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Abstract. An extensive program of experiments focused on
biomass burning emissions began with a laboratory phase in
which vegetative fuels commonly consumed in prescribed
fires were collected in the southeastern and southwestern
US and burned in a series of 71 fires at the US For-
est Service Fire Sciences Laboratory in Missoula, Mon-
tana. The particulate matter (PM2.5) emissions were mea-
sured by gravimetric filter sampling with subsequent anal-
ysis for elemental carbon (EC), organic carbon (OC), and
38 elements. The trace gas emissions were measured by
an open-path Fourier transform infrared (OP-FTIR) spec-
trometer, proton-transfer-reaction mass spectrometry (PTR-
MS), proton-transfer ion-trap mass spectrometry (PIT-MS),
negative-ion proton-transfer chemical-ionization mass spec-
trometry (NI-PT-CIMS), and gas chromatography with MS
detection (GC-MS). 204 trace gas species (mostly non-
methane organic compounds (NMOC)) were identified and

quantified with the above instruments. Many of the 182
species quantified by the GC-MS have rarely, if ever, been
measured in smoke before. An additional 153 significant
peaks in the unit mass resolution mass spectra were quan-
tified, but either could not be identified or most of the signal
at that molecular mass was unaccounted for by identifiable
species.

In a second, “field” phase of this program, airborne and
ground-based measurements were made of the emissions
from prescribed fires that were mostly located in the same
land management units where the fuels for the lab fires were
collected. A broad variety, but smaller number of species
(21 trace gas species and PM2.5) was measured on 14 fires
in chaparral and oak savanna in the southwestern US, as
well as pine forest understory in the southeastern US and
Sierra Nevada mountains of California. The field measure-
ments of emission factors (EF) are useful both for modeling
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and to examine the representativeness of our lab fire EF.
The lab EF/field EF ratio for the pine understory fuels was
not statistically different from one, on average. However,
our lab EF for “smoldering compounds” emitted from the
semiarid shrubland fuels should likely be increased by a
factor of ∼ 2.7 to better represent field fires. Based on the
lab/field comparison, we present emission factors for 357 py-
rogenic species (including unidentified species) for 4 broad
fuel types: pine understory, semiarid shrublands, coniferous
canopy, and organic soil.

To our knowledge this is the most comprehensive mea-
surement of biomass burning emissions to date and it should
enable improved representation of smoke composition in at-
mospheric models. The results support a recent estimate of
global NMOC emissions from biomass burning that is much
higher than widely used estimates and they provide impor-
tant insights into the nature of smoke. 31–72 % of the mass
of gas-phase NMOC species was attributed to species that we
could not identify. These unidentified species are not repre-
sented in most models, but some provision should be made
for the fact that they will react in the atmosphere. In addi-
tion, the total mass of gas-phase NMOC divided by the mass
of co-emitted PM2.5 averaged about three (range∼ 2.0–8.7).
About 35–64 % of the NMOC were likely semivolatile or of
intermediate volatility. Thus, the gas-phase NMOC represent
a large reservoir of potential precursors for secondary forma-
tion of ozone and organic aerosol. For the single lab fire in
organic soil about 28 % of the emitted carbon was present as
gas-phase NMOC and∼ 72 % of the mass of these NMOC
was unidentified, highlighting the need to learn more about
the emissions from smoldering organic soils. The mass ratio
of total NMOC to “NOx as NO” ranged from 11 to 267, in-
dicating that NOx-limited O3 production would be common
in evolving biomass burning plumes. The fuel consumption
per unit area was 7.0± 2.3 Mg ha−1 and 7.7± 3.7 Mg ha−1

for pine-understory and semiarid shrubland prescribed fires,
respectively.

1 Introduction

Biomass burning is considered the main source of pri-
mary fine carbonaceous particles in the global atmosphere
as well the second largest source of total trace gases
(Crutzen and Andreae, 2000; Bond et al., 2004; Akagi et
al., 2011). Biomass burning is also estimated to be the sec-
ond largest global atmospheric source of gas-phase non-
methane organic compounds (NMOC) after biogenic emis-
sions (∼ 1000 Tg yr−1, Guenther et al., 2006; Yokelson et al.,
2008) contributing∼ 400–700 Tg yr−1 (Akagi et al., 2011).
Previous studies have indicated that a significant fraction of
the gas-phase NMOC emitted by biomass burning is still
unidentified and that many of the unidentified species have
molecular mass (MM)> ∼ 90 and thus may be semivolatile

