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Director; Carl Fiedler 

The move toward ecosystem management requires foresters to manage for a diversity of 

forest structures, including uneven-aged stands. There are numerous knowledge gaps in 

the science of uneven-aged management. This has become evident in the area of estimating 

potential site produQtivity. There are many methods of appraising "site quality," but all fall 

short in uneven-aged conditions. Foresters need a method of estimating site quality in 

uneven-aged stands that is both dependable and practical. This study evaluated the Growth 

Basal Area method and variations thereof for estimating site productivity in uneven-aged 

stands. The GBA method has been used successfully in even-aged stands, and may have 

potential for application in uneven-aged stands. Numerous amendments and extensions of 

the GBA concept were explored including basal area and sapwood area as density 

measures, and fixed- and variable-radius plot estimates of competition around the subject 

tree. Hall's GBA approach was applied and amendments explored in eight uneven-aged 

ponderosa pine stands across Montana. The results suggest that Hall's method may not 

apply well in uneven-aged stands. There is a lack of evidence to support the strong 

relationship Hall found between GBA tree growth and surrounding density estimates. 

Amendments to Hall's method indicate that variable-radius plots may be more effective than 

fixed-radius plots for estimating the density of competition around GBA trees. Results also 

indicated that sapwood area density measures may be no more helpful than basal area 

measures, within Hall's approach. The variable of GBA tree sapwood area provided the 

greatest correlation with GBA tree basal area increment, and is recommended for 

consideration in future models. This study suggests that until uneven-aged stand dynamics 

are better quantified. Hall's approach has marginal utility in uneven-aged ponderosa pine 

stands. 
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Introduction 

Increased interest in uneven-aged silviculture, due to public pressures and the influence 

of ecosystem management, has exposed numerous knowledge gaps in the base of 

silvicultural information. The lack of a method to estimate site quality in uneven-aged 

stands is one such knowledge gap. Forest site quality has been defined as the productive 

capacity of forest land derived from tree measurements that express all the biological and 

environmental influences on tree growth (Schonau 1988). Accurate estimation of site 

quality is not only important for successful regeneration and maintenance of stand structure 

in uneven-aged stands, but also serves as a reference point for any forest management 

activities (Guldin 1995). 

There are many methods of estimating site productivity. There is site index, which is 

the height of dominant trees at a certain base age. Site index has long been used as an 

indirect estimate of site quality in even-aged stands. However, application of site index in 

uneven-aged stands violates some of the underlying assumptions of the method (e.g. site 

trees should show no history of suppression, and site trees should be within 10 years of 

the same age) (Barrett 1978). Soil-site index is another approach, but poor soil series maps 

can lead to inaccurate estimates of site productivity (Carmean 1975). Habitat types, which 

use characteristics of understory vegetation as an indicator of site quality, have been utilized 

in forest management, but are hard to translate into stocking concepts (Pfister et al 1977). 

Finally, there are physiographic site classification methods which integrate climate, relief, 

soil profile, ground water, and communities of plants into one model (Carmean 1975). 

This can prove impractical for the average forest manager. 

One possible alternative for gauging site potential in uneven-aged stands would be to 

determine the current radial growth increment of a "site" tree, and compare it to the level of 

competition being exerted upon it. At higher site qualities, this radial growth would 
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increase in relation to a constant density surrounding the tree (assuming no change in tree 

size). One such method was developed in even-aged stands that examines the rate of radial 

growth in comparison to the competition surrounding the subject tree (Hall 1987). This 

method, called Growth Basal Area (GBA), might be applicable in uneven-aged stands. 

The GBA method could be amended both in terms of density measures (e.g. basal area and 

sapwood area), the sampling methods used to estimate density (e.g. variable- and fixed-

radius plots), and the estimates of individual tree growth. 

The objective of this study is to evaluate the GBA method as a tool for estimating site 

quality in uneven-aged stands. In addition, the plot sampling scheme of the GBA method 

will be changed to incorporate other sampling approaches. The heterogeneity of the 

uneven-aged structure suggests a combination of fixed- and variable-plot sampling 

methods, and recent work using sapwood area as a density measure suggests its use in 

uneven-aged stands (O'Hara and Valappil 1995, Stage and Rennie 1994). The specific 

objectives are as follows: 1) test the standard GBA approach as a method of estimating 

site quality in uneven-aged stands, 2) evaluate sapwood area and basal area as alternative 

measures of density derived from both fixed- and variable-radius plots within the 

framework of the GBA approach, and 3) compare site quality ratings as suggested by site 

index and soil series information to estimates developed in this study. 

Since little work has been done on the subject of site quality in uneven-aged stands, an 

investigation of the GBA method could have great utility. This project can contribute to the 

knowledge base in uneven-aged silviculture by evaluating variations of the GBA method in 

the most promising directions, thereby narrowing the focus of future work. 



Literature Review 

Site Quality Assessment 

Forest site quality has been defined as the productive capacity of forest land and is 

derived from tree measurements that express all the biological and environmental influences 

on tree growth (Schonau 1988). Site quality is most often used in reference to growth of 

dominant trees, since dominants have the most dollar value and are most directly influenced 

by the site. Foresters often measure tree growth and assume that it closely approximates 

the site's quality (McLeod and Running 1987). Forest site quality has therefore become 

synonymous with the ability of forest land to grow trees, where site quality estimation 

corresponds to the land's capability to grow various plants (Carmean 1975). Forest site 

quality is a nebulous concept to foresters, yet knowledge of this term is fundamental to 

sound forest practices everywhere (Gessel 1988). 

Need for Site Quality Assessment 

Site classification is used by foresters to identify productivity and provide a frame of 

reference for silvicultural diagnosis and prescriptions (Jones 1969). Site classification 

plays an even more crucial role in the management of uneven-aged ponderosa pine stands. 

At a broad level, management of any uneven-aged condition requires the proper level of 

vigorous growing stock, which is in turn based on site classification estimates (Cochran 

1992). Successful application of any uneven-aged management scheme requires a 

commitment to regeneration, which is difficult in unhealthy, low vigor stands (Becker 

1995). For uneven-aged methods of regeneration to be employed, an idea of poor and 

good sites needs to be known, so that appropriate reserve density levels can be prescribed 
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(Guldin 1995; Fiedler, Becker, and Haglund 1988). Knowledge of site, therefore is 

necessary in order to develop appropriate management prescriptions. Successful 

management of ponderosa pine for timber production depends on satisfactory knowledge 

of tree growth under various stand and site conditions (Schmid et al 1991). Uneven-aged 

management of ponderosa pine works hand in hand with disturbance, a situation where site 

quality rating will play a vital role in future management decisions (Powers and Oliver 

1978). 

Methods of Site Quality Assessment 

There are many methods of estimating site quality. Growth of trees on a site is subject 

to many factors such as light intensity, light quality, soil moisture, life span of trees, 

available water, and soil fertility (Kozlowski 1971). Site classification is related to scales. 

At a broad scale, climate plays an important role in rating site quality, at increasingly 

narrower scales, vegetation and soil are more important (Gessel 1988). A holistic approach 

to site classification is a broad scale technique. A model of the environment is developed 

classifying the environment as a whole (Jones 1969). There is the physiographic site 

classification method which considers the total site, integrating climate, relief, geological 

materials, soil profile, ground water, communities of plants, and humans into a complex 

model (Carmean 1975). At small scales, vegetation reflects the sum of all environmental 

elements that are important to plants (Gessel 1988). The productive capacity of a site can 

be estimated from either tree growth or site attributes, such as understory vegetation (Jones 

1969, Pfister et al 1977, Gessel 1988). Site quality can be estimated from height data. For 

example, the growth intercept method uses periodic height growth in young trees as an 

index of site quality, rather than overall height at a given age (Carmean 1975). Site quality 

can also be estimated from vegetational characteristics only, such as with habitat types 
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(Jones 1969, Pfister et al 1977). 

For even-aged stands beyond the sapling stage, the site index method of site quality 

estimation is widely used. Site index provides an estimate of site quality based on height 

and age measurements from free growing, uninjured, dominant or codominant trees. 

These measurements are used with a family of height-age curves to estimate total height of 

trees at an index age (Carmean 1975). The basic assumption in site index is that height 

growth is mostly free from the effects of density, in addition to being closely associated 

with volume growth in normally stocked stands (Carmean 1975, Jones 1969). The height 

of the dominant or tallest portion of the stand is the one measure of growth most 

independent of stand factors and therefore most reliable for site evaluation (Barrett 1978, 

Monserud 1984). Required characteristics of site index trees include: even-aged within ten 

years, no disease symptoms, no fine ring groups that would indicate suppression, 

intemodal lengths consistent on taller trees, and no remnant understory that would indicate 

early competition (Barrett 1978). The site index method should only be used when current 

age and total height are known (Farr 1984). 

