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[1] The Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA’s
satellites, Terra and Aqua, dramatically improves our ability to accurately and
continuously monitor the terrestrial biosphere. MODIS information is used to estimate
global terrestrial primary production weekly and annually in near-real time at a 1-km
resolution. MODIS terrestrial primary production requires daily gridded assimilation
meteorological data as inputs, and the accuracy of the existing meteorological reanalysis
data sets show marked differences both spatially and temporally. This study compares
surface meteorological data sets from three well-documented global reanalyses, NASA
Data Assimilation Office (DAO), European Centre for Medium-Range Weather Forecasts
(ECMWF) (ERA-40) and National Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis 1, with observed weather station
data and other gridded data interpolated from the observations, to evaluate the sensitivity
of MODIS global terrestrial gross and net primary production (GPP and NPP) to the
uncertainties of meteorological inputs both in the United States and the global vegetated
areas. NCEP tends to overestimate surface solar radiation, and underestimate both
temperature and vapor pressure deficit (VPD). ECMWF has the highest accuracy but its
radiation is lower in tropical regions, and the accuracy of DAO lies between NCEP
and ECMWF. Biases in temperature are mainly responsible for large VPD biases in
reanalyses. MODIS NPP contains more uncertainties than GPP. Global total MODIS GPP
and NPP driven by DAO, ECMWF, and NCEP show notable differences (>20 Pg C/yr)
with the highest estimates from NCEP and the lowest from ECMWF. Again, the DAO
results lie somewhere between NCEP and ECMWF estimates. Spatially, the larger
discrepancies among reanalyses and their derived MODIS GPP and NPP occur in the
tropics. These results reveal that the biases in meteorological reanalyses can introduce
substantial error into GPP and NPP estimations, and emphasize the need to minimize these
biases to improve the quality of MODIS GPP and NPP products.

Citation: Zhao, M., S. W. Running, and R. R. Nemani (2006), Sensitivity of Moderate Resolution Imaging Spectroradiometer

(MODIS) terrestrial primary production to the accuracy of meteorological reanalyses, J. Geophys. Res., 111, G01002,

doi:10.1029/2004JG000004.

1. Introduction

[2] Terrestrial Net Primary Production (NPP) is the net
carbon fixed by vegetation from the atmosphere and equals
the difference between gross primary production (GPP) and
plant respiration (hereafter Rplant). Net ecosystem exchange
(NEE) is the difference between NPP and heterotrophic
respiration, and thus accurate estimates of NPP can increase
confidence in estimations of NEE. NPP has received more

attention not only because it is related to the global carbon
cycle, but also because it is greatly influenced by the
associated effects of a changing climate on that carbon
cycle [Prentice et al., 2001]. At the regional or global scale,
NPP can be estimated by process-based ecosystem models,
which are based on the fundamental mechanisms control-
ling NPP, such as moisture, temperature, solar radiation and
nutrition [Running and Coughlan, 1988; Parton et al.,
1992; Melillo et al., 1993]. These ecosystem models,
however, generally estimate potential NPP, primarily
because of the difficulty in obtaining existing and detailed
land cover and soil information. Satellite remote sensing
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data can provide near-real time information regarding veg-
etation cover, biome type, and disturbances, including wild-
fires, insect outbreaks and logging. As a result, models
using satellite data make NPP estimation simpler and
possibly more accurate [Prince, 1991; Potter et al., 1993;
Running and Hunt, 1993; Ruimy et al., 1994; Field et al.,
1995]. In December 1999, the first Earth Observing System
(EOS) satellite Terra was launched, and in February 2000,
the Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard began to provide information used to
estimate global primary production at a 1-km resolution at
8-day intervals, which is known as MOD17 in MODIS land
products [Justice et al., 2002]. This consistent data set will
benefit our understanding of the global carbon cycle and
will be useful in natural resource management [Running et
al., 2004].
[3] Surface meteorological data are critical drivers for

remotely sensed NPP estimates. Regular gridded reanalysis
data sets, such as ECMWF and NCEP/NCAR, have been
widely used to estimate regional or global NPP [Knorr and
Heimann, 1995; Behrenfeld et al., 2001; Hicke et al., 2002a,
2002b; Nemani et al., 2003; Potter et al., 2003, 2004;
Hashimoto et al., 2004]. The NPP model driven by a
long-term reanalysis data set and remotely sensed data has
enabled us to gain a better understanding of recent global
NPP variability under a changing climate [Nemani et al.,
2003]. Similarly, MOD17 uses a daily surface meteorolog-

ical data set from NASA’s Data Assimilation Office (DAO).
Reanalysis data sets have been generated by many different
analysis systems, and their accuracies are temporally and
spatially dependent on changing observing systems and
unevenly distributed observation sites [Kistler et al.,
2001]. Moreover, even for the same reanalysis data set,
the reliability of the variables differs [Kalnay et al., 1996].
As a result, different choices of reanalysis data sets may
generate different NPP estimates. Although there has been
some work done on validation or inter-comparison
of reanalyses with observations [World Meteorological
Organization (WMO), 1998], most of the work is for earlier
versions of the reanalyses (e.g., ERA-15 of ECMWF, GEOS
1 of DAO), or concentrates on only a few variables. None
relates reanalysis accuracy to uncertainty in NPP estimates.
There is still little known about the surface variable accu-
racies of reanalysis data sets and their impacts on NPP
estimates.
[4] The objectives of this paper are (1) to evaluate the

