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Whiteley, Andrew. R., Ph.D., May 2005 Organismal Biology and Ecology

Effects of Historical and Contemporary Factors on Genetic Variation in the Mountain Whitefish 
(Prosopium williamsoni)

Co-Chairs: Fred W. Allendorf, Paul Spruell

Historical and contemporary factors interact over different spatial scales to determine the 
intraspecific genetic diversity o f an organism. The objective o f my dissertation was to gain 
understanding o f the interaction between these factors by examining their effects on the genetic 
structure of mountain whitefish (Prosopium williamsoni).

I examined the distribution o f genetic variation across the range o f mountain whitefish to 
explore the effects of historical factors at a large geographic scale and I compared my results with 
other species to learn about the species-specificity of these effects. I found evidence for five 
major genetic groups o f mountain whitefish, which potentially reflects geographic isolation that 
occurred in glacial refugium. In the species surveyed, I found several examples of concordant 
geographic patterns o f genetic differentiation that reflect similar responses to landscape features, 
as well as non-concordant patterns o f differentiation that reflect either species-specific responses 
to landscape features or differences in aspects o f their ecology and life history. I also found that 
gene flow occurred over a larger geographic scale for mountain whitefish than for other native 
salmonids.

On a smaller geographic scale, I examined interactions between contemporary factors by 
comparing the genetic structure o f mountain whitefish to that o f bull trout (Salvelinus 
confluentus) in the Clark Fork River, Montana. Mountain whitefish had much less genetic 
differentiation among local populations than bull trout, which potentially reflects differences in 
the physical location o f spawning sites, population size, and spawning behavior.

I examined the effects of a putative snout-related trophic polymorphism on genetic subdivision 
to further explore the effects o f contemporary factors within a single population. I examined 
phenotypic variation in snout morphology and tested for assortative mating for this trait in the 
Bitterroot River, Montana. I found continuous snout variation and subtle but consistent 
differences in diet associated with this morphology. I did not find evidence for assortative mating 
and thus found no effect o f this trait on genetic subdivision.
I was supported by an NSF Ecologist, Educators and Schools fellowship for one year. Here I 

present a mark-recapture class investigation I created during this fellowship.
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CHAPTER 1 - Introduction

1.1 B A CK G RO U N D

Many studies over the past 50 years have considered factors that shape the geographic 

partitioning of genetic variation within species (Mayr 1963; Wright 1978; Avise 2004). These 

factors can be either historical (acting over evolutionary time scales) or contemporary (acting 

over ecological time scales; Figure 1-1). Historical factors (e.g. vicariant fragmentation, 

extinction and recolonization, and range expansion) are often related to features o f the landscape. 

Contemporary factors may be features o f the landscape or aspects o f the ecological and life 

history of an organism (Figure 1-1).

The role o f large-scale historical factors in shaping genetic diversity is well established 

(Felsenstein 1982; Templeton et al. 1995; Hewitt 2000; Turgeon and Bematchez 2001). For 

example, glaciation has had a major effect on the distribution o f genetic variation of many plants 

and animals (Soltis et al. 1997; Bematchez and Wilson 1998; Hewitt 2000). Historical factors 

often are responsible for causing large-scale regional genetic groups, here called cohesive genetic 

assemblages, that form the historical foundation and context for understanding how genetic 

variation is partitioned within a species. Elsewhere these large-scale regional genetic groups have 

been considered ESUs (Evolutionarily Significant Units), DPSs (Distinct Population Segments), 

or subspecies (Waples 1991; Moritz 1994; Waples 1995; Crandall et al. 2000).

Contemporary factors can shape genetic structure within cohesive genetic assemblages 

(Figure 1-1). Features o f the local landscape (e.g. anthropogenic habitat fragmentation or non- 

anthropogenic features such as waterfalls) have been shown to influence the distribution of 

genetic variation at a small scale (Hutchison and Templeton 1999; Keyghobadi et al. 1999; Sork 

et al. 1999; Castric et al. 2001; Cassel and Tammaru 2003; Costello et al. 2003; Yamamoto et al. 

2004). In addition, aspects o f the ecology and life history of an organism (e.g. complexity of its 

life cycle, population size, dispersal ability, and ecological characteristics related to foraging) can

1
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also influence how genetic variation is partitioned at a small geographic scale (Turner and Trexler 

1998; McDonald et al. 1999; King and Lawson 2001; Dawson et al. 2002; Castric and Bematchez 

2004; Whiteley et al. 2004). Ecological and life history factors may also determine how genetic 

variation is partitioned among individuals within populations. For example, trophic 

polymorphisms (excessive niche-based phenotypic variation; Robinson and Schluter 2000) may 

lead to reproductive isolation among trophic morphs within populations (e.g. Skulason et al.

1996; Gislason et al. 1999; Adams and Huntingford 2004).

Most population genetic studies to date only consider a subset of the factors shown in 

Figure 1-1 (but see Wilson et al. 2004). Studies that examine both how all o f these factors 

interact within particular species and that compare the effects of these factors on multiple 

sympatric species are needed to gain a comprehensive understanding o f the evolution o f patterns 

o f intraspecific genetic variation. Ideally these studies should examine the distribution of genetic 

variation in organisms well-suited for understanding both historical population relationships and 

the effects o f contemporary factors on genetic subdivision. In addition, these studies should 

occur in system where comparisons to other species with varying ecological and life history 

characteristics are possible.

1.2 R ESEA R C H  O B JECTIV ES A N D  FIN D IN G S

The main objective o f my research was to gain further understanding o f the interaction 

between historical and contemporary factors that shape intraspecific genetic diversity by 

examining their effects on the genetic structure o f mountain whitefish (Prosopium williamsoni). I 

was also able to leam about the species-specificity of these interactions by comparing my results 

for mountain whitefish to previous studies of closely related species with different ecological and 

life history characteristics. Below are the specific objectives I address in each chapter and a brief 

summary of my findings.

2
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Genetic subdivision at the range-wide scale

The objective o f Chapter 2 was to examine the hierarchical distribution o f genetic 

variation across the range o f the mountain whitefish (Figure l-2a). To determine if  genetic 

variation was partitioned into large-scale genetic assemblages, I analyzed mountain whitefish 

from 62 locations using six microsatellite loci. I analyzed 29 o f these 62 sites with 32 allozyme 

loci (14 o f which were polymorphic). I also compared the patterns and scale o f genetic 

differentiation among populations of mountain whitefish to previous data from other native fishes 

in northwest North America.

Mountain whitefish are especially well-suited for this type of comprehensive genetic 

analysis. This species occurs throughout northwest North America in most major river basins 

(McPhail and Lindsey 1970). In addition, this species has not been translocated within its native 

range and does not occur sympatrically with other Prosopium species in most of its range, which 

precludes hybridization with other species (with the exception o f one population revealed during 

the course o f my research, described in Chapter 2). Thus, it is likely that the range-wide genetic 

structure of mountain whitefish will reflect historical connectivity among river basins throughout 

northwest North America (McPhail and Troffe 2001). Furthermore, mountain whitefish are 

abundant and invasive sampling is unlikely to have a negative demographic influence on extant 

populations.

The specific questions I asked with respect to range-wide genetic subdivision were:

• What is the genetic structure of mountain whitefish in northwest North America?

• How do patterns o f genetic differentiation compare among native fishes in this region?

• How does the geographic scale of genetic differentiation compare among species?

I found evidence for five cohesive genetic assemblages across the range of mountain 

whitefish. These assemblages are likely to be due to isolation that occurred in glacial refugium 

during the most recent glacial advance approximately 10,000 years ago (McPhail and Lindsey 

1986). I also found evidence for reduced gene flow among major river basins but high levels of

3
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gene flow among local populations within major river basins. I found several examples of 

concordant geographic patterns o f genetic differentiation among species that reflect similar 

responses to landscape features, as well as non-concordant patterns o f differentiation that reflect 

either species-specific responses to landscape features or differences in aspects o f the ecology and 

life history of the fishes considered. For example, genetic patterns were largely concordant 

between mountain whitefish and bull trout where they co-occur across northwest North America, 

including concordant patterns o f genetic divergence in the Snake River upstream from Hell’s 

Canyon. However, these two species differ in their ability to disperse through saltwater, which 

may be responsible for differences in genetic patterns along the Pacific coast. In addition, the 

gene flow occurs over a much larger geographic scale for mountain whitefish than for other 

native salmonids. It is possible that mountain whitefish populations operate as metapopulations 

that occupy entire river systems (e.g. the entire Columbia River system). In contrast, other native 

salmonids probably have many metapopulations within the same river systems (Rieman and 

Dunham 2000).

Genetic subdivision at the river basin scale

The objective o f Chapter 3 was to examine the effects o f landscape features, ecological 

characteristics, and life history traits on the distribution o f genetic variation within and among 

populations of mountain whitefish within a single river basin (Figure l-2b). Several ecological 

and life history characteristics o f mountain whitefish differ markedly from other co-occurring 

salmonids for which genetic patterns have been described, making them particularly well-suited 

for genetic analysis at this scale. Mountain whitefish broadcast spawn in large groups in the 

mainstem of larger rivers or near the mouths of tributaries to these larger rivers and have large 

population size (Northcote and Ennis 1994). These factors lead to the prediction that this species 

would have high amounts o f genetic variation within local populations (spawning aggregates) and 

low amounts of genetic differentiation among local populations. I tested this prediction by

4
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comparing the genetic structure o f mountain whitefish to that o f bull trout in the same landscape. 

Bull trout spawn in the headwater portion o f tributary streams, generally have small population 

size, and spawn in small groups. Thus, I used the same ecological and life history characteristics 

to predict that bull trout would have much greater differentiation among local populations than 

mountain whitefish. I used microsatellites to analyze 11 mountain whitefish and seven bull trout 

sites from approximately the same location in the Clark Fork River basin (Whiteley et al. 2004). 

By analyzing both mountain whitefish and bull trout, I could more fully understand the effects o f 

local landscape and ecological/life history features on the population genetic structure o f each 

species.

The specific questions I asked with respect to genetic subdivision at the river basin scale

were:

• How is genetic variation partitioned among spawning sites o f mountain whitefish within 

the Clark Fork River?

• Can we predict the genetic structure of mountain whitefish and bull trout based on 

ecology and life history characteristics of each species?

As predicted, I found very low levels o f genetic differentiation among spawning sites of 

mountain whitefish within the Clark Fork River (Whiteley et al. 2004). Genetic differentiation 

was much lower for mountain whitefish than for bull trout in the same landscape. I detected 

influences o f both biological factors and landscape factors with this study. For example, I 

analyzed a high mountain lake site for each species. These lake sites showed increased genetic 

differentiation for each species. However, this pattern interacted with the biology o f each species 

and led to comparatively less divergence o f the lake site for mountain whitefish than for bull 

trout.

5
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Genetic subdivision within populations

The objective o f Chapter 4 was to determine if a putative trophic polymorphism related to 

snout morphology, where some individuals have enlarged and bulbous “pinocchios” snouts, 

caused genetic subdivision within populations of mountain whitefish (Figure l-2c). Troffe 

(2000) and McPhail and Troffe (2001) found evidence for genetic differentiation between what 

they considered two trophic morphs and hypothesized that assortative mating occurs between 

these two forms. However, the results of Troffe (2000) were based on small sample sizes and 

both the nature o f phenotypic variation related to snout morphology and the extent to which 

genetic subdivision might occur within populations due to this phenotypic variation needed 

further investigation. In this chapter, I examined the nature of snout phenotypic variation, 

analyzed stomach contents of pinocchios and nonpinocchios, and tested for assortative mating 

between pinocchios and nonpinocchios from the Bitterroot River.

The specific questions I asked with respect to genetic subdivision within populations and the 

putative trophic variation in the mountain whitefish were:

• Is there discontinuous variation in snout morphology within populations o f mountain 

whitefish?

• Is there a difference in diet between individuals with extreme snout morphologies?

• Is there evidence o f assortative mating by snout morphology?

I found that the pinocchio snout is an exaggerated trait with continuous variation within 

populations. Snout variation increased drastically after fish reached approximately 220mm. 

Individuals that grew a large snout at approximately this length appeared to continue along a 

growth trajectory that resulted in an extremely exaggerated snout at a larger body size. I found 

subtle but consistent and statistically significant differences in diets between phenotypically 

extreme individuals for two replicate samples. I did not find evidence for assortative mating by 

snout morphology in two replicate samples. The riverine landscape appeared to interact with 

ecological aspects of the mountain whitefish in two ways. First, food availability is probably

6
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heterogeneous enough in time and space that it is unlikely for discontinuous variation related to 

foraging to evolve. Second, habitat heterogeneity in rivers is likely to prevent spatial segregation 

of morphs during spawning, thus preventing assortative mating, especially in a species that 

broadcast spawns in large groups.

1.3 ECOS FEL LO W SH IP

For my final year, I was supported by an NSF sponsored ECOS (Ecologists, Educators, 

and Schools) Fellowship. Through this Fellowship I had the opportunity to learn more about 

teaching and education and to improve my teaching skills. I worked with two University of 

Montana students (Jennifer W oolf and Frank Janes) and two teachers from Big Sky High School 

in Missoula, Montana (David Oberbillig and Kathleen Kennedy). Our overall goal was to 

introduce more ecology and evolution into the tenth-grade general biology course taught by 

David and Kathleen. We created and taught many curriculum pieces about ecology, the scientific 

method, and sampling. We designed these investigations to lead towards an experimental 

prescribed bum on Department of Natural Resource and Conservation (DNRC) land near Big Sky 

High School. Overall, this was an incredibly rewarding experience in terms of providing me with 

teaching experience and knowledge of teaching philosophies as well as hands-on knowledge of 

how to contribute to K-12 teaching from within a university.

In Chapter 5 ,1 discuss a mark-recapture investigation using crickets in 10-gallon aquaria 

that we developed to complement an existing population ecology curriculum section at Big Sky 

High School. I have written this activity as a manuscript for The American Biology Teacher as a 

How-To-Do-It piece. Briefly, we put a known number o f crickets into an aquarium with 

cardboard egg containers with which we could easily capture the crickets. Students worked in 

small groups to capture and then mark crickets using non-toxic paint pens. They then released 

the crickets and recaptured them a short time later. They used the Lincoln-Petersen model to 

estimate the number o f crickets in the aquarium. We developed short lectures for before this

7
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activity and for between the capture events. This activity was very successful and has already 

been used by another teacher at Big Sky High School. We hope that this activity becomes part of 

the science curriculum at Big Sky High School and hopefully elsewhere after the resulting 

manuscript is published

1.4 SY N TH ESIS A N D  SIG N IFIC A N C E

In summary, I considered the effects of landscape features, ecological aspects, and life 

history characteristics on the hierarchical genetic structure of mountain whitefish. Historical 

factors had strong effects on genetic subdivision o f populations at the range-wide scale. Aspects 

of the ecology and life history o f mountain whitefish had strong effects on genetic subdivision at 

the river basin scale. Finally, within local populations, the pinocchio snout may represent a subtle 

trophic polymorphism, but this phenotypic variation did not influence fine-scale genetic 

subdivision.

The range-wide data presented here are particularly valuable because closely related and 

imperiled species that co-occur with mountain whitefish have been well-studied genetically, 

which allowed highly informative comparisons of the patterns and the scale o f genetic 

differentiation with previous studies. The examples o f concordant and non-concordant patterns 

of genetic differentiation mentioned above and elaborated upon in Chapter 2 are useful for both 

understanding the effects o f factors that shape intraspecific diversity and for informing 

management and conservation efforts. These comparisons will aid in defining units of 

conservation for native fishes in northwest North America and will help to shift management to 

more multispecies approaches. Most management decisions for inland native fishes are based on 

bull trout and westslope cutthroat trout (Oncorhynchus clarki lewisi). Management would benefit 

from consideration o f other species and the data included here would aid in making the shift 

towards a multispecies management perspective a more informed one.

8
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The differences in genetic structure that I observed for mountain whitefish and bull trout 

at a smaller geographic scale are significant for two primary reasons. First, this study shows that 

the genetic structure o f a species can be predicted based on aspects o f its ecology and life history. 

Other fishes that co-occur with mountain whitefish and have similar aspects o f ecology and life 

history, such as spawning location and population size, should also have similar genetic 

structures. It should be possible to make similar predictions about the genetic structure of a given 

organism based on specific aspects o f that organism that are likely to affect how genetic variation 

is distributed within and among populations. Second, this portion o f my research allowed me to 

formulate a model for understanding causal factors of both neutral and adaptive divergence, as I 

elaborate upon in Chapter 3. For salmonids, these causal factors may be related to life-cycle 

complexity and habitat specificity. This model warrants further investigation because it may be 

of general significance for evolutionary patterns among local populations.

The pinocchio snout may represent a subtle within-population trophic polymorphism.

This is significant because most examples o f trophic polymorphism occur in lacustrine species.

In fact, species-poor temperate lakes have become model systems for this type o f phenotypic 

diversification (Robinson and Schluter 2000). My research suggests that heterogeneity o f prey 

resources in time and space may explain the lack o f trophic polymorphisms in riverine systems.

In addition, my research suggests that it may be far more likely for variation to be maintained as 

within-population polymorphisms in riverine species than for this variation to become partitioned 

among species.

Each of the empirical components of my research (Chapters 2, 3, and 4) addressed 

different components of the framework shown in Figure 1-1. This framework explicitly considers 

what factors shape intraspecific genetic diversity and how these factors may interact within and 

perhaps among hierarchical levels of biological organization. While many studies have focused 

on one or two components o f Figure 1-1,1 am not aware an attempt to provide an all- 

encompassing framework. Thus, this framework is an important contribution to the field o f
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population genetics and it should aid future attempts to understand factors that shape intraspecific 

diversity.

My study has also provided basic information about mountain whitefish. In general, very 

little is known about this species (Northcote and Ennis 1994; McPhail and Troffe 2001). 

Mountain whitefish are often the most abundant species in rivers in northwest North America 

(Northcote and Ennis 1994). They are an important component of the fish community in this 

region and may interact with other aquatic organisms in ways that are not presently understood.

In addition, they are a potential indicator o f anthropogenic impacts on aquatic habitats. My study 

has provided a foundation for future research. An additional benefit o f the data presented here is 

that they establish a baseline for future genetic studies of this species. I f  population declines 

occur, as have been reported in some locations (for example, this species no longer occurs in the 

Humboldt River, Nevada; J. Dunham, USFS personal communication), these baseline data could 

be used to understand the effects of population declines on the genetic structure of a common 

species.

Beyond empirical research, my graduate experience has broadened my perspective on the 

societal importance o f science education. The ECOS Fellowship played an important role in the 

development of my educational ideas and has influenced my approach to teaching. For example, 

I learned the importance of including hands-on inquiry-based learning experiences as part of 

educational courses. Inquiry-based education promotes critical thinking in students, perhaps 

more so than content-based lecture approaches. I had an opportunity to create and implement 

inquiry-based investigations in Big Sky High School classrooms. Chapter 5 is an example o f one 

such investigation. I have also learned how to work with schools in the local community from 

within a university setting and have gained valuable teaching skills from interacting with two 

high school teachers and their classes at Big Sky High School. I will incorporate what I have 

learned as an ECOS fellow in future courses that I teach.
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Figure 1-1. Factors that influence intraspecific genetic diversity. Historical factors operate over 

evolutionary time scales and regional spatial scales. Contemporary factors operate over 

ecological time scales and smaller spatial scales. Both aspects of the ecology and life history of 

an organism interact with the local landscape to determine the influence o f contemporary factors 

(curved arrows). Historical and contemporary factors may interact to determine the distribution 

o f genetic variation across the range o f a species.

Figure 1-2. Hierarchical analysis o f genetic diversity in the mountain whitefish. I analyzed 

genetic variation across the range of this species (dashed line in (a)) and within the Clark Fork 

River in western Montana (b). At the smallest geographic scale, I analyzed the effect of 

potentially trophic related phenotypic variation on genetic subdivision within the Bitterroot River 

(c). At each geographic scale, the genetic diversity factors examined in the present study are 

shown.
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CHAPTER 2 - Can Common Species Provide Valuable Information for 

Conservation?

2.1 A BSTR A CT

We examined the distribution of genetic variation at allozyme and microsatellite loci 

across the range of the mountain whitefish (Prosopium williamsoni) to demonstrate the 

importance o f genetic data for multi-species conservation approaches. The mountain whitefish is 

a common species that is particularly well suited for accurately revealing historical patterns o f 

genetic structure and differs markedly from previously studied species in habitat requirements 

and life-history characteristics. As such, genetic data from mountain whitefish provide a useful 

comparison to the population genetic structure o f other native fishes. Genetic variation for 

mountain whitefish was hierarchically distributed for both allozymes and microsatellites. We 

found evidence for a total of five major genetically differentiated assemblages and we observed 

subdivision among populations within assemblages that generally corresponded to major river 

basins. We observed little genetic differentiation within major river basins. Geographic patterns 

o f genetic differentiation for mountain whitefish were concordant with other native species in 

several circumstances, providing information for the designation of conservation units that reflect 

shared historical differentiation of multiple species. Differences in genetic patterns between 

mountain whitefish and other native fishes provide examples where sympatric species in several 

river systems have different evolutionary histories. In addition, mountain whitefish populations 

appear to exchange genes over a much larger geographic scale than co-occurring salmonids and 

are likely to be affected differently by disturbances such as habitat fragmentation.
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2.2  IN TR O D U C TIO N

There is a growing consensus that single species conservation efforts do not adequately 

protect the biological and landscape needs o f multiple species within threatened ecosystems 

(Lambeck 1997; Roberge and Angelstam 2004). Consequently, there has been a recent trend in 

conservation strategies towards shifting from single-species to multi-species approaches 

(Lambeck 1997; Freudenberger and Brooker 2004). These efforts consider the habitat 

requirements o f multiple species to prioritize conservation efforts (Roberge and Angelstam 2004).

Considering genetic data from multiple species in threatened ecosystems might be 

particularly informative for multi-species conservation approaches. To date, genetic comparisons 

among species have largely occurred among large-scale regional genetic groups in the context of 

comparative phylogeography (Avise 2004). More detailed comparisons of patterns and 

geographic scale of genetic differentiation at multiple hierarchical levels o f biological 

organization (from populations through ecosystem and landscape levels) are needed to make 

genetic comparisons more informative for comprehensive conservation efforts.

Concordant genetic patterns for multiple species across a given region can highlight 

evolutionary divergence that should be conserved. For example, it might be difficult to prioritize 

conservation efforts for a region inhabited by moderately genetically differentiated populations of 

an imperiled species. However, if multiple native species are all genetically differentiated in that 

region, the weight o f evidence suggests that an historic separation has occurred and that 

conservation efforts should recognize this evolutionary divergence.

Lack of concordance for multiple species in a region may reflect a) long term differences 

in evolutionary history o f the species considered or b) differences in their ecology and life history 

that lead to differences in how genetic variation is partitioned within and among populations over 

more recent ecological time scales. If  differences in genetic patterns are historical in nature, ESU
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designations should reflect differences in evolutionary histories (In this paper we use ESU in its 

most generic sense to describe groups of populations that have a shared evolutionary history and 

are sufficiently genetically differentiated from other such groups to merit separate conservation 

efforts (sensu Ryder 1986; Waples 1991). We do not presume any specific functional definition 

(e.g. Moritz 1994). Nor are we advocating legal status for the ESUs we discuss). I f  differences 

in genetic patterns reflect contemporary aspects of ecology and life history, conservation efforts 

based on genetic patterns o f one species may be either inadequate for another more finely 

subdivided species, or may be overly protective and unnecessary for a second species that is less 

genetically subdivided.

In addition to genetic patterns, describing the geographic scale o f genetic differentiation 

o f multiple species in the same landscape can also be important for multi-species conservation 

approaches. Overlaying patterns of genetic differentiation onto geographical distances among 

populations and comparing the resulting relationships for multiple sympatric species provides a 

comparison o f population boundaries and the geographic scale o f ecological and evolutionary 

processes. Inferences regarding the geographic scale o f genetic differentiation can help to define 

habitat and area requirements for multiple species, to determine the amount and scale of 

connectivity necessary for population persistence, and to predict the effects o f anthropogenic 

habitat alterations such as fragmentation.

For comparisons of both pattern and scale of genetic differentiation, it is important that 

the relationships among populations o f species analyzed accurately reflect historical associations. 

For threatened and endangered species, it is often difficult to obtain large samples o f all the 

relevant populations and regions due to the fact that these species may be extirpated in some 

areas, occur at low abundance where present, and sampling might put populations at even greater 

risk. Thus, for these species, it may be difficult to effectively reconstruct historical relationships 

among population. In systems where only threatened or endangered species have been studied,
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multi-species conservation approaches could be considerably enhanced with comparative genetic 

data from species that are more likely to reflect historical genetic relationships.

Species most likely to reveal historical population relationships are widely distributed 

across the range of the ecosystem of interest, have not been transplanted within their native range, 

do not hybridize with other species, and have large populations. Wide-ranging species allow the 

largest possible scope o f comparison. Transplantation and hybridization can obscure historical 

genetic patterns (Allendorf et al. 2001), as can genetic drift in recently contracted or chronically 

small populations. In addition, for species with large populations, it is easier to collect adequate 

samples and these species are amenable to invasive techniques such as allozyme analysis, which 

often permits direct comparison to existing data. Consequently, we suggest that abundant, widely 

distributed species will often provide an informative complement to genetic studies o f imperiled 

taxa.