or of intermediate volatility (Christian et al., 2003; Karl et
al., 2007; Warneke et al., 2011). The identified and unidenti-
fied NMOC emitted by biomass burning, especially the lower
volatility species, are expected to be reactive and contribute
to secondary formation of ozone (O3) or organic aerosol as
observed and/or modeled in many plume aging studies (e.g.
Fishman et al., 1991; Andreae et al., 1994; Goode et al.,
2000; Abel et al., 2003; Hobbs et al., 2003; Trentmann et
al., 2005; Sudo and Akimoto, 2007; Grieshop et al., 2009;
Alvarado and Prinn, 2009; Yokelson et al., 2009; Hennigan
et al., 2011; Heringa et al., 2011; Akagi et al., 2011, 2012a,
b).

Understanding how the NMOC emitted by biomass burn-
ing impact the atmosphere is still developing. For example,
the extent to which the emitted species can be identified and
the initial and evolving ratio of gas-phase organic carbon to
condensed phase carbon have only been examined in cur-
sory fashion. The many unknowns limit our ability to model
the local to global atmospheric chemistry impacts of both
wild and anthropogenic fires and thus manage fire in opti-
mal fashion. Fire is a major, natural disturbance factor in
many global ecosystems and has many anthropogenic uses
globally that are not formally regulated, including: inexpen-
sive land-clearing, improving grazing, and enhancing soil
fertility (Hoy and Isern, 1995; Jordan, 1984; Steinhart and
Steinhart, 1974). Prescribed burning is a regulated land man-
agement practice used widely in the US, Australia, South
Africa, and elsewhere. In the context of wildland manage-
ment (e.g. natural grasslands, shrublands, forests), prescribed
fires are used to restore or maintain the natural, benefi-
cial role of fire; reduce fire risk by consuming accumulated
wildland fuels under preferred weather conditions; and ac-
complish other land management objectives (Biswell, 1989;
Hardy et al., 2001; Carter and Foster, 2004). Many desirable,
fire-adapted ecosystems depend on the regular occurrence of
fire for survival (Keeley et al., 2009). In these ecosystems,
land managers may implement prescribed burning as often
as every∼ 1–4 yr under conditions when fuel consumption
can be limited and smoke dispersion can be at least par-
tially controlled. Wildfires, in contrast, normally burn when
“fire danger” is at high levels and they can consume very
large amounts of fuel (Campbell et al., 2007; Turetsky et
al., 2011) with few or no options for reducing smoke im-
pacts on populated areas. Unregulated anthropogenic fires
(e.g. shifting cultivation), prescribed fires, and wildfires can
strongly impact local to regional O3, air quality, health, and
visibility on every continent except Antarctica (Reid et al.,
1998; Sawa et al., 1999; Schmid et al., 2003; Yokelson et al.,
2007; McMeeking et al., 2006; Pfister et al., 2006; Park et al.,
2007). Small, unregulated anthropogenic fires in the tropics
account for most of the global biomass burning while pre-
scribed fires account for more fuel consumption than wild-
fires in the southeast US and wildfires consume more fuel
than prescribed fires in the western US and globally in boreal
ecosystems (Wiedinmyer et al., 2011). The extent to which
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prescribed fires could reduce the fuel consumption by wild-
fire on the landscape scale and thus potentially reduce the
total amount of regional smoke impacts is an active research
area (Wiedinmyer and Hurteau, 2010; Cochrane et al., 2012).
In any case, an assessment of the trade-offs between ecosys-
tem health, climate, and human health requires a detailed
knowledge of smoke chemistry and its evolution and poten-
tial toxicity (e.g.http://www.epa.gov/ttn/atw/188polls.html;
Sharkey, 1997; Rappold et al., 2011; Roberts et al., 2011).

We recently carried out extensive measurements that fo-
cused on better characterization of the emissions from US
prescribed fires. The results are also relevant to the broader
global issues mentioned above. In this paper we present
a retrospective analysis that synthesizes the results from a
large-scale lab-study of fire emissions with four field stud-
ies of fire emissions. The studies were carried out between
February 2009 and March 2010, first at the Fire Sciences
Laboratory in Missoula MT (Burling et al., 2010) and then
via field campaigns in California, North Carolina (2), and
Arizona (Burling et al., 2011). Both the lab and field de-
ployments offer inherent advantages discussed in detail else-
where (Burling et al., 2011). In the first study (Burling et al.,
2010), vegetative fuels commonly consumed in prescribed
fires were collected from five locations in the southeastern
and southwestern US and burned in a series of 71 fires at
the Fire Sciences Laboratory. The particulate matter (PM2.5)

