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Magnetization reversal of elliptical Co ÕCuÕCo pseudo-spin valve dots
N. Dao and S. L. Whittenburga)

Department of Chemistry/AMRI, University of New Orleans, New Orleans, Louisiana 70148

Y. Hao and C. A. Ross
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

L. M. Malkinski
Department of Physics, University of Colorado, Colorado Springs, Colorado 80933

J. Q. Wang
Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148

We present our recent simulated results on Cr~5 nm!/ Cu ~5 nm!/ Co ~5 nm!/ Cu ~3 nm!/ Co ~2 nm!
pseudo-spin valve dots. The simulated results agree qualitatively with the experimental results.
Three different sizes of elliptical dots, 150 nm3105 nm, 175 nm370 nm, and 200 nm360 nm,
were simulated. Our simulations show that in these types of dots magnetization reversal occurs by
the formation of domain walls: 90° for 175 nm370 nm and 360° for 200 nm360 nm. No domain
wall was observed in the reversal of the 150 nm3105 nm dots. For such dots, the simulated loops
show a small two-step reversal pattern with the thin upper layer partially reversing followed by
complete reversal of both layers at higher fields. In the larger dots, a two-step reversal is clearly
observed both in the simulation and experiment. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1454984#

I. INTRODUCTION

A magnetic spin-valve structure consists of two ferro-
magnetic layers separated by a nonmagnetic layer.1 Spin
valves have numerous technological applications including
transistors2 and read heads for computer disk drives.3 A spin
valve without the antiferromagnetic layer or pseudo-spin
valve, which is nondestructive to the readout, has been ap-
plied to magneto-resistive random access memory.4 Re-
cently, pseudo-spin valve material has served as the working
layer for patterned media with potential application in ultra-
high density storage. Before such media can be used in such
applications, however, several issues need to be addressed
including thermal stability and the effect of the shape of the
magnetic element on magnetic domain structure and the
switching mechanism. In this study the switching mechanism
and the underlying magnetic domain structure of elliptical
dots of pseudo-spin valve material with three different aspect
ratios were studied using micromagnetics simulation. Such
simulations can yield valuable information into the magneti-
zation reversal mechanism in these complicated structures.

II. PROCEDURE

Recent experimental work has been presented on pat-
terned elliptical dots of Cr~5 nm!/Cu ~5 nm!/ Co ~bottom, 5
nm!/ Cu ~3 nm!/ Co ~top, 2 nm! pseudo-spin valve material
created using interference lithography.5 A vibrating sample
magnetometer was used to obtain the experimental hysteresis
loops. The aspect ratio of the simulated dots matches those
of the experimental dots, 105 nm3150 nm, 175 nm
370 nm and 200 nm360 nm. All calculations were per-

formed using the three-dimensional micromagnetics code
OOMMF ~the object-oriented micromagnetic framework!
obtained from the National Institute of Standards and
Technology.6 The input file for the simulations was generated
using Java micromagnetics.7 OOMMF discretizes the sample
into a uniform rectangular mesh. In these simulations the
discretization cell is 5 nm35 nm31 nm in thex, y, and z
directions. Thez direction is taken as the direction perpen-
dicular to the pseudo-spin-valve layers. Thex direction is the
long axis of the ellipse. Although the cell size used in the
simulation is much less than the exchange length for cobalt,
a discretization of 1 nm in thez direction means that only
two layers of cells are used to simulate the upper layer. As a
test of this choice of discretization, a cell size of 5 nm
35 nm30.5 nm was employed for a simulation of a
150 nm3105 nm dot. The results were identical to those ob-
tained using the larger cell size and suggest that discretiza-
tion errors are minimal.