River systems in northwest North America have been the focus o f intense conservation 

efforts (Policansky and Magnuson 1998; McClure et al. 2003; Mebane et al. 2003). Conservation 

issues range from habitat fragmentation due to a variety o f sources (e.g. dams and road building) 

to water quality issues related to activities such as mining and forest use (e.g. Kareiva et al. 2000; 

Levin and Tolimieri 2001; Collins and Montgomery 2002). Genetic patterns for four salmonids 

with large distributions in inland freshwater systems (bull trout, Salvelinus confluentus; cutthroat 

trout, Oncorhynchus clarki; rainbow trout, Oncorhynchus mykiss; and Chinook salmon, 

Oncorhynchus tschawytscha) have been described in detail from this region and have been used 

in part to determine conservation and management priorities (e.g. NOAA 2003). Genetic 

variation is distributed hierarchically for these species across this region and all four species tend 

to be subdivided on a fine geographic scale, with significant genetic differences often occurring 

among tributaries within major river basins (Allendorf and Utter 1979; Allendorf and Leary 1988; 

Wenburg et al. 1998; Taylor et al. 1999; McCusker et al. 2000; Teel et al. 2000; Costello et al. 

2003; Spruell et al. 2003; Taylor et al. 2003; Waples et al. 2004).
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Conservation efforts for fishes in northwest North America have proceeded largely in a 

single-species manner. For the four species mentioned, there has not been an attempt to compare 

and contrast patterns of genetic differentiation. In addition, for some of these species, 

transplantation and anthropogenic-induced hybridization may obscure historical genetic patterns 

(e.g. Allendorf and Leary 1988). Genetic data from a common species with the desirable 

attributes for comparative genetic analyses mentioned above may be valuable as a step towards a 

more comprehensive conservation approach. Furthermore, because all four species tend to be 

genetically subdivided on a small geographic scale, they offer a limited view the geographic scale 

of genetic differentiation of all of the native fishes in this region. Genetic analysis of a species 

likely to be subdivided on a larger geographic scale will offer an alternative perspective that can 

broaden the scope o f conservation and management planning.

The mountain whitefish (Prosopium williamsoni) co-occurs with the four species 

mentioned above and fits our criteria for a useful common species for comparative genetic 

analysis. Mountain whitefish have not been translocated within their native range and do not 

occur sympatrically with other Prosopium species in most o f their range, precluding hybridization 

with other species (with the exception of one population revealed during the course of this study, 

described below). Mountain whitefish are abundant and invasive sampling is unlikely to have a 

negative demographic influence on populations. This species occurs throughout northwest North 

America in most major river basins (McPhail and Lindsey 1970) and has experienced the same 

geomorphological influences as other native fishes. Thus, it is likely that the genetic structure of 

mountain whitefish will reflect historical connectivity among river basins throughout northwest 

North America (McPhail and Troffe 2001).

The geographic scale o f genetic differentiation may differ between mountain whitefish 

and other species examined to date, such that this species may provide a good contrast to other 

species in this respect as well. Mountain whitefish differ in ecological aspects from these other 

species because they reside and spawn primarily in larger rivers, they appear to have less habitat
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specificity throughout their life cycle, and they have larger Ne (Whiteley et al. 2004). We have 

shown previously that mountain whitefish populations appeared to exchange genes over a larger 

geographic scale than bull trout in one river basin in Montana (Whiteley et al. 2004). It is 

possible that evolutionary processes for mountain whitefish occur at a much larger scale relative 

to other salmonids across northwest North America.

In this paper, we used allozymes and microsatellites to analyze the hierarchical 

distribution o f genetic variation across the range o f the mountain whitefish. We answered the 

following questions: What is the genetic structure o f mountain whitefish in northwest North 

America? How do patterns o f genetic differentiation compare among species? How does the 

geographic scale o f genetic differentiation compare among species? Finally, do these data 

provide additional insight for management of other native fishes in northwest North America?

2.3 M A TERIA LS A N D  M ETH O D S

Samples

We obtained samples from throughout the range o f the mountain whitefish (Table 2-1; 

Figure 2-1). Where possible, we obtained whole fish for tissues for both allozyme analysis and 

for DNA extraction and subsequent microsatellite analysis. For each population sample, care was 

taken to include fish from multiple size classes to maximize the probability o f analyzing unrelated 

individuals. Most sites included fish from multiple collection locations within a river. We were 

able to obtain samples from a wider geographic range for microsatellite analysis than for 

allozyme analysis, partly due to problems with international transport o f whole frozen fish from 

Canadian sites.

Allozymes

We performed horizontal starch gel electrophoresis according to the procedures o f Leary 

and Booke (1990) on fish collected from 29 locations (Table 1). We screened products o f 32 loci
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coding for enzymes from muscle, liver, or eye tissue and found evidence of genetic variation at 

14 loci. We followed Shaklee et al. (1990) for nomenclature of enzymes, loci, and alleles. 

Enzyme Commission (EC) numbers follow IUBMBNC (1992) and are as follows: adenylate 

kinase (EC 2.7.4.3; AK-1,2*), alcohol dehydrogenase (EC 1.1.1.1; ADH*), aspartate 

aminotranserase (EC 2.6.1.1; sAAT-1*, sAAT-2*, sAAT-3*, sAAT-4*), creatine kinase (EC 

2.7.3.2; CK*-A1), cytosol nonspecific dipeptidase (EC 3.4.13.18; PEPA-1*, PEPA-2*), 

glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; GAPDH-3,4*); glycerol-3-phosphae 

dehyrogenase (EC 1.1.1.8; G3PDH-1,2*)\ hexosaminidase (EC 3.3.1.52; HEX*)-, isocitrate 

dehydrogenase (NADP+)(EC 1.1.1.42; sIDHP-1,2*); L-lactate dehydrogenase (EC 1.1.1.27; 

LDH-A1*, LDH-A2*, LDH-B1 *, LDH-B2*, LDHC*)- malate dehyrogenase (EC 1.1.1.37; sMDH- 

Al,2*, sMDH-Bl,2*)\ malic enzyme (NADP+)(EC 1.1.1.40; mMEP-1*, sMEP-1*)-, 

phosphoglucomutase (EC 5.4.2.2.; PGM-1*, PGM-2*)\ superoxide dismutase (EC 1.15.1.1; 

sSOD-1 *) and tripeptide animopeptidase (EC 3.4.11.4; PEPB*). Tissues were kept frozen until 

dissection. We used the electrophoresis buffers described in Leary et al. (1993). Stains used to 

reveal the position o f enzymes in the gels after electrophoresis were from Harris and Hopkinson 

(1976) and Allendorf et al. (1977). An Arlee strain rainbow trout (Oncorhynchus mykiss) from the 

Jocko River State Fish Hatchery, Arlee, Montana (maintained by the Department o f Montana 

Fish, Wildlife & Parks) was run on each gel as a mobility standard. We scored alleles at the 

malate dehydrogenase isolocus, MDHB-1,2*, as products from two separate loci and assumed 

that all observed variation occurred at one locus (Leary and Book 1990).

Microsatellites

The general methods used for PCR and visualization o f subsequent PCR products 

followed Spruell et al. (1999), Neraas and Spruell (2001), and Whiteley et al. (2004). DNA was 

extracted from either fin clips or liver tissue by standard methods. We visualized fluorescently- 

labeled PCR products on acrylamide gels and used a molecular size standard and individual fish
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of known genotypes as standards for scoring. We used six of the eight loci (COCL4, SSA14, 

SSA456, ONE8, SF08-1, and SF08-2) from Whiteley et al. (2004) because these six loci could be 

scored reliably across the range o f the mountain whitefish. PCR reagent concentrations varied 

among loci and are available from the authors upon request.

Data Analysis

Allele frequencies, deviations from Hardy-Weinberg expectations, linkage 

disequilibrium, observed (H 0 ) and expected (H e) heterozygosity per locus and population, mean 

within-population expected heterozygosity (f/s), mean number o f alleles per population, pairwise 

exact tests for genic differentiation, R-statistics and pairwise F ST‘s were calculated using 

GENEPOP 3.4 (Raymond and Rousset 1995) and FSTAT 2.9.3.2 (Goudet 1995; Goudet 2001). 

We used 0(W eir and Cockerham 1984) for estimates o f F s t -  Confidence intervals (95%) for 

multilocus F st estimates were generated by bootstrap sampling over loci (Goudet et al. 1996).

We used sequential Bonferroni adjustments to adjust multiple tests for linkage disequilibrium 

within populations (Rice 1989). We tested to determine if the amount o f within population 

genetic variation (arcsine transformed H s and mean number of alleles) detected by allozymes and 

microsatellites was correlated using a Spearman rank correlation test.

We calculated F2st for both microsatellites and allozymes to determine if  the greater 

genetic heterozygosity observed with microsatellites might have contributed to a downward bias 

in our estimate o f population differentiation. With R 2St ,  all loci are treated as bi-allelic by using 

the frequency o f the most common allele and pooling the frequencies o f all others (McDonald 

1994; Allendorf and Seeb 2000). We used SPAGEDI (Hardy and Vekemans 2002) to calculate 

Rst for microsatellites and to test for significant differences between RSJ and FSr. R s t  values 

significantly greater than Rst values suggest that stepwise-like mutation processes have occurred 

at a locus (Hardy et al. 2003). We used standard error estimates from SPAGEDI to calculate 95% 

confidence intervals for Rst-
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In the Kechika River sample, we observed microsatellite alleles outside the normal size 

range for alleles at several loci. This population lies within a zone o f sympatry with the round 

whitefish (Prosopium cylindraceum; McPhail 1970). We used PINE-PCR (Spruell et al. 2001) to 

determine that these three fish were hybrids. These three fish appear to be F I ’s because all 

fragments diagnostic for both mountain whitefish and round whitefish were present in each fish. 

We removed these fish from subsequent analyses (Allendorf et al. 2001).

To examine range-wide patterns of population differentiation, we used principle 

components analysis (PCA) based on a covariance matrix using SPSS 11 (SPSS, Inc.). We 

excluded one allele at each locus to account for non-independence among alleles within loci for 

both marker types. For allozymes, the PCA is based only on loci that were polymorphic 

(frequency < 0.99) in at least one population. We used an analysis of molecular variance 

(AMOVA, Excoffier et al. 1992), performed with ARLEQUIN 2.001 (Schneider et al. 2000) to 

investigate how genetic variation was partitioned based on several geographical arrangements. 

The first arrangement was based on groups defined by PCA for both allozymes and 

microsatellites. The second alternative geographical arrangement was based on genetic patterns 

observed for the cutthroat trout. The range o f the cutthroat trout overlaps with that of the 

mountain whitefish to a large degree (Behnke 2002). Genetic patterns from the cutthroat trout 

(Allendorf and Leary 1988) provided an a priori prediction o f genetic subdivision for the 

mountain whitefish. We used four geographical arrangements for the mountain whitefish genetic 

data that correspond sites within the range of the coastal cutthroat trout (O. c. clarki), the 

westslope cutthroat trout (O. c. lewisi), the Lahontan cutthroat trout (O. c. henshawi), and finally, 

to be conservative, we combined the Yellowstone (O. c. bouvieri) and Bonneville cutthroat trout 

(O. c. utah) into the fourth group.

To further describe the scale and patterns of genetic differentiation among mountain 

whitefish populations, we constructed a dendrogram based on microsatellite and allozyme allele 

frequencies. We used PHYLIP 3.5 (Felsenstein 1993) to calculate Cavalli-Sforza and Edwards’
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(1967) genetic distance (CSE) with the GENDIST module. We used the NEIGHBOR module to 

construct a UPGMA (Unweighted Pair Group Method with Arithmetic Mean) dendrogram. 

CONSENSE was used to generate a consensus tree with bootstrap values from 1000 replicate 

data sets created in SEQBOOT. We chose to analyze genetic divergence between populations 

using CSE because it is drift based, does not assume any models of mutation, and performs well 

in simulations of microsatellite data (Takezaki and Nei 1996).

We used BAPS 2.0 (Bayesian Analysis of Population Structure, Corander et al. 2003; 

Corander et al. 2004) as an alternative way to define population groups within cohesive genetic 

assemblages and to provide further information about the scale and patterns o f population 

relationships. We used the group method for clustering pre-defmed populations based on multi

locus tests o f allele frequency differences. We chose the group clustering method because 

mountain whitefish populations are confined to river basins and it is not possible for gene flow to 

occur among many of the populations we analyzed. The only prior we used was the sample 

location o f each individual. We ran BAPS five times for 105 iterations with a burn-in period of 

20,000. Panmictic population groups defined by the data partitions with the highest posterior 

probability for microsatellites and allozymes separately were plotted onto the map o f 

northwestern North America.

To further analyze the geographic scale o f gene flow for mountain whitefish, we plotted 

pairwise genetic distances against pairwise geographic distances. We limited our analysis to 

populations in the contiguous Columbia River basin and to those within the Inland Cascadia 

cohesive genetic assemblage (see below). We measured river channel distances among sites 

using a geographic information system (GIS). We analyzed patterns with and without two sites 

located above impassable waterfalls (Big Wood and Bull Rivers) and one site from a high 

mountain lake (Doctor Lake). We used Mantel tests implemented by the program IBD (Isolation 

by Distance, Bohonak 2003) to test the significance o f the relationship between genetic and
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geographic distance matrices. Tests were performed with and without log transformation of 

geographic distances and using both F ST and Fsr /(I - F Sr) (Rousset 1997).

Based on previous work within the Clark Fork River (Whiteley et al. 2004), we predicted 

that we would find a discontinuity in the relationship between genetic and geographic distances 

when we considered sites distributed over a wider geographic range. To the left o f this 

discontinuity, genetic distances were expected to be uniformly low (because gene flow is high). 

To the right o f the discontinuity, the mean and variance of genetic distances were expected to be 

greater (because genetic drift is more influential and gene flow is reduced). We used statistical 

methods developed for allometric relationships in insects (Eberhard and Gutierrez 1991) to test 

for a discontinuity, or “switch point”, in the range of geographic distances. We used the 

following model: Y  = /30 + fa X  + /S2(Z  -  X ° ) D  + /S3Z) + £, where, for our purposes, Y  and X  

were pairwise Fsi and geographic distances, respectively (in actual measurement units); X °  was 

the putative switch point; D = 0 if  X  < X °  or D = 1 otherwise; {$' s  were the regression 

coefficients; and e was the random component with assumed normal distribution, mean zero, and 

common variance. To determine the switch point, we empirically substituted 12 different values 

of X °  into the model and chose the value o f X °  that that gave the highest adjusted R 2. We then 

used a partial F-test to test the significant of using a stepwise regression (with the empirically 

determined value o f X ° )  implemented in SPSS 11. Significance of the term would indicate 

that a discontinuity in the relationship between genetic and geographic distance at the indicated 

switch point.

2 .4  RESU LTS

Variation Within Populations 

Allozymes

Allozyme analysis revealed 14 polymorphic loci out o f the 32 loci screened for variation. 

We found a total o f 37 alleles for the 794 individuals analyzed from 29 sites. Mean Hs ranged
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from zero to 0.048 and mean number of alleles ranged from 1.00 to 1.43 (Table 2-1). Two 

populations from the Bonneville Basin in Utah had no genetic variation (Bear and Weber Rivers) 

and two others sites that are located upstream from barrier waterfalls had highly reduced genetic 

variation (Big Wood River and Henrys Fork o f the Snake River).

None of the polymorphic allozyme loci showed evidence of significant departures from 

Hardy-Weinberg proportions. Of 159 tests for genotypic disequilibrium, seven were significant 

(P < 0.05), where eight significant tests were expected by chance ( a  = 0.05). There was no 

pattern o f significant disequilibrium within any o f the population samples or for any o f the locus 

pairs across populations.

Microsatellites

For microsatellites, we observed a total of 142 alleles at six loci for the overall sample of 

1769 individuals from 62 sites. Hs ranged from zero to 0.538 (Table 2-1). The mean number of 

alleles ranged from 1.00 to 4.83. The Big Lost and Big Wood Rivers, both o f which are isolated 

populations, had no genetic variation. Other sites that are isolated above waterfalls (Bull River 

and Thutade Lake) or located in a high mountain lake (Doctor Lake) also had reduced genetic 

variation (Table 2-1).

Seventeen o f 275 tests showed evidence for significant deviations from Hardy-Weinberg 

proportions with microsatellites (14 significant tests were expected by chance). No consistent 

patterns within loci across populations or within populations across loci were observed, except in 

the case o f ONE8 in populations from the upper Missouri River. Four o f six sites from the upper 

Missouri River had significant departures from Hardy-Weinberg proportions at this locus. In 

each o f these four cases there was a deficit o f heterozygotes (positive FiS), suggesting that a null 

allele might occur in this geographic region at this locus. However, we did not observe any
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potential null homozygotes and assumed that a null allele, if  present, was at low frequency and 

would not have a large influence on genetic patterns.

O f 643 tests for genotypic disequilibrium, 33 were significant, where 32 were expected 

by chance. There was no significant pattern o f genotypic disequilibrium within any o f the 

population samples or between any locus pairs across populations. After correcting for multiple 

tests within a population, only two tests remained significant (SSA14 and COCL4, Lolo Creek and 

COCL4 and SF08-1, Big Spring Creek).

Comparison of Markers

Within-population genetic variation (both Hs and mean number of alleles) was 

significantly correlated between allozymes and microsatellites. The Spearman rank correlation p- 

value for Hs was 0.395 {P = 0.037) and for mean number of alleles, p  = 0.583 (P = 0.002). Only 

in several populations were amounts of within-population genetic variation dissimilar between 

marker types. These include the Big Lost River, which had no microsatellite variation but 

moderate allozyme variation and Bonneville Basin sites, which had no allozyme variation but 

moderate microsatellite variation.

We did not find evidence for significant genotypic disequilibrium between microsatellite 

and allozyme loci. O f 396 total tests, 10 were significant (P < 0.05), where 20 were expected by 

chance. There was no pattern o f significant disequilibrium within any o f the population samples 

or for any of the locus pairs across populations.

Divergence among populations 

Broad geographic subdivisions 

Allozymes—

There was a large degree o f genetic subdivision across the range of mountain whitefish 

with allozymes (Fsx = 0.689, 95% C.I.: 0.340, 0.863; F2ST = 0.698, 95% C.I.: 0.343, 0.867). For
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the 29 sites analyzed, principle components analysis revealed what appear to be three primary 

clusters o f populations, or cohesive genetic assemblages (Figure 2-2a). These assemblages 

corresponded to the upper Missouri River, the upper Snake River, and the Cascadia region (sensu 

McPhail and Lindsey 1986 but extending further south and including populations from Nevada to 

northern British Columbia and Alberta; Figure 2-2a). The most genetically divergent upper 

Snake sites came from the Big Lost River. The one site analyzed with allozymes west o f the 

Cascade Mountains was not differentiated from other Cascadia sites. The AMOVA based on 

PCA groups partitioned much more variation among groups and less variation among sites within 

groups than the arrangement based on cutthroat trout subspecies (Table 2-2). A dendrogram 

based on CSE genetic distances depicted the same three cohesive genetic assemblages as were 

revealed by PCA (data not shown).

Microsatellites—

The mean global Fst for microsatellites was 0.369 (95% C.I. 0.343, 0.393). The mean 

global F2st was slightly greater (0.434, 95% C.I. 0.386, 0.466). The mean global 7?st estimate for 

microsatellites (0.237) had an extremely large 95% confidence interval (-0.538, 1.012). 7?sr was 

significantly greater than Fst at ONE8 (0.849 > 0.388; one-sided P = 0.003) and at SF08-1  

(0.727 > 0.379; one-sided P = 0.003) indicating that stepwise-like mutations contributed to 

among-population differentiation at these two loci. The large variation in overall FST was 

primarily due to the low value (0.165) observed for SSA456.

Principle components analysis of microsatellite allele frequencies revealed five cohesive 

genetic assemblages for the 62 sites analyzed (Figure 2-2 b and c). The five major assemblages 

contained populations found in: 1) the upper Snake River, 2) the upper Missouri River, 3) rivers 

that lie between the Cascade Mountains and the Continental Divide and extend from Nevada to 

northern British Columbia and Alberta (“Inland Cascadia”), 4) rivers to the west o f the Cascade 

Mountains, excluding the Olympic Peninsula (“Coastal Cascadia”), and 5) rivers o f the Olympic
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Peninsula (Figure 2-2 b and c). The AMOYA based on PCA groups partitioned more variation 

among groups and less variation among sites within groups than the arrangement based on 

cutthroat trout subspecies (Table 2-2). The UPGMA dendrogram based on CSE distances and 

microsatellite allele frequencies depicted the same large-scale genetic groups as our principle 

components analysis, but provided better resolution o f differentiation within groups (see below; 

Figure 2-3).

Comparison o f  Markers—

The PCA o f combined microsatellite and allozyme allele frequencies for the 29 sites 

analyzed with both marker types reveals three large-scale genetic assemblages. The combined 

PCA showed a clear separation of the upper Missouri, upper Snake, and Cascadia genetic groups 

(Figure 2-2d). The Coastal Cascadia site was not separated from Inland Cascadia sites for 

principle component axes 1 and 2 but was separated on PC 4, which explained 6% of the 

variation (data not shown).

Variation among populations within assemblages 

Allozymes—

For allozymes, mean pairwise F ST and CSE values were significantly greater in the upper 

Snake River group than the Cascadia or upper Missouri groups (Table 2-3). Bayesian Analysis of 

Population Structure (BAPS) revealed a total o f eight clusters for the allozyme data (marginal 

posterior probability = 0.91; Table 3). All of the most likely data partitions contained eight 

population clusters. Of these, the two most likely data partitions (probability o f 0.34 vs. 0.24) 

differ only by the placement o f the Bow River. In the most likely data partition, the Bow River 

was placed with sites from the Columbia River. In the second most likely partition, the Bow 

River was placed with a different BAPS-defmed cluster that consisted of sites from the Columbia
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River and the Lahontan Basin in Nevada. Each PCA group had a similar number o f BAPS- 

defined clusters (Table 2-3, Figure 2-4).

Microsatellites—

For microsatellites, pairwise Pst and CSE values were greatest for the Olympic Peninsula 

group and lowest for the Coastal Cascadia group (Table 2-3), but statistical tests o f significance 

were not possible because only two sites were analyzed for each of these groups. Mean pairwise 

F st and CSE values were significantly greater in the upper Snake River group than in the Inland 

Cascadia and upper Missouri groups (Table 2-3).

When we applied BAPS to the microsatellite data set, a total o f 29 population clusters 

had the highest marginal posterior probability (0.83). The two most likely partitions o f the data 

(probabilities o f 0.54 vs. 0.28) only differed by the placement o f the lower Clark Fork River site 

with 1) sites from the Fraser and Columbia Rivers in British Columbia or 2) other sites from the 

Clark Fork River. The Inland Cascadia PCA group had the greatest number of BAPS-defined 

clusters (Table 2-3) but also had the greatest number o f sites (Table 2-3) and occurred over the 

largest geographic area (Figure 2-4b). The upper Snake River group had a large number o f BAPS 

groups (Table 2-3) within a small geographic area (Figure 2-4b).

Geographic scale of genetic differentiation

Genetic and geographic distances were significantly correlated for allozymes (data not 

shown) and for microsatellites within the Columbia River system (Figure 2-5; data not shown for 

CSE). The mean and variance o f pairwise genetic distance values increased between 

approximately 300 km and 500 km (Figure 2-5; allozyme data and microsatellite CSE data not 

shown). For the test for a “switch point” in this relationship, the X °  value that gave the highest 

adjusted P 2 value was 350 km (adjusted R 2 = 0.257). A partial P-test of /?3 with X °  = 350 km 

was highly significant (P < 0.001). This discontinuity in the relationship between genetic and
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physical distance appeared to correspond approximately to comparisons within river basins (mean 

geographic distance ± SE = 242 km ± 23 km) versus comparisons among river basins (mean = 

1,313 km ± 32 km; Figure 2-5). Means and standard deviations of genetic distance values 

(pairwise FST and CSE) were less for comparisons within basins than for comparisons among 

basins (Table 2-4).

2.5 D ISC U SSIO N

What is the genetic structure o f  mountain whitefish in northwest North America?

Distribution of genetic variation

The distribution of genetic variation we observed across the range o f the mountain 

whitefish was influenced by historical factors at the range-wide scale while aspects o f the ecology 

and life history o f this species appeared to interact with landscape features at a smaller 

geographic scale (within cohesive genetic assemblages). We observed a large proportion of 

genetic variation partitioned among large-scale genetic assemblages and a large proportion of 

genetic variation within populations. Relative to other salmonid species, we observed fairly low 

levels o f differentiation among populations within assemblages.

We observed a large range of values of within-population genetic variation (Table 2-1). 

Populations in the Clark Fork and Missouri Rivers consistently had the highest values. 

Populations with low values were usually from sites known to be physically isolated. For 

example, the Big Lost River is part of the isolated “sinks” basins in southeastern Idaho that flow 

underground before joining with the Snake River. The Big Wood River in Idaho and the Bull 

River and Thutade Lake in British Columbia are all isolated by barrier waterfalls.