emissions were measured by gravimetric filter sampling with
subsequent analysis for elemental carbon (EC), organic car-
bon (OC), and 38 elements. The trace gas emissions were
measured with a large suite of state-of-the-art instrumenta-
tion including an open-path Fourier transform infrared (OP-
FTIR) spectrometer, proton-transfer-reaction mass spectrom-
etry (PTR-MS), proton-transfer ion-trap mass spectrometry
(PIT-MS), negative-ion proton-transfer chemical-ionization
mass spectrometry (NI-PT-CIMS), and gas chromatography
with MS detection (GC-MS) (Burling et al., 2010; Veres et
al., 2010a; Roberts et al., 2010; Warneke et al., 2011; Gilman
et al., 2013). One important aspect of the lab study was the
deployment of the chemical ionization mass spectrometers
(CIMS) mentioned above. Full mass scans with CIMS, when
coupled with species identification by GC-MS and FTIR, are
particularly helpful for assessing the relative amount of iden-
tified and unidentified NMOC. CIMS is very sensitive (ppt
detection limits), broadly sensitive when H3O+ is the reagent
ion (most NMOC, with the exception of alkanes, can be mea-
sured by PIT- or PTR-MS), and the sensitivity typically does
not vary by more than about±50 % between species. In
contrast, FTIR, while sensitive to an even broader range of
species (e.g. organics and inorganics), has higher detection
limits and the sensitivity to individual NMOC can vary by
several orders of magnitude (Sharpe et al., 2004). GC-MS
sensitivity to individual NMOC can also vary by several or-
ders of magnitude (Gilman et al., 2013). Thus, the amount of
substance associated with an unknown peak in an IR spec-
trum, or a GC-MS chromatogram cannot usually be assigned

with a level of certainty near that for CIMS. GC-MS and
FTIR techniques can both detect some species not measured
by CIMS and both can be useful for assigning at least some
of the CIMS signal when more than one species has the same
mass at unit mass resolution (Christian et al., 2003; Karl et
al., 2007; Warneke et al., 2011; Gilman et al., 2013). Thus,
we used “full mass scans” by CIMS, in conjunction with the
GC-MS and FTIR to look in unprecedented detail at the fun-
damental nature of biomass burning emissions – e.g. an as-
sessment of the total mass of initial NMOC gases and what
fraction can be identified via the entire suite of instrumenta-
tion employed.

The usefulness of the detailed lab results requires verifica-
tion with field studies. Thus, in the subsequent field cam-
paigns, we employed airborne FTIR and nephelometry to
measure a broad variety, but a smaller number of species
(21 trace gas species and PM2.5) on 14 prescribed fires in
chaparral and Emory oak savanna in the southwestern US,
as well as pine forest understory in the coastal plain of
North Carolina and the Sierra Nevada mountains of Cali-
fornia (Burling et al., 2011). The fires sampled in the field
were usually in the land management units where the fuels
were collected for the lab fire study or in similar, nearby ar-
eas. These may be the most extensive field measurements of
emissions for temperate biomass burning to date and in addi-
tion to their immediate usefulness for modeling, we employ
them here to examine the representativeness of our even more
extensive lab fire results.

In this paper, we first convert the previously published lab-
fire emission ratios into a large set of lab-fire emission fac-
tors (EF, g species emitted per kg of fuel burned on a dry
weight basis) for all the species measured. We then compare
the EF measured in the field measurement phase in differ-
ent ecosystems to each other to establish an appropriate de-
gree of specificity for our subsequent laboratory versus field
EF comparisons. Third, we compare the lab EF results with
the EF results from the four field deployments and based on
the lab/field comparison we recommend application of a nor-
malization factor to adjust some of the lab EF. Finally, we
present a synthesized, “validated” set of emission factors for
these US prescribed fires, which is also the most compre-
hensive set of emission factors available from any biomass
burning experiment. This series of studies addresses the pre-
vious lack of EF for temperate biomass burning relative to
the tropical ecosystems that dominate global biomass burn-
ing (van der Werf et al., 2010; Wiedinmyer et al., 2011; Ak-
agi et al., 2011). Perhaps most importantly, the comparison
presented here confirms the relevance of our laboratory mea-
surements of important fundamental properties of biomass
burning smoke such as the relative abundance of unidenti-
fied NMOC species, the gas-phase/condensed-phase carbon
ratio, etc. These findings are likely relevant to some extent to
all global biomass burning.