The OOMMF code allows the magnetization of the el-
liptical dot to be calculated as a function of time by numeri-
cal solution of the Landau–Lifshitz–Gilbert~LLG! equation
using an Euler-type solver. The magnetization in each cell is
determined by the local magnetic field in the cell. The local
field has contributions from the anisotropy, exchange, mag-
netostatic and applied fields. The anisotropy field is correct
to first order and the default value ofK155.23105 J/m3 of
cobalt was chosen for study. The exchange field is computed
using the six nearest neighbors and the default exchange cou-
pling constant ofA53.0310211 J/m was used. The default
value of the saturation magnetization,Ms51.43106 A/m
was also used. Since the exchange field only includes nearest
neighbors it cannot account for the coupling between the
layers. Long-range interactions are included in the magneto-a!Electronic mail: swhitten@uno.edu
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static or demagnetizing field. OOMMF uses a method due to
Newell to calculate the magnetostatic interaction.8 The major
hysteresis loop was calculated by following the equilibrium
states of the magnetization obtained from the solution of the
LLG equation as the applied field was swept from the satu-
rated value of 300 to2300 mT and back and plotting the
magnetization at each field point versus the applied field.

III. RESULTS AND DISCUSSION

Hysteresis loops along the long axis and the short axis of
the elliptical dots were simulated, however, the loops corre-
sponding to field along the short axis displayed little coerciv-
ity and correspond to free rotation of the magnetization. Here
we discuss only the simulations where the applied field is
along the long axis of the elliptical dots,Hx .

The hysteresis loop for the lowest aspect ratio dot, the
105 nm3150 nm dot, is shown in Fig. 1. Also shown in this
figure are several magnetic domains that occur in the top and
bottom layers. In the experimental loop, there is no evidence
of a difference in the switching of the two levels. The simu-
lation, however, suggests that the top layer passes through a
C magnetization state before both layers switch. There are
two noticeable differences between the simulated and experi-
mental loops; the coercivity of the simulated loops is too
large and the experimental loops have a larger ‘‘tilt.’’ Two
possible explanations for the difference in the coercivity are
the choice of bulk cobalt anisotropy parameters~including
the neglect of the second order anisotropy constant and tem-
perature dependence of the anisotropy constants in the simu-
lation! and the fact that the top layer in the experimental
sample may be oxidized. This sample was not capped and,
therefore, the upper layer may be oxidized as discussed be-
low in the larger aspect ratio dots. This can be checked by
performing a simulation only on the lower layer. The result is
shown in Fig. 1. The agreement with the experimental coer-
civity is significantly improved. The tilting of the experimen-
tal hysteresis loops for arrays of similar magnetic elements
has been extensively studied.9 The tilt arises from long-range
dipolar or magnetostatic interaction between the elements

and from variability between elements. While the OOMMF
code does not include periodic boundary conditions making
more realistic simulation of the experimental dot arrays pos-
sible, we have previously demonstrated that by including a
greater number of dots in the simulation we can demonstrate
that the long-range magnetostatic interaction can produce a
tilt in the simulated loops.10

The occurrence of theC state is also observed in the
simulation of the magnetization reversal of the 70 nm
3175 nm pseudo-spin valve dot. The experimental hyster-
esis loop and the simulated loop are shown in Fig. 2. Also
shown are three magnetization domains occurring in the top
and bottom layers during the reversal process. The initial
decrease in the magnetization occurring during the reversal
near zero applied field corresponds to formation of aC state
in both the top and bottom layers. Because these two layers
are antiferromagnetically coupled, the magnetization direc-
tion of the spins in the layers has an opposite sense. This
opposite sense coupling of the soft and hard layers leading to
a C state~this is ‘‘up’’ in one layer and ‘‘down’’ in the other
layer! in sandwich-type structures has been observed in other
very recent simulations.11 What appears as the switching of
the top layer in the experimental loop is actually the forma-
tion of a 90° domain wall in the top layer. Note that the
applied field at this point is not sufficient to cause complete
switching in either layer. The zero magnetization state occurs
via formation of a 90° wall in the bottom layer. Again, be-
cause of the antiferromagnetic coupling between the layers,
the vector sense of the two layers is opposite, leading to
cancellation of the magnetization vectors. Eventually the ap-
plied field is sufficient to reverse both layers and the large
drop in the magnetization occurs as the domain walls in both
layers are annihilated.