The correlation we observed between amounts o f within-population genetic variation for 

both marker types suggests that this variation reflects the effects of evolutionary and demographic 

factors on the entire mountain whitefish genome. The exception to this general pattern in the Big 

Lost River may be due to large Ne at the MDHB-1,2* isolocus (Allendorf and Thorgaard 1984).
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In the Bonneville Basin, more microsatellite alleles may have been retained and/or mutations may 

have subsequently restored variation at microsatellite loci following the founding event 

approximately 30,000 years ago (McPhail and Lindsey 1986).

Among population divergence

Genetic differentiation occurred in a hierarchical manner across the range of the 

mountain whitefish. At the broadest geographic scale, we found evidence o f substantial genetic 

differentiation among regions (Figures 2-2, Figure 2-3) consistent with the multi-refugia 

hypothesis of McPhail and Lindsey (1986). The upper Snake, upper Missouri, Columbia (east of 

west o f the Cascade Mountains), and Chehalis River on the Olympic Peninsula are all proposed 

refugia during the most recent continental glaciation (McPhail and Lindsey 1986).

Within major assemblages, the landscape template and hierarchical organization of river 

basins appeared to have shaped the geographic scale and patterns of genetic differentiation. Sites 

within the same or adjacent river basins tended to cluster together (Figure 2-3, Figure 2-4). The 

significant discontinuity in the relationship between genetic versus geographic distance at 350 km 

within the contiguous Columbia River (Figure 2-5), corresponded approximately to comparisons 

made within river basins. This pattern suggests that genes are exchanged among populations 

within river basins much more often than among populations in separate river basins. We also 

observed increased genetic differentiation among sites located within river basins but separated 

by geomorphic barriers. These isolated sites tended to be as differentiated from other populations 

in the same basin as populations in different basins were from each other (Figure 2-5). This 

suggests that gene flow is reduced among river basins to a similar extent as barriers reduce gene 

flow within river basins.

In general, we found little evidence o f differentiation among sites within major river 

basins (Figure 2-3, Figure 2-4). An exception to this pattern occurred in the upper Snake River 

and on the Olympic Peninsula, where mountain whitefish populations were more finely
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subdivided than elsewhere (Table 2-3). The most likely cause of this increased subdivision is 

natural restrictions to gene flow, either due to geomorphological discontinuities or to saltwater 

barriers to dispersal. The upper Snake River Plateau has a complex geomorphological history 

(McPhail and Lindsey 1986; Johnson 2002). In addition to the isolation o f the Big Lost, the 

Henrys Fork site is above an impassable waterfall (Mesa Falls), and Bonneville Basin sites are 

currently isolated from the upper Snake River. Thus, population isolation due to the fragmented 

physical template might be responsible for the high genetic differentiation observed in this region. 

On the Olympic Peninsula, gene flow among sites may be limited because mountain whitefish 

apparently are not saltwater tolerant, an inference made by McPhail and Lindsey (1986) based on 

distributional data.

Intolerance to saltwater may explain genetic patterns for mountain whitefish in two other 

instances. First, we observed significant differentiation o f Olympic Peninsula sites from other 

Columbia River sites west of the Cascade Mountains. These rivers are geographically close and 

we would expect greater genetic similarity if  oceanic dispersal were possible. Second, the site we 

analyzed from the lower Fraser River (Chilliwack) grouped with other Fraser River and Columbia 

River sites (Figure 2-3, Figure 2-4) instead of grouping with coastal sites. This pattern is 

consistent with dispersal through inland freshwater dispersal routes rather than an oceanic route 

(McPhail and Lindsey 1986).

How do patterns o f  genetic differentiation compare among species?

Concordance o f patterns

There are several examples o f concordant patterns of genetic differentiation between 

mountain whitefish and other species that improve our understanding of both species. For 

example, mountain whitefish and bull trout populations in the Snake River upstream from Hells 

Canyon and downstream from Shoshone Falls exhibit concordant patterns of genetic 

differentiation. Bull trout populations from this region (from the Malhuer, Boise, and Jarbidge
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Rivers) lie within the Inland Cascadia group but are genetically differentiated from other sites 

(Spruell et al. 2003). Similarly, mountain whitefish populations from this region (from the 

Malhuer, Boise, and Big Wood Rivers) also lie within the Inland Cascadia group but are 

differentiated from other sites (Figure 2-3, Figure 2-4). The three dams in this section of the 

Snake River (constructed between 1958 and 1967) might be responsible for these observations. 

However, it seems unlikely that these dams are the sole cause of these patterns, given the short 

time scale. The differentiation observed for each species likely predates the construction o f these 

dams and may be due to historically reduced gene flow through Hells Canyon.

Several salmonid species in the Pahsimeroi River provide another example o f parallel 

patterns of genetic divergence. The Pahsimeroi River is spring-dominated and differs 

environmentally from the Salmon River and adjacent tributaries. Populations o f steelhead and 

Chinook salmon in the Pahsimeroi River are genetically differentiated from other populations in 

the Salmon River (NOAA 2003), but a history o f hatchery stocking potentially confounds these 

among-population genetic relationships. The spring-dominated nature of this system has led 

others to suggest that the genetic signal o f among-population differentiation o f both species at this 

site might reflect local adaptation and historically reduced gene flow (NOAA 2003). The genetic 

differentiation we observed between mountain whitefish from the Pahsimeroi River and other 

sites in the Salmon River (Figure 2-3, Figure 2-4) provides an unusual example o f genetic 

differentiation at a small geographic scale for the mountain whitefish. It is possible that 

populations of steelhead, Chinook salmon, and mountain whitefish from the Pahsimeroi River are 

all genetically differentiated from other nearby sites due perhaps to the environmental 

characteristics o f this site.

Difference in patterns

Differences among species in patterns of genetic differentiation may reflect species- 

specific biological differences in responses to factors that can reduce gene flow. For example, an
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inland/coastal genetic split corresponding to the Coast in British Columbia and the Cascade 

Mountains in Oregon and Washington has been observed in studies of rainbow trout (Allendorf 

and Utter 1979; McCusker et al. 2000), bull trout (Taylor et al. 1999; Spruell et al. 2003), 

cutthroat trout (Allendorf and Leary 1988), Chinook salmon (Teel et al. 2000), coho salmon 

0Oncorhynchus kisutch; Small et al. 1998), and longnose suckers (Catostomus catostomus; 

McPhail and Taylor 1999) as well as amphibians (e.g. Good 1989; Nielson et al. 2001). For 

fishes, there are some species-specific differences in where this split occurs (e.g. Spruell et al. 

2003). Patterns for mountain whitefish from coastal sites differ in two ways from previously 

studied species. First, populations in the lower Fraser River belong to the coastal assemblage for 

other fishes (Small et al. 1998; McPhail and Taylor 1999; Taylor et al. 1999; Teel et al. 2000) 

rather than the inland assemblage as we observed for mountain whitefish. Second, we observed 

greater differentiation between sites on the Olympic Peninsula and other coastal sites than has 

been observed for other species (e.g. Spruell et al. 2003). Both of these observations may be due 

to the absence o f oceanic dispersal for mountain whitefish. In both cases, biological aspects of 

mountain whitefish may be responsible for differences in genetic patterns and these differences 

have implications for conserving historical relationships among populations. For example, 

mountain whitefish in the lower Fraser River would belong to an inland ESU, while other species 

in the same river would belong to coastal ESUs.

Overall patterns o f genetic differentiation for mountain whitefish differed from those of 

cutthroat trout subspecies, as indicated by the AMOVA (Table 2). This lack o f concordance is 

largely due to three instances where cutthroat subspecies populations are more genetically 

differentiated than sympatric mountain whitefish populations. However, we also found one 

striking example where mountain whitefish populations are more genetically differentiated than 

those of a cutthroat trout subspecies.

First, the westslope cutthroat trout (O. c. lewisi) occurs in the Columbia River basin west 

o f the Continental Divide and in the upper Missouri basin to the east, with the exception of the
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Yellowstone River (Allendorf and Leary 1988). With allozymes, populations of westslope 

cutthroat trout are generally highly genetically differentiated from each other on each side of the 

Continental Divide, such that populations tend to be as differentiated from one another on the 

same side o f the Divide as they are on opposite sides of the Divide (Leary et al. 1988). It is 

unclear if  there should be one or two ESUs for this subspecies because, with allozymes, the 

genetic signal o f regional differentiation on opposite sites of the Divide may have been obscured 

by genetic drift in small populations. Regional differentiation reflecting two ESUs may be 

observed if  sequence data were collected. In the absence of sequence data, the genetic 

differentiation of mountain whitefish populations separated by the Divide suggests that 

hierarchical genetic differentiation may occur for the westslope cutthroat trout and two ESUs may 

exist.

Second, Lahontan cutthroat trout (O. c. henshawi) in the Great Basin are also a 

genetically differentiated subspecies (Allendorf and Leary 1988), while mountain whitefish in the 

Great Basin are part o f the Inland Cascadia genetic assemblage. It is possible that populations of 

both species have been isolated from other Inland Cascadia sites for the same amount o f time but 

differentiation of mountain whitefish populations has not occurred as rapidly due to larger Ne. 

Thus, mountain whitefish populations might provide a better reflection of historical relationships 

in this case as well.

Third, the similarity we observed between mountain whitefish populations in the 

Yellowstone River and the remainder of the upper Missouri River contrasts markedly with the 

genetic divergence o f cutthroat trout subspecies in these two rivers (Yellowstone cutthroat trout, 

O. c. bouvieri in the Yellowstone River and westslope cutthroat trout in the remainder o f the 

upper Missouri River; Allendorf and Leary 1988). In this case, two distinct cutthroat trout 

subspecies lie within what would be one upper Missouri mountain whitefish ESU. Biological 

differences, including the possibility o f greater historical movement, as well as larger Ne of 

mountain whitefish are likely responsible for these differences.
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In contrast, populations of Yellowstone cutthroat trout in the Yellowstone and upper 

Snake Rivers are less genetically differentiated than populations of mountain whitefish. 

Yellowstone cutthroat trout in these two river basins are only slightly genetically differentiated at 

allozyme loci (Allendorf and Leary 1988). The large degree of genetic differentiation we 

observed for mountain whitefish populations in these two river basins suggests that Yellowstone 

cutthroat trout in the Yellowstone River and upper Snake River may be more genetically 

divergent than indicated by allozymes and perhaps mtDNA or microsatellites would provide 

further resolution of population relationships.

How does the geographic scale o f  genetic differentiation compare among species?

For other native inland fishes studied to date, genetic variation is often partitioned among 

regions, among river basins within regions, among large rivers within river basins, and among 

tributaries within large rivers (Allendorf and Utter 1979; Allendorf and Leary 1988; Taylor et al. 

1999; McCusker et al. 2000; Teel et al. 2000; Waples et al. 2001; Costello et al. 2003; Spruell et 

al. 2003; Taylor et al. 2003; Waples et al. 2004). Thus, relative to mountain whitefish, these 

other salmonid species are subdivided on a finer geographic scale and gene flow appears to 

extend over smaller portions o f landscape. These species tend to have one, if  not two, additional 

levels o f hierarchical organization relative to the mountain whitefish. For example, bull trout and 

westslope cutthroat trout populations tend to be as genetically differentiated among tributaries 

within river basins as mountain whitefish populations are among river basins (Costello et al.

2003; Taylor et al. 2003; Whiteley et al. 2004).

Mountain whitefish populations in entire river systems may be part o f one large 

metapopulation (sensu Hanski 1999). For example, the entire Columbia River basin might be one 

large metapopulation of mountain whitefish, while this river system probably contains many 

metapopulations of other salmonids. With respect to salmonid fishes, metapopulation dynamics 

have only been considered over much smaller geographic scales for trout, charr, and salmon (e.g.
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Rieman and Dunham 2000). The same principles that have emerged from studies of other 

salmonids (Rieman and Dunham 2000; Dunham et al. 2003; Neville et al. In press) may apply to 

the mountain whitefish, only over much larger temporal and spatial scales.

Do these data provide additional insight fo r  management o f  other native fishes in northwest 

North America?

Delineating conservation units requires an understanding o f evolutionary relationships 

among populations (Waples 1995). Following this first step, it must then be determined which 

populations, or groups o f populations, should be the focus o f conservation efforts. Regions where 

genetic patterns for the mountain whitefish were concordant with other species, as we observed 

for the Snake River upstream from Hells Canyon, warrant conservation designations that reflect 

the independent evolutionary trajectories o f the species in those regions. Regions where genetic 

patterns for the mountain whitefish were not concordant with other species highlight important 

evolutionary relationships that might not be currently recognized by conservation efforts. For 

example, mountain whitefish would belong to different ESUs than other species in the same river 

systems in several cases. These differences in genetic patterns must be considered to conserve 

historical relationships among populations o f different species in the same systems.

Mountain whitefish populations appear to exchange migrants over a larger geographic 

scale than other salmonids. Management and conservation efforts should focus at the scale of 

river basins for this species because this is the scale at which evolutionary processes are likely to 

be most influential. Co-occurring salmonids should generally be managed at a finer geographic 

scale (i.e. tributaries within basins). Ideally, effective conservation efforts will work to protect 

populations of multiple species at all o f these levels. Important questions to consider with respect 

to the geographic scale of genetic differentiation include: What demographic and evolutionary 

effects will habitat fragmentation (e.g. dams) have on different species? How much connectivity 

is needed for different species and at what scale? These questions are important for more than
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mountain whitefish conservation because the scale of genetic differentiation for mountain 

whitefish may be similar to other unexamined fishes in this region.

Our work illustrates the importance of considering genetic data from multiple species 

across the same landscape and including common species in those comparisons for a more 

comprehensive approach to conservation. We demonstrated how similarities and differences in 

the scale and patterns of genetic differentiation among species can be used to highlight important 

evolutionary relationships, to help define species’ habitat requirements, and to determine where 

single-species management is most likely to provide inadequate conservation o f other species in 

an ecosystem. Appreciating these differences in the pattern and scale o f genetic differentiation 

and evolutionary dynamics can enhance the efficacy o f region-wide management and 

conservation plans.
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Table 2-1. Genetic diversity and sample statistics for each mountain whitefish population. 

Populations are arranged from north to south and downstream to upstream within major rivers, 

is sample size. Hs is average expected heterozygosity.

allozymes

Location N
Latitude (°N)/ Mean

Longitude (°W) Hs Number of 
__________________________ Alleles

microsatellites 
Mean 

Hs Number of 
_________Alleles

Mackenzie River 
A. Liard River, BC 

1. Fort Nelson River
a. Prophet River 19 57.7/123.4 — — 0.215 1.83

2. Kechika River 27 59.2/127.6 — — 0.268 3.00
a. Gataga River 21 58.6/126.9 — — 0.220 3.00

B. Peace River
1. Smoky River, AB 

a. Wapiti River 29 55.7/118.8 0.237 2.00
b. Kakwa River 20 54.3/119.5 — — 0.230 2.00

2. Finlay River, BC 
a. Thutade Lake 19 56.8/127.0 _ _ _ _ 0.091 1.83

3. Parsnip River, BC 18 55.2/123.1 — — 0.310 3.50
Stikine River 
C. Klappan River, BC 15 58.0/129.7 _ 0.186 1.67
Fraser River 
D. Chilliwack, BC 17 49.2/121.9 _ _ _ 0.454 3.33
E. Siska Fish Wheel, BC 10 50.2/121.6 — — 0.481 3.17
F. Thompson River, BC 

1. Bonaparte River 
a. Machete Lake 20 51.4/120.6 0.212 2.00

2. North Thompson River 
a. Eagle Creek 10 51.9/120.9 _ 0.482 3.33

3. South Thompson River 
a. Oliver Creek 12 51.1/120.1 _ 0.356 2.67

G. Bridge River, BC 
1, Carpenter Reservoir 25 50.9/122.5 _ _ . 0.329 3.50

Olvmipic Penninsula 
H. Hoh River, WA 23 47.8/124.2 _ _ 0.165 1.83
I. N. F. Skokomish River, WA 30 47.5/123.4 — — 0.138 1.33
Columbia River Basin 
J, Lewis River, WA 

1. Swift Reservoir 32 46.1/122.2 0.389 4.33
K. Willamette River, OR 34 46.7/123.2 0.030 1.36 0.343 4.17
L. Deschutes River, OR 

1. Warmsprings River 32 44.9/121.1 _ _ 0.413 4.50
M. Walla Walla River, WA 

1. Touchet River 17 46.1/118.7 _ 0.303 2.33
N. Snake River

1. Clearwater River, ID 
a. Lolo Creek 21 46.4/116.2 0.190 2.17
b. S. F. Clearwater River 23 45.8/115.5 -- — 0.272 3.00
c. Lochsa River 20 46.5/114.8 — — 0.339 3.83

2. Grande Ronde River, OR 
a. Lostine River 27 45.5/117.4 0.040 1.36 0.301 3.50

3. Salmon River, ID 
a. S. F. Salmon River 36 44.7/115.7 _ 0.324 3.83
b. Pahsimeroi River 28 44.6/113.9 0.031 1.21 0.350 3.33
c. Salmon River at Chalis 25 44.5/114.2 0.045 1.43 0.392 4.00

4. Malhuer River, OR 26 43.9/117.0 — — 0.361 2.83
5. Boise River, ID

a. South Fork Boise River 20 43.4/115.6 0.031 1.21 0.460 3.33
6. Big Wood River, ID 20 43.5/114.3 0.002 1.07 0.000 1.00
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Table 2-1 (continued).

Location N
Latitude (°N)/ 

Longitude (°W)

allozymes
Mean 

Hs Number of 
Alleles

microsatellites 
Mean 

Hs Number of 
Alleles

7. Snake River-Menan, ID 41 43.8/112.0 0.014 1.21 0.394 4.83
8. South Fork Snake River, ID 32 43.7/111.8 0.021 1.29 0.402 4.33
9. Teton River, ID 33 43.8/111.2 0.008 1.07 0.291 2.67
10. Henry's Fork Snake River, ID 41 44.4/111.4 0.002 1.07 0.288 2.17

O. Big Lost River, ID
1. Lower Big Lost River 26 43.4/113.5 0.026 1.14 0.000 1.00
2. Upper Big Lost River 32 44.2/113.9 0.022 1.14 0.000 1.00

P. Yakima River, WA 22 47.2/120.9 0.038 1.29 0.350 4.17
Q. Clark Fork River, MT

1. Cabinet Gorge Dam 16 48.1/116.1 0.030 1.21 0.462 3.50
2. Flathead River

a. Mainstem Flathead River 30 48.4/114.2 0.024 1.21 0.501 3.17
b. Doctor Lake 22 47.2/113.5 — — 0.343 2.17

3. Ninemile Creek 30 47.0/114.4 — — 0.497 3.83
4. Rattlesnake Creek 91 46.9/114.0 — — 0.522 4.17
5. Milltown Dam 20 46.9/113.9 — — 0.522 3.33
6. Blackfoot River

a. North Fork Blackfoot River 50 47.0/113.1 — — 0.538 4.50
7. Rock Creek 42 46.6/113.7 — — 0.511 3.67
8. Bitterroot River 143 46.3/114.1 0.029 1.21 0.528 4.67

R. Pend Oreille River, BC
1. Confluence with Columbia River 20 49.5/117.7 0.037 1.21 0.431 3.50

S. Beaver Creek, BC 25 49.7/117.7 — — 0.411 3.67
T. Kootenay River, BC

1. Kootenay Lake 21 49.5/116.8 0.033 1.21 0.395 3.83
2. Bull River 20 49.7/115.2 0.015 1.14 0.085 1.17

Saskatchewan River
U. Bow River, AB 24 50.0/111.7 0.025 1.14 0.214 2.17
Missouri River Basin
V. Yellowstone River, MT 40 45.5/110.6 0.021 1.29 0.356 3.33
W. Judith River, MT

1. Big Spring Creek 20 47.1/109.5 — — 0.412 2.67
2. South Fork Judith River 22 46.8/110.3 0.048 1.29 0.428 2.17

X. Gallatin River, MT 21 45.9/111.5 0.030 1.36 0.490 4.17
Y. Madison River, MT 30 45.0/111.6 0.027 1.29 0.465 3.67
Z. Jefferson River, MT

1. Bighole River 30 45.9/113.2 0.019 1.14 0.509 4.17
Bonneville Basin
AA. Logan River, UT 34 41.8/111.8 — — 0.269 3.50
AB. Weber River, UT 31 41.9/111.5 0.000 1.00 0.361 3.33
AC. Bear River, UT 31 40.9/110.5 0.000 1.00 0.320 2.00
Lahontan Basin
AD. Walker River, CA, NV 33 38.2/119.1 0.013 1.21 0.090 1.33
AE. Truckee River, NV 12 39.6/119.6 0.018 1.21 0.114 1.33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2-2. Analysis o f molecular variance (AMOVA) for allozymes and microsatellites. The 

first arrangements for both allozymes and microsatellites used the patterns revealed by principle 

component analysis to define the AMOVA groups. The second arrangements used patterns 

observed for subspecies o f the cutthroat trout. All variance components shown were statistically 

significant (P < 0.001).

Geographical Arrangment Number of Groups Variance Component Percentage of 
Variation

Allozymes
Among groups 65.9

1) PCA groups 5 Among sites within groups 10.8
Within sites 23.3
Among groups 37.5

2) Cutthroat trout subspecies 4 Among sites within groups 36.6
Within sites 25.9

Microsatellites
Among groups 31.3

1) PCA groups 5 Among sites within groups 14.6
Within sites 54.1
Among groups 23.2

2) Cutthroat trout subspecies 4 Among sites within groups 21.2
Within sites 55.6
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Table 2-4. Mean pairwise genetic differentiation for within-basin and among-basin comparisons 

within the Columbia River basin. Number in parentheses is the standard deviation.

Population Comparisons allozymes microsatellites
F st CSE F  ST CSE

All Populations
Comparisons W ithin Basins 0.170(0.142) 0.035(0.026) 
Comparisons Among Basins 0.186(0.151) 0.050(0.033) 
Above Barrier and Small Lake Populations Excluded 
Comparisons W ithin Basins 0.130(0.133) 0.023 (0.015) 
Comparisons Among Basins 0.119 (0.095) 0.035 (0.025)

0.056 (0.071) 
0.194(0.119)

0.037 (0.034) 
0.150 (0.078)

0.012 (0.009) 
0.033 (0.014)

0.010 (0.005) 
0.029 (0.012)
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Figure 2-1. Map of mountain whitefish range (shaded area). Black circles represent locations 

that were analyzed with microsatellites and white circles represent sites that were analyzed with 

both allozymes and microsatellites.

Figure 2-2. Principle component analysis of a) allozymes, b) and c) microsatellites, and d) 

microsatellites and allozymes combined. Numbers in parentheses are the proportion o f the 

variation attributable to each component.

Figure 2-3. UPGMA dendrogram based on microsatellite allele frequencies and CSE distances. 

Bootstrap values greater than 50% are shown. Identities of major genetic groups are shown on 

their respective branches.

Figure 2-4. Results from Bayesian Analysis o f Population Structure (BAPS) across the range of 

mountain whitefish for a) allozymes and b) microsatellites. The geographic locations of cohesive 

genetic assemblages identified with principle components analysis are labeled and shaded grey. 

Each BAPS-defined group has a separate symbol and/or shading. Symbols in a) are independent 

o f those in b).

Figure 2-5. Genetic versus geographic distance for mountain whitefish populations in the 

Columbia River basin. Within river basin comparisons are shown as filled circles and among 

river basin comparisons are shown as open circles. Geographic distance was log transformed for 

the lower panels, a) and c) show all populations in the Columbia River basin. In b) and d), two 

above barrier sites and one high mountain lake site were removed.
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CHAPTER 3 - Ecological and Life History Characteristics Predict 

Population Genetic Divergence of Two Salmonids in the Same Landscape

3.1 A B STR A CT

Ecological and life history characteristics such as population size, dispersal pattern, and 

mating system mediate the influence o f genetic drift and gene flow on population subdivision. 

Bull trout (Salvelinus confluentus) and mountain whitefish (Prosopium williamsoni) differ 

markedly in spawning location, population size, and mating system. Based on these differences, 

we predicted that bull trout would have reduced genetic variation within and greater 

differentiation among populations compared to mountain whitefish. To test this hypothesis, we 

used microsatellite markers to determine patterns of genetic divergence for each species in the 

Clark Fork River, Montana. As predicted, bull trout had a much greater proportion of genetic 

variation partitioned among populations than mountain whitefish. Among all sites, Fst was seven 

times greater for bull trout (FSr -  0.304 for bull trout, 0.042 for mountain whitefish) and after 

removing genetically differentiated high mountain lake sites for each species Fst was 10 times 

greater for bull trout (Fst = 0.176 for bull trout, 0.018 for mountain whitefish). The same 

characteristics that affect dispersal patterns in these species also lead to predictions about the 

amount and scale of adaptive divergence among populations. We provide a theoretical 

framework that incorporates variation in ecological and life history factors, neutral divergence, 

and adaptive divergence to interpret how neutral and adaptive divergence might be correlates of 

ecological and life history traits.
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3.2 IN TR O D U C TIO N

Analyses o f population genetic structure reveal groups of populations that share a 

common evolutionary history and the geographic scale at which evolutionary processes occur for 

a species (Waples 1995). Genetic divergence at a series of putatively neutral markers is often 

used to define management units, identify populations with unusual genetic characteristics, and 

identify populations with reduced genetic variation that might have reduced probability of 

persistence (Avise 2004). In addition, genetic differentiation observed at neutral markers can be 

used as an indicator of adaptive divergence among populations (Fraser and Bematchez 2001; 

Morgan et al. 2001). Finally, by comparing the genetic structure of closely related species we can 

determine if differences in their biology lead to differences in how genetic variation is 

distribution within and among populations.