While this paper focuses on the calculation, comparison,
and interpretation of EFs, the large series of field studies
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resulted in numerous key results presented elsewhere. For ex-
ample, Akagi et al. (2012a) studied the post-emission chem-
ical evolution of the smoke from one prescribed fire. A fifth,
separate field campaign was completed in fall 2011 with a
greatly expanded suite of measurements in which the initial
emissions were measured from 7 fires and the smoke evolu-
tion was measured on four of these fires. The smoke plumes
in the fall 2011 campaign were sometimes mixed with urban
emissions. The fall 2011 results are presented by Akagi et
al. (2012b).

2 Experimental

2.1 Emissions measured in the laboratory and field
campaigns

A complete description of the fires and instrumentation em-
ployed in this extensive series of studies is beyond the scope
of this paper, but full details are available in the many refer-
ences cited in the summary provided next.

2.1.1 Emissions measured during large-scale laboratory
burning of biomass

The lab fires mainly consisted of 3–6 replicate runs for 15
major fuel types relevant to US prescribed burns as shown
in Table 1 of Burling et al. (2010). The lab fires also in-
cluded four that measured the emissions from fresh, green,
coniferous canopy fuels; one of burning organic soil; and one
of garbage burning. There was very little food waste in the
garbage burning simulation and lower emissions of nitrogen-
containing species compared to field measurements (Chris-
tian et al., 2010), but the data are still useful for non-nitrogen
species. A diagram of the US Forest Service combustion lab
where the fires were burned is shown in Fig. S1. We mea-
sured the mixing ratios of the trace gases in the smoke on the
sampling platform∼ 17 m above the fires. Open-path FTIR
and fire-integrated filter sampling were performed on all the
fires and the GC-MS and the three CIMS were deployed on
66 of the 71 total burns. An example showing some of the
real time and grab sampled data collected during a typical fire
is provided in Fig. 1. The top panel of Fig. 1 shows a few of
the species measured on the sampling platform (Fig. S1) dur-
ing Fire #32. The CO2 rises first at ignition followed quickly
by CO once the flame front moves and smoldering develops.
The flaming-dominated period is shaded yellow. As smol-
dering increases NMOC levels increase represented here by
methanol, which was measured by three of the real time in-
struments. The GC-MS grab sample time and the GC-MS
methanol mixing ratio are also indicated.

The instruments that measured in real-time included the
OP-FTIR and the three CIMS instruments. The CIMS had
Teflon sample lines that were either heated or fast-flow.
The validity of combining the open-path and point-sampled
measurements was previously demonstrated by Christian et

Fig. 1. (top) Time series for CO, CO2, and methanol for an exam-
ple burn of coastal sage scrub (Fire #32). The yellow shading in-
dicates the flaming-dominated period. The purple shading indicates
the GC-MS sample acquisition time for this particular fire. (middle)
A comparison of all other methanol measurements to the OP-FTIR
methanol for Fire #32. (bottom) NMOC to methanol emission ra-
tios (ER) as measured by the PIT-MS during the GC-MS sample
acquisition time versus the ER determined by the PIT-MS during
the entire fire for Fire #32 (see Sect. 2.2).

al. (2004) who showed that the smoke in the facility is well
mixed under the conditions we employed. The OP-FTIR sys-
tem (Burling et al., 2010) provided mixing ratios every 1.5 s
for carbon dioxide (CO2), carbon monoxide (CO), methane
(CH4), ethyne (C2H2), ethene (C2H4), propene (C3H6),
formaldehyde (HCHO), formic acid (HCOOH), methanol

Atmos. Chem. Phys., 13, 89–116, 2013 www.atmos-chem-phys.net/13/89/2013/
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Table 1.Summary of the comparison of emission factors measured in the lab and field and between different ecosystems in the field.

Pine Understory Semiarid Shrublands

Lab eqn EF Lab eqn Field
Species Field Lab eqn Lab eqn predict Lab eqn Lab avg/ Field Lab eqn Lab eqn EF predict Lab eqn Lab avg/ pine avg/

avg EF slope intercept at field avg MCE predict/field Field avg avg EF slope intercept at field avg MCE predict/field Field avgField shrub avg