accuracy of three well-documented reanalyses, DAO,
ECMWF, and NCEP, by comparing them to observed
weather station data and other gridded data interpolated
from the observations such as the Climatic Research Unit
(CRU at the University of East Anglia) data set, and surface
downward full-sky shortwave solar radiation from the latest
International Satellite Cloud Climatology Project (ISCCP)
data set developed at NASA Goddard Institute for Space
Studies (GISS); (2) to compare MODIS GPP/NPP driven by
the observed meteorological data to those driven by the three
reanalysis data sets at the site level over the United States;
and (3) to assess the global impacts of the uncertainties in
meteorological inputs on the terrestrial productivity estima-
tions by intercomparison of global 1-km MODIS GPP/NPP
driven by the three reanalyses. We focus on MOD17 annual
GPP and NPP, and surface meteorology inputs, including
solar radiation, temperature, and vapor pressure.

2. Description of MODIS GPP and NPP

[5] MOD17 is the first continuous satellite-driven data set
monitoring global vegetation productivity at 1-km resolu-
tion over 109,782,756 km2 of vegetated land surface,
providing 8-day composite GPP, net photosynthesis
(PsnNet), and annual total GPP and NPP. The algorithm is
based on the original logic of Monteith [1972] suggesting
that the NPP of well watered and fertilized annual crops is
linearly related to the amount of solar energy absorbed by
the plants over a growing season. Combined with climatic
controls on NPP [Churkina and Running, 1998] and lessons
learned from a general process-based ecosystem model,
BIOME-BGC [Running and Hunt, 1993], the algorithm
was developed using satellite-derived land cover, fractional
photosynthetically active radiation (FPAR), and leaf
area index (LAI) as input surface vegetation information
[Running et al., 2000].
[6] Figure 1 provides a flowchart for the MOD17

algorithm and the acronyms for related variables. Rplant is
functionally divided into both maintenance and growth
respiration. The biome-dependent parameters involved in
the algorithm are stored in a Biome Properties Look-Up
Table (BPLUT). The required meteorological variables for
driving MOD17 are derived from DAO, including daily

Figure 1. Flowchart and acronyms of the MODIS global
1-km GPP and NPP algorithm.
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surface shortwave solar radiation (S#s), minimum air tem-
perature (Tmin), average air temperature (Tavg) and vapor
pressure deficit (VPD). The VPD is the difference between
saturated air vapor pressure (es) determined by air temper-
ature [Murray, 1967] and actual air vapor pressure (ea).
Remotely sensed data for MOD17 inputs include MODIS
global 1-km land cover [Friedl et al., 2002], and the 8-day
MODIS 1-km FPAR and LAI product[Myneni et al., 2002].
MODIS land cover is converted into a biome type for each
pixel to ascertain the corresponding parameters in the
BPLUT. LAI is used to estimate the biomass of living organs,
including leaves, fine roots, and live wood, on the basis of
allometric relationships. The resulting estimate of living
biomass is used for calculation of Rplant. More details
regarding the algorithm and BPLUT can be found elsewhere
[Running et al., 2000; Heinsch et al., 2005; Running et al.,
2004; Zhao et al., 2005] (see also F. A. Heinsch et al., User’s
guide, GPP and NPP (MOD 17A2/A3) products, NASA
MODIS land algorithm, version 2.0, December 2, 2003,
available at http://www.ntsg.umt.edu/modis/MOD17Users-
Guide.pdf).
[7] Recent validation work on improved MOD17 has

shown that there is no consistent overestimation or under-
estimation compared to GPP derived from flux tower
measurements and field observed NPP, and MOD17 can
spatially and temporally capture GPP and NPP across a
diverse range of biomes and climate regimes [Turner et al.,
2003; Heinsch et al., 2005; Zhao et al., 2005]. The direct
comparison of MODIS annual GPP (MOD17A3) with
observations for 38 site years has resulted in a high
correlation and lower bias (r = 0.859 ± 0.173, relative
error = 24%) [Heinsch et al., 2005]. However, uncertainties
from land cover, FPAR/LAI, and especially, daily meteoro-
logical inputs, can render substantial inaccuracies to
MOD17 GPP and NPP estimates [Heinsch et al., 2005].

3. Data Sets and Methods

[8] While there are only 4 years of MODIS GPP and NPP
data, beginning in early 2000, the evaluation of uncertain-
ties of meteorological reanalysis data related to the obser-
vations can begin in 1961.

3.1. Global Reanalysis Meteorological Data Sets

[9] DAO data for 2000 to 2003 (data are not available
prior to 2000) are used in the study, and the assimilation
system for DAO generation is GEOS402. The primary
DAO data set is a 3-hour global product with 1° � 1.25°
(latitude � longitude) spatial resolution. It provides surface
downward shortwave radiation, surface air pressure, 10-m
air temperature and specific humidity. Detailed information
on the GEOS analysis system and DAO data set can
be found elsewhere [DAO, 2002; Global Modeling and
Assimilation Office (GMAO), 2004]. Temperature and
humidity in the other data sets are reported at a height of
2 m above the surface whereas DAO is reported at 10 m.
Admittedly there are differences in temperature and humid-
ity between 10 m and 2 m, but these differences should be
negligible at kilometer scales. DAO atmospheric ea was
calculated using specific humidity and surface pressure.
[10] Daily ECMWF (latest ERA-40) data from 1961 to