Historical factors (e.g. vicariant fragmentation, extinction and recolonization, and range 

expansion) influence patterns of the distribution o f genetic variation o f a species and can produce 

patterns similar to the effects o f ongoing gene flow (Felsenstein 1982; Templeton et al. 1995; 

Hewitt 2000; Turgeon and Bematchez 2001). In particular, landscape features that disrupt gene 

flow are often responsible for among-population genetic differentiation, or neutral divergence 

(Angers et al. 1999; Keyghobadi et al. 1999; Castric et al. 2001; Cassel and Tammaru 2003; 

Costello et al. 2003). By comparing multiple species in the same environment, the effect of 

common landscape-level environmental factors on genetic structure can be determined 

(Bermingham and Moritz 1998). In addition, comparisons o f multiple species that inhabit the 

same landscape allow us to test hypotheses regarding factors other than physical barriers, such as 

ecological and life history characteristics, that might also influence neutral divergence.

A number of studies have hypothesized that ecological and life history factors such as 

population size, dispersal pattern, and mating system are related to population genetic divergence
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through their effects on genetic drift and gene flow (e.g. Turner and Trexler 1998; McDonald et 

al. 1999; e.g. King and Lawson 2001; Dawson et al. 2002). There is strong support for an 

association between dispersal ability and neutral divergence across a wide array of taxa (Peterson 

and Denno 1998; Bohonak 1999). McDonald et al. (1999) demonstrated an association between 

neutral divergence and habitat related dispersal patterns along with social system in two jays in 

the genus Aphelocoma. Use of aquatic habitat explained dispersal patterns and neutral divergence 

among three natricine snakes (King and Lawson 2001). Dawson et al. (2002) noted a relationship 

between larval duration, habitat mediated dispersal patterns, and population size with patterns of 

neutral divergence in two marine gobies (Gobiidae) and many studies of marine organisms have 

tested for a relationship between larval dispersal ability and neutral divergence (reviewed in 

Bohonak 1999). In fishes residing in linear stream habitats, Turner (2001) and Turner and 

Trexler (1998) tested for an association between neutral divergence and life history traits in 

species o f darters (Percidae) and Castric and Bematchez (2004) found differences in patterns o f 

genetic structure for two salmonids that were expected to differ in dispersal potential in the same 

landscape. However, the association between genetic subdivision and dispersal patterns, 

population size, and mating system has not been considered simultaneously in stream dwelling 

fishes.

Within streams, ecological and life history characteristics should have a large impact on 

neutral divergence. Spatial separation of reproduction sites will affect dispersal patterns because 

more closely situated downstream sites are more likely to be encountered by a dispersing 

individual. In addition, the probability of individual dispersal will be reduced if  individuals must 

navigate through a complex environment to reach spatially separated sites to reproduce. Aspects 

of the mating system might act as a prezygotic isolating mechanism reducing gene flow because a 

dispersing individual might have a lower probability of successfully mating in systems with more 

complex behaviors (i.e. paired matings that involve mate choice versus group spawning without
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mate choice). Other aspects o f life history that might be important for dispersal are philopatry 

and specificity o f reproductive timing (Avise 2004). Finally, populations of different sizes 

experiencing the same migration rate (m , defined as the proportion of individuals in each 

population that are from outside that population), have very different patterns o f neutral 

divergence; larger populations will be much less divergent than smaller populations because the 

absolute number of migrants per generation (Nem) will be larger and drift will not cause as much 

population divergence.

Bull trout (Salvelinus confluentus) and mountain whitefish (Prosopium williamsoni) are 

two species in the family Salmonidae that co-occur throughout much of western North America 

(Scott and Crossman 1979). Within the same river systems, these species differ markedly in 

spawning location, mating system, and population size and thus lie at the extreme ends o f a 

continuum of factors that might influence patterns o f dispersal and gene flow. Bull trout spawn 

in upstream portions of tributary streams that are generally characterized by environmental 

heterogeneity among locations (Rieman and McIntyre 1995; Swanberg 1997). Mountain 

whitefish spawn in downstream locations that are less environmentally heterogeneous (Davies 

and Thompson 1976; Northcote and Ennis 1994). Due to their spawning locations, dispersing 

bull trout must move further to spawn in adjacent tributary streams than mountain whitefish 

spawning in river mainstems or near the mouths of tributaries. Bull trout home to natal spawning 

sites with high precision (McPhail and Baxter 1996; Spruell et al. 1999; Neraas and Spruell

2001). There is some evidence that mountain whitefish return to experimental release sites within 

the same season (Liebelt 1970) and that they home to spawning locations (Pettit and Wallace 

1975). Bull trout spawning migrations must be closely matched to environmental conditions such 

as seasonally reduced stream flow (Pratt 1992), while there is little evidence o f such habitat 

specificity for mountain whitefish. Bull trout females choose dominant males and the pair spawn 

in a nest, or redd, often with one to several satellite males involved (Stearley 1992). Mountain
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whitefish spawn in groups without digging redds (Northcote and Ennis 1994) and appear to have 

less complex mating behavior (Brown 1952, Appendix B). Finally, bull trout have small 

population sizes (Swanberg 1997) while mountain whitefish populations are often very large 

(Northcote and Ennis 1994). These combined factors should lead to less gene flow among 

populations o f bull trout than mountain whitefish.

In this paper, we compared neutral molecular divergence among populations of bull trout 

and mountain whitefish from the Clark Fork River, Montana. We predicted a priori that 

mountain whitefish would have greater within-population genetic variation and reduced neutral 

divergence among populations. We tested this hypothesis by describing the genetic structure o f 

each species using microsatellite markers. We also tested for common landscape factors that 

influence the distribution of genetic variation in each species. The same ecological and life 

history factors that allowed us to predict relative amounts of neutral divergence are also 

consistent with differences in likelihood of local adaptation. We use our results to suggest a 

general framework for the interactions among ecological and life history factors, neutral 

divergence among populations, and divergence among populations in traits likely to be important 

for local adaptation (adaptive divergence).

3.3 M A TERIA LS A N D  M ETH O D S

Study Location

The Clark Fork River forms a portion of the headwaters of the Columbia River and has 

three major tributaries: the Blackfoot, Bitterroot, and Flathead Rivers (Figure 3-1). Bull trout and 

mountain whitefish occur throughout the Clark Fork River system, including some high mountain 

lakes. Several dams occur in this system and three are most relevant to fish dispersal in this 

study. Milltown Dam is located at the confluence o f the Blackfoot and Clark Fork Rivers and has 

blocked upstream movement o f both species since 1907 (Schmetterling 2001). Turbines and 

predatory fish in the upstream reservoir impede downstream movement o f juveniles and adults of
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both species, although downstream movement o f adult bull trout has been observed (Swanberg 

1997). Kerr Dam is located at the outlet of Flathead Lake and has blocked upstream fish 

movement since 1938 and Hungry Horse Dam is located where the South Fork of the Flathead 

River joins the Flathead River and has blocked upstream movement o f fish since 1951.

Sample Collection

Spawning groups of mountain whitefish (Figure 3-1) were collected in 2000 and 2001 by 

electrofishing. In one case (Rattlesnake Creek, W2a and W2b; Table 3-3) we collected spawning 

mountain whitefish from the same location in both 2000 and 2001. Care was taken to sample ripe 

adult fish that appeared to be spawning in the vicinity with the exception o f the Flathead River 

sample (W9), where non-spawning adults were collected from the mainstem Flathead River. Bull 

trout juveniles were collected in tributary streams (Figure 1) in 1998 and 1999 by electrofishing. 

Bull trout typically reside in their natal streams for at least one to three years after which they 

either migrate to larger rivers or lakes or remain in their natal or closely associated stream 

(Dunham and Rieman 1999; Nelson et al. 2002). By restricting the bull trout collections to 

juveniles, it is highly likely that each site contained individuals from their natal stream. In 

addition, it is unlikely that juveniles move between sites at the scale o f the comparisons made in 

our study. For both species, care was taken to minimize the occurrence o f siblings or the 

representation o f single cohorts in each sample. In general, the samples were distributed across at 

least three age classes. Both species were collected from the same tributary in two cases (B2, W2 

and B3, W4; Figure 3-1). Fin tissue was collected and stored in 95% ethanol until DNA 

extraction.

Microsatellites

The general methods used for PCR and visualization o f subsequent PCR products 

followed Spruell et al. (1999) and Neraas and Spruell (2001). The seven variable microsatellite
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loci used for bull trout (SC019, FGT3, SSA456, SSA311, SF018, BT73, and 0 G 0 2 , and ONE\i7) 

were described in Spruell et al. (1999) and Neraas and Spruell (2001). DNA was extracted from 

each fin clip by standard methods. All PCRs were performed using an MJ thermal cycler. We 

visualized fluorescently-labeled PCR products on acrylamide gels and used individual fish of 

known genotypes as standards for scoring.

The following microsatellites were optimized for use for mountain whitefish: COCL4, 

SSA14, SSA456, ONE8, FGT25, BT73, SF08-1, and SF08-2  (Table 3-1). We confirmed disomic 

Mendelian inheritance for all eight loci using three mountain whitefish families, each with 10 

offspring. Parents for these families were collected in 2000 from site W2 (Figure 3-1). For 

SSA456, FGT25, and BT73, the following thermal cycler profile was used: 93°C for 3m, 92°C for 

lm , variable annealing temperature (listed in Table 3-1) for lm , and 72°C for lm , with the 

number o f cycles listed in Table 1. For the remaining loci, we used variations o f the following 

touchdown PCR profile (Don et al. 1991): 96°C for 5m, 94°C for 10s, variable initial annealing 

temperature for 35s (Table 3-1), and 72°C for lm  for seven cycles during which the annealing 

temperature was decreased 1°C per cycle. At the lower annealing temperature listed in Table 3-1, 

a variable number of cycles (Table 3-1) were performed with the following profile: 94°C for 10s, 

variable annealing temperature for 35s, and 72°C for lm. A final extension period o f 72°C for 

10m was used for all profiles.

Data Analysis

Allele frequencies, deviations from Hardy-Weinberg expectations, genotypic linkage 

disequilibrium, observed (H0) and expected (HE) heterozygosity per locus and population, mean 

within-population expected heterozygosity (Hs), mean allelic richness per population, pairwise 

exact tests for genic differentiation, F-statistics and pairwise Fsr’s were calculated using 

GENEPOP ver. 3.4 (Raymond and Rousset 1995) and FSTAT ver. 2.9.3.2 (Goudet 2001). We 

used 0(W eir and Cockerham 1984) for estimates o f Fst- Confidence intervals (95%) for
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multilocus Fst estimates were generated by bootstrap sampling over loci (Goudet et al. 1996).

We used FSr instead of RSr because FST estimates are more conservative when relatively few 

microsatellite loci are used (< 20) and populations have diverged recently (Gaggiotti et al. 1999). 

We adjusted the results from tests for conformation to Hardy-Weinberg proportions and 

genotypic linkage disequilibrium for multiple tests using the sequential Bonferroni procedure 

(Rice 1989). We determined the average number o f loci for which we could reject the null 

hypothesis that allele frequency distributions were the same between populations (determined 

using pairwise exact tests for genic differentiation from GENEPOP ver. 3.4) at the P < 0.05 and P 

< 0.001 levels for both species.

We used PHYLIP ver 3.5 (Felsenstein 1993) to calculate Cavalli-Sforza and Edwards’ 

(1967) genetic distance (CSE) with the GENDIST module and to construct a UPGMA 

(Unweighted Pair Group Method with Arithmetic Mean) dendrogram using the NEIGHBOR 

module. CONSENSE was used to generate a consensus tree with bootstrap values from 1000 

replicate data sets created in SEQBOOT. We chose to analyze genetic divergence between 

populations using CSE because it is drift based, does not assume any models of mutation, and 

performs well in simulations of microsatellite data (Takezaki and Nei 1996).

We used Mantel tests with 5000 replicates to compare matrices o f both CSE distance and 

pairwise FSt estimates to a matrix o f geographic distance using the program Isolation By Distance 

(IBD, Bohonak 2003). We considered the relationship between genetic and physical distance 

with and without high mountain lake sites for each species because the differentiation we 

observed for these sites appeared to be due to factors other than geographic distance alone. We 

estimated river distances among sample locations using digital topographic maps from National 

Geographic TOPO! ver. 2.7.4.
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3.4 RESULTS

Bull trout

We analyzed bull trout from seven locations at seven microsatellite loci. There were six 

river sites (B1-B6; Figure 3-1, Table 3-2) and one high-mountain lake site (Trout Lake, B7; 

Figure 3-1, Table 3-2). Average within-population expected heterozygosity (Hs) ranged from 

0.073 to 0.394 and mean allelic richness ranged from 1.1 to 2.8 (Table 3-2). The location with 

the least amount of genetic variation was Trout Lake (Hs = 0.073, allelic richness = 1.1).

Meadow Creek (B4) had the highest heterozygosity (0.441) and Rock Creek (B3) had the highest 

allelic richness (2.8).

We did not detect any significant departures from Hardy-Weinberg proportions (P >

0.05) for bull trout. Three tests for genotypic disequilibrium yielded P-values less than 0.05. 

There was no pattern of significant disequilibrium within any o f the population samples or for 

any of the locus pairs across populations and none of the differences was significant after 

sequential Bonferroni correction (0.05/21 comparisons per population sample with seven loci).

Variation in allele frequencies and thus genetic differentiation among bull trout sample 

locations was pronounced (Fst = 0.304, 95% C.I. 0.212-0.382; Table 2, Table 4). The high 

mountain lake (Trout Lake, B7) was the most genetically differentiated site (Figure 2A). Even 

with this site excluded, bull trout had a large proportion of genetic variation partitioned among 

sites. 7^7-for the six river sites (B1-B6) was 0.176, (95% C.I. 0.131-0.213; Table 3-4). For tests 

of homogeneity o f population allele frequencies at the seven loci analyzed, on average 5.2 loci 

were statistically significantly different at the P < 0.05 level and on average 3.6 loci were 

significantly different at the P  < 0.001 level. When the Trout Lake sample (B7) was removed, an 

average o f 5.1 loci were statistically significantly different at the P < 0.05 level and 3.4 loci were 

statistically significantly different at the P < 0.001 level. When we combined P-values for the
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exact tests for population differentiation from all seven loci, all pairwise comparisons were highly 

significant (P < 0.0001).

The average geographic distance between sites B1-B6 was 261.4 km ± 26.9 km SE and 

the average distance between these six sites and Trout Lake was 559.8 km ± 44.7 km SE (Figure 

3-3A). We found a significant relationship between pairwise CSE values and geographic distance 

for bull trout (r = 0.80, P  < 0.001) when all comparisons were considered (Figure 3-3A). When 

Trout Lake was removed, the relationship between pairwise CSE values and geographic distance 

was not significant (r = 0.39, P  < 0.19). Results were similar if  pairwise FSr was used as the 

genetic distance metric (r = 0.74, P < 0.04 for all comparisons; r = 0.26, P  < 0.25 when Trout 

Lake was removed) or when geographic distances were log transformed (data not shown).

Mountain whitefish

We used eight microsatellites to analyze mountain whitefish from 10 locations (Table 3- 

3). There were nine river sites (W1-W9; Figure 3-1, Table 3-3) and one high-mountain lake site 

(Doctor Lake, W10; Figure 3-1). We detected greater genetic variation within populations of 

mountain whitefish than bull trout. Hs ranged from 0.403 to 0.580 and mean allelic richness per 

population ranged from 2.5 to 5.2 (Table 3-3). Doctor Lake had the lowest allelic richness and 

the lowest Hs. We detected the greatest heterozygosity at site W7 (0.580) and the greatest allelic 

richness at the site W5 (5.2).

All mountain whitefish population samples conformed to Hardy-Weinberg proportions (P 

> 0.05 for all exact tests). Five tests for genotypic disequilibrium had F-values less than 0.05. 

When we corrected (Rice 1989) for the 28 comparisons made for each population (0.05/28 

comparisons per population sample with eight loci) none of the tests was significant. In addition, 

no pattern was evident for genotypic disequilibrium either within a sample or for a pair (or pairs) 

o f loci.
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Allele frequencies were relatively homogeneous among mountain whitefish sample sites 

(Table 3-3) and genetic differentiation among sites was low (FSt = 0.042, 95% C.I. 0.028-0.061; 

Table 4). As was observed in bull trout, the high mountain lake (Doctor Lake, W10) was the 

most genetically divergent site (Figure 3-2). Differentiation among sites was reduced when 

Doctor Lake was excluded (FSr = 0.018, 95% C.I. 0.012-0.028; Table 3-4).

Theoretical (Hedrick 1999) and empirical studies (O'Reilly et al. 2004; Olsen et al. 2004) 

have shown that estimates o f genetic differentiation among populations using F-stati sties might 

be biased low when highly polymorphic loci are used. We calculated estimates o f F2STto 

determine if  the greater number o f alleles and higher heterozygosity we observed for mountain 

whitefish relative to bull trout might have contributed to the lower Fst estimates we observed for 

mountain whitefish. With F 2 St, all loci are treated as bi-allelic by using the frequency of the most 

common allele and pooling the frequencies o f all others (McDonald 1994; Allendorf and Seeb 

2000). Estimates o f F 2 St  for mountain whitefish were only slightly higher than estimates of F St- 

For all sites, F2srwas 0.046 (95% C.I. 0.037-0.058) and for sites W1-W9, F 2 5 7’was 0.019 (95% 

C.I. 0.009-0.032). BT73, in particular, was highly variable in mountain whitefish (mean HE = 

0.89). To determine if this locus had a disproportionate effect on our estimates o f F St, we also 

treated this locus as bi-allelic, without doing so for the remaining loci. This measure led to a 

slight increase in overall Fst for all mountain whitefish sites (Fst -  0.048 (95% C.I. 0.033-0.065) 

but not for the Fst estimate for sites W1-W9 (F >7 = 0.019, 95% C.I. 0.011-0.029).

The mean number o f loci at which population allele frequencies were statistically 

significantly different between population pairs for the eight loci analyzed was 3.3 (P < 0.05) and 

2.0 (P < 0.001). When Doctor Lake was excluded, an average o f 2.6 loci were statistically 

significantly different between population pairs at the P < 0.05 level and an average of 1.2 loci 

were statistically significantly different at the P  < 0.001 level. We were unable to reject the null

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hypothesis of identical allele frequency distributions for 15 of the 55 pairwise comparisons when 

all loci were combined (P  > 0.05).

Despite the low level o f genetic differentiation, the mountain whitefish dendrogram 

shows evidence o f spatial structure (Figure 3-2B). The Flathead River site (W9) and the lake site 

(W10) were genetically divergent from sites W1-W8 and these eight sites clustered closely 

together (Figure 3-2B). There were no statistically significant differences in allele frequencies 

among samples W2a, W2b, and W3; nor among sites W5, W6, and W7. These sites were pooled 

into two groups for Figure 3-2B. The mountain whitefish dendrogram (Figure 3-2B) showed a 

similar overall topology as the bull trout dendrogram (Figure 2A), though on average CSE 

distances were substantially less for mountain whitefish (see below).

The geographic scale o f the population comparisons for mountain whitefish was similar 

to the scale for bull trout. The average geographic distance between sites W1-W9 was 202.8 km 

± 26.4 km SE. The average pairwise distance between sites W1-W9 and Doctor Lake was 651.5 

km ± 22.6 km SE. We found a significant relationship between pairwise CSE values and 

geographic distance (r -  0.88, P < 0.003) when all comparisons were considered for mountain 

whitefish (Figure 3-3B). When Doctor Lake was removed, the relationship remained significant 

(r = 0.83, P < 0.039). There was a break in geographic distance between sites W1-W8 and site 

W9 (Figure 3-3B). The relationship between pairwise CSE values and geographic distance was 

not significant when only considering sites W1-W8 (r = 0.08, P < 0.35). Results were highly 

similar if  pairwise Fst was used as the genetic distance metric (r = 0.79, P < 0.005 for all 

comparisons; r = 0.79, P  < 0.009 when Doctor Lake was removed; r = 0.15, P  < 0.24 among sites 

W1-W8 only) or when geographic distances were log transformed (data not shown).
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Comparison o f  genetic distances between species

Average CSE distances were approximately five times greater for bull trout than for 

mountain whitefish (Figure 3-4; mean CSE for mountain whitefish was 0.035 ± 0.004 SE and for 

bull trout was 0.192 ± 0.025 SE). With the high mountain lakes excluded, mean CSE for 

mountain whitefish was 0.024 ± 0.002 SE and for bull trout was 0.129 ± 0.014 SE. Results for 

pairwise FST were similar. Mean pairwise Fst for mountain whitefish was 0.059 ± 0.012 SE, 

while mean pairwise Fst for bull trout was 0.284 ± 0.045 SE. With the high mountain lakes 

excluded mean pairwise Fst for mountain whitefish was 0.023 ± 0.005 SE, while mean pairwise 

Fst for bull trout was 0.179 ± 0.029 SE.

3.5 DISCUSSION

We used ecological and life histoiy characteristics o f bull trout and mountain whitefish to 

predict that bull trout would have greater population substructure in the same river system. We 

were able to control for the effects o f historical factors by analyzing both species in the same 

river system. We found substantial differences in neutral divergence, suggesting that ecological 

and life history factors, through their effects on the probability of dispersal, are responsible for 

these results. Reduced gene flow, and perhaps reduced population size and founder effects in 

high-mountain lakes served as a proximate factor shaping the distribution o f genetic variation in a 

similar manner for each species.

Based on the genetic differentiation we observed we predict that bull trout have greater 

among-population adaptive divergence than mountain whitefish. The same ecological and life 

history characteristics that affect neutral divergence for these species might also affect adaptive 

differences among populations. We combined our results for neutral divergence with predicted 

differences in adaptive divergence in a framework where ecological and life history 

characteristics are the driving factors.
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Neutral Divergence 

Bull trout

We found large differences in allele frequencies among bull trout populations. The 

degree o f genetic differentiation among bull trout populations found in this study is similar to that 

found in previous studies of bull trout performed at similar geographic scales (within river 

basins). For example, Costello et al. (2003) estimated Fst values of 0.24 and 0.23 for two river 

systems in British Columbia. Our F$t was also similar to what has been found for other bull trout 

populations in Montana and Idaho (Spruell et al. 1999; Kanda and Allendorf 2001; Neraas and 

Spruell 2001). The large FSt we observed is also similar to other inland salmonid species that 

tend to use headwater habitats (Currens et al. 1990; Angers et al. 1999; Bouza et al. 1999; 

Carlsson and Nilsson 1999; Taylor et al. 2003).

While the high degree o f neutral divergence we observed for bull trout populations might 

be somewhat exaggerated due to the tendency for reduced variation within populations to inflate 

measures such as Fst (Hedrick 1999), the pronounced differentiation observed is likely due to the 

fact that bull trout occur in small subpopulations that are prone to drift and have reduced gene 

flow because they home with high precision (McPhail and Baxter 1996, Spruell et al. 1999, 

Neraas and Spruell 2001). Ecological and life history characteristics also apparently contribute to 

neutral divergence in this species. Dispersal probabilities for bull trout are probably low due to 

the location o f spawning sites far upstream in heterogeneous locations that can be difficult to 

access (both in time and space). It is the product of the proportion of individuals in each 

subpopulation that are from outside the subpopulation (m) and the effective population size (Ne) 

that determine Fst (Mills and Allendorf 1996). Small population size will enhance the effect of 

low individual bull trout dispersal probability on Fst because both Ne and m will be small.
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Mountain whitefish

For mountain whitefish, we found that the vast majority of genetic variation occurs 

within populations with little differentiation occurring among populations. Genetic 

differentiation among mountain whitefish populations was substantially lower than that observed 

for bull trout and the reduced differentiation did not appear to be due to greater within-population 

variation we observed for mountain whitefish. Two non-mutually exclusive hypotheses could 

explain the genetic patterns we observed for this species: 1) reduced gene flow and little drift due 

to large Ne or 2) at least moderate gene flow among spawning groups.

We were able to address the first hypothesis because habitat fragmentation by a dam 

allowed us to estimate N e for mountain whitefish in this system. Milltown Dam has been a 

barrier to upstream fish movement in the mainstem of the Clark Fork River since 1907 

(Schmetterling 2001). In addition, very few mountain whitefish are able to pass downstream due 

to turbines and high abundance o f predatory fish in the upstream reservoir. We observed very 

little genetic differentiation among sites located on either side o f this dam (among sites W1-W8 

Fst = 0.006; 95% C.I. 0.002-0.010). The Ne consistent with the observed neutral divergence (F st) 

of isolated populations separated for t generations can be determined with the approximation:

Fst ~ / -e't2Ne

(Waples 1998). We used t = 25 because we assume the average generation length of mountain 

whitefish is four years and we assume no gene flow has occurred for approximately 100 years 

(since the dam was installed). Our assumption o f complete isolation might be violated, but gene 

flow should at least be very close to zero over this time frame. For our observed FSt = 0.006, our 

estimate of Ne is approximately 2000. These data are consistent with large populations that do 

not diverge at neutral markers because of drift and thus, hypothesis 1 is consistent with low 

neutral divergence observed.
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However, elevated gene flow also appears to be an important factor that prevents allele 

frequencies from diverging among sites W1-W8 (hypothesis 2). There is very little genetic 

divergence among sites W1-W8 (mean pairwise Fst for the 28 comparisons among sites W1-W8 

is 0.008 ± 0.002 SE) but increased genetic divergence between these sites and the more 

geographically distant Flathead River site (Figure 3; mean pairwise Fst for the eight comparisons 

between sites W1-W8 and site W9 is 0.076 ± 0.004 SE). Ne probably does not differ between 

each of the sites W1-W8 and the Flathead River site (W9). On the other hand, gene flow is likely 

reduced by geographic distance and the presence of Flathead Lake, a 495 km2 natural lake. 