CO2 1668 1.08 1674 1.05 1.00
CO 72.1 1.15 73.8 0.79 0.98
MCE 0.936 1.00 0.935 1.02 1.00
NO 0.88 2.02 0.75 3.31 1.18
NO2 2.68 0.38 2.58 0.24 1.04
NOx as NO 2.55 −5.511 7.576 2.42 0.95 0.96 2.18 11.095 −7.673 2.70 1.24 1.32 1.17
CH4 3.02 −49.129 48.593 2.61 0.86 0.93 3.69 −23.124 23.308 1.68 0.46 0.36 0.82
C2H2 0.30 −1.971 2.021 0.18 0.59 0.61 0.21 −5.565 5.437 0.23 1.09 0.68 1.41
C2H4 1.16 −14.017 13.965 0.85 0.73 0.77 1.01 −10.453 10.339 0.56 0.56 0.39 1.15
C3H6 0.40 −6.332 6.248 0.32 0.80 0.86 0.53 −2.616 2.614 0.17 0.31 0.24 0.75
HCHO 1.51 −25.596 24.974 1.02 0.67 0.74 1.33 −11.954 11.676 0.50 0.37 0.23 1.14
CH3OH 1.05 −25.218 24.531 0.93 0.88 0.97 1.35 −7.141 7.070 0.39 0.29 0.21 0.78
HCOOH 0.09 −6.197 6.026 0.23 2.40 2.65 0.08 −2.194 2.144 0.09 1.20 0.75 1.21
CH3COOH 1.32 −43.537 42.785 2.03 1.54 1.67 1.91 −12.104 12.028 0.71 0.37 0.31 0.69
phenol 0.33 0.45 0.73
furan 0.20 −6.011 5.801 0.17 0.87 0.99 0.30 −2.859 2.783 0.11 0.36 0.21 0.66
glycolaldehyde 0.25 0.25 0.99
HCN 0.59 −8.610 8.314 0.26 0.43 0.49 0.75 −1.009 1.016 0.07 0.10 0.08 0.79
NH3 0.50 −9.005 9.146 0.72 1.43 1.50 1.50 −3.768 4.147 0.62 0.41 0.38 0.33
HONO 0.52 −0.149 0.520 0.38 0.73 0.73 0.54 −5.314 5.287 0.32 0.59 0.44 0.97
PM2.5 13.55 −167.80 163.94 6.88 0.51 0.49 7.06 −169.10 165.00 6.87 0.97 0.55 1.92

Average ratio smoldering compounds 1.01 1.10 0.49 0.37 0.99
Stdev ratio 0.57 0.60 0.32 0.22 0.32
Fractional uncertainty 0.56 0.55 0.65 0.59 0.33

(CH3OH), acetic acid (CH3COOH), furan (C4H4O), water
(H2O), nitric oxide (NO), nitrogen dioxide (NO2), nitrous
acid (HONO), ammonia (NH3), hydrogen cyanide (HCN),
hydrogen chloride (HCl), and sulfur dioxide (SO2). The NI-
PT-CIMS instrument used to measure organic and inorganic
acids is described in more detail by Roberts et al. (2010) and
Veres et al. (2010a). The NI-PT-CIMS provided measure-
ments every 5 s of HCOOH, HONO, isocyanic acid (HNCO),
acrylic acid, glycolic acid, pyruvic acid, and resorcinol (1,3-
benzenediol plus 1,2-benzenediol). On a few fires the NI-PT-
CIMS interrupted the real-time monitoring to run a mass scan
from m/z 10 to 225. The PTR-MS instrument for NMOC
measurements is described in more detail in Warneke et
al. (2011) and de Gouw and Warneke (2007). The PTR-MS
was operated in selected ion mode providing mixing ratios
every 6 s for CH3OH; acetonitrile; acetaldehyde; acetone; the
sum of CH3COOH and other MM60 species; the sum of iso-
prene, furan, and other MM68 species; species with MM70;
the sum of methylethyl ketone and other MM72 species;
benzene; toluene; C8-aromatics; C9-aromatics; naphthalene;
C10-aromatics; monoterpenes; C11-aromatics; and MM204.
The PIT-MS instrument, which is similar to a PTR-MS in-
strument, is described in detail by Warneke et al. (2005,
2011). The PIT-MS performed full mass scans up to MM213
every 6 s that overlapped/confirmed many of the known, or
multi-species, mass signals on the PTR-MS and also pro-
vided data for> 150 additional mass channels. Examples of
these full mass scans can be seen in Warneke et al. (2011).
Significant signal was detected at nearly every unit MM dur-
ing all or most fires up to MM213 though the signal lev-
els tended to decrease from MM∼ 135 upward except for
a group of larger peaks near MM204 observed mainly dur-

ing smoldering combustion (Warneke et al., 2011). Thus, the
emissions of species with MM> 213 were likely negligible,
although one substantial peak was seen at MM220 in at least
some NI-PT-CIMS full mass scans (Fig. 4 in Veres et al.,
2010a). The PIT-MS was also used to analyze grab samples
of smoke from each fire by GC-PIT-MS as an aid in identi-
fying the compounds appearing on somem/z. Much of the
ion signal in the full mass scans by the PIT-MS remained
unassigned to a specific compound even after considering
the OP-FTIR, GC-MS, NI-PT-CIMS, and GC-PIT-MS data.
Thus, the PIT-MS scans are the primary basis of our estimate
of the ratio of unidentified/identified emissions as detailed in
Sect. 2.2.