2001 are also used in this study. The data are produced four

times per day with a 2.5° � 2.5° spatial resolution (http://
www.ecmwf.int). Surface downward solar radiation and 2-m
air and dewpoint temperatures were extracted for the study.
Further information on this ECMWF reanalysis project can
be found elsewhere [European Centre for Medium-Range
Weather Forecasts (ECMWF), 2000]. ECMWF ea was
calculated from dewpoint temperature.
[11] Daily NCEP data from 1961 to 2003 are included in

this analysis. NCEP data are provided four times per day in
global Gaussian grid (T62, 192 � 94 points), with approx-
imately a 1.9° � 1.875° spatial resolution (http://
www.cdc.noaa.gov). The variables used include surface
downward solar radiation, surface air pressure, 2-m specific
humidity, average temperature and extreme temperatures.
More details on NCEP reanalysis are available elsewhere
[Kalnay et al., 1996; Kistler et al., 2001]. The ea was
calculated using specific humidity and surface pressure.

3.2. Observed Meteorological Data Sets

[12] We used two types of observed data: (1) gridded data,
such as CRU and ISCCP, and (2) point-source weather
station data, including data collected over the United States
and fromWorld Meteorology Organization (WMO) stations.
3.2.1. Gridded Data Sets
[13] Monthly CRU climatology (1961–1990 mean) was

used to evaluate the quality of Tavg, ea and VPD for the three
reanalysis data sets. The CRU at the University of East
Anglia collected data from as many stations as possible to
develop both monthly mean climatology (1961 to 1990) and
time series (1901–2002) of various climate variables
[New et al., 1999, 2000], using a thin-spline interpolation
[Hutchinson, 1995] with consideration of elevation effects.
This data set has a spatial resolution of 0.5° � 0.5°. Strictly
speaking, CRU is not an observed data set. However, we
treat it as the observed as it is solely dependent on the
observations from weather station with some uncertainties
arising from the spatial interpolation scheme.
[14] The surface downward full-sky shortwave radiation

from the latest ISCCP data set [Zhang et al., 2004] was used
to assess the accuracy of S#s from the three reanalysis
data sets. The ISCCP was generated from GISS/NASA at
280-km intervals for an 18-year period from July 1983 to
June 2001. To simplify the data process, only 17 years of
ISCCP data (1984–2000) were used in this study. The
equal-area ISCCP was first mapped to geographic projec-
tion at a 2.5° � 2.5° resolution, and then resampled to
0.5° using spatial nonlinear interpolation (discussed in
section 3.5) for further use. Although ISCCP S#s was
derived from satellite and model data, it had been validated
by ground observations and been proven highly accurate
with a mean (RMSE) difference of 2.0 (18.5) W mÿ2 and a
correlation coefficient 0.98 [Zhang et al., 2004]. S#s from
monthly mean ISCCP and from reanalyses for the same
period were averaged for further comparison.
3.2.2. Weather Station Data From United States
[15] United States observation data (hereafter USA-OBS)

were collected from agricultural or automated weather
stations (n = 323, Figure 2a) over 21 states for 2001 and
2002. However, similar data were not available for remain-
ing states. These valuable 323 weather stations’ observed
daily meteorological data, including solar radiation, were
obtained from 19 different websites (not listed here) with
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different data formats. After these data were downloaded,
they were cleaned so that they have the same format. The
major difference between USA-OBS and the data from
WMO discussed below is that the former have daily solar
radiation observation, while the latter have no radiation
record. Therefore the USA-OBS enables us not only to
evaluate the accuracy of all the meteorological variables
required by MOD17 at the local level, but also to directly
test the impacts of uncertainties in reanalyses on MOD17.
However, further information on the absolute accuracies of
USA-OBS data from these agricultural or automated weather
stations is not available. USA-OBS ea was calculated from
observed relative humidity and temperature, or directly
computed from observed dew point owing to different
observed variable to represent air humidity for different
stations.
3.2.3. Weather Station Data From WMO
[16] The data for WMO stations (n > 5,000, Figure 2b)

are from 2000–2003 (hereafter WMO-OBS) and can be
downloaded from the National Climatic Data Center
(NCDC) website (http://www.ncdc.noaa.gov). WMO-OBS
was used to evaluate uncertainties of daily Tavg, ea and VPD
but not S#s. Its ea was derived from daily dewpoint
temperature.
[17] We acknowledge there are some uncertainties in-

volved in a direct comparison of coarse resolution gridded
reanalyses with USA-OBS and WMO-OBS from weather
stations. The observed data from weather stations are
influenced by local environmental conditions such as to-
pography and land cover. Reanalyses data, on the other
hand, provide predictions for relative large scales. However,
observed data are the only data we can use as a baseline,
and the comparison of reanalyses with observations from a
large number of weather stations can give us general
information on the uncertainties of reanalysis data sets.