A common shortcoming of site index curves is that they assume the same height growth 

patterns for all site indexes (Barrett 1983). Two Douglas-fir stands in Washington were 

used to evaluate this lack of detail in site index curves. Each of the stands had similar 

heights at index age 100, but differed in height at age 20 by 2:1 (Jones 1969). Site index 

curves often follow a harmonic growth pattern where growth curves are assumed the same 

for all site qualities (Carmean 1975). However, recent utilization of stem analysis 

techniques to develop polymorphic growth curves have eliminated some errors associated 

with site index (Monserud 1984). Another flaw with site index is its basic assumption that 

height growth is not affected by density, even though it has been shown with Douglas-fir 

and ponderosa pine that dense stocking can cause stagnation and slowed height growth 

(Jones 1969). Ponderosa pine is so affected by stocking that in some areas two sets of site 

index curves have been developed for two levels of stocking (Jones 1969, Barrett 1978, 
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Powers and Oliver 1978). In addition to stagnation, many other factors can cause 

variability in site index estimates. If only dominant trees are sampled, then overestimation 

of site quality can occur when using site index curves developed from dominant and 

codominant trees. Initial height growth can be suppressed by shrubs or animals, and 

genetics can cause unexplained variation (Carmean 1975). Although not free from faults, 

site index likely remains the most utilized measure of site quality in forest stands. 

Site Quality Assessment in Uneven-aged Stands 

There are few developed methods of site quality estimation in uneven-aged stands. Site 

index has been used in uneven-aged stands to some extent. Unfortunately, many of the 

previously discussed requirements for the application of site index methods are violated by 

the very nature and structure of uneven-aged stands (Monserud 1984). Site index was 

meant for use in even-aged stands. In uneven-aged stands, age has a nebulous meaning 

(Moser and Hall 1969). Almost every tree in an uneven-aged stand has experienced 

competition from above or below which would cause almost all trees in an uneven-aged 

stand to be rejected as site index trees (Powers et al 1978). What is needed in uneven-aged 

stands is site estimation procedures not solely dependent on height growth of "site" trees. 

Adjustments for suppression effects need to be taken into account in uneven-aged stands, 

especially where potential stocking is limited (Phares 1978). Specifically, a site 

classification method needs to be developed that incorporates the characteristics of uneven-

aged stands instead of adjusting for them. 



7 

Alternatives for Site Quality Estimation in Uneven-aged Stands 

Certain stand attributes hold promise as measures of site quality in uneven-aged stands. 

Stand basal area has been shown to be closely tied to soils and topographic conditions. 

Estimates of stand basal area sometimes have paralleled site productivity estimates, 

occasionally better than site index (Fralish 1994). One study of a 50-year-old even-aged 

hardwood stand found that biomass was more strongly related to basal area than site index 

(Wiant et al 1984). Even as early as 1944, using stand basal area with site index was 

found to greatly improve site quality estimations (Gevorkiantz and Scholz 1944). In 

uneven-aged conditions where disturbance is common, stand basal area can reach pre-

disturbance levels quickly, whereas height will never reach a maximum (Fralish 1994). In 

stands with uneven-aged structures, basal area data may be more useful than site index 

information (Bates, Robert, and Blinn 1992). 

The most direct measure of site quality is the quantity of wood grown on an area of 

land within a given period (Schmoldt, Martin, and Bockheim 1985). Periodic growth in 

total stem volume has been shown to be strongly related to growing stock level at all times 

in a stand's history (Barrett 1983). Correlations have been found between volume 

increment and site index, for stands of the same age (McLeod and Running 1987). The 

application of radial increments of individual tree growth to rating site potential productivity 

appear highly promising, even more so in uneven-aged stands (Hall 1983). Not only can 

growth increments gauge potential productivity possibly better than site index, it works in 

terms that future timber management will deal with, such as volume growth per year 

(Murphy and Farrar 1985). 

Leaf area index is a measure of foliage area representing all of the upper surface of 

leaves projected downward to a unit area of ground beneath the canopy (Waring and 

Schlesinger 1985). Strong linear and positive relationships have been established between 
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productivity and leaf area index (Vose and Allen 1988). A combination of recent total 

volume growth and leaf area can produce indices known as growth efficiency. Growth 

efficiency simply is the stemwood production per unit of leaf area. It can be estimated by 

calculating the ratio of annual growth to potential radiation absorption (Kaufmann and Ryan 

1986). In uneven-aged stands, total volume, leaf area, and periodic growth could 

potentially be combined into a measure of site quality. 

The Growth Basal Area Method 

Hall (1983) developed a method called Growth Basal Area (GBA), which uses radial 

increment and competition to determine stockability. Growth Basal Area is defined by Hall 

as, "a field method for determining site quality limitations on stockability." In a more 

technical sense, GBA is the basal area at which dominant trees will grow one inch in 

diameter per decade. The basic concept of GBA is that stand growth will reflect site 

potential for stockability. Diameter growth of one inch per decade was selected as the 

growth rate index to evaluate stockability and to create a prediction curve, not as a 

maximum or minimum thinning guide. The assumptions of GBA are; diameter growth 

indexes competition, change in GBA over time is related to stand age, and rate of diameter 

growth is assumed to index intertree competition (if diameter growth rate is declining). 

Hall's (1983) GBA concept was based on observations of ring width pattern in even-aged 

forests. The initial rapid growth of young trees, followed by slowing diameter increment, 

and lack of mortality, suggested that the rate of diameter growth decreased with increasing 

stand density as estimated by basal area. Subsequently, Hall (1983) explored using basal 

area as a variable to index stockability of a site with rate of diameter growth as a constant to 

compare sites. A system was created to convert current diameter growth to the index rate 

of one inch/decade with a concurrent adjustment in current basal area that would result in 
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one inch per decade. A site with 150 square feet GBA means dominant trees will grow one 

inch per decade when stand basal area is 150 square feet. In contrast, a site with a rating of 

GBA 300 has twice the stockability because dominants will grow one inch per decade at 

300 square feet of basal area. Site index and GBA address the problem of rating site 

quality in different ways. Site index and GBA are based on different aspects of tree 

growth, and therefore appear to be somewhat independent of each other. 

As the GBA method is currently defined, it can be applied to uneven-aged stands. 

However, alterations to various GBA components can be proposed. For example, the 

importance of radial growth increment in the GBA approach is questionable in uneven-aged 

stands. Radial growth increment is in part dependent upon the diameter of the tree, stand 

age, and crown size (Wykoff, Crookston, and Stage 1982) — all of which are highly 

variable in uneven-aged stands. Use of basal area growth increment of the GBA tree 

instead of radial increment as the dependent variable adjusts for tree size. In addition, the 

GBA method uses a variable-radius plot sampling approach to determine stand basal area. 

The heterogeneity of uneven-aged stands makes sampling of stand basal area a more 

complicated task, where one variable-radius plot estimate of basal area competition around 

each GBA tree may not suffice (Hall 1987b). In addition to the sampling scheme, 

alternatives to basal area as a density measure could also be evaluated. Recent research 

indicates that sapwood area may be a more refined density measure than basal area in 

uneven-aged stands (O'Hara and Valappil 1995b). 

Sapwood Area in Uneven-Aged Stands 

Sapwood area is one alteration to the GBA method which could be highly promising. 

In recent years, sapwood area has been shown to be a valuable measure of density in 

silvicultural applications. Its success is in part due to its strong correlation with leaf area. 
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The relationship is expressed in the pipe stem model, reflecting a linear relationship 

between foliage biomass and sapwood cross sectional area (Makela et al 1995, Waring et al 

1982). This relationship has been found to be particularily strong within individual stands 

(Makela 1995). The sapwood/heartwood proportion in stems can be seen as a balance 

between two functions: mechanical support of the crown and water supply to foliage 

(Sellin 1994). During a tree's life span, sapwood will usually increase (in non-suppressed 

conditions) till it levels out at a certain age, although some studies have suggested that 

sapwood is more related to diameter than age (Sellin 1994). It follows that there is more 

sapwood in dominant trees than in suppressed trees, due to the crown position and class 

(Sellin 1994). For uneven-aged stands, the leaf area/sapwood area relationship follows a 

similar pattern for all social classes of trees; suppressed, intermediate, and codominant 

(Robichaud and Methven 1992). Makela (et al. 1995) found that site index did not 

influence the relationship between sapwood area and leaf area in even-aged stands, while 

another study (Coyea and Margolis, 1992) reported that site index did affect this 

relationship. 

Leaf area is key to ecological studies of both individual trees and forest stands (Coyea 

and Margolis 1992). Because of its close relationship to leaf area, sapwood area has found 

utility in developing stocking guidelines for uneven-aged forests (O'Hara and Valappil 

1995). What makes sapwood so attractive is its relative ease of measurement, when 

compared to leaf area. Leaf area can be well predicted from sapwood measurements taken 

directly below the crown, with accuracy decreasing slightly as samples are taken further 

down the bole (Makela et al 1995). Although sapwood area is a relatively new density 

measure for silviculturists, it has considerable potential for use in site quality evaluation, 

especially in uneven-aged stands. 



II 

Sampling for GBA in Uneven-Aged Stands 

The heterogeneity of uneven-aged stand structures complicates the task of sampling 

stand data. Although there is little information concerning sampling designs to gauge 

competition on an individual tree in uneven-aged stands, there is some literature pertaining 

to the broader topic of uneven-aged sampling designs. Stand structure is an important 

consideration when designing sampling schemes in uneven-aged stands (Murphy and 

Farrar 1981). For example, the size and/or number of plots need to be related to the 

variability encountered in the stand (Murphy and Farrar 1981). 