Grab sampling of the emissions was performed using the
GC-MS, which contributed most of the species identification.
Depending on the duration of the fire, 1–3 “grab” samples
were acquired for 20–300 s each at a constant flow rate of
1.2 mL s−1 from a Teflon, fast-flow transfer line. The GC-
MS was used to sample various segments of the fires with
the overall goal being to probe the most intense periods that
produce the bulk of the emissions. In each grab sample 182
individual NMOC were identified by their retention time and
mass spectral fragmentation pattern as described by Gilman
et al. (2013).

Fire-integrated sampling was performed with three parti-
cle filter sampling systems (hereafter FS1, FS2, UCR) that
simultaneously drew stack air through dielectric tubing to
a cyclone or impactor, then onto Teflon or quartz filters.
The cyclones/impactor cut-offs were aerodynamic diameter
≤ 2.5 µm (FS1, UCR) and≤ 3.5 µm (FS2), but the great ma-
jority of the fine particle mass is expected to be below 1 mi-
cron in diameter (Reid et al., 2005) and thus we take the

www.atmos-chem-phys.net/13/89/2013/ Atmos. Chem. Phys., 13, 89–116, 2013



94 R. J. Yokelson et al.: Trace gases emitted by biomass fires

results from all three channels as measurements of PM2.5.
During the majority of burns, FS2 was loaded with Teflon
filters while FS1 was loaded with quartz filters. UCR col-
lected Teflon and quartz filters for all burns. Teflon filters
were analyzed gravimetrically to determine total PM2.5 mass
loading. The majority of FS2 filters and one UCR Teflon fil-
ter for each fuel type were analyzed with X-ray Fluorescence
(XRF), which provided mass loadings of chlorine, bromine,
silicon, sulfur, phosphorus, and metals spanning the atomic
number range 11–82 (Na-Pb). The UCR quartz filters were
analyzed for organic carbon (OC) and elemental carbon (EC)
using thermal/optical analysis. Complete details of the lab-
oratory particle measurement and analysis methods for to-
tal PM2.5, XRF, and OC/EC can be found in Hosseini et
al. (2012). Other particle characterization measurements are
published elsewhere and not discussed further here (Chang-
Graham et al., 2011; Hosseini et al., 2010, 2012; Qi et al.,
2013).

2.1.2 Emissions measured by airborne and
ground-based sampling of field fires

On the 14 prescribed fires in the field campaigns a closed-cell
airborne FTIR (AFTIR) system was used to measure the fol-
lowing 21 gases: H2O, CO2, CO, CH4, C2H2, C2H4, C3H6,
HCHO, HCOOH, CH3OH, CH3COOH, C4H4O, glycolalde-
hyde (HOCH2CHO), phenol (C6H5OH), NO, NO2, HONO,
HCN, NH3, peroxyacetyl nitrate (PAN, CH3C(O)OONO2)

and ozone (O3) as described by Burling et al. (2011). There
are a few minor differences between the suite of FTIR species
detected in the lab and field fires. O3 and PAN are gener-
ated photochemically in the downwind smoke (Akagi et al.,
2012a, b), and they would not be expected in the lab fire
smoke since it was only∼ 5–10 s old. Phenol and glycolalde-
hyde were also measured by AFTIR in the field, but not by
OP-FTIR in the lab fires. In addition, the phenol emissions
measured by AFTIR in the field were 2–4 times larger than
the phenol emissions measured in the lab by PTR-MS. Lignin
is probably the pyrolysis precursor for much of the phenol
emissions from biomass fires and phenol may have been un-
detected by OP-FTIR in the lab fires because of less con-
sumption of rotten wood (Yokelson et al., 1997; Hyde et al.,
2011). Two species were only detected by OP-FTIR in the lab
fires. SO2 (a flaming compound) was detected at low levels
in lab fire smoke and if it had been produced at similar emis-
sion ratios to CO2 in the field fires it would have been below
our detection limit in the less concentrated smoke encoun-
tered from an airborne platform. HCl (a flaming compound)
was observed in the lab fires at an ER to CO2 that would
have been detectable in the field smoke samples. Its absence
in the field data could potentially reflect losses on the closed
pyrex cell used in the field. Closed cell FTIR successfully
detected HCl emitted by garbage burning in Mexico, but the
levels were much higher and the cell was coated with Teflon
(Christian et al., 2010; Johnson et al., 2003).