Therefore, Ne is not apparently large enough to prevent divergence among mountain whitefish 

populations when gene flow is reduced over what are likely longer periods o f time. If there were 

little to no gene flow among sites W1-W8 (hypothesis 1), we would expect as much 

differentiation among these eight sites as we observed between these sites and site W9. Thus, it 

appears that reduced drift due to large Ne contributes to the lack of neutral divergence observed 

for mountain whitefish but high gene flow also prevents genetic divergence.

The combined effects o f the ecological and life history factors we have considered 

(proximity o f spawning locations, low complexity of intervening habitat, relative environmental 

homogeneity of spawning sites, large Ne, and group spawning behavior) appear to lead to the 

substantial differences in among-population divergence we observed between bull trout and 

mountain whitefish. Dispersing mountain whitefish are more likely to successfully spawn at non- 

natal sites (due to the proximity o f sites, low complexity of intervening habitat, and their group 

spawning behavior). In addition, for a given m, Fst will be lower in mountain whitefish than bull 

trout due to greater Ne o f the former. Thus, even if  mountain whitefish home at the same rate as 

bull trout (i.e. m is equal), we would expect to see less differentiation among populations of 

mountain whitefish.
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Nonequilibrium conditions

An alternative explanation for the differences in FST we observed between bull trout and 

mountain whitefish is that neither species has reached equilibrium between drift and gene flow. 

Most natural groups of populations are probably not at equilibrium (McCauley 1993; Hutchison 

and Templeton 1999; Turgeon and Bematchez 2001; Kinnison et al. 2002; Ramstad et al. 2004). 

If  nonequilibrium conditions prevail, values of FSt could fluctuate, leading to misguided 

interpretations about the relative values of Fst■ However, given the substantial differences we 

found, it is highly unlikely that the Fst distributions for these two species would overlap

In addition, populations of each species might not be at equilibrium, but both species 

should be at a similar point in their progression to equilibrium. It is likely that the Clark Fork 

basin either served as a glacial refugium for both species or was founded by both species 

approximately 10,000 years ago, after the continental glaciers receded (McPhail and Lindsey 

1986). Thus, both species would have had equal time in which to proceed toward equilibrium. 

Differences in population size effect time to equilibrium, with larger populations taking longer to 

achieve equilibrium (Crow and Aoki 1984). This factor is of little consequence within the 

realistic ranges o f Ne for these species in this basin (1000 or more). Thus, even if  mountain 

whitefish exist at an Ne that is an order of magnitude larger than that o f bull trout, the effect of 

this larger population size on time to equilibrium is negligible (Crow and Aoki 1984). Finally, it 

is unlikely that unusual population dynamics have occurred in this particular river basin because 

our results are consistent with those observed in other regions for bull trout (Spruell et al. 1999; 

Kanda and Allendorf 2001; Neraas and Spruell 2001; Costello et al. 2003) and mountain 

whitefish (ARW unpublished data).

Additional factors

Physical barriers interact with biological factors to influence amounts of gene flow. 

Fragmentation due to dams can reduce gene flow and cause neutral divergence in stream systems
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(Neraas and Spruell 2001). Milltown Dam has reduced movement o f bull trout and whitefish in 

this system for approximately 100 years but has not served as a proximate factor shaping the 

distribution o f genetic variation of either species, probably because these two species lie at 

opposite ends o f the spectrum of population genetic structure. Drift appears to be the dominant 

factor shaping bull trout genetic structure and overwhelms any reduction in gene flow caused by 

the dam. Mountain whitefish populations appear to be too large to have increased neutral 

divergence due to dams over this time scale.

Founding events and reduced gene flow in high mountain lakes appear to act as 

proximate factors with similar impacts on the genetic structure o f each species. The high- 

mountain lake sites of both species have reduced genetic variation (Table 3-2, Table 3-3) and are 

genetically divergent (Figure 3-2, Figure 3-3). Bull trout site B7 is separated by one dam and 

mountain whitefish site W10 is separated by two dams and thus, increased geographic distance 

and anthropogenic-induced fragmentation by dams might be responsible for these results. 

However, fragmentation by dams is probably not the only responsible factor, given our results for 

Milltown Dam. In addition, it is possible that the genetic patterns observed for these lake sites 

are due to past stocking events. However, bull trout and mountain whitefish are not typically the 

focus of stocking efforts and for these two species there are no records o f  stocking either o f the 

lakes considered in this study. Anthropogenic intervention does not appear to be a likely 

explanation for these data. Other studies of salmonids have found that small high-mountain lakes 

can influence genetic structure (e.g. Castric et al. 2001) and founding events can cause increased 

genetic divergence (Hedrick 1999). Both high-mountain sites in our study share characteristics of 

founding effects (a reduced number o f alleles that are a subset of the alleles present in nearby 

populations). It is likely that historical events associated with the founding of these lakes and 

subsequent reduced gene flow due the high probability of geomorphological discontinuities at 

high elevation have contributed to our observations.
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Neutral versus adaptive divergence

Reduced gene flow provides conditions favorable to local adaptation if  selective 

differences occur among populations (Lenormand 2002) and both theoretical (Haldane 1948; 

Slatkin 1973; Felsenstein 1976; Endler 1977; Slatkin 1978; Garcia-Ramos and Kirkpatrick 1997; 

Hendry et al. 2001) and empirical data (King and Lawson 1995; Storfer et al. 1999; Hendry et al.

2002) suggest that gene flow can constrain adaptive divergence. In addition, empirical results 

suggest that estimates of neutral divergence from molecular markers (FST) provide conservative 

estimates o f Qsr, or among-population divergence in adaptive traits (Pfrender et al. 2000; Morgan 

et al. 2001) Based on our microsatellite data, we would predict that bull trout populations are 

more locally adapted than mountain whitefish populations in the Clark Fork River, as long as 

selection acting on bull trout populations is strong enough to overwhelm drift. On the other hand, 

selection would not need to be strong to overwhelm drift in large mountain whitefish populations, 

but high gene flow could prevent local adaptation from occurring at this geographic scale. Thus, 

while mountain whitefish might be adapted at a larger geographic scale (among river basins), 

within river basins we predict that neutral divergence estimates from molecular markers are 

correlated with adaptive divergence among populations for these two species.

This system offers some additional insights into the relationship between neutral and 

adaptive divergence. Neutral divergence and adaptive divergence will be positively correlated in 

some circumstances. However, adaptive divergence can occur in the absence of neutral 

divergence (e.g. Mopper et al. 2000). It is possible that both types of divergence are actually 

covariates of other factors and instead o f focusing directly on the relationship between neutral and 

adaptive divergence, we might increase our understanding by focusing on other factors that 

actually cause differences in both types o f divergence. Causal factors might lead to a reduced 

probability o f dispersal and therefore increased neutral divergence. In addition, the same factors 

might lead to increased adaptive divergence. In this case, neutral and adaptive divergence would 

be positively correlated. This general framework could explain why adaptive and neutral
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divergence are negatively correlated in some instances. For example, a factor or set o f factors 

might lead to increased adaptive divergence and increased dispersal and gene flow and thus 

reduced neutral divergence.

With respect to bull trout and mountain whitefish, the same ecological and life history 

characteristics (mating location, mating system, length and extent o f stage-specific migrations, 

and population size) that we used to predict neutral divergence for these species might cause both 

neutral and adaptive differences among populations. Bull trout have more extensive migrations 

than mountain whitefish, migrating from rearing to adult feeding habitats and back to spawning 

habitats in headwater portions o f streams. There are more opportunities for disruptions that 

prevent the completion of this life cycle for bull trout than in the comparatively simple migration 

and life history pattern of mountain whitefish. In addition to their effects on dispersal potential 

and thus neutral divergence, these ecological and life history aspects should lead to greater local 

adaptation o f bull trout populations. Once neutral divergence and adaptive divergence arise due 

to the ecology and life history of an organism, these two elements of genetic structure can 

interact. For example, increased adaptive divergence might lead to further increases in neutral 

divergence due to reduced success o f migrant genotypes (Ehrlich and Raven 1969; Futuyma and 

Peterson 1985; Endler 2000; Mopper et al. 2000).

Empirical evidence for an association between local adaptation with ecological and life 

history factors such as mating system, migration, and/or population size is required to test this 

framework, as are more data on genetics and life history for a wider variety o f species. This 

framework should apply to a wide array o f taxa and mountain whitefish and bull trout offer just 

one opportunity to test these predictions. Our framework appears to be consistent with 

observations for other salmonids where there is evidence for local adaptation (e.g. Wood 1995; 

e.g. Koskinen et al. 2002). For example, Allendorf and Waples (1996) suggested that the high 

degree o f local adaptation observed among populations o f sockeye salmon (Oncorhynchus nerka) 

is due to the number of habitats they occupy at various life stages and the complexity and length
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of migrations between these habitats. Thus, complexity of migration patterns and of the overall 

life cycle might lead to adaptive differences among populations of this species. These same 

factors might lead to a reduced probability o f dispersal and subsequent gene flow and thus the 

high Fst commonly observed for this species (Wood 1995). Finally, adaptive differences among 

populations might contribute to reduced reproductive success of migrant individuals, acting to 

ratchet populations to greater neutral divergence.

Much recent debate has centered on whether adaptive or neutral differences among 

populations should be used for the purpose of defining conservation units (Crandall et al. 2000; 

McKay and Latta 2002). To understand the relationship between adaptive and neutral 

divergence, we suggest that more effort should be placed on the identification o f factors that 

directly influence both types o f divergence. Variation in ecological and life history factors, when 

causally associated with adaptive and neutral divergence, might be valuable both as a predictor of 

neutral divergence and a surrogate for measures o f adaptive variation. Understanding the 

association between ecological and life history variation and neutral and adaptive divergence 

might allow us to define conservation units more effectively for a broad array of taxa.
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Table 3-1. Locus names, number o f alleles, size range, annealing temperature, and number o f 

cycles for mountain whitefish microsatellites.

Locus Number of 
Alleles

Size Range (bp)
Annealing 
Temp (°C)'

Number of 
Cycles2

Reference

COCL4 3 146-152 57-51 7,29 L. Benatchez pers. comm. 2000

SSA14 5 167-175 57-51 7,29 O'Reilly et al. 1996

SSA456 15 138-232 52 30 O'Reilly et al. 1996

ONE8 6 178-190 60 30 Scribner et al. 1996

FGT25 4 170-180 57-51 7,26 Sakamoto et al. 2000

SF08-1 3 158-164 55-49 7,31 Angers et al. 1995

SF08-2 2 195-197 55-49 7,31 Angers et al. 1995

BT73 51 146-280 55 32 Estoup et al. 1993

'A range of temperatures indicates a touchdown PCR was used, where the annealing temperature was decreased 
1° per cycle for seven cycles starting at the higher temperature. The remainder of the cycles were performed at the 
lower annealing temperature.
2The first number represents the number of cycles where the annealing temperature was decreased 1° per cycle. The 
second number is the number of cycles at the lower annealing temperature. The total number of cycles is the addition 
of both numbers.
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Table 3-4. Genetic differentiation of bull trout and mountain whitefish populations. The high 

mountain lake site excluded for bull trout was Tout Lake (B7) and for mountain whitefish was 

Doctor Lake (W10). The exact tests column contains results o f tests for genic differentiation and 

is presented as the percentage of loci at which allele frequencies are statistically significantly 

different (P < 0.05). See text for 95% confidence intervals for estimates o f Fst.

Population Groups bull trout mountain whitefish

F ST Exact Tests (%) F ST Exact Tests (%)

All sites

High mountain 
lake excluded

0.304

0.176

74.3

72.9

0.042

0.018

41.3

32.5
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Figure 3-1. Sample locations o f bull trout (black circles) and mountain whitefish (grey squares) 

in the Clark Fork River, Montana. Sample numbers correspond to Table 2 and 3.

Figure 3-2. UPGMA dendrogram based on Cavalli-Sforza and Edwards (1967) chord distances 

for (A) bull trout and (B) mountain whitefish in the Clark Fork River. There were no statistically 

significant differences in allele frequencies among samples W2a, W2b, and W3; nor among sites 

W5, W6, and W7. We pooled these sites into two groups for (B). Bootstrap values > 50% are 

shown for bull trout in (A). All bootstrap values were greater than 50% for the mountain 

whitefish dendrogram (B) but, for presentation purposes, are not shown.

Figure 3-3. Isolation by distance analysis of A) bull trout and B) mountain whitefish in the Clark 

Fork River. Pairwise Cavalli-Sforza and Edwards (1967) chord distances (CSE) are plotted 

against pairwise geographic distances for all sample sites for each species. Comparisons that 

include high mountain lake sites (Trout Lake, B7, in A and Doctor Lake, W10, in B) are shown as 

filled circles.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Flathead River

Hungry Horse DamKerr Dam

ID

Milltown Darn

Blackfoot River 

Clark Fork River

100 kmBitterroot River

^  bull trout 

m  mountain whitefish

Figure 3-1.

76

PurthPr reoroduction prohibited without permission.
Reproduced with p e n s i o n  of f t .  copyright owner. Further reproduct



A. bull trout

B. mountain whitefish

}  W1-W8

Figure 3-2.
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CHAPTER 4 - Morphological, Dietary, and Genetic Analysis of a Potential 

Trophic Polymorphism in a Riverine Fish Species

4.1 A B STR A CT

Northern temperate lakes have become model systems for the investigation of sympatric 

speciation due to trophic polymorphisms. Many examples o f niche-based phenotypic variation 

occur in temperate lakes, while northern rivers offer few such examples. The mountain whitefish 

(Prosopium williamsoni) has been hypothesized to exhibit a rare example o f reproductively 

isolated trophic morphs in a northern riverine fish species. I found that variation in snout size and 

shape increased dramatically with body size, with pinocchios (individuals with large bulbous 

snouts) at one extreme and nonpinocchios at the other. I found subtle but consistent differences 

in diet between individuals with extreme snout morphologies. I found no evidence of assortative 

mating within populations at seven microsatellite loci. Together, these results suggest that the 

snout morphology of mountain whitefish is a continuous trait where individuals at extremes o f the 

morphological continuum feed on different prey items. Differences in diet between pinocchios 

and nonpinocchios may be slight because of the lack o f distinct foraging habitats within rivers. 

The lack o f assortative mating may be due to the explosive mating system of this species. This 

study highlights the importance of ecological factors for promoting phenotypic diversification 

due to trophic morphology.
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4.2 INTRODUCTION

Trophic polymorphisms, within-population niche-based variation in feeding structures, 

are hypothesized to reduce intraspecific competition (McLaughlin et al. 1999; Swanson et al. 

2003) and play a role in speciation (Wimberger 1994; Skulason et al. 1999; Robinson and 

Schluter 2000). For trophic, or resource polymorphisms, phenotypic variation is often 

discontinuous in nature but need not be (Robinson and Schluter 2000) and alternate morphs often 

have accompanying differences in growth rate, age at maturity, and mating strategies (Skulason 

and Smith 1995). In addition, trophic polymorphisms may be the outcome o f genetic 

polymorphisms or adaptive phenotypic plasticity (Robinson and Wilson 1994; Robinson and 

Wilson 1996; Smith and Girman 2000). Trophic polymorphisms occur in all classes o f 

vertebrates and may be more common than historically appreciated (Wimberger 1994; Skulason 

and Smith 1995; Smith and Skulason 1996).

Several authors have discussed models for the translation of within-population 

phenotypic variation related to trophic polymorphisms to variation that occurs among species 

(West-Eberhard 1986; Wimberger 1994; Skulason et al. 1999; Adams and Huntingford 2004). 

These models hypothesize that subtle behavioral and/or morphological variation within 

populations can become increasingly specialized and under the right conditions can lead to 

reproductive isolation and potentially the fixation o f alternate traits between species (West- 

Eberhard 1986; Wimberger 1994; Skulason et al. 1999). A key factor o f these models is the 

stability and location of feeding habitats. If  pronounced and persistent ecological differences 

occur among feeding habitats, subsequent behavioral and morphological specialization to these 

habitats are more likely (Wimberger 1994; Skulason et al. 1999). Reproductive isolation may 

occur for purely ecological reasons if  positive assortative mating occurs within these distinct 

feeding habitats (Wimberger 1994; Skulason et al. 1999; Smith and Girman 2000). Otherwise,
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for reproductive isolation to occur, assortative mating by phenotype must occur without spatial 

separation.

Fishes in general offer extraordinary examples o f trophic polymorphisms. These range 

from cichlids in the African Rift Lakes (e.g. Danley and Kocher 2001) and lakes in Nicaragua 

(e.g. Wilson et al. 2000) to salmonids and sticklebacks (Gasterosteus aculeatus) in northern 

temperate postglacial lakes (Robinson and Wilson 1994; Robinson and Schluter 2000). In fact, 

species-poor northern lakes have become model systems for examining this type of phenotypic 

variation (Robinson and Schluter 2000). In these lakes, shallow littoral margins and deeper open- 

waters offer stable and spatially separated habitats in which the whole continuum of divergent 

biological units, from within-species variation represented by slightly different phenotypes to 

distinct species, can be found (reviewed by Robinson and Schluter 2000). Trophic 

polymorphisms within these relatively simple environments have improved our understanding of 

the ecological causes of phenotypic diversification and adaptive radiation (Robinson and Schluter 

2000; Robinson and Parsons 2002).

Northern temperate rivers offer very few examples o f trophic polymorphisms (Robinson 

and Wilson 1994; Robinson and Schluter 2000). In one o f two such examples, recently emerged 

brook trout exhibit alternative foraging behaviors without any morphological differentiation 

(McLaughlin and Grant 1994; McLaughlin et al. 1999; McLaughlin 2001). In another example, 

reproductively isolated lenok (Brachymystax lenok) morphs (Osinov et al. 1990) have differences 

in trophic structures (gill rakers and position of the mouth) that suggest they may also have 

differences in diet (Kondrashov and Mina 1986; Smith and Skulason 1996). It is possible that 

phenotypic differences between morphs arose in isolation rather than sympatrically (Osinov et al. 

1990).

The paucity of examples o f trophic polymorphisms in northern riverine fishes may be due 

to the greater temporal and spatial variability of benthic and limnetic resources in rivers than in 

lakes (McLaughlin et al. 1999). Adopting alternative foraging tactics may not be an effective
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means to reduce intraspecific competition in this environment (however see Swanson et al. 2003 

for an example in a spring-fed pool system). Furthermore, it may be unlikely for prezygotic 

reproductive isolation to occur among alternately specialized trophic morphs without spatially 

separated feeding locations.

The mountain whitefish (Prosopiutn williamsoni) potentially provide a third example of a 

trophic polymorphism in a northern riverine fish. Some individuals of this species have large 

cylindrical snouts (Figure 4 -la), which was originally hypothesized to be a sexual dimorphism 

present in males (Evermann 1892). Troffe (2000) and McPhail and Troffe (2001) negated this 

hypothesis and suggested the hypothesis that “pinocchio” mountain whitefish use their 

exaggerated snouts to overturn rocks to feed on benthic invertebrates. Troffe (2000) provided 

preliminary evidence for differences in foraging behavior and for reproductive isolation between 

what he classified as discrete morphs. Populations o f this species occur at high densities 

(Whiteley et al. 2004) and this could lead to strong selection for traits that reduce intraspecific 

competition, such as those related to trophic specialization.

If substantiated, the results o f Troffe (2000) would represent an example o f a trophic 

polymorphism where morphs have become reproductively isolated under unlikely conditions.

The conditions are unlikely because a) the spatial and temporal heterogeneity o f resources in 

rivers and b) both spawning location and spawning behavior of this species make it unlikely for 

positive assortative mating by snout morphology to occur. Mountain whitefish spawn in large 

aggregates in rivers or near the mouths of tributary streams (Davies and Thompson 1976; 

Northcote and Ennis 1994). There does not appear to be any spatial segregation o f individuals by 

snout morphology and the probability of assortative mating is further reduced because mountain 

whitefish are broadcast eggs over the substrate and many males fertilize the eggs o f a single 

female. Given these conditions, natural selection would have to be very strong to lead to discrete 

reproductively isolated trophic morphs of mountain whitefish, especially when frequency- 

dependent selection or phenotypic plasticity would be able to maintain diversity in the absence of
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reproductive isolation. Thus, further investigation is needed to confirm the results of Troffe 

(2000), especially since the morphological, behavioral, and genetic results o f this study were 

based on small sample sizes and genetic variation was examined at only one locus with small 

effective population size (mitochondrial DNA).

My objectives in this paper were to provide further investigation o f phenotypic variation 

in snout morphology of the mountain whitefish, to test the hypothesis that this variation is 

associated with a trophic polymorphism, and to test the hypothesis that morphs are reproductively 

isolated within populations. I addressed these objectives by asking the following questions: Is 

there discontinuous variation in snout morphology within populations o f mountain whitefish? Is 

there a difference in diet between pinocchios and nonpinocchios? Is there evidence of assortative 

mating by snout morphology?

4.3 MATERIALS AND METHODS

Sample collection

Mountain whitefish were collected from Rattlesnake Creek (N =  135) in Missoula, 

Montana and the Bitterroot River near Stevensville, Montana (N  = 225; Table 4-1). Fish were 

collected with a backpack electrofisher or with a boat electrofisher. I sampled a total of three 

locations, two o f which were sampled multiple times (Table 4-1). Specific subsets of these 

animals where used for morphological, diet, and genetic analyses, as detailed below.

Morphology

I captured digital images o f all individuals the day they were collected with a digital 

camera mounted on a tripod. Standard length was used as a measure o f overall body size and the 

sex of all individuals was determined by inspection of internal organs.

I developed a method (hereafter referred to as the “snout index”) to quantify phenotypic 

variation in snout size and shape by measuring the area of the snout and part o f the forehead
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region. This method was designed to capture not only the size o f the bulbous cylindrical snout of 

pinocchios but also the inward sloping forehead (Figure 4-la). For nonpinocchios, this method 

measured the small snout and convex forehead region immediately adjacent to the snout (Figure 

lb). The steps used for this method of quantification were as follows (Figure 4-2a): First, I 

placed a landmark at the tip o f the snout and where the operculum meets the ventral lateral 

margin. Second, I connected these landmark points with a straight line (LI). Third, I drew a line 

(L2) at a right angle to LI and tangential to the anterior orbit of the eye. Fourth, I drew a straight 

line (L3) from the landmark at the tip o f the snout to the bisection o f L2 and the dorsal lateral 

margin. Fifth, I bisected L3 with line L4. Sixth, I bisected the anterior half of L3 with line L5. I 

measured two areas (Al and A2). A l was the area between the landmark at the tip o f the snout 

and L5. A2 was the area between L5 and L4. If  these areas lay anterior to L3 they were positive 

and they were negative if  they lay posterior to L3. I determined the value o f the snout index by 

subtracting A2 from A l . This value tended to be positive for pinocchios and negative for 

nonpinocchios. For the example o f this method in Figure 4-2a, the majority o f A l would occur 

anterior to L3. Note that a small portion of A l also would lie posterior to L3. In this case, Al 

would consist of the positive area anterior to L3 less the negative area posterior to L3. A2 in 

Figure 4-2a would be negative and the snout index would have a positive value. All steps for this 

method were performed with Image J ver. 1.23 (available at http://rsb.info.nih.gov/ij).

A subjective classification procedure was used to verify that snout index effectively 

quantified variation in snout size and shape. All individuals were subjectively classified into 

three phenotypic categories based on external morphology. I used the nomenclature “pinocchio”, 

“intermediate”, and “nonpinocchio” instead of “pinocchio” and “normal” used by Troffe (2000) 

and McPhail and Troffe (2001) because there were clearly individuals with intermediate snout 

phenotypes that could not be classified as either “pinocchio” or “normal”. Three people in 

addition to the author scored phenotypes of individuals from digital photographs based on the 

characteristics listed in Figure 4-1. Individuals were conservatively classified as intermediate if
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they did not match these characteristics and if  there was any question about their phenotype. 

Phenotypic classification was based on digital images of heads without taking overall body size 

into account. For the final phenotypic classification, individuals were considered either 

pinocchios or nonpinocchios if three out of four people scored them as such. Otherwise they 

were classified as intermediate. I determined proportions of each phenotypic class for all fish 

combined and all fish except immature individuals because immature individuals were only 

classified as normal or intermediate and thus might skew the overall proportions.

I used statistical methods developed for allometric relationships in insects (Eberhard and 

Gutierrez 1991) to test for a discontinuity, or “switch point”, in the range o f body sizes (standard 

lengths) in the relationship between snout size and body size for males and females separately. 