Since the GBA method was developed for application in even-aged stands, the 

associated sampling scheme is one commonly used in even-aged stands (variable-radius 

plot estimation of basal area density). An accurate estimate of the density around each 

GBA tree needs to be acquired for application of the GBA method. Point sampling 

(variable-radius plots) is an unequal probability selection process where larger trees have a 

higher probability of selection i.e., probability proportional to size (Shiver and Borders 

1996). In the workup of the data, bias is removed, since there are fewer large trees per 

acre and more smaller trees (Shiver and Borders 1996). When growth is important, the 

relationship of basal area increment to basal area of individual trees makes variable-radius 

designs more efficient (Stage and Rennie 1994). Variable-radius plot sampling offers 

greater flexibility for achieving better biological representation of stand conditions and 

increased statistical efficiency, important attributes in the uneven-aged condition (Stage and 

Rennie 1994). 

With fixed-radius plots in uneven-aged stands, the question is how large to make them 

to accurately represent structure yet maximize efficiency (Murphy and Farrar 1981). With 

fixed-radius plots, basal area growth has been shown to be consistent with changes that 

occurred in tree frequency by diameter class (Thomas and Parresol 1989). When using 
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fixed-radius plot sampling, all trees have the same area of influence as opposed to variable-

plot sampling (Stage and Rennie 1994). There appears to be more statistical efficiency by 

combining fixed-radius plots for sampling small DBH's, and variable-radius plots for 

larger DBH classes (Stage and Rennie 1994). Thus, there are some options available for 

modifying the GBA sampling approach to efficiently and accurately accommodate the 

structure of uneven-aged stands. 



Methods 

Selection of Sampling Sites 

The initial selection of study sites involved finding well stocked, relatively undisturbed, 

uneven-aged ponderosa pine stands across the state of Montana. Three such sites were 

located in eastern Montana, and five in western Montana (Appendix 1). Stands selected for 

sampling met the following criteria: uneven-aged structure, nearly pure ponderosa pine 

species composition, low levels of mortality, lack of management activities, and absence of 

severe natural disturbances. As much as possible, sites were selected to represent a 

reasonable range of site qualities, from low to moderately high 

Field Procedures 

At each site, field procedures involved the installation of GBA plots and amendments, 

which consisted mainly of variable- and fixed-radius plot sampling of basal area and 

sapwood area (Appendix 2). 

GBA Tree Selection: The first task at each location was the selection of appropriate 

GBA trees. Four or five trees were selected at each location that met the following criteria: 

full crown, upper canopy position, absence of insect/disease damage, modest to heavy 

level of surrounding competition, and absence of mortality in tree's vicinity. 

GBA Tree Measurement: Each GBA tree was cored to its pith at breast height for 

subsequent age and growth increment determination. In addition, diameter at breast height 

(DBH) was taken to the nearest tenth of an inch, and height measured to the nearest foot. 

Variable-Radius Plots: With each GBA tree serving as plot center, a 10-BAF variable-

radius plot was established (Appendix 2). A 10-BAF prism was chosen because 6 to 12 

13 
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"in" trees were recommended by the GBA method. The prism wedge was held close to the 

trunk of each GBA tree and swept clockwise for "in" tree determination. All borderline 

trees were measured for diameter and distance from plot center to determine their status as 

"in" or "out" trees. Only trees greater than 5.0 inches in DBH were sampled as potential 

"in" trees. All "in" trees were recorded by species, cored at DBH to determine width of 

sapwood, and measured for diameter. The sapwood/heartwood boundary on each core 

was marked with a pen. All cores were then inserted into straws for further analysis in the 

laboratory. 

Fixed-Radius Plots: A circular fixed plot was installed around each GBA tree, once 

again using the GBA tree as plot center. The plot was 1/30-acre in size (21.5-foot radius), 

and was used to sample all trees greater than 0.6 inches in diameter. The procedure applied 

to all variable plot "in" trees was also applied to "in" trees in the fixed plots. However, 

increment cores were only taken from trees greater than 2.0 inches in diameter in each fixed 

plot. 

Site Index: Two site index trees were selected at each location (in addition, the GBA 

trees could also be used as site index trees if little suppression occurred in their past). Site 

index trees were selected on the basis of vigorous open growth in the uneven-aged stand. 

The objective was to avoid trees that had been suppressed in the past. Site trees were 

selected by observing the structure around the tree of interest, along with the growth of the 

tree itself. Site trees were measured to the nearest 0.1 inch for diameter, to the nearest foot 

for height, and cored to the pith for age. In addition to tree measures as indicators of site 

quality, soil series was also determined at each location using soil survey maps. Habitat 

types were determined from subsequent discussion with area land managers. 
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Laboratory Procedures 

Laboratory analysis focused on the increment cores collected in the field. The sapwood 

radius of each core was measured to the nearest millimeter under a UV light. The UV light 

reaffirmed the sapwood boundary marked in the field. Increment cores from GBA trees 

were also measured for five- and ten-year radial growth increment. A "Mideo Systems" 

ring reader was used to measure radial growth increment to the nearest 0.01 inch. The age 

at breast height of site index and GBA trees was determined from increment cores using a 

"Lintech" ring reader. 

Data Summary and Analysis Methods 

Summary procedures involved calculating the basal area increment of each GBA tree 

and the corresponding variable- and fixed-radius plot estimates of sapwood area and basal 

area surrounding each GBA tree. 

Basal Area Increment Calculation: The radius at breast height inside bark was 

calculated to 0.01 inch, using field measured DBH and a double bark thickness equation 

(Faurot 1977). Next, the DBH radius had the measured radial increment subtracted from 

it, resulting in the creation of two radii. The two radii were used to calculate the area in 

square inches of two separate circles, with basal area increment equalling the difference 

between the two. The resulting value was the cross sectional area in square inches of five-

or ten-year growth at breast height for GBA trees (Appendix 3). 

Sapwood Area Calculation: The sapwood area was calculated in the same manner as 

basal area increment. The diameter inside bark was calculated to the nearest millimeter, 

then had the sapwood radius in millimeters subtracted from it. These two radii were used 

to calculate the area in square centimeters of two circles. One of these circles was the cross 
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sectional area of the tree, inside bark. The other circle was the cross-sectional area of the 

heartwood. The difference in cross-sectional area of the two circles provided an estimate of 

sapwood area, in square centimeters. 

Site Index Calculation: Site index was calculated using tree age (breast height), total 

height data, and the appropriate equation for ponderosa pine (Milner 1992)." 

GBA Calculation: Past 10-year radial increment, measured to the nearest 0.01 inch, 

was converted to 20ths of an inch. This radial growth measurement for each GBA tree, 

along with the average stand basal area at each location, was used to calculate a GBA 

measure (Hall's 1983 method). The GBA measure was in turn converted to a base-age 100 

value. 

Basal Area and Sapwood Area Summary: For each plot, basal area and sapwood area 

for all individual trees were expanded and summed, resulting in a basal area and sapwood 

area per acre value. For the variable-radius plot, individual tree sapwood area values were 

also summed but not expanded to a per acre value. Both basal area and sapwood area per 

acre were also calculated for the 21.5 foot fixed-radius plot. 

Data Analysis: The primary objective of data analysis was to evaluate the GBA 

approach as a method for estimating site in uneven-aged stands, with secondary objectives 

pertaining to the evaluation of GBA amendments for this purpose. The first step was to 

acquire a general understanding of where sites ranked relative to site quality. Then sites 

were stratified as to high, medium, or low site quality. Next, Hall's (1983) method was 

used in a strict sense. GBA results were then evaluated on the basis of their reasonability 

and comparison to other "site" measures. 

After Hall's GBA method was evaluated, regression analysis was begun. There were 

two dependent variables in this study: 5- and 10-year basal area increment. There were 

seven independent variables in this study: non-expanded variable-radius sapwood area, 

expanded variable-radius sapwood area, variable-radius basal area, fixed-radius sapwood 
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area, fixed-radius basal area, DBH, and GB A tree basal area. The objective of the 

regression analysis was to determine whether significant amounts of variation in basal area 

increments of the GBA trees could be explained by alternative measures of competition. If 

effects of competition on individual tree growth can be quantified, then a significant amount 

of the variation that is left should be attributable to site quality (barring large contributions 

from other factors such as microsites or genetics). 

Plots of the relationship between each dependent variable and independent variable 

were examined for distribution characteristics. Next, simple linear regression was 

performed using the stratified samples of high, medium, and low quality sites. Sites were 

stratified on the basis of physical location, site index values, and sapwood area values. 

The three site quality classes were then used to code variables for dummy regression. 

Under assumptions of the GBA approach, the y-intercept of the growth/density 

relationships should vary with site quality, but the slopes should remain the same. After 

regressions were executed for all combinations of dependent and independent variables, 

comparison of the models began. Regression diagnostics such as R-squareds, p-values, 

coefficients, and standard errors were used to compare all amendments of the GBA 

approach. Results of data analysis using simple linear regression and dummy regression 

can provide insights for future efforts to model site quality relationships in uneven-aged 

stands. 



Sampling Site Descriptions 

1. Tullock Creek: This site was located in eastern Montana near the town of Custer. It 

had a northerly aspect, and a slope between 15 and 18 percent. Soils were classified as 

Travessila Tullock fine sandy loam series (USDA SCS 1967). The stand was nearly pure 

ponderosa pine, with some juniper in the understory. It possessed a diverse uneven-aged 

structure, with a fair amount of regeneration. The habitat type of this site was Pinus 

ponderosa/Festuca idahoensis (Pfister et al. 1977). This stand showed little evidence of 

human activity, and was likely only entered to high grade a few logs for ranching 

purposes, if at all (Wheeler 1997). 