The method for measuring PM2.5 differed between the
lab experiments and the airborne field measurements. The
airborne field measurements of PM2.5 were based on
gravimetrically-calibrated light-scattering measurements and
they were likely accurate to±20 % (Burling et al., 2011).
In a comparison on one of the field fires (Akagi et al.,
(2012a), the sum of organic aerosol, chloride, ammonium,
nitrate, sulfate, and black carbon measured on the aircraft
by an aerosol mass spectrometer (AMS) and single particle
soot photometer (SP2) was in qualitative agreement with the
PM2.5 inferred from the light-scattering, but the PM2.5 also
contained metals not measureable by the AMS or SP2. Thus
the lab/field comparison for PM2.5 is informative, but not as
direct as for gases.

On two of the prescribed fires in North Carolina and on
three more fires in South Carolina in 2011 (Akagi et al.,
2012b) we were able to use ground-based FTIR to measure
a suite of gases emitted by residual smoldering combustion
(RSC) (Burling et al., 2011). RSC can be loosely defined
as combustion producing emissions that are not lofted by
flame-induced convection. RSC emissions have high general
importance because they can account for much or most of
the ground-level air quality impacts and fuel consumption by
some fires (Greene et al., 2007; Hyde et al., 2011; Turetsky
et al., 2011). However, land managers strive to avoid RSC
when carrying out prescribed burns and RSC did not con-
sume a significant part of the fuels on the prescribed fires in
this study (Burling et al., 2011). Thus, the RSC results are
not included in the retrospective analysis in this paper.

2.1.3 Fuel consumption measurements on field fires

The available fuels for wildland fire depend strongly on the
type of vegetation community. Standard sampling methods
recognize these differences and allow fuel loading to be es-
timated in several categories: foliage; herbaceous fuel; litter
and duff; and suspended or down, dead, woody fuel. Down,
dead, woody fuel is further stratified into 1 h, 10 h, 100 h,
and 1000 h time lag classes, which describe how quickly the
fuels equilibrate with ambient relative humidity (Deeming et
al., 1978; Bradshaw et al., 1984). The time lag classes cor-
relate fairly well with size. For instance 1 h fuels tend to be
< 0.64 cm in diameter and 1000 h fuels tend to be> 5 cm in
diameter. The duff and larger down, dead, woody fuel tend to
be consumed by smoldering or residual smoldering combus-
tion (Bertschi et al., 2003), while the foliage, herbaceous fu-
els (grasses), and litter tend to be consumed by flaming com-
bustion. In this suite of studies, due to fuel structure differ-
ences and spatial variability, pre- and post-burn fuel loading
measurements were conducted with a combination of tran-
sect and fixed area sampling techniques (Brown, 1974; Lutes
et al., 2006).

For the shrub-dominated southwestern sites, transects
10 m long containing ten 1 m2 subplots were used to sam-
ple canopy fuels. Vegetative fuel loading was estimated using
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destructive sampling on 20 % of the transect subplots and vi-
sually estimated on 100 % of the subplots. Ratio estimation
(Thompson, 2002) was used to relate the mass of the de-
structive sample estimate to the visual estimate. A total of 30
transects were installed and permanently marked. Fuel bed
height, height to the base of the fuel canopy, and species com-
position were measured on all 300 subplots. The destructive
sample was separated into< 0.63 cm and 0.63–2.54 cm di-
ameter classes and wet weights were determined in the field.
Two moisture content samples for each fuel size class were
collected and subsequently dried in the laboratory. The fuel
moisture content was averaged for each size class at each
subplot and the dry mass was estimated from the wet field
weight. Fuel loadings were summarized by transect and then
by fuel type. The oak savanna sites were sampled differently.
In the oak savanna, grass and litter samples were collected
and dry mass was determined. Grass height was measured.
Ratio estimation was used to estimate grass loading, woody
loading< 2.54 cm, and percentage of dead fuels.

For the southeastern sites, pre- and post-burn live fuel, sus-
pended dead fuel, and litter and duff on all sites was mea-
sured using paired one-square meter plots. Pre-burn sam-
ples were collected from one of the plots, oven dried, and
weighed. Post-burn fuels were measured on the paired, pre-
viously untouched plot. Because of the spatial variation as-
sociated with burning litter and duff, consumption of these
fuels was also measured using “duff” pins, which are metal
rods inserted into the soil to serve as a reference for pre- and
post-burn litter and duff depth measurements. The point mea-
surements of consumption based on duff pins were applied to
the pre-burn litter and duff loadings to estimate total duff and
litter consumption.