The experimental and simulated hysteresis loops for the
highest aspect ratio dots, 60 nm3200 nm, are shown in Fig.
3. Unfortunately the top layer in the experimental sample is
most likely oxidized so direct comparison between the ex-
perimental and simulated loops is not possible. However, we
can use the simulation to predict what should be observed.
The magnetization reversal process in this sample is very
similar to the 70 nm3175 nm dot. AC state is observed in

FIG. 1. The simulated loop~hollow! and the experimental loop~solid! for
the 150 nm3105 nm dot. Magnetic domains at three states are presented. B
for the bottom layer, and T for the top layer.~a! Before the remanent state.
~b! The top layer begins to annihilate C state.~c! Just after reversal. Every
second spin is shown. The simulated loop without the top layer of Co5Cu3

~triangle, hollow symbol! is also shown for discussion in the text.

FIG. 2. Both the simulated~hollow! and experimental~solid! results are
plotted for the 175 nm370 nm dot. Three magnetic domains at three states
are indicated where B is for the bottom layer, T is for the top layer. Every
second spin is shown.~a! At the remanent state.~b! At the first switch.~c! At
the second switch.
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both layers with a more pronounced curvature in the top
layer. This is followed by the formation of a 90° wall in the
top layer. In the high aspect ratio dots this is followed by the
formation of a 360° wall in the bottom layer. Because the
spins are in the plane of the film, this is a Ne´el wall. The
360° wall is believed to be nucleated by inclusions12 and has
been observed in previous modeling of Co/Cu multilayers
including defects in the film structure.13 The domain walls in
the spin-valve structures are parallel to the magneto-
crystalline anisotropy direction. This is in agreement with
the results from earlier experimental studies on
Ni80Fe20/Cu/Co.14 As the applied field is increased, the do-
main walls in both layers annihilate and the dot saturates.

Several important factors have not been included in this
study. Unfortunately, the full coupling between the two lay-
ers is probably not fully accounted for in our simulation due
to the modeling of the exchange interaction via a nearest-
neighbor interaction. Although small, long-range exchange
coupling should be considered. The magnitude of the effect
can be calculated using canonical tight-binding bands.15 For
the 3 nm Cu thickness in these samples we can estimate the
long-range exchange coupling constant to be on the order of
1.5310213 J/m. Thus, the long-range coupling is quite
small. Why then do the two layers antiferromagnetically
couple in our simulations? The antiparallel orientation is due
purely to the magnetostatic coupling between the two layers.
Finally, interface anisotropy is not included in our simula-
tions. The magneto-crystalline anisotropy is the major con-
tribution to the calculated anisotropy energy.

IV. CONCLUSIONS

Despite the shortcomings in the model, the agreement
between the experimental and simulated loops is quite good.
Quantitative agreement could be obtained if the anisotropy
constant were allowed to deviate from the default, bulk co-
balt value chosen for this study. In a qualitative sense the
magnetization reversal process can be understood from these
simulations. For low aspect ratio dots the switching in both
layers occurs almost simultaneously. AC magnetization state
occurs in the thin layer just prior to switching, however, this
state is difficult to observe experimentally due to the small
change in the magnetization, which is probably obscured by
the different switching fields in an array of such elliptical
dots. For higher aspect ratio dots a clear multi-step process is
observed in the magnetization reversal process. AC state
occurs in both layers followed by formation of a domain wall
in the top layer. The zero magnetization state in the 175 nm
370 nm dot then corresponds to formation of a domain wall
in the bottom layer. As the applied field is increased the
domain walls in both layers are annihilated, leading to rever-
sal and saturation.
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FIG. 3. Hysteresis loops of the simulation~hollow! and experiment~solid!
are shown for the 200 nm360 nm dot. Magnetic domains for three states are
also presented with B for the bottom layer and T for the top layer.~a! At the
remanent state.~b! At the first switch where a 90° domain wall appears on
the top layer.~c! At the second switch, a 360° domain wall occurs at the
bottom layer with the annihilation of 90° wall at the top layer. Every second
spin is shown.
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