2. Y-Bar Coulee: This site was located in eastern Montana, east of the city of 

Roundup. It had a southerly aspect and a slope of 15 to 17 percent. Soils were classified 

as a Flasher loamy series (USDA SCS 1939). The stand was nearly pure ponderosa pine. 

This site had limited regeneration but a good uneven-aged structure (broad distribution of 

size classes). The site was classified as a Pinus ponderosa/Agropyron spicatum habitat 

type (Pfister et al. 1977). Stand history was little related to human activity, with only a few 

trees removed years ago for ranching purposes, if at all (Wheeler 1997) 

3. Silver Bullet: This site was located in eastern Montana, near the city of Roundup 

along the Mussellshell River. It had a predominantly northerly aspect and a slope of 

between 10 and 12 percent. Soils were classified as a Flasher loamy series (USDA SCS 

1939). The stand was nearly pure ponderosa pine, with a very broad distribution of 

diameter classes. A disturbance some decades ago damaged numerous larger trees. Since 

this damage had occurred long ago (evidenced by a crook at about two-thirds total height), 

it was considered to have little effect. The site was classified as a Pinus 

ponderosa/Festuca idahoensis habitat type (Pfister et al. 1977). The history of this stand 

was very similar to the other two eastern Montana sites, with the exception that a few small 

diameter trees were removed about 40 years ago, most likely for corral poles (Wheeler 

1997). 
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4. Potter Ranch; This site was located in western Montana on a ranch near Lubrecht 

Experimental Forest and the Blackfoot River. The site was nearly level, with a very slight 

eastern aspect. Soils at this site were classified as Winkler gravelly loam, cool (USDA 

SCS 1995). The species composition of this stand was predominantly ponderosa pine, 

with a few Douglas-fir in smaller diameter classes. The habitat type of this site was 

Pseudotsuga menziesUNaccinium caespitosum (Pfister et al. 1977). This site was 

selectively cut when the valley was settled, around 1900. Since 1915, the area has been 

entered only rarely for the salvage of individual trees (Goetz 1997). 

5- Lick Creek; Lick Creek is located above Lake Como in the Bitterroot Mountains of 

western Montana, near the town of Darby. The site has a southerly aspect with slopes 

between 25 and 30 percent. Soils were classified as a woodside very stony sandy loam 

steep (USDA SCS 1959). The stand was nearly pure ponderosa pine, with just a few 

Douglas-fir in the smaller diameter classes. The habitat type was Pseudotsuga 

menziesii/Calamagrostis rubescens, Pinus ponderosa phase (Pfister et al. 1977). The 

stand had regeneration in canopy openings with high structural diversity resulting from its 

balanced, uneven-aged condition. The area was selectively logged between 1906 and 

1910. How many trees were left after this event is not known, although many of the larger 

trees on the site predate that logging event. Scattered activities have occurred in the area 

since that time, with the last in 1962 (Menakis 1994). 

6. Nine Mile: This site was located in western Montana, near Interstate 90 at the 

USPS Ninemile Ranger Station exit. It was nearly level, with a very slight southerly 

aspect. Soils were classified as Winkler very gravelly sandy loam series (USDA SCS 

1995). The species composition was nearly pure ponderosa pine. This stand had 

regeneration in openings, and a modest diversity of diameter classes in its uneven-aged 

condition. The habitat type of this site is Pinus ponderosa/Agropyron spicatum (Pfister et 

al. 1977). The area was extensively logged around 1900 during European/American 

settlement of the valley and construction of the railroad along the Clark Fork River 
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(Slaughter 1997). 

7. Superior: This stand was located in western Montana, near the Interstate 90 rest 

area 7 miles east of Superior. Soils at this site were classified as Krause Association gently 

sloping (USDA SCS 1979). The site was nearly level, with a slight easterly aspect. 

Species composition of this stand was nearly pure ponderosa pine, with a few scattered 

Douglas-fir. The distribution of diameter classes was very patchy, with lack of 

regeneration in the openings between patches. The habitat type of this site was 

Pseudotsuga menziesii/Agropyron spicatum (Pfister et al. 1977). The history of this site 

is related to high-grade logging, which occurred along the Clark Fork at the turn of the 

century. There has been no major disturbance to the site since (Martin 1997). 

8. Tarkio: This site was located in western Montana near the Tarkio exit of Interstate 

90. The stand was about 0.2 miles from the Clark Fork. Soils were classified as Krause 

gravelly loam (USDA SCS 1979). The site had a gentle slope (0 to 4 percent) with a south 

aspect. Species composition was nearly pure ponderosa pine, with patchy distribution and 

heavy regeneration in all openings. The habitat type of this site was classified as a 

Pseudotsuga menziesii/Calamagrostis rubescens, Arctostaphylos uva-ursi phase (Pfister et 

al. 1977). Stand history is similar to the other two sites along the Clark Fork (Slaughter 

1997). 



Results and Discussion 

Quantification of Site Quality 

For the purpose of data analysis, a broad estimate of the site quality of all locations had 

to be ascertained. Since there was no way of knowing the exact site quality of the separate 

locations, numerous measures of site quality estimation were explored. For each location, 

site index data were examined (Table 1). Site index, as discussed previously, could be 

considered a questionable measure of site quality in uneven-aged stands. Cores extracted 

from "site" trees nearly always revealed past suppression (Appendix 4). Even cores taken 

from vigorous trees that were growing in openings showed periods of suppression in their 

ring patterns. Despite this problem, site index still could be correlated with relative site 

quality observed in the field. Location seven, which appeared to have the highest site 

quality, also had the highest site index (Table 1). Until an adequate replacement is found, 

site index could be the means of choice for site quality ranking in uneven-aged stands. 

The site index measures were compared with other reasonable measures of site quality; 

sapwood area density, basal area density, growth efficiency, and soil series (Table 2). 

Sapwood area and basal area densities appeared to be in agreement with the site index 

results (Table 2). It was thought that sapwood area density would best reflect site quality, 

since sapwood area is closely correlated to leaf area on a site. The soil series rankings were 

not consistent with the rankings based on other measures of site quality. Location four had 

the highest site quality according to the soil series information. Locations five and seven 

were considered medium quality through interpretation of the soil series results. 

Locations five and seven were estimated to have the highest site quality, while locations 

one and two were rated lowest. The rest of the locations were estimated to be medium site 

quality. Table 2 was used in data analysis when some form of site quality ranking was 
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Table 1. Site index estimates, by location. 

Location Number Site Index (Base Age Fifty) 

1 Tullock Creek 32 

2 Y-Bar Coulee 35.6 

3 Silver Bullet 32.5 

4 Potter Ranch 54 

5 Lick Creek 52 

6 Nine Mile 43.5 

7 Superior 56 

8 Tarkio 52.2 

Table 2. Location numbers ranked by various site quality measures, with the highest 

position in the table being the highest site quality level. 

Site Sapwood Sapwood Basal Basal Growth Soil 

Index Area Area Area Area Efficiency Series 

(Variable- (Fixed- (Fixed- (Variable-

Radius) Radius) Radius) Radius) 

7 7 7 3 6 3 4 

4 5 3 7 7 8 6 

8 8 6 6 3 2 7 

5 6 8 8 5 7 8 

6 4 2 1 8 1 5 

2 3 1 2 4 5 3 

3 2 5 5 1 6 2 

1 1 4 4 2 4 1 
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needed. Because site quality assessment is inexact, the rating of each location is 

approximate only. Site quality estimates were not used in an absolute sense in data 

analysis, but instead were used for ranking whenever stratification was needed 

Growth Basal Area Method 

A primary objective of this study was to evaluate the utility of the GBA method in 

uneven-aged stands. Hall's (1983) approach was used in a very strict sense to determine 

the actual GBA number for each location. The results of the GBA method are in agreement 

with the high-site locations (i.e. five and seven) (Table 3). The GBA method, however, 

ranked two western Montana sites as having the same site quality as the eastern Montana 

sites. A number of GBA components could contribute to the inconsistent performance of 

this method in uneven-aged stands. Ten-year radial growth may not accurately gauge 

recent growth of the GBA tree. Variable-radius plot estimates of basal area may not 

accurately reflect the competition environment in an uneven-aged stand. Consequently, use 

of the GBA method to derive site quality estimates in uneven-aged ponderosa pine stands 

appears questionable, at least in Montana. 

Components of the GBA method were closely examined to identify potential problems. 

The use of 10-year radial growth to index the growth of GBA trees may have differentially 

influenced the GBA estimates. Hall (1983) attributes sequentially smaller radial increments 

of the GBA tree over the lO-year period of evaluation to the effects of competition. 

However, cross sectional area of the GBA tree must be taken into account. Uniform basal 

area increment on an ever-larger tree explains some slowing in radial growth of the GBA 

tree. The GBA trees in this study were not the same size, and in fact varied considerably in 

diameter. Theoretically, Hall's (1983) approach can only work if all GBA trees have the 

same DBH. Departures from this assumption may result in considerable variation in GBA 
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Figure 3. Ten-year basal area increment versus variable-radius plot 
estimates of sapwood area, by location. 
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Figure 4- Ten-year basal area Increment versus expanded variable-radius 
plot estimates of sapwood area, by location. 
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values. 