The first step was to test for significant nonlinearity in the relationship between the snout index 

and body size. I performed a partial F-test by fitting the following model:

7* = a 0 + a 3X  * + a 2X  *2 +£ (1), where Y* was the natural log of body size (standard length, 

mm); X* was the natural log o f the snout index(mm2), where I added 10 to each value to make all 

values positive; a t were the regression coefficients; and e was the error with assumed normal 

distribution, mean zero, and common variance (Eberhard and Gutierrez 1991). Significant 

difference o f a 2 from zero indicated that the relationship between the snout index and body size 

was significantly nonlinear and that further tests for a switch point were justified.

I used the following model to determine the most likely switch point and to test for a 

discontinuous relationship at that point: Y  = + fa X  + fl2( X  -  X ° )D  + fl3D  + e  (2), where, Y

and X  were values of the snout index and body size, respectively (in untransformed measurement 

units); X °  was the putative switch point; D = 0 if X  < X °  or D  = 1 otherwise; f i '  s were the 

regression coefficients; and e was the random component with assumed normal distribution, 

mean zero, and common variance. To determine the switch point, I empirically substituted 10 

different values of X °  into the model and chose the value of X °  that gave the highest adjusted
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R 2. I then used a partial F-test to test the significant of /S3 using a stepwise regression (with the 

empirically determined value o f X °) implemented in SPSS 11 (SPSS Inc.). If  /33 was not 

significant, this would indicate that the relationship was not discontinuous at the switch point. To 

test for a change in linear slope at the switch point (without a discontinuity at the switch point), I 

used the following model: Y  = fl0 + f5{X  + (32(X  -  X ° ) D  + £ (3), where the terms were the same 

as defined above. If  the /32 term was significant in this model, this would indicate that a change 

in slope occurred at the switch point and that the switch point was significant (Eberhard and 

Gutierrez 1991).

To investigate the relationship between external snout morphology and underlying bone 

structure, I measured the supraethmoid o f all individuals (Figure 4-2b). The supraethmoid lies at 

the tip of the snout and provides attachment points for the cartilage and other tissues within the 

snout. I suspected that this bone would be larger in pinocchios relative to nonpinocchios because 

a) it appeared to be larger in x-rays of pinocchio individuals relative to nonpinocchios (data not 

shown) and b) the base width o f the supraethmoid is a diagnostic character used to distinguish the 

sharp-snouted morphotype o f the lenok from the blunt-snouted morphotype (Kondrashov and 

Mina 1986; Alekseyev 1995; Alekseyev et al. 2003). The external morphology of the sharp

snouted lenok appears to be very similar to the morphology of pinocchio mountain whitefish and 

thus I predicted that the supraethmoid would be wider in pinocchios than nonpinocchios. I 

dissected supraethmoids from frozen fish and prepared and cleaned them using trypsin according 

to Mayden and Wiley (1984). I used Image J ver. 1.23 to measure the length of the supraethmoid 

as well as its width at its base (Figure 4-2b).

To characterize growth patterns of the supraethmoid, I compared the allometric 

relationship of the supraethmoid with other body structures. The other structures I measured 

were the lengths of the pectoral, pelvic, and anal fins. I expected these structures to have an 

allometric slope approximately equal to one because they were predicted to grow in direct
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proportion to body size (Eberhard et al. 1998). I regressed the natural log of supraethmoid base 

width, supraethmoid length, pectoral fin length, pelvic fin length, and anal fin length on the 

natural log o f standard length. I generated 95% confidence intervals from the standard error of 

the regression coefficients from each regression. I excluded the only two immature individuals 

from this allometric analysis because they were outliers.

I also tested for a correlation between the external snout measure and supraethmoid base 

width for males and females separately by using residuals from regressions of each trait on 

standard length. For the snout index I used a polynomial regression. For females I used a second 

order polynomial regression because the coefficient o f the (standard length)2 term was highly 

significant (P  = 0.0037) but the coefficient o f the (standard length)3 term was not significant (P = 

0.532) when I used a third order polynomial regression. For males I used a third order 

polynomial regression because the coefficient o f the (standard length)3 term was highly 

significant (P = 0.0025). For the regression of supraethmoid base width on standard length, I 

used natural log transformed lengths for both variables. I used a parametric test for the 

correlation analysis.

To examine whether there might be physiological costs associated with the pinocchio 

snout, I tested for a tradeoff between size-adjusted weight and size-adjusted snout index values. I 

used residuals from a regression o f natural log transformed weight versus the natural log of 

standard length and the residuals from a polynomial regression of snout index on body size. Due 

to sampling constraints mentioned above, I only analyzed males from Rattlesnake Creek for this 

analysis (N  = 88). I again used a third order polynomial regression for snout index versus body 

size. The coefficient for the (standard length)3 term was highly significant (P  = 0.0076). I used a 

parametric test for the correlation analysis.

I used the following equation to measure the repeatability (r) o f measurements of the 

snout index, supraethmoid length, supraethmoid base width, fin lengths, and standard length:
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r  = :-— j-, where and no is the group size (Lessels and Boag 1987).
s + s A n 0

For each trait, one person measured ten individual mountain whitefish three times. All 

morphological measurements were highly repeatable. The r-value for the snout index was 0.97, 

for supraethmoid length was 1.0, for supraethmoid base width was 1.0, for pectoral fin length was 

0.99, for pelvic fin length was 0.98, for anal fin length was 0.98, and for standard length was 

0.99.

Diet Analysis

Stomach and intestine contents were analyzed from individuals with extreme phenotypes 

to test for diet differences based on pinocchio morphology. The two samples collected in the 

Bitterroot River (Table 4-1) were each collected from the same location (within approximately 

50m) and for each sample all fish were collected at the same time from an electrofishing boat. 

Fish were kept on ice and stomachs and intestines were dissected as soon as possible after capture 

and stored in 70% ethanol until analysis. Prey items found in the stomach versus the intestine 

were not distinguished and below stomachs refer to the whole digestive tract.

For the 2003 sample, I analyzed the diet data in two ways: (1)1 split the entire sample 

into three size classes. The first size class (SI) contained fish less than 180mm. The second size 

class (S2) contained fish greater than 180mm but less than 230mm. The third size class (S3) 

contained fish greater than 230mm. (2) I divided the fish from size class three (S3) into two 

groups of phenotypically extreme individuals, pinocchios and nonpinocchios. For the 2003 

sample, there were 14 pinocchios based on values of the snout index and the subjective 

classification process. I chose 14 nonpinocchio individuals that were similar in body size, to 

control for differences in diet among size classes o f fish (see below). The mean standard length 

(± SE) of the pinocchio group was 278.57 mm ± 4.22 mm and nonpinocchio mean was 274.57 

mm ± 4.21 mm (t26 = -0.561, P  = 0.580). The groups varied significantly in snout index values:
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pinocchio mean = 3.02 mm2 ± 0.59 and nonpinocchio mean = -1.86mm2 ± 0.31 (t2e = -7.31, P < 

0.0001).

For the 2004 sample, I again formed a pinocchio and a nonpinocchio group with 15 

individuals of each type. The mean standard length of pinocchios was 276.67 mm ± 4.58 mm, for 

nonpinocchios was 269.40 mm ±3.17 mm (t28 = -1.306, P  = 0.202). Mean snout index values of 

pinocchios were 3.848 mm2± 0.524 mm2 and for nonpinocchios were -1.476 mm2 ± 0.226 mm2 

(̂ 28 = -8.878, P  < 0.0001).

Insects in gut samples were sorted to order or family under a dissecting microscope. Two 

people analyzed the 2003 sample and standardization was achieved through double analysis o f a 

portion of the stomachs. One person analyzed the 2004 sample. The total number o f each insect 

taxon per stomach was counted. One reliable body part was counted per insect taxon, for 

example the head capsule was used for chironomid larvae. I used prey item counts to calculate 

the proportion of each food item relative to the total number of food items found in each 

individual’s stomach (proportional contribution by number).

To determine the proportional contribution o f different insect taxa to mountain whitefish 

diets by weight, I determined average wet weights of the relevant insect taxa. Whole insects were 

collected from the same location in the Bitterroot River and at the same times as the fish used for 

diet analysis. These insects were collected separately in July 2003 and March 2004 and were 

stored in 70% ethanol until analysis. I determined wet weights of five to ten individuals to 

determine an average weight for insects from a given taxon. I allowed ethanol to evaporate for 10 

minutes prior to weighing the samples. I used a range o f specimens for a given taxon that 

encompassed the range o f sizes I found in stomachs. I multiplied the number of a given taxon by 

its average weight to determine the total weight o f the food items in an individual’s stomach. I 

then determined the average proportion by weight for each taxon category within each fish’s 

stomach. To compare total stomach volumes between the 2003 and 2004 Bitterroot River
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samples, I performed a two-way ANOVA using the total weight of the food items in an 

individual’s stomach as the dependent variable and sample (2003 or 2004) and phenotype 

(pinocchio or nonpinocchio) as the two factors. To quantify the volume o f rocks in each stomach, 

I used a Petri dish with a 1cm2 grid and counted the total number of squares occupied. Rocks 

were not included in the stomach volume calculations.

I used nonparametric tests to analyze prey item counts and proportion o f diet by number 

and by weight. The diet data generally appeared to violate assumptions of normality and equality 

o f variance, even after log or arcsine transformation (of proportions). A Kruskal-Wallis test was 

used for the analysis o f the three size classes from the entire 2003 sample along with a procedure 

that parallels the Tukey test for post-hoc pairwise comparisons following Zar (1984). I used 

Mann-Whitney tests for the analyses o f phenoptypically extreme groups. P-values were not 

adjusted for multiple tests in Table 4 because Bonferroni corrections tend to be overly 

conservative (Nakagawa 2004). Instead, Bonferroni adjusted P-values appear in the legend of 

Table 4-4, using both a  = 0.05 and a  = 0.10.

Genetic Analysis

I collected genotypic data from the following seven microsatellite loci: COCL4, SSA14, 

SSA456, ONE8, FGT25, SF08-1, and SF08-2  (Whiteley et al. 2004). DNA was extracted from 

each fin clip by standard methods. Thermal cycler profiles used for PCR follow Whiteley et al. 

(2004). The general methods used for visualization o f subsequent PCR products followed Spruell 

et al. (1999) and Neraas and Spruell (2001). PCR reagent concentrations are available upon 

request.

I calculated allele frequencies, mean heterozygosities, and mean number o f alleles 

separately for pinocchios and nonpinocchios with the program FSTAT 2.9.2.3 (Goudet 1995; 

Goudet 2001). To test for a deficit o f heterozygotes (Wahlund effect), I tested for deviations 

from Hardy-Weinberg proportions using a one-tailed test with GENEPOP ver. 3.4 (Raymond and
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Rousset 1995). To test for differences in allele frequency distributions, I performed a pseudo- 

exact test for genic differentiation (Goudet et al. 1996) between groups o f phenotypically extreme 

individuals with GENEPOP ver. 3.4. For both tests, I used Fisher’s method to combine 

probabilities following (Sokal and Rohlf 1995). I presented Bonferroni adjusted P-values in the 

legend to Table 6. I used Principle Components Analysis (PCA) to examine patterns of 

multilocus genotypes without prior assignment of individuals to phenotypic groups, using the 

program PCAGEN ver. 1.2.1 written by J. Goudet (downloadable at 

www.unil.ch/izea/softwares/pcagen.html). This program was used to cluster individuals by 

multilocus genotypes and generate plots o f principle component axes.

I used all of the individuals (N = 41) collected from the West Fork Bitterroot River (Table 

1) to test for deviations from Hardy-Weinberg proportions. For this sample, I subjectively 

determined phenotypes (pinocchio, intermediate, nonpinocchio) at the time of capture and snout 

index measurements were performed after the fish had been frozen. I used these measurements 

along with the subjective classification to separate individuals with extreme phenotypes into a 

pinocchio group (N = 10) and a nonpinocchio group (N = 10) for subsequent genetic analyses, but 

I did not use these measurements for the overall morphological analysis. The mean snout index ± 

SE for the pinocchio group was 2.66 mm2 ± 0.44 and for the nonpinocchios group was -1.73 mm2 

± 0.23 (?2 8  = -8.88, P < 0.0001). Mean standard length for pinocchios was 285.10 mm ± 7.52 

mm, for nonpinocchios was 247.10 mm ± 8.63 mm ('^g = -3.32, P  = 0.0038).

I used individuals from the Bitterroot 2004 sample to replicate the genetic analyses. I 

used snout index measurements and the subjective classification process to sort individuals into a 

pinocchio (N = 20) and a nonpinocchio (N = 20) group, choosing the individuals with the most 

extreme phenotypes irrespective o f body size. I was less concerned about controlling for body 

size for this comparison (relative to the diet analysis) and instead chose individuals with the most 

extreme snout morphologies. The mean snout index ± SE for pinocchios was 2.85 mm2 ± 0.63
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mm2 and for nonpinocchios was -1.44 mm2 ± 0.22 mm2 (^g = -6.46, P < 0.0001). Mean standard 

length for pinocchios was 271.70 mm ± 4.70 mm, for nonpinocchios was 222.35 mm ± 6.26 mm 

(f3g = -6.30, P <  0.0001).

4 .4  RESU LTS

Morphology

The snout index developed for this study corresponded closely to phenotypes as 

determined by the subjective classification procedure. This close correspondence suggests that 

the snout index performed well in capturing variation in snout size and shape (Figure 4-3). 

Individuals classified as pinocchios (Figure 4-la) had the largest mean snout measurements 

(Figure 4-3a; Table 4-2). Individuals classified as nonpinocchios (Figure 4-lb) had the smallest 

mean snout measurements (Figure 4-3a; Table 4-2). Individuals classified as intermediate by the 

subjective classification procedure tended to have a slightly concave forehead and a slightly 

cylindrical snout that extended out from where the ventral portion o f the snout met the upper 

maxilla but the snout was not excessively large, bulbous, or cylindrical. These individuals also 

had intermediate values for the snout size measurement (Figure 4-4a; Table 4-2). In addition, 

both males and females had large pinocchio snouts (Figure 4-3 b and c).

There was little variation in snout index values for individuals below a standard length of 

approximately 220 mm. Beyond this standard length, variation in snout morphology increased 

dramatically (Fig. 4-4). The relationship between the snout index and standard length was 

significantly nonlinear. The coefficient a 2from equation (1) was highly significant (P < 0.0001) 

for all data combined. For males and females analyzed separately, the a 2 coefficient was also 

highly significant (P  < 0.0001, P  = 0.001 respectively).

The switch point analysis revealed a statistically significant switch point for all of the 

data combined and for females analyzed separately, but not for males analyzed separately. For all 

data combined, the value of X° that yielded the greatest adjusted R2 value for equation (2) was
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265 mm. The coefficient /33 was not significant (P -  0.248) and therefore the relationship 

between the snout index and body size was not discontinuous at 265 mm. The coefficient 

from equation (3) was highly significant (P  < 0.0001), indicating a significant change in slope 

occurred at2i° = 265mm. The slope (± SE) prior to 265 mm was 0.002 ± 0.004 and after 265 mm 

was 0.083 ± 0.011. For males analyzed separately (Figure 4-4b), adjusted R2 values increased for 

all X° values, indicating that there was not a peak in these values and that a switch point did not 

occur. The lack o f switch point in males appears to be due to a greater proportion of 

nonpinocchio individuals with greater standard lengths (Figure 4-4b). For females analyzed 

separately (Figure 4-4c), = 265 mm had the highest adjusted R2 value. from equation (2)

was not significant (P = 0.172), while /32 from equation (3) was significant (P = 0.0008). The 

slope (± SE) prior to 265 mm was 0.012 ± 0.010 and after 265 mm was 0.69 ± 0.020.

I examined growth patterns of the supraethmoid bone with allometric analysis. I f  the 

supraethmoid were growing at a disproportionately greater rate than overall body size, the 

allometric slope for this trait should be greater than one and be greater than the allometric slope 

o f structures expected to grow in direct proportion with body size. The allometric slope for 

supraethmoid base width was significantly greater than one and had the highest allometric slope 

out of all the traits measured for both males and females (Table 4-3). The allometric slope for 

supraethmoid length was greater than one for males but not females. O f the three fins measured, 

only the allometric slope for anal fin length in males was significantly greater than one. 95% 

confidence intervals overlapped for all traits measured for direct comparisons of males and 

females (Table 4-3).

Variation in supraethmoid base width was not significantly correlated with the snout 

index for males or females. Pinocchios did not tend to have positive residuals from the regression 

o f supraethmoid base width on standard length (data not shown). The correlation between these 

residuals and the residuals from the polynomial regression of the snout index on standard length
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for males was positive and non-significant (r = 0.129, Z = 1.739, P = 0.082). For females, the 

correlation between these residuals and residuals from a second order regression o f the snout 

index on standard length was negative and non-significant (r = -0.073, Z = -0.846, P = 0.398). 

Results were similar if I used a first or second order regression for males or a first order 

regression for females (data not shown).

For males from Rattlesnake Creek, I found a significant negative correlation between 

size-adjusted weight and size-adjusted snout index (Figure 4-5). If either a first or second order 

regression of snout index on body size was used, the correlation between residuals from this 

regression and residuals from the regression of weight on body size remained negative and 

significant (data not shown).

Diet Analysis

For the entire Bitterroot 2003 sample, I found significant differences among age classes 

in diet (Table 4-4). Smaller size classes had significantly greater numbers o f Chironomidae 

larvae, Chironomidae pupae, and small Ephemeroptera nymphs. For average proportion o f diet, I 

found significant variation among age classes for large Ephemeroptera nymphs, Trichoptera 

larvae, Chironomidae larvae, and Simuliidae larvae (Figure 4-6; Table 4-4). I found significantly 

more large Ephemeroptera and Trichoptera larvae in stomachs o f the fish in the largest size class 

(S3). Smaller size classes had larger average proportions (by number) o f Chironomidae larvae. 

Proportion o f diet by weight results showed similar patterns as total number (Table 4-4).

When I divided individuals from the S3 size class into a pinocchio group and a 

nonpinocchio group for the Bitterroot 2003 sample, I found significantly more large 

Ephemeroptera nymphs in pinocchio stomachs (Figure 4-6; Table 4-4). This pattern held for all 

three measures of diet content. I found significantly more Simuliidae larvae in nonpinocchio 

stomachs for all three measures (Figure 4-6; Table 4-4).

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the Bitterroot 2004 sample, I again found significantly more large Ephemeroptera 

nymphs in pinocchio stomachs than in nonpinocchio stomachs, as determined by total number 

and average proportion by number (Figure 4-6; Table 4-4). The proportion by weight of large 

mayflies was not significantly greater in pinocchios. I found significantly more Chironomidae 

pupae in nonpinocchio stomachs (by total number and average proportion by number; Figure 4-6; 

Table 4-4).

For the analysis o f variance performed on weights o f food items in the stomachs o f both 

pinocchios and nonpinocchios, mean weights were significantly greater in the 2004 sample than 

the 2003 sample (7*3,53 = 31.485, P < 0.0001). The mean weight of food items did not differ 

significantly between pinocchios and nonpinocchios within each sample (7*3,53 = 0.562, P =

0.457). The interaction term (snout phenotype x sample) was also not significant (7*3,53 = 0.573, P 

= 0.453).

Genetic Analysis

1 examined general summary statistics and tested for deviations from Hardy-Weinberg 

proportions for the West Fork Bitterroot and Bitterroot 2004 samples (Table 4-5; Table 4-6). 

Allele frequencies were similar for the comparisons o f pinocchios and nonpinocchios within each 

sample, as was the mean expected heterozygosity and average number o f alleles (Table 4-5). I 

did not detect any significant deviations from Hardy-Weinberg proportions in the West Fork 

Bitterroot sample (Table 4-6). For the Bitterroot 2004 sample, SSA456 deviated from Hardy- 

Weinberg proportions with a significant deficit o f heterozygotes (Table 4-6). The combined 

probability for deviations for Hardy-Weinberg proportions based on Fisher’s method was not 

significant for either sample (Table 4-6).

I combined single locus tests for genic differentiation with a multilocus analysis of 

genotypic distributions using Principle Components Analysis to test for genetic differentiation of 

pinocchios and nonpinocchios within each sample. None of the exact tests for genic
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differentiation was significant for either sample (Table 4-6). In addition, I did not detect any 

patterns of genotypic differentiation between pinocchios and nonpinocchios within either sample 

using PC A. For the West Fork Bitterroot sample, PC axes one through four explained 26%, 16%, 

14%, and 11% of the variation among multilocus genotypes. There was no tendency for 

individuals to cluster by phenotype in PCA plots for this sample (Figure 4-7a; axes 3 and 4 not 

shown). For Bitterroot 2004, PC axes one through four explained 19%, 15%, 13%, and 10% of 

the variation among multilocus genotypes and again, there was no tendency for individuals to 

cluster by phenotype in PCA plots (Figure 4-7b; axes 3 and 4 not shown).

4.5 D ISC U SSIO N

Is there discontinuous variation in snout morphology within populations o f  mountain whitefish?

Enlarged snouts of several other fish species represent either sexually dimorphic 

characters (e.g. Fernandes et al. 2002) or are putatively related to differential resource acquisition 

(Kondrashov and Mina 1986; Nagelkerke et al. 1994). While the pinocchio snout of mountain 

whitefish was not sexually dimorphic, it may be a subtle trophic polymorphism (see below). The 

continuous snout variation observed does not eliminate this hypothesis. Trophic polymorphisms 

do not need to be discontinuous as long as phenotypic extremes differ in morphology and/or 

feeding strategies (Robinson and Schluter 2000).

I found evidence for continuous variation in the snout morphology of mountain whitefish 

when all fish were considered together (Figure 4-4). However, phenotypic variation in snout size 

and shape was reduced in smaller individuals and increased dramatically with increasing standard 

length. Thus, the snout morphology of adults appears to be determined when individuals are 

approximately 220-240 mm in length, possibly due to a stage-specific ontogenetic switch.

Beyond this putative switch point, the pinocchio-related variation might be associated with an 

alternative growth trajectory. It would be necessary to examine the snout morphology o f more
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large individuals and to follow growth trajectories o f individuals with and without pinocchio 

snouts to test this hypothesis.

The pinocchio trait could be a genetic polymorphism maintained by frequency-dependent 

selection or an example o f condition-dependent ontogenetic plasticity. Determination of the 

genetic basis of this trait would require experimental crosses. I performed the necessary crosses 

but was unable to rear sufficient number o f fish to a point where variation in snout morphology 

could be assessed (data not shown). A genetic polymorphism maintained by frequency- 

dependent selection, where the more rare morph has less competition for food, is a more 

mechanistically straightforward hypothesis for this trait. However, it is intriguing that the 

observed increase in phenotypic variation corresponded approximately to the observed diet shift 

and in general corresponds to a habitat shift for individuals of this species because this suggests 

that this trait may be condition-sensitive.

The greater allometric slope o f the supraethmoid base width relative to the other traits 

measured (Table 4-3) suggests that supraethmoid base width does explain some of the variation in 

snout morphology of mountain whitefish. However, variation in the snout index was not 

correlated with supraethmoid base width and therefore, it appears that tissue changes beyond 

underlying bone structure are responsible for pinocchio snout variation. Elucidation o f how 

pinocchios differ from nonpinocchios at the cellular level and exactly what tissue changes occur 

beyond the supraethmoid in individuals following different growth trajectories would require 

histological analysis.

The tradeoff between the snout index and size-specific weight in males captured during 

the spawning season (Figure 4-5) could be due to greater spawning success and therefore reduced 

gonad weight o f pinocchio males at the time of capture. I determined wet-weights o f testes from 

86 males to explore this hypothesis. I did not find a relationship between males that had receded 

testes and their body size or their values o f the snout index, nor did I find evidence for a 

relationship between testes weight and body size/snout index (data not shown).
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Another explanation for the observed tradeoff is that there may be an energetic cost 

associated with devoting resources to the snout rather than other body parts and that males that 

follow the putative pinocchio growth trajectory allocate resources differently than males that do 

not follow this growth trajectory. Overall body shape differences between pinocchios and 

nonpinocchios would provide support for this hypothesis. To test for differences in body shape, I 

performed a preliminary geometric morphometric analysis (Rohlf and Marcus 1993) using 12 

landmarks located along the body of individuals with extreme snout phenotypes according to the 

methods of Langerhans et al. (2003) and Langerhans et al. (2004). Preliminary results suggested 

that body shape differences occur between pinocchios and nonpinocchios, where pinocchios tend 

to be less deep-bodied and nonpinocchios tend to be more deep-bodied with a slight hump along 

the dorsal margin between the head and dorsal fin (data not shown). However, a more rigorous 

investigation of this pattern is necessary, as is a direct test o f the physiological basis o f this 

potential tradeoff.

Is there a difference in diet between pinocchios and nonpinocchios?

I found subtle but consistent differences in diet between adult pinocchios and 

nonpinocchios. There were significantly more large Ephemeroptera (Heptageneiidae and 

Ephemerellidae) nymphs in pinocchio stomachs for both years. The proportion o f these prey 

items by number in pinocchio stomachs were not great in either sample (approximately 16%), but 

for the Bitterroot 2003 sample, large Ephemeroptera nymphs did comprise a large proportion of 

diets by weight (35%). For the Bitterroot 2004 sample, pinocchios did not have a higher average 

proportion o f large Ephemeroptera by weight, which was likely due to a masking effect caused by 

the large proportion of pinocchio and nonpinocchio diets that consisted o f large Plecoptera 

nymphs.