3.3. Additional Ancillary Data Sets

[18] Collection 3 MODIS global 1-km land cover [Friedl
et al., 2002], and Collection 4 MODIS global 1-km 8-day
FPAR/LAI from 2000 to 2003 [Myneni et al., 2002] were

used as remotely sensed data to drive the MOD17 algorithm
as shown in Figure 1. MOD17 only generates GPP/NPP for
vegetated areas, excluding areas with sparse or no vegeta-
tion cover such as barren areas, urban areas, and water
bodies. To rule out data on nonvegetated areas for gridded
meteorological data sets, we generated 0.5° global vegeta-
tion mask files based on MODIS land cover for further use
with all analyses. To validate global MODIS NPP driven by
different reanalysis data sets, the class C 0.5° EMDI
(Ecosystem Model-Data Intercomparison) NPP data set
[Olson et al., 2001] was used as a baseline.

3.4. MODIS GPP/NPP

[19] Prior to late February 2000, FPAR/LAI are not
available, and these missing periods were filled by averag-
ing the corresponding 8-day FPAR/LAI from 2001 to 2003
that met the criteria for good quality assessment (i.e.,
without snow and cloud contamination, more details are
available from Zhao et al. [2005]), in order to calculate a
complete annual MODIS GPP and NPP data set for the year
2000.
3.4.1. United States 5 km by 5 km Subsets
[20] For each USA-OBS site, we used the MOD17

algorithm to calculate annual GPP and NPP. The algorithm
was run for a 5 km by 5 km subset centered on the site using
the correspondingly averaged 8-day MODIS FPAR/LAI of
the dominant MODIS land cover. We then replaced the
daily observed meteorological data with DAO, ECMWF
and NCEP data to assess how uncertainties propagate from
these reanalyses to annual GPP and NPP at the site level.
3.4.2. Global 1-km Data
[21] To evaluate the uncertainties in global 1-km MODIS

GPP and NPP due to different reanalysis inputs, MOD17
was driven by ECMWF for 2000 and 2001, and by NCEP
from 2000 to 2003. Improved MOD17 products driven by
DAO from 2000 to 2003 are directly available at http://
ntsg.umt.edu/. The major difference between the improved
MOD17 used here and Collection 4 MOD17 located at the
EOS data gateway (http://edcimswww.cr.usgs.gov) is that
the improved MOD17 data have temporally filled the

Figure 2. (a) Distribution of weather stations with daily solar radiation observations collected from
21 states in the United States (n = 323). These states are grouped into five regions, including northwest
(NW), southwest (SW), north-central (NC), south-central (SC), and southeast (SE). (b) Distribution of
WMO weather stations (n > 5000) without observed solar radiation.
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missing or cloud contaminated FPAR/LAI, and spatially
interpolated coarse resolution DAO data to the 1-kmMODIS
pixel level [Zhao et al., 2005]. The calculation of GPP/NPP
for the USA-OBS subsets and global 1-km data driven by
ECMWF and NCEP uses the same approach to handle
contaminated FPAR/LAI and the spatial resolution mismatch
between reanalyses and MODIS data as those used to
improve MOD17 driven by DAO [Zhao et al., 2005].

3.5. Methods

[22] Bias, correlation and RMSE were used to evaluate
accuracy and uncertainty. A relative error term (RE) is used

to evaluate uncertainties in GPP and NPP for the USA
subsets, such that

RE %ð Þ ¼

Pn

i¼1

PrÿPo

Po

n
� 100; ð1Þ

where Pr is GPP or NPP driven by the reanalyses, Po is the
corresponding value driven by observed meteorological
data, and n is the number of samples used in the analysis.
[23] To investigate spatial differences in the accuracy of

reanalysis data over the United States, the 21 states with
weather stations in USA-OBS were roughly grouped
into five regions: northwest (NW), southwest (SW), north-
central (NC), south-central (SC) and southeast (SE), while
the remaining states were omitted from the study (Figure
2a). Spatial nonlinear interpolation was employed to inter-
polate the reanalyses to USA-OBS or WMO weather station
locations. The spatial nonlinear function is the fourth power
of cosine with the spherical distances of a given point (lat/
lon) to the surrounding four coarse-resolution cells as
independent variables, providing weighting values for the
interpolation of coarse-resolution data into fine resolution.
The method has been proven effective to smooth coarse-
resolution data and enhance the accuracy of meteorological
data at the local level as compared to the nearest neighbor
method; further details on the method are given by Zhao et
al. [2005].
[24] For the comparison of surface variables from reanal-

ysis with 0.5°CRU and ISCCP, reanalysis data sets were
nonlinearly interpolated to 0.5° as discussed above. For the
global data comparison, we compared the annual zonal
mean or total, to get a general distribution of uncertainties.
Prior to 2000, DAO data were not available, and after 2001,
no complete annual ECMWF data sets were available.
Therefore we compared the ECMWF and NCEP climatol-
ogy with 30-year CRU and 17-year ISCCP first, and then
compared the ECMWF and NCEP data with the DAO data
from 2000 to 2001 to indirectly infer the accuracy of DAO.
We acknowledge such indirect comparison may bias our
conclusions on DAO accuracy.