Another key assumption of the GBA approach is the relationship between GBA tree 

growth increment and surrounding density measures. Due to the previously discussed 

shortcomings of radial increment as a dependent variable, basal area growth increment was 

used in all subsequent analyses. Basal area growth increment of GBA trees and variable-

radius plot estimates of basal area competition are shown in Table 4- Visual examination of 

plots of these data indicates that this relationship is not strong (Figures 1 and 2). The GBA 

method is based on two assumptions: 1) rate of radial growth of a GBA tree decreases 

with increasing stand density, 2) GBA trees on different sites will demonstrate the same 

radial growth response to increasing density, but at different levels of basal area 

competition. Basal area increment of GBA trees should decrease with increasing basal area 

densities (competition). This relationship should exist for all sites, but at different levels, 

due to different site qualities. However, results of comparing 10-year basal area increment 

of GBA trees to variable-radius plot estimates of basal area competition suggests that this 

relationship may not be well defined in uneven-aged stands. 

Regression was employed to examine the relationship between GBA tree growth and 

the basal area competition surrounding it. Pooling data from all sites (locations) violated 

the principle of site quality stratification, as evidenced by a low R-squared (Table 5). 

Alternatively, evaluating this relationship by individual location resulted in too few data 

points, R-squareds that varied from 0.006 to 0.78, and nonsignificant p-values (Table 5). 

By grouping locations into high, medium, and low site-quality rankings (pooling plots and 

increasing the degrees of freedom) the p-values decreased and the R-squareds stabilized. 

These results suggest that examining relationships by location should be avoided unless the 

number of GBA sample trees and associated plots approaches 20. Therefore, all 

subsequent data analysis used site quality groupings. 

Analysis of the relationship between GBA tree basal area increment and variable-plot 
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Table 4- Five- and ten-year basal area increments of GBA trees, and associated variable-

radius plot estimates of basal area competition around each tree. 

GBA 

Tree # 

5 Year 

BAI 

(sq.in.) 

10 Year 

BAI 

(sq.in.) 

Variable 

BA 

(sq.ft/ac 

re) 

GBA 

Tree# 

5 Year 

BAI 

(sq.in.) 

10 Year 

BAI 

(sq. in.) 

Variable 

BA 

(sq.ft/ac 

re) 

1 9.624 16.194 100 18 6.928 14.477 no 

2 5.874 9.331 70 19 17.100 29.159 100 

3 5.042 10.586 90 20 12.540 24-766 100 

4 5.042 7.673 90 21 15.940 33.813 90 

5 5.798 15.587 80 22 11-470 18.977 100 

6 5.625 13.512 70 23 7.313 16.534 140 

7 8.998 20.086 70 24 10.100 17.635 120 

8 9.244 19.564 60 25 5.577 12.871 110 

9 6.204 11.578 70 26 7-482 14.023 140 

10 5.384 9431 80 27 12.420 25.387 110 

11 6.187 10.231 80 28 16.890 29.778 110 

12 5.987 9-423 110 29 17.060 31.093 90 

13 7.019 11.545 110 30 4.847 9.587 130 

14 11.210 18.212 130 31 6.291 12.845 110 

15 2.712 6.762 80 32 6.341 11.153 90 

16 12.320 23.799 70 33 8.186 15.676 80 

17 15.280 31.104 79 34 11.250 22.629 110 
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Table 5. Results of the regression of ten-year basal area increment on basal area 

competition, by location and site quality groupings. 

BAIIO vs 

VarBA 

Probability>F R-Squared VarBA 

Coefficient 

Standard 

Error 

Total DF 

All Locations 0.8949 0.0006 -0.00829 0.06226 33 

Location 1 0.5910 0.1071 0.109482 0.18254 4 

Location 2 0.1452 0.5609 -0.50663 0.25881 4 

Location 3 0.2695 0.5336 0.141834 0.09375 3 

Location 4 0.4952 0.2548 -0.28379 0.34315 3 

Location 5 0.2481 0.5654 -0.95123 0.58969 3 

Location 6 0.7528 0.0611 0.036233 0.10042 3 

Location 7 0.1121 0.7883 -0.53763 0.19699 3 

Location 8 0.6247 0.1409 0.126589 0.22104 3 

High Quality 

Locations 

0.0175 0.6377 -0.47948 0.14754 7 

Med. Quality 

Locations 

0.5016 0.0329 -0.48427 0.07019 15 

Low Quality 

Locations 

0.3413 0.1134 -0.11963 0.11825 9 

*Relationship —> BAIIO = bo + bl(Variable) —> BAIlOA'^ariable 
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estimates of competition used site quality groupings to stratify the samples (Table 2). 

When using these groupings, the 10-year increment/basal area density relationship had an 

R-squared of 0.0329 for medium site qualities (p-value=0.5016) (Table 5). The 

relationship (even when using 5-year B AI) had similar results for low and high site quality 

groupings. It appears Hall's (1983) method of using 10-year increment and variable-radius 

plot estimates of basal area in a stockability equation may not apply in uneven-aged stands. 

After analyzing the strength of the relationship between GBA tree increment and basal 

area competition, the nature of this relationship was examined. The slope of the 

relationship between the growth of a GBA tree and its surrounding density should be the 

same no matter what site quality. In addition, the y-intercepts for this relationship should 

vary with site. A high site quality location should have a higher y-intercept resulting from 

higher basal area increments at a given density level. Using regression, with site quality 

groupings coded by dummy variables, the y-intercept was significantly different between 

high and medium/low sites (Table 6). There was insufficient evidence to detect a 

significant difference between the y-intercept of the medium and low site classes (Table 6). 

Using the same dummy variable coding, differences in slopes between site quality 

groupings were tested by adding two product terms (the independent variable in question 

times both of the dummy variables). Again, there was insufficient evidence to show a 

significant difference in slopes at different levels of site quality (Table 6). The relationship 

between basal area increment and variable-radius plot estimates of basal area appears to 

behave as Hall's (1983) approach suggests. The y-intercepts of the site quality groupings 

are different, but their slopes are not. 

Hall's (1983) approach, in a broader sense, may still hold promise for application in 

uneven-aged stands. The specific variables of the GBA method may need to be replaced 

with variables that are more appropriate for the uneven-aged condition. Much of the effort 

of this study was focused on alternative variables and sampling approaches that fit within a 

broader concept of the GBA method. 
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Table 6. Results of the regression (with slope and intercept dummy variables) of ten-year 

basal area increment on basal area competition. 

Regression 

Analysis 

Probability 

>F 

R-Squared Parameter 

Estimate 

Standard 

Error 

Prob. > ITI Degrees 

of Freedom 

Intercept 

Dummy 

Part 1 * 

0.0005 0.4438 Bo=21.642 

B 1=4.9409 

B2= 14.703 

B03::4.8715 

B 1=2.8091 

B2=3.1744 

Bo=0.0001 

B 1=0.0888 

B2=0.0001 

33 

Slope** 

Dummy 

VARBA 

0.0003 0.5457 B4=0.0712 

B5=-0.3598 

B4=0.1623 

B5=0.2197 

B4=0.6643 

B5=0.1128 

33 

* Intercept Dummy Equation—> BAI10=Bo+Bl(duml)+B2(dum2)+B3(VarBA) 

Part l—> Low Site=Bo Medium Site=Bo+B 1 High Site=Bo+B2 

** Slope Dummy Equation—> BAI10=Bo+Bl(duml)+B2(dum2)+B3(VarBA)+ 

B4(dum 1 * VarB A)+B 5(dum2* VarB A) 

Figure 2. Five-year basal area increment versus variable-radius plot 
estimates of basal area, by location. 
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Sapwood Analysis 

In order to evaluate alterations to Hall's GBA variables, sapwood area was examined as 

a surrogate for basal area as a measure of competition around the GBA tree. Current 

literature indicates that sapwood area may provide valuable information on the competitive 

interactions between components of an uneven-aged stand. If sapwood area indirectly 

reflects the vigor and size of individual tree crowns in an uneven-aged stand, it would 

likely be a useful measure of density around individual trees. Consequently, the 

relationship between GBA tree growth increment and competing sapwood area was 

evaluated. 

The density of sapwood competition around each GBA tree was sampled using three 

kinds of plots: variable-radius, expanded variable-radius, and fixed area (Table 7). The 

difference between the expanded and non-expanded variable-radius plot estimates of 

sapwood area is that the non-expanded estimates is simply the sum of sapwood areas of 

"in" trees, while the expanded estimates of density are on a per acre basis. Examination of 

the plots of 10-year basal area growth increments versus the three estimates of sapwood 

competition indicate no strong relationship (Figures 3,4, and 5). Regression analysis 

performed between the GBA tree increment and these three estimates of sapwood density 

had mixed results. GBA tree increment showed no relationship with fixed-radius plot 

estimates of sapwood area at any site quality (Table 8). However, basal area increment of 

GBA trees was modestly correlated with the expanded and non-expanded variable-radius 

plot estimates of sapwood area at high site qualities (Table 8). These two models, 

however, performed poorly with medium site qualities and inconsistently with low site 

qualities (Table 8). It may be that a modest relationship between growth increment and 

sapwood area obtains only on high sites. More likely, it is a spurious relationship resulting 

from a small sample size. It also could be attributed to the assignment of sampling 
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Table 3. Growth Basal Area estimates, by location, using Hall's (1983) method. 