I also observed a large dietary shift between juveniles and adults, which is consistent with 

previous observations for this species (Pontius and Parker 1973). This dietary shift corresponds
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to a habitat shift by older juveniles to deeper faster flowing sections of rivers. Younger juveniles 

tend to occur in side-water habitat following emergence in spring and then move to either shallow 

riffles or the tail o f pools later their first summer (Northcote and Ennis 1994). Interestingly, the 

observed diet and habitat shift corresponds approximately to the body size at which I observed 

increased phenotypic variation in snout morphology.

For adults, greater consumption of large Ephemereoptera nymphs by pinocchios is 

consistent with the hypothesis that pinocchios feed on the bottom more and use their snouts to 

probe into cracks and crevices and perhaps to overturn rocks. Ephemerellid and Heptageneiid 

mayflies nymphs cling to the bottom of the river and feed as scrapers o f organic surfaces on and 

beneath rocks (Merritt and Cummins 1996). Mayfly nymphs do occur suspended in the water 

column and it is possible that pinocchios were feeding on drifting nymphs. However, to feed on 

Ephemereoptera in the benthos would generally require that the whitefish probe into crevices 

between rocks to feed.

Prey items found more often in the stomachs o f nonpinocchios are consistent with these 

individuals feeding in the water column more often than pinocchios. These prey items include 

simuliids, which occur attached to the surface o f rocks (Merritt and Cummins 1996) and 

chironomid pupae, which occur most commonly suspended in the water column or at the water 

surface (Merritt and Cummins 1996).

While these diet differences were statistically significant, P-values were generally not 

below Bonferroni adjusted values. However, for Ephemereoptera, the same pattern occurred in 

both samples. In addition, I observed significant differences when I was least likely to for the 

following three reasons. First, both samples were collected from the same pool and therefore I 

was less likely to observe any differences in diet due to potential differences in habitat use by fish 

with different snout morphologies. Second, all individuals in both samples were collected at the 

same time and therefore I was less likely to observe any differences in diet due to potential diel 

differences in feeding behavior. Third, for the 2004 sample, I observed diet differences during
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the time o f year when I least expected to find a difference. The primary prey items of mountain 

whitefish are generally the most abundant in the spring and thus mountain whitefish are likely to 

be the least selective at this time o f the year. In the Bitterroot River in March, the large 

Plecoptera nymphs (especially Skwala spp.) that were readily consumed by pinocchios and 

nonpinocchios are a highly abundant, energy rich, and easily captured food source.

These diet results are consistent with behavioral observations o f Troffe (2000). Troffe 

observed that pinocchios directed feeding attempts towards the substrate significantly more than 

nonpinocchios for two sites within a tributary to the Fraser River. However, the number of 

individuals observed was small and it would be necessary to reproduce these behavioral results to 

confirm behavioral differences between morphs.

Overall, the evidence suggests that the observed phenotypic variation in snout size and 

shape o f mountain whitefish corresponds to subtle differences in diet and perhaps foraging 

strategies for individuals with extreme phenotypes. The differences in diet I observed are not as 

great as have been observed in northern lacustrine fishes with trophic polymorphisms (e.g. 

Skulason et al. 1989; Snorrason et al. 1994). Instead, my results are more similar to the subtle 

differences observed in riverine brook trout (McLaughlin and Grant 1994). Whether the 

differences I observed for mountain whitefish are biologically meaningful remains to be 

determined, as do behavioral and potential fitness consequences of this trait. For example, it will 

be important to determine if  these differences in diet reduce intraspecific competition between 

individuals with extreme phenotypes (e.g. Swanson et al. 2003).

Is there evidence o f  assortative mating by snout morphology?

The genetic results presented here provided no evidence for assortative mating by snout 

morphology. If  assortative mating by phenotype were occurring, I would expect to find more 

than one locus with a significant deficit o f heterozygotes, at least a few loci should have
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significant differences in allele frequencies (Table 4-6), and individuals should have tended to 

cluster by phenotype in the PCA o f multilocus genotypes (Figure 4-7).

The genetic results found in this study are not consistent with those o f Troffe (2000). 

These authors proposed secondary contact among distinct evolutionary groups in the Fraser River 

as a possible mechanism to explain their genetic observations. It is possible that secondary 

contact among distinct evolutionary groups occurred in the Fraser River but not the Clark Fork 

River (which is part of the adjacent Columbia River to the south). This would be consistent with 

a pattern o f genetic differentiation between pinocchios and nonpinocchios in one river system but 

not the other. However, this hypothesis is not consistent with genetic data I have collected for 

this species (ARW unpublished data). A more likely explanation is that the results o f Troffe 

(2000) are due to drift at a single locus, especially since the locus examined has a small Ne.

Implications fo r  the evolution o f  trophic polymorphisms

If the pinocchio trait represents a trophic polymorphism, it appears to be at an early stage 

in the evolutionary trajectory observed for trophic polymorphisms in other fishes. The subtlety in 

trophic differences and random mating with respect to this trait may be due to the combination of 

riverine environment and mating system. Comparisons with species that have a similar mating 

system as mountain whitefish but occur in lakes, as well as comparisons with species that have 

different mating system but occur in rivers, provide information about the ecological conditions 

that favor the evolution of trophic polymorphisms.

In several cases where trophic morphs have arisen sympatrically within lakes, it appears 

that trophic morphs can become highly specialized and reproductively isolated despite mating 

systems in which assortative mating is unlikely without spatial segregation. For example, two 

reproductively isolated trophic morphs o f lake whitefish (Coregonus clupeaformis) occur within 

northern lakes (Bematchez et al. 1999). These morphs appear to have arisen sympatrically in at
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least some lakes (Bematchez et al. 1996). The congeneric pygmy whitefish (Prosopium coulteri) 

potentially has two or three morphs that may have evolved within several Alaskan lakes (McCart 

1970). Information on the mating system o f these two species is limited (Wedekind et al. 2001), 

but probably is similar to the mountain whitefish (Scott and Crossman 1979). I f  many males 

fertilize the eggs of females, as is likely in these species, it should be unlikely for reproductive 

isolation to occur without spatial segregation of morphs at the time o f spawning. Thus, the 

distinct foraging habitats found in lakes and the subsequent correlation with spawning location 

apparently supercede the homogenizing effect o f the mating system of these species. In addition, 

if extant morphological differences originated in isolation, the lacustrine environment would be 

more conducive to the maintenance o f these differences if  sympatry were re-established. Thus, 

by providing an example from a less stable environment (rivers) out study highlights the 

importance of stable environments (lakes) for promoting phenotypic diversification.

The present study also highlights the potential importance o f mating system for the origin 

and maintenance o f trophic polymorphisms in rivers. In riverine lenok populations, where two 

reproductively isolated morphs occur (Osinov et al. 1990), small groups spawn in nests called 

redds (Baimukanov 1996). Spawning in redds generally provides an opportunity for mate choice 

in salmonids (Stearley 1992). It is possible that this spawning behavior has allowed assortative 

mating by phenotype to occur in this species and thus allowed this putative trophic polymorphism 

with reproductive isolation between morphs to evolve within rivers, despite greater temporal and 

spatial variability o f resources and the likely initial lack of spatial separation of morphs during 

spawning. Alternatively, if morphological differences in this species arose in isolation, the more 

derived mating system may have provided conditions that allowed these differences to be 

maintained. This example highlights the inference that the less derived mating system of the 

mountain whitefish may contribute to the early evolutionary stage o f the pinocchio trait in this 

species.
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Table 4-1. Sample locations for mountain whitefish in the Clark Fork River Basin, Montana.

Sample Location Date N Analysis*
West Fork Bitterroot River October 2000 41 G
Bitterroot River, Stevensville, MT July 2003 117 M,D
Bitterroot River, Stevensville, MT March 2004 105 M,G,D
Rattlesnake Creek, Missoula, MT November 2002 46 M
Rattlesnake Creek, Missoula, MT November 2003 89 M
*M = morphology; G = genetic; D = diet
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Table 4-2 Proportion o f individuals subjectively classified as pinocchio, intermediate, or 

nonpinocchio and mean values of snout index for each category. Number in parentheses is the 

standard error.

Sample
Proportion

Subjectively
Classified

Mean Snout 
Index (mm2)

All individuals (N = 357)
Pinocchio 0.185 3.45 (0.33)
Intermediate 0.552 0.10(0.10)
Nonpinocchio 0.263 -1.53 (0.11)
Immature individuals excluded (N = 338)
Pinocchio 0.196 3.45 (0.33)
Intermediate 0.555 0.12(0.10)
Nonpinocchio 0.249 -1.62 (0.12)
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Table 4-3. Slopes of allometric relationships between various traits and body size for mountain 

whitefish. Values are slopes of the regression of the natural log of the given trait on the natural 

log of standard length (body size). The 95% confidence interval is in parentheses.

Males (N  = 136) Females (N  = 102)IVlCcta UIC111C111
b b

Supraethmoid base width 
Supraethmoid length 
Pectoral fin length 
Pelvic fin length 
Anal fin length

1.61 (1.47, 1.74) 
1.28(1.15, 1.40) 
1.06 (0.99, 1.12) 
1.15 (1.08, 1.23) 
1.12(1.04, 1.19)

1.34 (1.20, 1.47)
1.05 (0.90, 1.20) 
0.95 (0.88, 1.02) 
1.03 (0.94, 1.12)
1.05 (0.97, 1.12)
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Table 4-4. Diet analysis for mountain whitefish from the Bitterroot River. The number o f diet 

items, the average proportion of diet by number of each diet item, and the average proportion of 

diet by weight are shown. Numbers in parentheses are standard errors. For the Bitterroot 2003 

sample, three size classes are shown. T-values are from a Kruskal-Wallis test and superscripts 

reflect post-hoc tests following Zar (1984). For the seven multiple comparisons, corrected P- 

values would be 0.007 for a  = 0.05 (0.05/7) and 0.014 for a  = 0.10 (0.10/7). For b) and c) P- 

values are from Mann-Whitney tests.

D ie t  I te m

S iz e  C la s s  P le c o p te r a  
N y m p h s

S m a ll L a r g e  
E p h e m e ro p te ra  E p h e m e ro p te ra  

N y m p h s  N y m p h s

T r ic h o p te ra
L a r v a e

C h iro n o m id a e
L a rv a e

C h iro n o m id a e
P u p a e

S im u liid a e
L a rv a e

O th e r

(a) Bitterroot 2 0 0 3  - all individuals
n u m b e r
S I  ( N =  17) 0 .4 7 ( 0 .1 7 ) 8 .4 7 ( 1 .4 5 ) ’ 2 .2 3  (0 .3 5 ) 1 2 .0 6  (4 .0 3 ) 2 7 1 .5 3  (34 .63)* 6 .2 4 ( 1 .3 9 ) “ 3 0 .5 9 (1 5 .2 4 )* 3 .7 7  (0 .9 8 )
S 2  ( N  =  2 5 )  0 .3 6 ( 0 .1 4 ) 2 4 .0 4  (1 2 .6 4 )b 2 .9 2  (0 .9 0 ) 1 7 .5 2 (4 .6 7 ) 1 9 1 .6 8  (44 .43)* 2 .6 8  (0 .7 7 )* b 2 .8 8  (0.93)* 3 .8 4 ( 1 .3 5 )
S 3 (N  =  6 4 )  0 .6 3 ( 0 .1 4 ) 2 .6 9  (0 .5 1 )a 3 .1 8 ( 0 .5 3 ) 1 6 .0 0  (4 .9 1 ) 3 0 .4 5  (1 0 .8 7 )b 1.33  (0 .4 0 )b 3 2 .1 6 (2 0 .1 7 ) * 3 .2 5 ( 1 .0 6 )
p  >  0 .0 5 < 0 .0 0 0 1 > 0 .0 5 > 0 .0 5 < 0 .0 0 0 1 < 0 .0 0 0 1 0 .0 0 1 4 > 0 .0 5
m e a n  p r o p o r t io n  b y  n u m b e r
S I  ( N  =  17) 0 .0 0 2 ( 0 .0 0 1 ) 0 .0 2 8  (0 .0 0 6 ) 0 .0 0 7  (0 .001)* 0 .0 4 6  (0 .019)* 0 .7 7 1  (0.050)* 0 .0 1 9  (0 .0 0 5 ) 0 .1 0 2 (0 .0 4 8 )* 0 .0 1 2 ( 0 .0 0 3 )
S 2  ( N  =  2 5 )  0 .0 0 2 ( 0 .0 0 1 ) 0 .0 9 8  (0 .0 3 2 ) 0 .0 2 9  (0 .010)* 0 .1 6 9  (0 .0 5 2 )* b 0 .5 8 1  (0 .0 7 2 )* b 0 .0 1 2  (0 .0 0 3 ) 0 .0 1 4  (0 .008)* 0 .0 6 4  (0 .0 4 1 )
S 3  (N  =  6 4 )  0 .0 2 0  (0 .0 0 5 ) 0 .0 7 4 ( 0 .0 1 6 ) 0 .0 9 6  (0 .016)* 0 .2 8 0  (0 .0 3 7 )b 0 .2 3 7  (0 .0 3 7 )“ 0 .0 3 8  (0 .0 1 1 ) 0 .0 7 7  (0 .027)* 0 .0 7 1  (0 .0 1 5 )

p  >  0 .0 5 > 0 .0 5 0 .0 5 0 .0 0 0 3 < 0 .0 0 0 1 0 .0 3 2 > 0 .0 5
m e a n  p r o p o r t io n  b y  w e ig h t
S I  ( N =  17) 0 .1 0 ( 0 .0 0 4 ) 0 .0 0 3  (0 .0 0 1 )“ 0 .1 3 9  (0 .0 2 4 ) 0 .0 7 3 ( 0 .1 4 3 ) 0 .3 0 2  (0.040)* 0 .0 1 3  (0 .003)* 0 .1 0 5 (0 .0 5 2 )* n a

S 2  ( N  =  2 5 )  0 .0 0 7  (0 .0 0 3 ) 0 .0 1 6  (0 .009)* 0 .1 7 8 ( 0 .0 4 6 ) 0 .0 0 7  (0 .0 0 2 ) o to 5 0 1 o 8 00 o 0 .0 1 0 (0 .0 0 3 )* n a

S 3  ( N  =  6 4 )  0 .0 2 4  (0 .0 0 5 ) 0 .0 0 3  (0 .001)* 0 .2 7 5  (0 .0 3 9 ) 0 .0 4 9 ( 0 .0 2 1 ) 0 .0 5 6  (0 .0 1 8 )b 0 .0 0 8  (0 .0 0 3 )b 0 .0 4 7  (0 .020)* n a

p  >  0 .0 5 0 .0 0 1 4 > 0 .0 5 > 0 .0 5 0 .0 0 0 1 0 .0 0 0 7 0 .0 0 3 4 n a

(b) Bitterroot 2 0 0 3  - subset of adults
n u m b e r
N o n p in o c c h io  (N  =  14) 0 .5 7  (0 .3 7 ) 1 .8 6  (0 .4 9 ) 1.21 ± 0 .6 0 3 7 .8 6  (2 0 .6 8 ) 7 .7 9  (3 .8 0 ) 1 .5 7 (0 .6 7 ) 1 2 2 .2 9 (8 9 .3 7 ) 3 .8 6  (0 .8 0 )

P in o c c h io  (N  =  13) 0 .5 4  (0 .3 3 ) 2 .3 9 ( 1 .3 2 ) 6 .0 0  ±  1 .9 9 14.31  (5 .3 8 ) 1 2 .0 8  (4 .8 8 ) 0 .6 2  (0 .2 4 ) 1 0 .6 9 (1 0 .6 9 ) 5 .3 1  (4 .0 9 )
p  >  0 .0 5 > 0 .0 5 0 .0 1 6 8 > 0 .0 5 > 0 .0 5 > 0 .0 5 0 .0 2 6 1 > 0 .0 5

m e a n  p r o p o r t io n  b y  n u m b e r  
N o n p in o c c h io  ( N  -  14) 0 .0 2 0  (0 .0 1 4 ) 0 .0 4 7  (0 .0 1 9 ) 0 .0 2 9  ±  0 .0 2 0 0 .3 7 5  (0 .0 9 2 ) 0 .1 3 2  (0 .0 4 5 ) 0 .0 5 4  (0 .0 3 4 ) 0 .2 2 5  ± 0 .1 0 3 0 .0 7 3  (0 .0 2 1 )

P in o c c h io  (N  =  13) 0 .0 1 9  (0 .0 1 5 ) 0 .0 7 1  (0 .0 5 1 ) 0 .1 6 5  ± 0 .0 5 8 0 .2 6 3  (0 .0 8 5 ) 0 .2 5 1  (0 .0 9 9 ) 0 .0 1 5 ( 0 .0 0 6 ) 0 .0 5 1  ±  0 .0 5 1 0 .0 5 0  (0 .0 2 0 )

p  >  0 .0 5 > 0 .0 5 0 .0 1 3 8 > 0 .0 5 > 0 . 0 5 > 0 .0 5 0 .0 2 2 4 > 0 .0 5

m e a n  p r o p o r t io n  b y  w e ig h t  
N o n p in o c c h io  (N  = 14) 0 .0 2 1  (0 .0 1 2 ) 0 .0 0 1  (0 .0 0 1 ) 0 .0 7 4  ±  0 .0 3 8 0 .7 0 7  (0 .0 9 0 ) 0 .0 1 2 ( 0 .0 0 5 ) 0 .0 1 1  (0 .0 0 9 ) 0 .1 6 3 ( 0 .0 8 7 ) na

P in o c c h io  (N  -  13) 0 .0 2 5  (0 .0 1 4 ) 0 .0 0 4  (0 .0 0 3 ) 0 .3 5 2  ±  0 .0 9 3 0 .4 7 4  (0 .0 9 4 ) 0 .0 9 6  (0 .0 6 8 ) 0 .0 1 0 ( 0 .0 0 9 ) 0 .0 3 7  (0 .0 3 7 ) n a
p  >  0 .0 5 > 0 .0 5 0 .0 1 3 8 > 0 .0 5 > 0 .0 5 > 0 .0 5 0 .0 2 2 4 n a
(c )  Bitterroot 2004 • subset o f adults
n u m b e r
N o n p in o c c h io  (N  =  15) 2 2 .6 0  (7 .3 8 ) 2 0 .8 7  (1 3 .8 9 ) 1 9 .6 0  ± 8 .5 3 6 0 .9 3 ( 1 2 .7 5 ) 1 5 6 .2 0 (3 4 .1 3 ) 2 2 .3 3  ±  1 2 .6 9 0 .5 3 3  (0 .3 5 0 ) 7 .6 0 ( 1 .3 3 4 )

P in o c c h io  (N  =  15) 2 8 .9 3  (6 .9 8 ) 1 5 .1 3 (4 .3 5 ) 4 6 .6 7  ±  1 4 .4 8 7 6 .8 7  (2 4 .5 5 ) 1 7 2 .7 3  (4 8 .8 0 ) 3 .2 0  ±  0 .8 6 3 0 7 .8 0 ( 1 .4 8 1 )

p  >  0 .0 5 > 0 .0 5 0 ,0 3 7 9 > 0 .0 5 > 0 .0 5 0 .0 1 2 1 > 0 . 0 5 > 0 .0 5

m e a n  p r o p o r t io n  b y  n u m b e r  
N o n p in o c c h io  ( N  =  15) 0 .0 9 0  (0 .0 2 8 ) 0 .0 8 3  (0 .0 4 9 ) 0 .0 6 1  ± 0 .0 2 4 0 .2 3 0  (0 .0 5 2 ) 0 .4 5 6 ( 0 .0 6 1 ) 0 .0 4 5  ±  0 .0 1 8 0 .0 0 2  (0 .0 0 1 ) 0 .0 3 2  (0 .0 0 8 )
P in o c c h io  (N  =  15 ) 0 .1 3 4  (0 .0 3 9 ) 0 .0 5 8  (0 .0 1 8 ) 0 .1 6 9  ± 0 .0 4 3 0 .2 0 7  (0 .0 3 8 ) 0 .3 9 3  (0 .0 7 6 ) 0 .0 1 0  ± 0 .0 0 3 0 0 .0 2 9  (0 .0 0 5 )

p  >  0 .0 5 > 0 .0 5 0 .0 2 6 4 > 0 .0 5 > 0 . 0 5 0 .0 1 2 1 > 0 .0 5 > 0 .0 5

m e a n  p r o p o r t io n  b y  w e ig h t  
N o n p in o c c h io  ( N  =  15) 0 .4 3 4 ( 0 .0 8 1 ) 0 .0 0 1  (0 .0 0 1 ) 0 .1 2 3 ( 0 .0 3 2 ) 0 .3 9 2  (0 .0 6 4 ) 0 .0 4 0  9 0 .0 1 3 ) 0 .0 1 1  (0 .0 0 7 ) 0 .0 0 0 2  (0 .0 0 0 1 ) n a
P in o c c h io  (N  =  15) 0 .5 1 9  (0 .0 8 7 ) 0 .0 0 0 4  (0 .0 0 0 1 ) 0 .1 9 3 ( 0 .0 5 1 ) 0 .2 3 0  (0 .0 4 7 ) 0 .0 5 8  (0 .0 3 9 ) 0 .0 0 2  (0 .0 0 2 ) 0 n a
p  >  0 .0 5 > 0 .0 5 > 0 .0 5 > 0 .0 5 > 0 .0 5 > 0 .0 5 > 0 . 0 5 n a
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Table 4-6. Results o f one-tailed tests for heterozygote deficits and exact tests for genic 

differentiation among pinocchios and nonpinocchios for two independent samples from 

the Bitterroot River. Numbers listed are p-values. I used Fisher’s method to combine P- 

values from each locus. For each chi-square test, there were 14 degrees o f freedom. The 

Bonferroni corrected p -value for seven tests is a  = 0.05 is 0.007 (0.05/7) and for a  = 0.10 

is 0.14 (0.10/7).

Locus
COCL4 SSAI4 ONES SSA456 SFOS-1 SFOS-2 FGT25 Combined Probability

West Fork Bitterroot 2000
Heterozygote Deficit fcV = 41) 0.291 0.785 0.846 0.085 0.101 1.000 0.069 X ‘ -  I8.14:P« 0.200

Genie Differentiation (/V = 20) 1.000 1,000 0.877 0.297 0.780 1.000 0.050 X 1 = 10.78;/' =0.703
Bitterroot 2004
Heterozygote Deficit (N = 40) 0.859 0.893 0.663 0.013 0.660 0.322 0.097 x 2 ~ n m p -  0.213

Genic Differentiation (N = 40) 0.448 0.347 0.638 0.188 0.587 0.712 1.000 x 2 -  9.7 l',P -0 .783
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Figure 4-1. Examples of phenotypically extreme fluvial mountain whitefish: (a) pinocchio; (b) 

nonpinocchio and the criteria used for the subjective classification o f each type.

Figure 4-2. Measurements of (a) snout index and (b) supraethmoid length and width. Details of 

measurements provided in text.

Figure 4-3. Correspondence between the snout index and subjective classification (described in 

text) for all individuals (a), males only (b), and females only (c). Snout index is plotted against 

standard length in each panel. Filled circles represent pinocchios, open circles represent 

intermediates, and x ’s represent nonpinocchios.

Figure 4-4. Snout index versus standard length for mountain whitefish from the Bitterroot River 

and Rattlesnake Creek, Montana (N  = 357). The snout index was determined with the 

measurement shown in Figure 4-2a. Histograms show counts for snout index and standard length 

separately.

Figure 4-5. Correlation analysis for size-adjusted weight and size-adjusted snout index for males 

from Rattlesnake Creek, Montana.

Figure 4-6. Average proportion of eight prey items in the stomachs o f mountain whitefish from 

the Bitterroot River, Montana. In (a), all individuals from Bitterroot 2003 are shown. In (b), only 

phenotypically extreme individuals from S3 (Bitterroot 2003) are shown. In (c), phenotypically 

extreme individuals from Bitterroot 2004 are shown.

Figure 4-7. Plot o f principle component scores based on multilocus genotypes of individuals 

from (a) the West Fork Bitterroot River and (b) the Bitterroot River (2004). Pinocchios are
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represented by filled circles, nonpinocchios by open circles. Percentages are the proportion of the 

total variation among genotypes attributable to each axis.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) pinocchio (b) nonpinocchio

-bulbous cylindrical snout 
with white/light grey underside 
-concave forehead slopes 
inward before jutting out 
near snout

-no snout protrusion 
-convex forehead slopes 
directly to snout

Figure 4-1
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(a) snout index measurement

L2

L3
L4

A2

L5,

Figure 4-2

(b) supraethmoid

width
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Figure 4-3
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(a) West Fork Bitterroot River
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CHAPTER 5 - Classroom Mark-Recapture with Crickets

5.1 A B STR A CT

Mark-recapture techniques are commonly used by wildlife biologists and ecologists to 

estimate abundance o f animals in naturally occurring populations and are therefore an important 

component o f curricula that include population ecology. This lab activity teaches mark recapture 

techniques using crickets in a single 1 0 -gallon aquarium and provides an inexpensive way to 

teach students about this commonly used technique in a real world context. This alternative 

teaching method for mark-recapture methods provided highly accurate estimates o f cricket 

abundance and captured student’s interest more than other classroom-based strategies for 

teaching the same material. This lab can easily be done in any classroom and has the advantages 

of allowing students to handle easily obtained live insects, without the potential drawbacks and 

uncertainty of teaching mark-recapture in a field setting. We successfully used this technique in a 

high school general life science course, but it could easily be adapted for use in undergraduate 

general biology and ecology courses.
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5.2 IN TR O D U C TIO N

How many deer live in a particular county? How many fish live in the creek that runs 

near a school? And how have these numbers changed over time in the last 10 years? These are 

the questions of population ecologists. Population ecology is the study of changes in the 

abundance o f organisms over time and space (Akcakaya et al. 1999). Temporal and spatial trends 

of animal abundance are commonly used to prioritize conservation and management efforts for 

various animals. For example, these trends are used to help determine the numbers o f hunting 

permits that will be issued in a given year. Due to its central role for ecology and population 

biology, many high school and undergraduate biology courses include lessons on population 

ecology theory.