4. Results and Discussion

4.1. Comparison of Meteorological Data Sets

4.1.1. Comparisons Over the United States
[25] Figure 3 shows that the biases of annual mean S#s,

Tavg and VPD from the three reanalyses against the USA-
OBS are regionally dependent. For these three variables,
ECMWF tends to have the lowest absolute bias among
reanalyses. Both DAO and NCEP tend to underestimate
Tavg and VPD, and NCEP has the highest positive bias in
S#s (approximately 3 MJ/m2/d).
4.1.2. Global Comparisons
[26] For the S#s comparison below, we have accounted

for the overestimation S#s of ISCCP from 15°S to 15°N
with a bias of 21.318 W/m2 (equivalent to 1.84 MJ/m2/d)
relative to the surface observations [Zhang et al., 2004].
NCEP always overestimates S#s when compared to 17-year
ISCCP annual mean by latitude (Figure 4a), and its bias
relative to ISCCP ranges from 1.41 to 5.15 MJ/m2/d (+6.8%
to +73% of ISCCP). The NCEP area-weighted average bias

Figure 3. Bias of (a) daily solar radiation (S#s), (b)
average temperature (Tavg), and (c) vapor pressure deficit
(VPD) for the three reanalyses compared to the observations
from the stations (n = 323) in the five regions of the United
States (see Figure 2a) from 2001 to 2002 (only 2001 for
ECMWF).
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is +20% of ISCCP S#s. This higher S#s will produce
overestimated global GPP and NPP if other surface varia-
bles are accurate. Generally ECMWF S#s agrees well with
ISCCP, but in the tropics from 20°S to 20°N, ECMWF S#s
tends to be lower, with an area-weighted average bias of
ÿ1.58 MJ/m2/d, or nearly ÿ8.4% of ISCCP. The lower
ECMWF S#s will eventually generate underestimated GPP
and NPP owing to the large vegetated areas and high
productivity in the tropics, if other surface variables are
accurate. Compared with ECMWF and NCEP zonal mean
S#s from 2000 and 2001 (Figure 4e), DAO S#s is relatively
more accurate, except for much lower values in high
latitudes of the Northern Hemisphere.
[27] As compared to 30-year annual mean Tavg in CRU

(Figure 4b), NCEP tends to have lower values for almost all
latitudes, with particularly large negative biases (area-
weighted bias of ÿ1.43°C) from 20°S to 20°N. ECMWF

generally agrees well with CRU, but is somewhat higher in
middle high latitudes and a little lower in the tropics. For the
2000 to 2001 intercomparison (Figure 4f), NCEP tends to
have the lowest Tavg, ECMWF has the highest; and DAO is
in the middle for most latitudes. Although the bias in Tavg is
small, a small bias in temperature can introduce relatively
large errors in VPD and Rplant and, consequently, in global
GPP and NPP because of the nonlinear relationship between
Tavg and both VPD and maintenance respiration (Figure 1).
[28] A comparison of ea shows that NCEP has higher

values than CRU in tropical and boreal latitudes, while
ECMWF agrees well with CRU (Figure 4c). The area-
weighted average biases at any given latitude are relatively
small, with values of 2.92 Pa (0.22%) and 64.04 Pa (4.89%)
for CMWF and NCEP, respectively. The 2000 and 2001
reanalyses intercomparison (Figure 4g) shows that DAO ea
is generally good in the middle and high latitudes of the

Figure 4. Comparison of the climatological zonal mean of (a) surface downward solar radiation (S#s),
(b) average temperature (Tavg), (c) vapor pressure (ea), and (d) vapor pressure deficit (VPD) from NCEP
and ECMWF, with ISCCP (1984–2000) and CRU (1961–1990) data sets. (e–hs) Intercomparison of the
three reanalyses for 2000 and 2001. Overestimated surface short wave radiation by ISCCP from 15°S to
15°N with bias of 21.318 W/m2 (equivalent to 1.84 MJ/m2/d) relative to the surface observations [Zhang
et al., 2004] has been accounted for in this comparison (see text). These comparisons are only for
vegetated land surfaces. The vegetated land area is shown as a gray scale, where darker shades represent
more vegetated areas. Vertical dotted lines denote the location of the equator.
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Northern Hemisphere relative to ECMWF. DAO under-
estimates ea in the tropics and Southern Hemisphere
(54.75°S to 8°N), with an area-weighted bias of 102.93
Pa (5.57%) with respect to ECMWF ea.
[29] NCEP has considerably lower VPD than both CRU

and ECMWF (Figure 4d). The area-weighted mean bias
along latitude reaches ÿ185 Pa (ÿ25.66%) as compared to
CRU. The relaxed control (higher VPDf) from the lower
VPD will generate a higher global GPP and NPP as
described by the equations in Figure 1. ECMWF generally
agrees well with CRU with an area-weighted average bias
of 2.55 Pa (0.35%), resulting in a negligible impact on light
use efficiency (e) and GPP. Comparison of reanalyses from
2000 and 2001 (Figure 4h) shows that DAO is closer to
ECMWF than NCEP, although DAO VPD tends to be lower
from approximately 5°S to 40°N, and there are some
discrepancies between DAO and ECMWF at other latitudes.
Both Figures 4d and 4h show that NCEP has lower VPD
overall, and it is much lower in tropical areas.
[30] Bias in es will result in biases in VPD even if ea bias

is relatively small or negligible because VPD is calculated
as es minus ea [Jolly et al., 2005]. In this case, the
temperature bias will be the major source of bias in VPD
because es is determined solely by temperature. Since there
is a nonlinear exponential relationship between temperature
and es, we conclude that the relatively small range of Tavg
biases in Figures 4b and 4f are primarily responsible for the
large range of VPD biases in Figures 4d and 4h. VPD is
widely used as a measure of environmental water stress in
ecosystem and hydrologic models, and our study highlights
the need to use caution because large discrepancies in VPD
could be introduced by small biases in temperature, espe-