Location Number Avg. Radial 10 yr. Avg. Stand Basal GBA 

Growth (20ths in.) Area (sq. ft./acre) (base age 100) 

1 7.2 86.0 65.8 

2 8.6 70.0 55.0 

3 7.5 107.5 84.1 

4 6.5 82.5 64.0 

5 10.2 97.5 104.8 

6 7.7 127.5 109.1 

7 10.0 110.0 103.6 

8 8.5 97.5 75.8 

Figure 1. Ten-year basal area increment versus variable-radius plot 
estimates of basal area, by location. 

Location 1 
Location 2 
Location 3 
Location 4 
Location 5 
Location 6 
Location 7 
Location 8 

I 
9 0  1 1 0  1 3 0  1 5 0  

8 0  1 0 0  1 2 0  1 4 0  

Basal Area (sq. ft.) 
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Figure 5. Ten-year basal area increment versus fixed-radius plot 
estimates of sapwood area, by location. 
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Table 7. Estimates of sapwood area competition around GBA trees based on three plot 

sampling methods. 

GBA 

Tree # 

Variable 

-Plot 

Sap.Ar. 

(sq.cm) 

Expand. 

Variable 

Sap.Ar. 

(sq.cm) 

(1 acre) 

Fixed-

Plot 

Sap. 

Area 

(sq.cm) 

(1/33 

acre) 

GBA 

Tree # 

Variable 

-Plot 

Sap.Ar. 

(sq.cm) 

Expand. 

Variable 

-Plot 

Sap.Ar. 

(sq.cm) 

(1 acre) 

Fixed-

Plot 

Sap. 

Area 

(sq.cm) 

(1/33 

acre) 

1 1959.9 48709 1771.9 18 2079.4 58893 1909.6 

2 2974.8 40525 986.8 19 6359.1 46778 1086.6 

3 1986.2 49626 1926.2 20 12118.0 49429 2530.9 

4 2237.3 50996 2201.3 21 5195.6 31354 614.8 

5 2901.6 48070 839.6 22 9069.1 52401 1962.6 

6 3187.5 44020 957.2 23 7167.6 71874 3413.8 

7 2535.3 46994 2762.0 24 6484-7 59575 2221.3 

8 2785.0 35912 1531.8 25 7583.3 49717 1449.8 

9 2436.0 40091 1740.5 26 8023.7 82743 1772.5 

10 3595.2 51028 1432.2 27 9870.0 68723 1130.9 

11 4111.7 45040 2442.3 28 11630.0 67701 1290.2 

12 42894 70820 3866.5 29 8281.5 54772 4541.7 

13 7128.8 60743 1004.9 30 13321.0 80923 4807.0 

14 5681.3 64953 3393.9 31 8747.9 58683 907.4 

15 8420.0 41296 1953.0 32 6873.8 57113 974.3 

16 8938.9 39520 1118.7 33 5072.3 49180 1671.3 

17 8178.6 37035 222.3 34 9826.8 67263 3667.7 
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Table 8. Results of regression of ten-year basal area increment on alternative estimates of 

sapwood area, by site quality grouping. 

Relationship Site Quality 

Groupings 

Prob. 

>F 

R2 Coefficient Standard 

Error 

Total DF 

BAIIO vs 

Variable-Plot 

Sapwood 

Area 

High Quality 0.065 0.45 -0.00186 0.00082 7 BAIIO vs 

Variable-Plot 

Sapwood 

Area 

Medium 

Quality 

0.186 0.12 0.00103 0.00074 15 

BAIIO vs 

Variable-Plot 

Sapwood 

Area 

Low Quality 0.821 0.00 -0.00067 0.00291 9 

BAIIO vs 

Expanded 

Variable-Plot 

Sapwood 

Area 

High Quality 0.073 0.45 -0.00035 0.00015 7 BAIIO vs 

Expanded 

Variable-Plot 

Sapwood 

Area 

Medium 

Quality 

0.942 0.00 -0.000007 0.00010 15 

BAIIO vs 

Expanded 

Variable-Plot 

Sapwood 

Area Low Quality 0.337 0.11 -0.00028 0.00027 9 

BAIIO vs 

Fixed-Plot 

Sapwood 

Area 

High Quality 0.162 0.29 -0.00264 0.00166 7 BAIIO vs 

Fixed-Plot 

Sapwood 

Area 

Medium 

Quality 

0.520 0.03 -0.00097 0.00147 15 

BAIIO vs 

Fixed-Plot 

Sapwood 

Area 
Low Quality 0.586 0.03 0.00142 0.00251 9 

*Relationship —> BAIIO = bo + bl(Variable) —> BAIlOA'ariable 
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locations to site quality classes; some of the medium sites may be more appropriately 

assigned to the low or high site quality groupings. The correlation between GBA tree basal 

area increment and variable-plot estimates of sapwood area density was slightly weaker 

than the relationship between GBA tree basal area increment and similar estimates of basal 

area competition. 

Regression, with site quality classes coded as dummy variables, was conducted on 

GBA tree basal area increment data and the associated sapwood area estimates. Basal area 

increment regressed on sapwood area estimates derived from fixed-radius plots did not 

display the slope and y-intercept behavior as indicated by Hall's (1983) method (Table 9). 

Regressions using the two variable-radius plot estimates of sapwood area provided weak 

statistical evidence supporting assumptions of the GBA method. The y-intercept was 

significantly different between high and medium/low sites for the two variable-radius plot 

estimates of sapwood area (Table 9). However, there was insufficient evidence to show a 

significant difference in slopes at different levels of site quality for any of the three 

approaches to estimating sapwood area competition (Table 6). 

The relationship between a dominant tree's growth in an uneven-aged stand and its 

surrounding sapwood area behaves as Hall's (1983) model suggests, but a strong 

relationship was not found. A potential problem exists with the non-expanded variable-plot 

estimates of sapwood area. Results of regression with this variable may be spurious. 

Because this variable was not translated to a per-acre basis, and its derivation violates the 

assumptions of variable-radius plot sampling, it should be held suspect. 

In summary, a strong relationship was not found between GBA tree growth increments 

and estimates of sapwood area competition in uneven-aged stands. The reason for this may 

be due as much to the sampling scheme as to the variable itself. The variable-radius plot 

sampling approaches to estimating sapwood area appear to hold more promise than the 

fixed-radius plot. This question of sampling approach will be addressed in the next 

section. 
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Table 9. Results of regression of ten-year basal area increment on alternative estimates of 

sapwood area (with slope and intercept dummy variables). 

Regression 

Analysis 

Probability 

>F 

R-Squared Parameter 

Estimate 

Standard 

Error 

Prob. > ITI Degrees 

of Freedom 

Intercept* 

Dummy 

FIXSAP 

0.0007 0.4306 Bo=15.845 

B 1=2.7975 

B2=12.940 

Bo=2.4384 

Bl=2.4401 

B2=2.9016 

Bo=0.0001 

B 1=0.2607 

B2=0.0001 

33 

Slope** 

Dummy 

FIXSAP 

0.0028 0.4607 B4=-0.0023 

B5=-0.0040 

B4=0.0036 

B5=0.0036 

B4=0.5138 

B5=0.2708 

33 

Intercept* 

Dummy 

EVARSAP 

0.0002 0.4787 Bo=22.770 

B 1=4.574 

B2=14.205 

Bo=4.3367 

B 1=2.5152 

B2=2.8754 

Bo=0.0001 

B 1=0.0789 

B2=0.0001 

33 

Slope** 

Dummy 

EVARSAP 

0.0009 0.5077 B4=0.0001 

B5=-0.0001 

B4=0.0003 

B5=0.0003 

B4=0.6513 

B5=0.8911 

33 

Intercept* 

Dummy 

VARSAP 

0.0019 0.3877 Bo=14.216 

B 1=3.5443 

B2=14.180 

Bo=2.4623 

B 1=3.4037 

B2=4.8172 

Bo=0.0001 

B 1=0.3606 

B2=0.0062 

33 

Slope** 

Dummy 

VARSAP 

0.0006 0.5217 B4=0.0017 

B5=-0.0011 

B4=0.0036 

B5=0.0036 

B4=0.6429 

B5=0.7475 

33 

* Intercept Dummy Equation~> BAI10=Bo+Bl(duml)+B2(dum2)+B3(variable being examined) 

Part 1—> Low Site=Bo Medium Site=Bo+Bl High Site=Bo+B2 

** Slope Dummy Equation--> BAI10=Bo+Bl(duml)+B2(dum2)+B3(variable being examined) 

B5(duml * variable being examined)+B6(dum2*variable being examined) 
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Evaluation of Sampling Techniques 

Both variable- and fixed-radius plot sampling methods were employed to estimate basal 

area and sapvi'ood area density. The relationship of basal area increment to variable-plot 

estimates of basal area and variable- and fixed-radius plot estimates of sapwood area have 

already been examined in this investigation. The relationship between basal area increment 

of GBA trees and fixed-radius plot estimates of basal area need to be explored before any 

comparisons between sampling techniques can be made. 

No trend was discernible when 10-year basal area increment was plotted against fixed-

radius plot estimates of basal area. (Figure 6) (Table 10). The regressions of 10-year basal 

area increment on fixed-radius plot estimates of basal area had poorer results than those 

using variable-radius plot estimates of basal area, with R-squared's near zero for medium 

and low sites (Table 11). Regressions of this relationship, with site classes coded as 

dummy variables, had associated slope values that provided modest support of Hall's 

(1983) GBA concepts (Table 12). However, the y-intercepts among site classes were less 

well differentiated than with corresponding models using alternative density estimates. 