Curriculum pieces on population ecology theory often include investigations on methods 

used to estimate animal abundance. One commonly used technique to estimate the size of natural 

populations is single mark-recapture using the Lincoln-Petersen relative abundance model (Smith 

and Smith 2001). In this method, animals are captured, given an identifying mark such as a paint 

spot or a tag with a number, and then released back to their habitat. At a later date, traps are set 

again in the same places. The ratio of marked to unmarked animals during the second capture 

event can be used to estimate the size o f the population. This method provides a simple means to 

estimate the population size of animals. The basic form o f the Lincoln-Petersen model is 

mathematically straightforward and appropriate for teaching about mark-recapture methodology. 

The basic model also provides an ideal mechanism for integrating science and mathematics.

More advanced students can explore many extension o f this model that address violations of 

several key assumptions (see below).

Various strategies have been used to teach mark-recapture in high school and 

undergraduate classrooms. A common teaching strategy uses dried beans or plastic beads as 

model animals (e.g. Budnitz 1998). In this strategy, a subsample o f beans or beads is taken out of
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a container, marked, and returned to the container. In a subsequent “recapture” event, another 

subsample of beans is collected and the proportion o f marked beans relative to the number o f 

unmarked beans is used to estimate the total number of beans in the container. While this is 

relatively simple to do in the classroom, we have found that it often does not work well because 

too many beans are in the containers to start with and this prevents students from marking a large 

enough proportion o f the beans during the mark and recapture trials. Usually estimates are far 

from the true number of beans in the container. While this type of investigation illustrates very 

well one o f the issues faced by population biologists that study hard-to-capture animals, we have 

found that it does not help the students firmly grasp population biology theory and furthermore, 

the inaccuracy o f this method can erode student interest and enthusiasm. More importantly, this 

exercise does not present mark-recapture as it is used in practice and it is not as captivating for 

the students to handle beans as surrogates for live organisms.

Another teaching strategy involves the use o f live animals, either in schoolyards 

(Anonymous 2002), or in a more natural field setting (Dussart 1991; Rollinson 2004). Handling 

live organisms provides a challenge to the students and provides a teaching opportunity about the 

natural history and biology o f the organisms. This is an excellent option if  large populations of 

easily captured organisms are available close to a school. Working with live animals is inherently 

more interesting to the students. Moreover, students get out o f the classroom and into nature. On 

the other hand, working in a field setting requires significant planning and some uncertainty about 

the likelihood of successfully capturing enough animals. Furthermore, population estimates can 

be problematic if the assumptions o f mark recapture models are not met.

Given that knowledge o f the spatial and temporal distribution o f animals is central to 

understanding important issues in ecology and conservation biology, we developed an activity to 

teach mark-recapture techniques using live animals in a classroom setting. We chose crickets 

living in 10-gallon aquaria habitats. Our approach shares the advantage o f the bean exercise in 

that students conduct the investigation in the classroom so there is no uncertainty about finding
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enough animals. It shares the advantages of field-based investigations in that students work with 

live organisms, necessitating an understanding of the biology o f the crickets. But most 

importantly, student’s interest is captured by the challenge of handling these animals. We found 

that using crickets in this investigation captivates students in a similar manner as field-based 

techniques, but it is much more feasible to use in restricted time periods and classrooms.

5.3 O B JECTIV ES O F  TH IS A C TIV ITY

The general goal o f this investigation is to complement instruction on population ecology

and to teach mark-recapture theory and techniques that are used by population biologists to 

understand the distribution of animals in space and time. More specifically, students work 

collaboratively to learn: ( 1 ) mark-recapture techniques to estimate population size o f naturally 

occurring organisms; (2 ) how to calculate a population estimate using equations (i.e. algebraic 

manipulation of simple ratios and solving equations for one unknown) and data they collect; (3) 

about the natural history and the handling of a common insect; and (4) to think critically about 

how wildlife biologists estimate population sizes and about popular press stories that feature 

abundance estimates o f wild animal populations.

This investigation promotes science as inquiry and helps students develop skills in asking 

questions, collecting and interpreting data, and communicating the results with their peers. It 

maps easily onto the National Science Education Standards (NRC 1996). This semi-guided 

inquiry can lead to more open-ended investigations (content standard A) and it emphasizes 

student collaboration. Moreover, it emphasizes concepts related to population growth and natural 

resources (content standard F). Finally, students refine their ability to use models and equations 

to make estimates and predictions (content standard G).
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5.4 COUNTING CRICKETS

Materials

Table 5-1 provides a list o f the materials needed for this activity. We recommend using 

the same set o f crickets for multiple classes and having students mark crickets multiple times on 

different body parts and with different colored paint pens. This minimizes set up time and forces 

the students to be careful with how and where they mark the crickets.

Investigation

This investigation can be completed within a 1 to 1.5 hour class period. There were two 

short periods o f time for direct instruction and two periods where students capture, handle, and 

mark crickets. We designed an opening interactive lecture focusing on why it is important to 

estimate the population size o f naturally occurring animals. Students then captured, marked, and 

collected data from crickets. During a second lecture, students learned the theory behind mark- 

recapture using the Lincoln-Petersen technique. The investigation and the transparencies that can 

be used for this investigation are available online at www.bioed.org/ecos/.

At the beginning of each class session, students received an investigation sheet that 

briefly explained the investigation and contained a data sheet for their mark-recapture data 

(Figure 5-1). Students worked in groups (we recommend three per group) and each group 

received one data sheet.

The introductory sampling lecture was designed to build on previous population ecology 

lessons and activities. In this lecture we addressed the following concepts: why it is important to 

estimate population sizes of naturally occurring animals, the basic idea behind mark-recapture 

techniques, the importance o f understanding the biology and natural history of the animals we 

study, basic insect anatomy, specifically how to mark crickets, safety and ethical issues with 

working with live animals (there are minimal safety issues associated with this investigation but 

students should wash their hands after handling the crickets), and general logistics. More detailed

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bioed.org/ecos/


information on these topics and a PowerPoint file with overhead masters are available at 

www.bioed.org/ecos. We waited to explain the details of the Lincoln-Petersen model until after 

the first capture session.

The first step in the investigation was for each group to observe the aquarium setting.

We used one 10-gallon aquarium per class. One student from each group removed one “cricket 

castle”, which was a small portion of an egg carton (Table 5-1), and gently shook the crickets 

from the egg carton into the plastic container. Each group returned to its table with its crickets (5 

to 6  worked well). It is important to provide enough pieces o f egg carton so that each group can 

use one and it is also helpful for the instructor to supervise the capture process so that groups 

overturn only one piece o f egg carton. We observed a tendency for the students to overturn many 

of the pieces of egg carton and to disturb many o f the crickets if we left them unsupervised. In 

addition, the instructor should monitor the approximate number of crickets collected. In general, 

abundance estimates tend to be close to the true number of animals if at least half of the animals 

receive marks.

At their table, the groups used a paint pen to mark the crickets. One student held a 

cricket while another dabbed the specified body part with paint, and a third recorded the number 

of crickets marked (this is nj in the equation described below and in Figure 5-1). We used 

different colored paint pens for each class and marked either part o f the thorax or one o f the legs 

of crickets. Students also recorded data on their data sheet on whether or not the crickets have 

wings and the gender of each cricket. After all of the groups obtained crickets, the first groups 

were allowed to gently return crickets to the aquarium.

Once the crickets were back in the aquarium, we presented the Lincoln-Petersen method 

during another 15-minute lecture. This lecture focused on the variables in the Lincoln-Petersen 

index o f relative abundance, the ratio used to calculate N (the estimate of population size), and 

the assumptions o f the model. Overhead masters are available online for you to download at 

www.bioed.org/ecos. This break in activity allowed the crickets to settle back into their “traps”.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bioed.org/ecos
http://www.bioed.org/ecos


n , m 2
The equation for the Lincoln-Petersen model is: -4- = —-  (1), where n2 is the number of

N  n 2

animals marked and released during the first session, n2 is the number of animals captured during the 

second session, m2 is the number of animals captured during the second session that are recaptures 

and were marked during the first session, and N is  the estimate of population size. This equation can

following assumptions: first, the population is closed (no births, deaths, immigration, or emigration). 

Second, marks are not lost or overlooked by the observer. Third, all animals are equally likely to be 

captured in each sample and over time. That is, it is assumed that there are no behavioral differences 

in preference or avoidance o f the “trap” between individuals, and also that being trapped once does 

not make an individual more or less likely to be captured again. It is also assumed that things like 

weather changes or other environmental factors do not change the probability of trapping animals 

during the two trapping periods.

A

In addition to calculating N , an optional extension for advanced students is to calculate the 

standard error of the estimate of population size using the following equation:

(Smith and Smith 2001).

Finally, we predicted the types of factors that might lead to differences between our estimate 

of population size and the true population size. Through this discussion, students thought about the 

equation they had just learned and the consequences of violations of the assumptions of the model. 

For example, it the crickets lost their marks before the recapture session, this would lead to an 

upwardly biased estimate of the population size (because m2 will be biased low and since this is in 

the denominator of equation 2 , N  will increase).

be algebraically manipulated to solve for N ,  such that N (2). This model makes the

provides the 95% confidence interval about N
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The recapture event followed this second lecture. Groups repeated the same process of 

capturing crickets described above. Students recorded m2 (the number o f marked crickets 

captured during this session) and ri2 (the total number o f crickets their group recaptured).

Students recorded all marks given during their class period (not just the marks given by their 

group). Each group reported «/, n2, and m2 in a table made by the instructor on the board. The 

sum of each variable was used as the class total to calculate one value ofiV per class (Figures 5-1; 

Figure 5-2).

A

After students worked through the calculations o f N ,  a general discussion followed 

about how close the estimate was to the true value. Reasons why iVmight not be accurate were 

discussed, along with confidence intervals (optional), and potential violations of assumptions.

We referred to the list of model assumptions to discuss each assumption and whether it may have 

been violated. For example, cricket escapes would violate the closed population assumption. 

Another possible source o f bias could be related to the trapping method used in this investigation. 

N  might be biased low because stressed crickets might crawl directly back into the castles to 

seek cover after the crickets are placed back into the aquarium. Thus, m2 might be biased high, 

in turn causing N  to be biased low. It is helpful to link violations o f the assumptions explicitly to

A

the equation to determine how N  might be affected.

We also had students reflect on their data on the number of males and females that had 

wings. These data were used to generate hypotheses regarding the observations. For the crickets 

we used in this investigation, females tended to be wingless while males had wings. One 

hypothesis is that females might not have wings because o f the way they allocate their limited 

resources to growth versus reproduction. Because they use a lot of energy to make eggs, fewer 

energy-related resources may be devoted to growing wings during development. Males may need 

to allocate energy to the production of wings because they might disperse more than females, 

perhaps to find mates.
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We used two follow up exercises to increase student comprehension. First, students were 

assigned the questions in Figure 5-2. This assignment takes the form o f a follow up exercise to 

increase student comprehension. Second, we provided an extension activity where students 

estimated the population size o f snowshoe hares from a valley in western Montana (Figure 5-3). 

For the students we worked with, this example was particularly relevant because snowshoe hares 

are the primary prey of Canada lynx {Lynx canadensis). The valley mentioned in this part o f the 

investigation (the Swan Valley) is a stronghold of Canada Lynx in the lower 48 states o f the 

United States (McKelvey et al. 2000). We created a fictitious data set that consisted of a series of 

ni, n2, and m2 values for six consecutive years. Groups o f students were assigned a year for 

which they calculated N .  Values o f N  for each year were written on the board and students 

were asked to graph the trend in population size. Once the data were combined, the overall 

population trend was discussed.

This portion o f the exercise provided a link between the mark-recapture method just 

learned and a real-world use o f this method. It also provided an opportunity to discuss potential 

violations o f mark-recapture assumptions, the appropriate time interval between mark and 

recapture events, the best way to mark different types of animals, and methods of capture 

(snowshoe hares are trapped with wire Tomahawk live traps baited with alfalfa cubes in the 

winter or apples in the summer). In addition, because snowshoe hare and Canada lynx 

populations follow a boom and bust cycle, this portion o f the exercise provided an opportunity to 

link the method the students just learned to relevant and exciting case studies in population 

ecology.

Extensions

Genetics techniques are now used to estimate the population size of animals. For 

example, biologists in Glacier National Park, Montana, use hair collected from special hair 

snagging stations to estimate the number of bears in this park (for more details see:
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http://www.nrmsc.usgs.gov/research/glac_beardna.htm). Some of the techniques used to analyze 

genetic data use extensions o f the Lincoln-Petersen model. Thus, after learning the basic theory 

and technique using the crickets, a further lesson could explore indirect genetic methods to 

estimate population size.

As another extension, after learning mark-recapture techniques through this investigation, 

students can design their own research investigation to use mark-recapture with naturally 

occurring populations of animals, perhaps as part of an independent project. This could be done 

in the schoolyard with insects using a similar technique described in this paper (e.g. pillbugs; 

Anonymous 2002). I f  a pond is nearby, frogs can be marked by clipping toes. Guidelines for 

toe-clipping can be found at: www.asih.org/pubs/ASIH_HACC_Final.pdf. For a discussion of 

the ethical aspects o f this technique see Funk et al. (2005). If  fish can be captured, individuals 

can be marked by clipping small portions of fins. Note that these more invasive techniques (e.g. 

clipping tissues) can only be performed with the consent of animal care committees and/or local 

fish and wildlife departments. We recommend contacting a local university or fish and wildlife 

department if  students are interested in undertaking a project like this. There may be projects 

underway with opportunities for participation by volunteers.

Did this investigation provide a successful learning experience?

This investigation was tested with high school sophomores in their second year o f a 

biology series. The teachers thought it was a substantial improvement over the bean exercise 

taught in the past for two reasons: 1) it was more accurate and 2) it better captured student 

interest. The classes’ population estimates were close to the true value o f 50 crickets in the 

aquaria and most estimates were within three of the true value; only one was off by eight from the 

true value. In contrast, the bean investigation often yielded results that were highly inaccurate, 

causing students to doubt the efficiency of the technique and, as a consequence, diminished their 

interest. Interestingly, the challenge of handling and marking live animals was a large part o f the
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appeal of this exercise. Many students had to confront their fear of insects and most appeared to 

enjoy handling the crickets.

We also examined how well students performed on the assessment problems and 

questions (Figures 5-2; Figure 5-3). Overall students answered most of the questions correctly 

and we conclude that the students gained an overall understanding of mark-recapture theory and 

technique. In general, students successfully manipulated equations, were able to think critically 

about assumptions of the Lincoln-Petersen model, and gave thoughtful responses regarding the 

broader importance of estimating the size o f natural populations. We observed that some students 

had difficulties with using and manipulating the equations (equations 1 and 2, we did not use 

equation 3 for the standard error) and there was wide variation among answers related to 

assumptions o f the model. We found that these concepts were important to revisit, through 

additional problems, questions, and class discussion. In summary, this investigation provided a 

great foundation from which we could increase student understanding of mark-recapture and 

population ecology concepts.

5.5 CONCLUSIONS

This population ecology investigation provides an inexpensive way to teach students, in a 

real world context, about a technique commonly used in field biology and ecology. This 

approach for teaching about mark-recapture methods provided highly accurate estimates of 

cricket abundance and appeared to capture student’s attention more than the typical bean or bead 

counting strategies for teaching the same material. This investigation is easily done in any 

classroom setting. Moreover, it has the advantages o f allowing students to handle live insects 

without the drawback, uncertainty, and time necessary to teach mark-recapture in a field setting. 

Most importantly, students demonstrated they could think critically about how wildlife biologists 

estimate population sizes and about popular press stories that feature abundance estimates o f wild 

animal populations.
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5.6 GLOSSARY 

Sampling terminology

Closed population', a population where no births or deaths occur and individuals do not enter 

(immigrate) or leave (emigrate) during the time o f study

Confidence Interval (C.I.): The range in which you expect 95% of all estimates to lie. 

Lincoln-Petersen model', a specific mark-recapture technique that requires two sessions where 

animals are captured. This is a basic technique that forms the basis for more complicated

Yi m
population estimation methods. The equations for the model is: - f  = —- ,  where is the number

N  n2

animals marked and released during first session, n2 is the number of animals captured during the 

second session, m2 is the number o f animals captured during second session that are recaptures from

the first session, and/Vis the estimate of population size.

Mark-recapture techniques', a set o f techniques used to estimate the population size of animals.

All o f the techniques involve an initial marking event where animals are captured, marked, and 

released. Animals are recaptured a second time and the proportion of marked to unmarked 

animals is used to estimate the population size.

Standard Error (S.E.): a measure of variation about the mean population estimate.

Subsample', a smaller group collected from within a larger population o f objects.

Cricket anatomy (Borror et al. 1992)

Head', the anterior body region, which bears the eyes, antennae, and mouthparts

Thorax', the body region behind the head, which bears the legs and wings

Abdomen: the posterior of the three body divisions

Ovipositor: the egg laying apparatus; the external genitalia o f the female

Cercus (plural cerci): one of a pair o f appendages at the posterior end o f the abdomen
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Table 5-1. Materials for cricket investigation. Numbers o f a given item required are in 

parentheses.

-1 0 -2 0  gallon aquarium  (1)
- Pet store crickets (~50)
- C ardboard "traps" ("cricket castles"). W e used egg cartons 

and cardboard packing m aterial from  an electronic device (~10)
- "Painters" acrylic non-toxic paint pens (H unt Inc.; num ber of 

colors depends on num ber of participating classes)
- Chopped apple (food and w ater for crickets)
- Large (32 oz.) plastic containers (1 per group of students)______
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Figure 5-1. Description of investigation and data sheet.

Figure 5-2. Questions and problems that accompany this investigation.

Figure 5-3. Extension exercise using fictitious snowshoe hare mark recapture data.

Figure 5-4. Cricket in a small yogurt container. The thorax o f this cricket has been painted by 

students with a white paint pen. The cerci extend from the back of the abdomen. The ovipositor 

is at the very tip o f the abdomen.

Figure 5-5. Crickets on a cricket “castle”. The castle is a cardboard insert to an electronic 

appliance. Notice the paint on some o f the crickets, particularly the white on the back and purple 

on the leg of the cricket to the right.
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Handout for Cricket Mark-Recapture Investigation
Name: Period:
Date:

For this investigation, we will estimate the population size o f crickets in aquariums. You 
will work in teams o f two to catch, mark, release, and recapture crickets. Each team will take a 
plastic container to the aquarium and capture crickets by scooping crickets out once. This is your 
first sample. Take the crickets in your container to your desk and mark all o f these crickets on 
their back with a paint pen. Fill in the number of crickets caught during your first sample for ni 
in the data table.

Once everyone has caught and marked crickets, each team will return the marked crickets 
to the same aquarium. We will wait 15 minutes. Then each team will take a second sample of 
crickets. Again, take the container o f crickets to your desk and record the total number of 
crickets caught. Also record the total number of crickets with marks. The total number of 
crickets you caught the second time is n2. The number of crickets you caught the second time 
with marks is m2. Fill these in below. Also record whether each cricket is male or female and 
whether it has wings or not. Fill in the total number o f males and females with and without wings 
in the table at the bottom of the page.

Your group’s totals:
ni = ______________

______________
m2 -  ______________
As a class, we will pool our cricket samples to estimate the abundance o f crickets in the 
aquarium.

Class totals:
ni = ______________
n2= ______________
m2 = ______________

Fill in the data on sex and wings in this table:

Cricket # Sex (M/F) Wings (Y/N)
1
2
3
4
5
6
7
8
9
10

Fill in the total number of males and females with and without wings in this table:

Winged/wingless Males Females
Wings
Wingless
Total

Figure 5-1
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Questions for Cricket Mark-Recapture Investigation
1) Use the class data to estimate the population size o f crickets in the aquarium ( N) .  Show your

ft * H
work below and use this equation: N  = —------

m 2

2) Which assumptions o f the Lincoln-Petersen model might we have violated?

3) How would the violations you mentioned effect your estimate of population size ( N) 7

4) If the class estimate was close, does this guarantee that we didn’t violate any assumptions of the 
Lincoln Petersen model?

5) What is the value o f estimating the size of naturally occurring populations?

Figure 5-2
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Extension Activity
Snowshoe hares are important food sources for Canada lynx; so many people are very interested 
in the population size. We would like to know if a population o f snowshoe hares in Seeley Lake 
is increasing or decreasing. We conducted a 2-day trapping session once a year for 6 years. Each 
team will estimate the population size for ONE of the years. Once we tell your team which year 
to estimate, circle the year and estimate the population size. Once everyone has estimated the 
population size for their year, we will put it all together and graph the population size over time.

2004: On day 1, we caught and marked 18 animals. On day 2 we caught 23 animals, of which 12 
were marked.
2003: On day 1, we caught and marked 12 animals. On day 2 we caught 15 animals, of which 6 
were marked.
2002: On day 1, we caught and marked 16 animals. On day 2 we caught 19 animals, o f which 12 
were marked.
2001: On day 1, we caught and marked 20 animals. On day 2 we caught 24 animals, o f which 19 
were marked.
2000: On day 1, we caught and marked 13 animals. On day 2 we caught 15 animals, of which 9 
were marked.
1999: On day 1, we caught and marked 14 animals. On day 2 we caught 15 animals, of which 11 
were marked.

n i =  ______________
«2 = ______________
m2

,Y

<U

e£3C/5
w
<L>.N

i/3
co

3a,o
Oh

2003 20042002200120001999

Figure 5-3
Year
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Figure 5-5
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APPENDIX B - Observations of mountain whitefish spawning behavior

An important aspect o f the biology o f mountain whitefish that I have not fully elaborated 

on elsewhere is the mating system and mating behavior of this species. Here, I will briefly 

described observations made during the course o f my research. I have based conjectures for 

several parts of subsequent chapters on snorkeling observations I made of fish in Rattlesnake 

Creek, Missoula, Montana. Very little prior knowledge is available on this topic (but see Brown 

1952; Stalnaker et al. 1974). In Rattlesnake Creek, mountain whitefish spawn from the Mountain 

View Bridge behind Rattlesnake School to the mouth o f Rattlesnake Creek. Spawning occurs at 

dusk, and perhaps into the night, as Stalnaker et al. (1974) suggested. During the spawning 

season, which in Rattlesnake Creek lasts from mid-October through late November, the sex ratio 

appears to be biased towards males. In several electrofishing samples I collected during the 

spawning season, the sex ratio was close to 10:1 males to females. Males have well developed 

spawning tubercles and a more pronounced red lateral stripe than females. These secondary 

sexual traits allowed me to distinguish between males and females while snorkeling. I also 

inserted colored floy tags into 22 individuals prior to snorkeling observations (N = 17 males, N = 

5 females). I often observed large groups of males in pools and I observed many examples of 

courtship, where females swam near groups of males and several (2-3) males would follow the 

female, nudging her with their heads and bodies.

I observed the spawning event on November 10, 2001. At dusk, a putative female backed 

into a group of approximately 15-20 individuals. This putative female was not tagged but had a 

distended abdomen and did not have pronounced spawning tubercles. Within the larger group of 

fish, two individuals had male-colored tags. In addition, I observed spawning tubercles on the 

majority of the remainder o f the individuals. Thus, it is likely that the group into which the 

putative female swam consisted of mostly, if  not all, males. I observed a massive writhing of
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bodies. The sex of the putative female was confirmed as she laid eggs close to the substrate 

surface. At least five to ten males in the immediate vicinity o f the female released milt that 

spread in a cloud. This spawning event occurred in shallow water (< approximately 60 cm) 

immediately downstream from a pool.

Several inferences about the mating system of mountain whitefish can be made from 

these observations. It appears that males aggregate, possibly where females prefer to spawn. It is 

possible that females choose either among spawning sites or among the groups o f males. Thus, 

this mating system may be lek-like, where females choose among groups o f males in different 

pools. This has been suggested for Coregonus alpinus (Wedekind et al. 2001), a whitefish in a 

different genus than the mountain whitefish. However, this hypothesis is not based on empirical 

data (Wedekind et al. 2001). While the mountain whitefish mating system may or may not be 

lek-like, it is possible that female choice occurs. However, it is likely that many males fertilize 

the eggs o f a single female and female choice might not be very strong. Future studies are needed 

to determine the evolutionary implications of this mating system. In the work presented here, I 

assume that many males fertilize the eggs of single females, and that choice is less precise than 

other redd-digging salmonids.
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