cially for the tropics or for summer seasons in the middle
and high latitudes when temperature is high.
[31] Figure 5 shows comparison of the three reanalyses

with WMO-OBS from 2000 to 2003 by latitude. Generally
the biases for all variables in the reanalyses increase from
high to low latitudes. ECMWF has the lowest absolute
mean bias and mean RMSE for all three surface variables
(Figure 5), indicating that it has the highest accuracy. NCEP
has the largest negative biases in Tavg and VPD, which is
consistent with the results shown in Figures 4b and 4d.
Figure 5 also indicates that a small temperature bias induces
a large VPD bias as discussed previously. For example,
since DAO ea has a negative bias, VPD would have a
positive bias if temperature were extremely accurate. The
negative mean bias in DAO VPD, however, is caused by the
reduced es induced by the underestimation of temperature.
This explanation can also be applied to the negative
ECMWF and NCEP VPD biases shown in Figure 5.

4.2. Comparison of MODIS GPP/NPP

4.2.1. United States Subsets
[32] The comparison between annual GPP/NPP values

driven by USA-OBS and those driven by the three rean-
alyses shows that all of them tend to overestimate GPP and
NPP, with NCEP having the largest bias and lowest corre-
lation (Figure 6). DAO and ECMWF have similar accura-
cies in predicted GPP. ECMWF has the highest accuracy for
NPP estimates with respect to NPP calculated using USA-
OBS, although there is only 1 year of available data for
cross comparison. It should be noted that GPP driven by
reanalyses generally has higher correlations and lower
biases than does NPP. Moreover, the RE values for GPP

Figure 5. Latitudinal comparison of the bias of daily average temperature (Tavg), vapor pressure (ea),
and vapor pressure deficit (VPD) from the three reanalyses relative to observations from WMO (see
Figure 2b) for 2000 to 2004 (2000 and 2001 for ECMWF).
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(DAO: 17.78%, ECMWF: 15.63%, NCEP: 23.91%) driven
by the reanalyses are mush lower than that of NPP (DAO:
64.00%, ECMWF: 45.05%, NCEP: 72.87%). Consequently,
the results indicate that MODIS GPP is more reliable than
NPP.
[33] On the basis of the equations in Figure 1 and the

reanalysis biases in Figure 3, the high GPP from NCEP
results from the fact that NCEP has the highest S#s and the
lowest VPD among the reanalyses. The underestimated Tavg
results in underestimated respiration (Figure 1). High GPP
together with low Rplant results in an overestimation of
NCEP NPP. The overestimated NCEP S#s over the United
States contradicts the conclusion drawn by Hicke et al.
[2002a], in which they tend to trust NCEP with its higher
S#s more than the Bishop and Rossow [1991] data set with
lower S#s across North America. The slightly higher GPP
estimate from the ECMWF data set as compared with that
from USA-OBS is attributed to the slightly higher S#s of the
ECMWF. This results in higher NPP because the reduced
bias in ECMWF Tavg leads to relatively accurate estimates
of Rplant. The results from the DAO data set are more
complicated since the biases from different meteorological
variables offset each other. DAO S#s tends to be low for
four out of five regions and, consequently, DAO GPP
should be underestimated according to the GPP equation
in Figure 1. However, lower DAO VPD produces a higher e,
compensating for the effect of lower radiation and, hence,

overestimates GPP. The higher GPP combined with the
lower Rplant from lower Tavg, produces a much higher bias in
NPP (Figures 6a and 6d). NPP is the difference between
GPP and Rplant and, as a result, NPP will inherit the
uncertainties from meteorology on GPP and those related
to Rplant. Ultimately, NPP contains more uncertainties than
GPP.
[34] The continental United States has a denser weather

station network than most other land areas in the world
(Figure 2b). In theory, reanalyses should have higher quality
in the United States and should generate more accurate GPP
and NPP. However, our study shows that both reanalyses
and the subsequent GPP and NPP estimates contain con-
siderable uncertainties over the United States.
4.2.2. Global 1 km
[35] The global 1-km MODIS NPP results driven by the

three reanalyses are shown in Figure 7, and the spatial
patterns are generally similar. Tropical forests have the
highest NPP values, while temperate and boreal forests
are the second most productive areas. Dry areas and areas
with short growing seasons have low NPP. However, differ-
ences in the magnitude of NPP among the three images can
be found in most vegetated areas. The largest differences
occurs in areas covered by tropical forests. ECMWF has the
lowest NPP for most tropical forests, while NCEP has the
highest NPP, and DAO NPP lies in between. Globally,
except for very dry areas, NCEP consistently has the highest

Figure 6. Comparison of MODIS GPP, and NPP driven by the three reanalyses with those driven by the
observations from weather stations in the United States (n = 323) for 2001 (cross) and 2002 (circle) (2001
for ECMWF).
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NPP, and ECMWF and DAO have similar NPP predictions
for boreal areas. DAO and ECMWF may give relatively
more reliable GPP and NPP estimates in the middle to high
latitudes, since they have relatively more accurate surface
meteorological data as discussed above.
[36] To remove the noise from local level data, global