The basal area increment of GBA trees had a stronger relationship with variable-

radius plot estimates of basal area and sapwood area than with fixed-radius plot estimates 

of density. For the high site quality group, R-squareds for models using variable- and 

fixed-radius plot estimates of basal area were 0.63 and 0.29 respectively (p-values 0.01 

and 0.18 respectively) (Tables 5 and 11). The R-squareds for regressions using variable-

and fixed-radius plot estimates of sapwood area were 0.45 and 0.29 respectively (p-values 

0.06 and 0.16 respectively) (Table 8). In addition to having higher R-squareds and greater 

significance, models using variable-radius plot estimates of density were more consistent 

with Hall's (1983) y-intercept and slope behavior constructs (Tables 6, 9, and 12). 
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Table 10. Fixed-radius plot estimates of basal area associated with each GBA tree. 

Plot # Fixed BA 

(sq.ft.) (1 acre) 

Plot # Fixed BA 

(sq.lt.)(l acre) 

Plot # Fixed BA 

(sq.ft.)(] acre) 

1 107.7 13 55.5 25 87.9 

2 51.5 14 197.3 26 77.9 

3 112.0 15 94.8 27 53.3 

4 124.3 16 67.1 28 61.1 

5 40.2 17 13.4 29 222.4 

6 41.7 18 115.9 30 222.2 

7 123.4 19 54.9 31 53.2 

8 77.3 20 119.5 32 48.0 

9 88.7 21 26.5 33 81.3 

10 67.2 22 102.9 34 190.1 

11 117.7 23 191.8 

12 206.3 24 163.2 
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Table 11. Results of regression of ten-year basal area increment on fixed-radius plot 

estimates of basal area, by site quality grouping. 

BAIIO vs 

FIXBA 

Probability>F R-Squared FIXBA 

Coefficient 

Standard 

Error 

Total DF 

High Quality 

Locations 

0.1766 0.2908 -0.05421 0.03540 7 

Med. Quality 

Locations 

0.6871 0.0119 -0.01094 0.02661 15 

Low Quality 

Locations 

0.8835 0.0029 0.00713 0.04716 9 

*Relationship —> BAIIO = bo + bl(Variable) —> BAIlOA'ariable 

Table 12. Results of regression (with slope and intercept dummy variables) of ten-year 

basal area increment on fixed-radius plot estimates of basal area. 

Regression 

Analysis 

Probability 

>F 

R-Squared Parameter 

Estimate 

Standard 

Error 

Prob. > ITl Degrees 

of Freedom 

Intercept* 

Dummy 

FIXBA 

0.0009 0.4187 Bo=15.508 

B 1=2.8934 

B2=12.598 

Bo=2.4558 

B 1=2.4869 

B2=2.9037 

Bo=0.0001 

B 1=0.2538 

B2=0.0001 

33 

Slope** 

Dummy 

FIXBA 

0.0037 0.4484 B5=-0.0180 

B6=-0.0613 

B5=0.0672 

B6=0.0691 

B5=-0.269 

B6=-0.888 

33 

* Intercept Dummy Equation--> BAI10=Bo+Bl(duml)+B2(dum2)+B3(variable being examined) 

Part l—> Low Site=Bo Medium Site=Bo+Bl High Site=Bo+B2 

** Slope Dummy Equation--> BAI10=Bo+BI(dumI)+B2(dum2)+B3(variable being examined) 

B5(duml*variable being examined)+B6(dum2*variable being examined) 
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Although basal area increments had minimal correlation with measures of density, there 

was an obvious difference between variable- and fixed-radius plot estimates of density and 

their ability to explain growth of the GBA tree. Variable-radius plot sampling of basal area 

and sapwood area provide better estimates of density, and therefore may better explain 

variation in basal area increment of GBA trees, than fixed-radius sampling designs (unless 

larger area fixed-radius plot designs are considered). 

Alternative Dependent Variables 

Alternatives to the dependent variable, basal area increment of the GBA tree, were also 

investigated. The purpose of this investigation was to find significant correlation between 

some measure of growth and corresponding density measures. It was hypothesized that if 

the dependent variable could somehow take into account tree cross sectional area or crown 

size, such as with individual tree basal area or growth efficiency, then perhaps a stronger 

relationship could be achieved with the various measures of density. Growth efficiency 

variables were created by dividing the dependent variable of basal area increment by the 

sapwood area of the GBA tree itself (Table 13). As expected, growth efficiency variables 

varied greatly from tree to tree due to the various degrees of competition encountered and 

the variation in tree sizes. Another dependent variable ~ referred to as the basal area ratio 

(barat) — was also created. The barat variable was the lO-year basal area increment divided 

by the basal area of the GBA tree itself. As evident in table 13, this variable did not vary as 

much as the growth efficiency variable, most likely because sapwood area of an individual 

tree would be more sensitive to relatively recent competition than basal area . 

Each of the alternative dependent variables (growth efficiency and barat) were regressed 

on the five alternative estimates of the independent variable (density). The goal was to see 

if the independent variables could explain more variation in these alternatives to basal area 

growth of the GBA tree (Table 14). None of these models explained a significant amount 
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Table 13. Growth efficiencies (BAIIO/GBA sapwood area) and BARAT (BAIIO/GBA 

basal area) for each GBA tree. 

GBA 

Tree# 

Growth 

Effic. 

in^/cm^ 

BARAT 

in2/ft2 

GBA 

Tree# 

Growth 

Effic. 

in^/cm^ 

BARAT 

in^/ft^ 

GBA 

Tree # 

Growth 

Effic. 

in^/cm^ 

BARAT 

in^/ft^ 

1 0.0227 0.00076 13 0.0147 0.00042 25 0.0060 0.00025 

2 0.0103 0.00025 14 0.0187 0.00060 26 0.0147 0.00054 

3 0.0098 0.00039 15 0.0017 0.00006 27 0.0119 0.00042 

4 0.0103 0.00028 16 0.0078 0.00029 28 0.0172 0.00049 

5 0.0115 0.00055 17 0.0010 0.00043 29 0.0155 0.00056 

6 0.0125 0.00063 18 0.0043 0.00013 30 0.0078 0.00029 

7 0.0137 0.00058 19 0.0128 0.00034 31 0.0101 0.00030 

8 0.0098 0.00038 20 0.0092 0.00032 32 0.0208 0.00076 

9 0.0166 0.00054 21 0.0118 0.00049 33 0.0154 0.00059 

10 0.0138 0.00043 22 0.0146 0.00046 34 0.0097 0.00039 

11 0.0179 0.00053 23 0.0071 0.00025 

12 0.0124 0.00031 24 0.0151 0.00051 
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of variation in the alternative dependent variables. Instead, the GBA sapwood area and the 

GBA basal area variables should be treated as independent variables, since they may 

explain additional variation in GBA basal area increments. 

Growth Basal Area Tree DBH and Sapwood Area 

Tree size (diameter) and sapwood area could also help explain variation in basal area 

growth of the GBA tree. A large diameter tree, even if it had little radial growth, could 

accrue considerable basal area increment, while a small diameter tree with a large radial 

increment may accrue a relatively small amount of basal area. The sapwood area of a GBA 

tree might explain growth increment variation of the tree itself, since sapwood area has 

been shown to be closely correlated with leaf area (Waring et al 1982). A tree with a large 

DBH, or even more so a large sapwood area, should have a substantial amount of basal 

area growth over 10-years. A plot of basal area growth versus DBH of the GBA trees 

indicates that there was a positive relationship (Figure 7) (Table 15). Regression of GBA 

tree basal area increments on GBA tree DBH and sapwood area (by site quality classes) had 

favorable results. The model with DBH as the only independent variable had an R-squared 

of 0.56 for the high site quality class, although R-squared's for the medium and low site 

quality classes were somewhat lower (p-value= 0.03) (Table 16). The model with GBA 

sapwood area as the independent variable had even more favorable results, with R-

squareds of 0.62, 0.21, and 0.36 for high, medium, and low sites, respectively (p-value= 

0.01, 0.07, and 0.06 respectively) (Table 16). It appears that GBA sapwood area would 

be a useful variable to include in modeling efforts to explain growth variations in GBA 

trees. 
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Table 14. Results of regression of growth efficiency (GREFF) and BARAT on alternative 

estimates of density (high quality sites). 

Relationship Probability>F R-Squared Var. Coeff. Std. Error Total DP 

Greff/Varsap 0.4532 0.0968 -0.000001 0.000001 7 

Greff/EVarsap 0.7568 0.0172 -0.000002 0.000001 7 

Greff/V arB A 0.2789 0.1910 -0.000106 0.000088 7 

Greff/FixBA 0.5704 0.0566 -0.000001 0.000016 7 

Greff/Fixsap 0.5003 0.0789 -0.000001 0.000001 7 

Barat/Varsap 0.2515 0.2116 -0.000528 0.000416 7 

Barat/EVarsap 0.4731 0.0889 -0.000006 0.000082 7 

Barat/VarBA 0.1068 0.3746 -0.152841 0.080627 7 

Barat/FixBA 0.7958 0.0121 -0.004671 0.017261 7 

Barat/FixSap 0.7345 0.0206 -0.000290 0.000816 7 

*Relationship —> BAIIO = bo + bl(Variable) —> BAIlOA'ariable 
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Table 15. Diameter at breast height and sapwood area for each GBA tree. 

