhuilier and Hessel based on the idea 
obtained by observing the crystalloid of  mineralogic collection enclosed within a translucent 
crystalloid (p.13). 

Counterexamples can be used to help students develop their mathematical reasoning 
(Lakatos, 1976; Boats, et al., 2003). In this study participants examined concepts such as 
polyhedron and face and created new definitions. The counterexamples discovered by 
participants also encouraged them to examine more closely the definition of  terms. The 
ring-shaped face in particular prompted some participants to reconsider the definition of  
polygon. They asserted that it could not be called a polygon, because the figure did not 

comply with the sum of  interior angles of  n -polygon )2(180 −× n . This suggests that the 

formula for the sum of  interior angles of  a polygon was seen as a definitive property that 
determines whether the figure was a polygon or not. This method of  defining a polygon is 
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similar to the definition of  polyhedron stated by Baltzer (Lakatos, 1976, p.16), “polygon 
system with which the equation of  2=+− FEV ”  

In Reid (2002) and Athins (1997), the method of  monster-barring and the method of  
exception-barring were observed among elementary students. The method of  
monster-barring, the method of  exception-barring, the method of  monster-adjustment, and 
new conjectures were observed among the participants in this study. The participants did not 
reject the original theorem and attempted to develop new conjectures that comprised 
counterexamples, and of  the five participants who used the method of  exception-barring, 
four developed new conjectures. In the past, there have been cases in which counterexamples 
were first recognized as monsters and excluded, but later reintroduced and accepted as 
examples (e.g. Lakatos, 1976, p.31). This ability to review and change a position was also 
demonstrated by the participants. Initially, they used the monster-barring method or 
exception-barring method for the counterexamples they identified, but they attempted to 
include the counterexamples within the scope of  examples through monster adjustment or 
new conjecture. Krutetskii, (1976) Sriraman, (2004) point out that this flexibility of  thinking is 
an attribute of  mathematically gifted.  

Lakatos (1976) argues that the method of  lemma-incorporation is a productive way of  
refining conjecture based on the proof. Proof-analysis is a prerequisite to this method and, as 
Nunokawa points out (1996) proof-analysis is an important component of  proofs and 
refutations. However, in this study, the method of  lemma-incorporation and proof-analysis 
was not observed. When participant B, provided proof  of  increasing the elements of  
polyhedra, was encouraged considering the validity of  his proof  for a counterexample (Fig. 
18), he provided a monster adjustment solution stating, “It’s not the proof  that’s wrong, but 
there is a problem with this solid.” 

 
6. Conclusion 

 
This study focuses on the constructions of  mathematically gifted fifth or sixth-grade 

students in solving tasks related to Euler’s polyhedron theorem and compares them to those 
of  mathematicians discussed by Lakatos (1976). By analyzing ninth grader students notion of  
proof, Sriraman (2004) reports that the processes used by gifted students demonstrate 
remarkable isomorphism to those employed by professional mathematicians, This study also 
shows parallels in constructions of  mathematically gifted fifth and sixth grade student and 
mathematicians discussed by Lakatos. With the exception of  the method of  lemma 
incorporation and proof-analysis, counterexamples and the method for solving conflicts 
between the theorem and counterexamples suggested by the participants demonstrated 
remarkable similarities to those presented in the history of  mathematics. 
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