1-km MODIS GPP, Rplant and NPP are aggregated to 0.5°,
then averaged, and summarized into zonal means and totals,
respectively (Figure 8). The patterns of zonal means and
totals are reasonable. GPP, Rplant and NPP in the tropics are
generally higher than those in the middle and high latitudes.
The noticeable difference between them is that the zonal
mean has several peaks, while the zonal total generally has
two peaks, corresponding to the latitudes with large areas of
tropical forests and boreal forests.
[37] Figure 8 suggests that significant differences in NPP

are largely caused by the differences in GPP and not Rplant,
although differences in Rplant do reinforce the differences in

NPP. Since Tmin only constrains GPP in the early growing
season in the MOD17 algorithm, VPD and S#s are the two
primary factors controlling GPP during most of the growing
season (Figure 1), and consequently annual total GPP is
overwhelmingly determined by S#s and VPD. Because the
high S#s and the low VPD in NCEP indicate the most
favorable environment for plant growth, the highest GPP
and the highest NPP are generated by NCEP combined with
the lowest Rplant as NCEP has. The low ECMWF GPP
estimates arise from underestimated S#s from 20°S to 20°N
relative to ISCCP as discussed previously, resulting in
underestimation of NPP according to the highly accurate
Rplant generated by the extremely reliable ECMWF Tavg.
DAO GPP may be somewhat overestimated in this area
relative to ECMWF because the DAO underestimates VPD
from 5°S to 30°N when compared to the more accurate
ECMWF VPD. Ultimately, the real values of global GPP
and NPP may lie somewhere between the estimations from
the DAO and ECMWF data sets.
[38] Global total GPP and NPP are meaningful for global

carbon cycle study because carbon sinks result from an
increase in global terrestrial NPP [Friedlingstein et al.,
1995; Thompson et al., 1996; Nemani et al., 2003]. The
4-year values driven by the reanalyses are listed in Table 1,
revealing the extraordinary differences in global total values
for GPP and NPP induced by differences in the reanalyses
inputs. The differences between GPP and NPP driven by
NCEP and ECMWF are more than 20 Pg C per year,
indicating the importance of accurate meteorological inputs
to the model. Additionally, the table shows that the differ-
ences among the NPP values are always greater than those
of GPP, suggesting again that NPP contains more uncer-
tainty than GPP. The results also show that both DAO and
NCEP capture the global GPP and NPP interannual vari-
ability induced by the global-scale weather patterns known
as the El Niño–Southern Oscillation (ENSO) [Hashimoto et
al., 2004]; 2000 and 2001 are La Niña years, and 2002 and
2003 are weak El Niño years (http://www.cdc.noaa.gov).
However, within the two La Niña or El Niño years, the
signs for interannual anomalies among the three data sets
are not consistent, especially for global NPP, further imply-
ing NPP has more uncertainties than GPP. The relatively
short 4-year MODIS data set and the limited 2-year
ECMWF restrict further study of the interannual variability,
and more long-term data sets need to be created to deter-
mine if there are large differences in interannual variability
driven by different reanalyses.
[39] Mean NPP driven by reanalyses for 2000 and 2001

are compared against the class C EMDI NPP (Figure 9).
NCEP greatly overestimates NPP, but its correlation is also
the highest. ECMWF and DAO NPP tend to be close to
EMDI NPP but both have relatively low correlations. EMDI
NPP values fall between ECMWF and DAO NPP estima-
tions, which is consistent with the finding discussed above.
It should be noted that there are uncertainties involved in
these comparisons. First, the EMDI NPP data contain some
uncertainties. EMDI NPP seems to be truncated at approx-
imately 1100 g C/m2/yr, and the methods used to build
EMDI NPP data sets from sparsely distributed observed
NPP have uncertainties. The observed NPP data sets were
measured using different approaches, and most of them only
reported aboveground NPP [Gower et al., 1999; Clark et

Figure 7. Results of annual averaged 4-year (2000–2003)
1-km MODIS NPP derived using (a) DAO, (b) ECMWF,
and (c) NCEP. Only 2 years of data (2000–2001) are used
in the ECMWF-derived NPP. Vegetated regions are shown
in color, and the regions in white are nonvegetated areas,
including water bodies, barren land, and built-up areas.
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al., 2001]. Second, NPP has interannual variability, and
2 years of MODIS NPP are insufficient for direct compar-
ison with EMDI NPP. For consistency in comparison, we
show only 2-year averaged MODIS data sets driven by
reanalyses since limited ECMWF data are available after
2001. We found that 3-year mean NPP driven by DAO
has a higher correlation (r2 = 0.77) with EMDI NPP than the
2-year average in Figure 9a [Zhao et al., 2005]. Figure 9d
shows that overall, the ensemble mean (mean of three
estimations) may give better NPP estimations.
[40] Given the fact that meteorological reanalyses contain

large biases, which introduce relatively large uncertainties
to GPP and NPP estimations, there is a need to reduce these
biases in the reanalyses to get relatively accurate GPP/NPP
estimations. There are two possible approaches to reducing
these biases. One approach is direct adjustment of these
reanalyses on each grid at monthly step with the station
records [Qian et al., 2005], and the other is to indirectly
counteract biases from reanalyses by modification of param-
eters in the BPLUT of the MOD17 algorithm. With the first
method, variations in the reanalyses meteorology will be
retained on the submonthly level (hourly or daily), but the
magnitude of the data will be adjusted to be equivalent to
that of the monthly observations. Consequently, this method
forces the reanalyses to have the same seasonal and inter-

annual variability and long-term trend as station records.
More importantly, the adjusted reanalyses enable us to
relatively accurately calculate historical GPP/NPP and their
trends at the regional or the global scale. However, monthly
gridded station records, such as CRU, are only available
approximately 2 years after the date of acquisition (http://
www.cru.uea.ac.uk). For the near-real time requirement of
MODIS products, therefore, it is impractical to adopt the
first method. The second method, modifying parameters
within the BPLUT, has been partly applied during the
calibration of the algorithm [Zhao et al., 2005]. However,