GBA 

Tree# 

DBH 

(inches) 

Sapwd. 

Area 

(sq. cm) 

GBA 

Tree# 

DBH 

(inches) 

Sapwd. 

Area 

(sq. cm) 

GBA 

Tree# 

DBH 

(inches) 

Sapwd. 

Area 

(sq. cm) 

1 10.8 422.6 13 12.2 476.5 25 16.8 928.8 

2 14.2 572.9 14 12.9 600.9 26 11.9 508.5 

3 12.2 512.2 15 24.4 1598.7 27 18.1 1035.4 

4 12.2 491.6 16 21.3 1586.5 28 18.2 981.0 

5 12.4 502.8 17 19.9 1530.3 29 17.4 1102.2 

6 10.8 448.5 18 25.0 1617.5 30 13.5 622.3 

7 13.7 657.3 19 21.5 1333.8 31 15.2 625.1 

8 16.8 933.8 20 20.7 1366.8 32 9.0 305.1 

9 10.8 372.9 21 19.4 1348.6 33 12.0 532.9 

10 10.9 391.3 22 15.0 785.5 34 17.8 1167.1 

11 10.3 346.2 23 18.9 1030.8 

12 12.8 481.7 24 13.7 670.5 

Figure 7. Ten-year basal area increment versus diameter at breast height, 
all locations. 

35 

3 0 -

O" 

c 0) 
E 
CD 
L_ o 

CC a> 

2 5 -

20 

<  1 5 -
co 
CO 
CO 
CO 1 0 -

5-T-
1 0 1 1 

T" 
1 2 

T" 
1 3 

T" 
1 4 

T-
1 5 

1— 
1 6 

Data Point 

1 7 1 8 1 9 

DBH (inches) 



45 

Table 16. Regression of ten-year basal area increment on GBA tree DBH and sapwood 

area, by site quality grouping. 

Relationship Site Quality 

Groupings 

Prob. 

>F 

R2 Varsap 

Coefficient 

Standard 

Error 

Total DF 

BAIIO vs 

DBH 

High Quality 0.03 0.56 2.17163 0.78029 7 BAIIO vs 

DBH Medium 

Quality 

0.30 0.07 0.34629 0.32227 15 

BAIIO vs 

DBH 

Low Quality 0.19 0.20 1.00692 0.70699 9 

BAIIO vs 

GBA 

Sapwood 

Area 

High Quality 0.01 0.62 0.02249 0.00715 7 BAIIO vs 

GBA 

Sapwood 

Area 

Medium 

Quality 

0.07 0.21 0.00585 0.32222 15 

BAIIO vs 

GBA 

Sapwood 

Area 
Low Quality 0.06 0.36 0.01589 0.00746 9 

*Relationship —> BAI10 = bo + bl(Variable) —> BAIIO/Variable 
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A number of dependent and independent variables merit consideration in future efforts 

to model growth/density relationships as a means of estimating site quality in uneven-aged 

stands. For the dependent variable of GBA tree growth, 10-year basal area increment 

appears preferable to 5-year increment. Ten-year basal area increment was in most cases 

slightly better correlated with surrounding density measures than 5-year BAI. This may be 

due to 5-year basal area increment incorporating a shorter history of the GBA tree's 

response to surrounding competition. It was initially hypothesized that five-year basal area 

growth may simply be 10-year basal area growth divided by two. All 10-year basal area 

growth estimates were divided by two and paired up with corresponding five-year 

estimates. A difference-of-means test was conducted between the two measures of basal 

area increment. The means for five- and 10- year increment were 8.979 and 8.601, 

respectively. The standard deviations for five- and 10-year BAI were 4.011 and 3.799, 

respectively. The t-test failed to reject the null hypothesis that there is no difference in basal 

area increment means (p-value 0.69). Although regressions using the five- and lO-year 

BAI as alternative dependent variables produced different R-squareds, the paired t-test 

failed to provide strong evidence of a difference between the two. 

The growth increment of GBA trees did not show significant correlation with sapwood 

area density measures. Conceptually, sapwood area as a density measure still holds 

promise for application in site quality estimation, but may not have been sampled or 

modeled appropriately. The variable-radius plot sampling method did prove more valuable 

in this project than did fixed-radius plots, and it is proposed to further evaluate variable-

radius plot sampling as a means of estimating density in uneven-aged stands. The use of 

either GBA tree sapwood area or DBH is recommended as an independent variable in 

Hall's (1983) approach. These variables greatly aided in explaining the variation in growth 

of the GBA tree — variation that was not due to site variables. 



Conclusion 

Several methods of estimating site quality in uneven-aged stands were explored in this 

study. Results differed among traditional methods, such as site index and soil series. Site 

index and sapwood area density came closest to expected and reasonable estimates of site 

quality. Estimating site quality in uneven-aged stands is a difficult task, no matter what 

method is used. Hall's (1983) application of the GBA concept in even-aged stands does 

have shortcomings, and did not work well in uneven-aged stands in this study. Evaluation 

of his fundamental idea of radial growth in relation to stand basal area density, indicated 

that Hall's method may be adaptable to the uneven-aged condition. However, most of the 

amendments and alterations of Hall's GBA approach provide little insight into the growth-

competition relationships in uneven-aged ponderosa pine stands. Results indicate that 

variable-radius plot estimates of density may be more useful than fixed-radius plot 

estimates in explaining variation in upper stratum tree growth. Results also indicate that for 

the sampling methods evaluated, sapwood area provides little advantage over basal area as 

a density measure. In this study, the growth of an upper stratum tree in an uneven-aged 

ponderosa pine stand showed little relationship to the density of surrounding members of 

the same stratum, and only a weak relationship to estimated densities of the subordinate 

strata. The two independent variables not directly related to density ~ GBA tree sapwood 

area and GBA tree DBH ~ showed a strong relationship with basal area growth of the 

GBA tree, and merit consideration in future work with GBA models. 

Although the overall significance of models evaluated in this study rarely reached an 

appreciable level, results suggest that some extension of Hall's (1983) GBA approach 

might have utility in uneven-aged conditions. If a preliminary model for estimating relative 

site quality were proposed based on the results of this project, it would be 10-year basal 

area increment of a GBA tree dependent on the GBA tree's sapwood area, and on variable-

47 
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radius plot estimation of either sapwood area or basal area surrounding the GBA tree. 

However, until further work regarding uneven-aged stand dynamics and competition is 

undertaken, the standard GBA approach appears to have marginal utility in uneven-aged 

ponderosa pine stands. 



Appendix 1 

Location of Plots 

Location # Location Name Physical Location Plot #'s at Location 

1 Tullock Creek Eastern MT, Near Custer 1, 2, 3, 4, 5 

2 Y-Bar Coolee Eastern MT, Near Roundup 6, 7, 8, 9, 10 

3 Silver Bullet Eastern MT, Near Roundup 11, 12, 13, 14 

4 Potter Ranch Western MT, Near Lubrecht 15, 16, 17, 18 

5 Lick Creek Western MT, Near Hamilton 19, 20, 21, 22 

6 Ninemile Western MT, Near Ninemile 23, 24, 25, 26 

7 Superior Western MT, Near Superior 27, 28, 29, 30 

8 Tarkio Western MT, East of Superior 31, 32, 33, 34 
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Appendix 2 

Plots Surrounding GBA Tree 

BOTH # 

FIXED O 

VARIABLE © 

21.5 Feet 
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Appendix 3 

Calculation of Sapwood Area and Basal Area Increment 

Sapwood iiiiiiiiiii 

Bairk 

Heartwood | 

Pith • 

Radius Inside Bark: 

Diameter Inside Bark= Diameter Outside Bark- Double Bark 

Thickness (Faurot 1977) 

Radius Inside Bark= Diameter Inside Bark /2 (1 on Diagram) 

Sapwood Area; 

(Radius Inside Bark 2 x Pi) - [(Radius Inside Bark -

Sapwood Core Measure)^ x Pi] 

Following Diagram= (1^ x Pi) - [(1 - 3)2 x Pi] 

Basal Area Increment: 

(Radius Inside Bark ^ x Pi) - [Radius Inside Bark -

Radial Growth Increment)^ x Pi] 
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Appendix 4-

Site Index Cores 

Even-Aged Uneven-Aged 



Appendix 5 
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Explanation of Abbreviations 

Abbreviation Explanation 

BAI Basal Area Increment 

VARSAP Variable-Radius Plot Estimates of Sapwood Area - Non-expanded 

EVARSAP Variable-Radius Plot Estimate (BAF 10) of Sapwood Area - Expanded 

BA Basal Area 

DBH Diameter at Breast Height 

GBA Growth Basal Area (refers to Fred Hall's 1983 Method) 

FIXBA Fixed-Radius Plot Estimate of Basal Area 

VARBA Variable-Radius Plot Estimate (BAF 10) of Basal Area 

FIXSAP Fixed-Radius Plot Estimate of Sapwood Area 

GBASAP Sapwood Area of the Growth Basal Area Tree 

LOCAT Study Site Location 

BARAT Basal Area Ratio, Basal Area Growth/Total Basal Area of Tree 

GREFF Growth Efficiency 
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