Figure 8. Comparison of the zonal mean of annual (a) GPP, (b) Rplant, and (c) NPP, and corresponding
zonal totals (d–f) driven by the three reanalyses for 2000 and 2001 after aggregation into 0.5° intervals.
The vegetated land area is shown as a gray scale, where darker shades represent more vegetation. Vertical
dotted lines denote the equator.

Table 1. Comparison of Global Total MODIS GPP and NPP

Driven by Different Meteorological Data Sets From 2000 to 2003a

2000 2001 2002 2003

DAO GPP 108.42 110.76 107.82 107.50
NPP 56.06 57.74 55.53 54.80

ECMWF GPP 101.79 102.71 N/Ab N/Ab

NPP 46.71 46.59 N/Ab N/Ab

NCEP GPP 124.82 125.75 123.40 123.72
NPP 73.80 73.73 72.22 72.29

aUnits are Pg C.
bECMWF reanalysis data (ERA-40) are not available after 31 August

2002.
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there are some problems with the second method. First, the
modification of parameters in BPLUT to offset biases from
reanalyses may result in the departure of some parameters
from their theoretically optimum values. Thus, in some
cases, MODIS GPP driven by DAO may contain less error
than that calculated with local observed meteorology when
both are compared to the GPP estimated from flux tower
measurements [Heinsch et al., 2005]. Second, if the rean-
alyses fail to accurately predict interannual variations and
the long-term trends in climate, the method will give
incorrect predictions of interannual variations and long-term
trend in GPP and NPP as well. Regardless of these limi-
tations, the second approach seems the only option for
providing near-real time global standard MODIS GPP/
NPP products.
[41] Compared to general process-based ecosystem

models, the remotely sensed global NPP model is relatively
simple. The MOD17 algorithm captures the dominant
environmental controls on NPP at the global scale [Nemani
et al., 2003], and it uses a reduced number of input
meteorological variables as compared with other models,
which need precipitation as an additional input. Precipita-
tion generated by reanalyses is highly model-dependent and
contains more problems than temperature, which is assim-
ilated directly into the reanalysis system [Janowiak et al.,
1998]. Therefore a relative simple model with a reduced
number of meteorological inputs should contain small
uncertainties. However, our study shows that large uncer-
tainties are introduced by using even minimal global mete-
orological variables as inputs. Reanalysis data sets, such as
NCEP and ECMWF, have much higher accuracy than
general circulation model (GCM) outputs [Covey et al.,
2000]. Therefore the complex regional NPP model driven

directly by GCM outputs may contain many more uncer-
tainties than simplified model approaches.

5. Conclusions

[42] This study compares three reanalysis meteorological
data sets with a variety of observed data, and compares
remotely sensed GPP and NPP driven by these different
reanalyses at both the conterminous United States and
global scales. It reveals that differences in reanalyses can
introduce considerable uncertainties in GPP and NPP esti-
mates. Overestimated NCEP S#s and underestimated NCEP
VPD are the dominant factors responsible for the high GPP
and NPP estimates by NCEP. Underestimation of the
ECMWF S#s in the tropics is the main reason for the low
GPP and NPP by ECMWF for tropical forests, although
ECMWF has the most accurate temperature and VPD.
Underestimated VPD from DAO leads to overestimates of
GPP and NPP from 5°S to 30°N. The large VPD uncer-
tainties in the reanalyses are mainly caused by relatively
small uncertainties in temperature, and not by ea, owing to
the magnification effect of the nonlinear relationship be-
tween temperature and es, implying the importance of some
nonlinear processes in the model.
[43] Given that the reanalyses contain biases and that

NPP contains more uncertainties than GPP, we propose two
approaches to reduce biases from meteorological inputs,
such as adjustment of reanalyses based on station observa-
tions and modification of parameters in the MOD17 BPLUT
to compensate for the biases from different meteorological
reanalyses. The modification of the BPLUT is the more
practical option owing to the near-real time requirement of
the MODIS standard products, but it may not capture the

Figure 9. (a–c) Comparison of average NPP for 2000 and 2001 driven by the three reanalyses with
class C EMDI NPP, and (d) the mean NPP from averaged NPP by three reanalyses against EMDI NPP.
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interannual variability and trend in GPP/NPP as well as the
direct adjustment of reanalyses.
[44] The tropics contain the largest uncertainties in GPP

and NPP owing to the large uncertainties in the meteoro-
logical reanalyses of the region combined with the high
productivity and the large vegetated areas. Given the
important role of tropical forests to global carbon cycle
science, and hence to global climate change, we need to
expand the climate monitoring stations throughout the
tropics as suggested by Clark [2004], to improve the
accuracy of the reanalysis results resulting from a lack of
observations. In addition, the reanalysis systems need to be
improved to enhance the quality and accuracy of tropical
surface reanalyses.
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