Because the collection, drying, and weighing of large
amounts of down, dead woody fuel is impractical, the load-
ing of down-woody (time lag) classes was estimated using
the planar transect inventory method (Brown, 1974). This
method is based on the number of intersections of the various
classes along the transect length. Fuel volume is converted to
weight by the specific gravity of sound wood. Down woody
fuel consumption was then estimated by difference with the
post-burn measurement of the same transects.

2.2 Data reduction approach

In this paper we present some new fuel consumption data, but
the main focus is a retrospective analysis of the previously
published trace gas and PM2.5 emissions data. The present
analysis is intended to synthesize the suite of studies and de-
rive a consistent set of emission factors for all the species
measured based on the carbon mass balance method (Yokel-
son et al., 1996, 1999). The carbon mass balance method is
based on the assumptions that all the carbon in the burned
fuel is volatilized and detected and that the fraction of car-
bon in the fuel is known. With these assumptions, if the
three main carbon-containing emissions CO2, CO, and CH4

are among the quantified emissions and the fuel carbon con-
tent is known or can be estimated from the literature, it is
straightforward to convert a measured partitioning of carbon
emitted as various species into reasonably accurate emission
factors (an exception for the smoldering organic soil is dis-
cussed later). The implementation of the carbon mass bal-
ance method to retrieve emission factors from airborne field
measurements was presented in full detail by Yokelson et
al. (1999) and its application to the current series of field
studies was described by Burling et al. (2011) and Akagi et
al. (2012a, b). The implementation of the carbon mass bal-
ance method to retrieve emission factors from laboratory fire
data was described in full by Yokelson et al. (1996) and its
use to calculate emission factors from the 2009 lab OP-FTIR
data was described by Burling et al. (2010).

In this paper we use the carbon mass balance method to
calculate a new, much larger set of lab-fire emission factors
where the total carbon now includes the carbon in the parti-
cles and the carbon in the many additional gas-phase species
measured by GC-MS and the CIMS instruments. Our cal-
culation is similar to that described by Burling et al. (2010)
except that the inclusion of more carbon-containing species
implies that each individual compound reported previously
by those authors now accounts for a slightly smaller fraction
of the total carbon. That in turn generates a small decrease in
the EF compared to those previously reported by Burling et
al. (2010). Key details of the calculation are given next.

We used OP-FTIR as the primary data source for the
species it quantified. This is because the OP-FTIR system
had the highest time resolution, has no sample line losses,
and it measures all its species simultaneously (including the
three most abundant carbon-containing species (CO2, CO,
and CH4)) on the same cross-stack sample volume through-
out each fire. CO2, CO, and CH4 usually account for> ∼ 97–
98 % of the total carbon emitted (Akagi et al., 2011; this
work). For each of the other instruments we selected one
species in common with the OP-FTIR to serve as an inter-
nal standard for a calculation of the emission ratio (ER).
In step one of the EF calculation, the grab sample or fire-
integrated emissions of species measured by GC-MS, PIT-
MS, and PTR-MS were converted to ER to CH3OH and
the fire-integrated emissions of species measured by NI-PT-
CIMS were converted to ER to HCOOH. When 2–3 GC-
MS grab samples were obtained from a fire we used the
average of all the grab samples. Excellent agreement be-
tween the OP-FTIR and other instruments for the two refer-
ence species was demonstrated previously: CH3OH (Chris-
tian et al., 2004; Karl et al., 2007; Warneke et al., 2011)
and HCOOH (Veres et al., 2010a). The excellent agreement
between the instruments for CH3OH in this work is also
shown in Fig. 1, which helps visualize the data integration
process. The middle panel of Fig. 1 shows the mixing ratios
for CH3OH from PTR-MS, PIT-MS and the GC-MS plotted
against the OP-FTIR CH3OH. Three points below the 1: 1
line acquired during the spike seen in the top panel likely
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reflect some timing uncertainty, but minimally impact the
fire-integrated methanol. Clearly, all four instruments agreed
well on CH3OH justifying its selection as an internal stan-
dard. The bottom panel of Fig. 1 shows a test for possible
bias due to the GC-MS grab samples targeting the concen-
trated emissions. The ERs to CH3OH for all the PIT-MS
species were calculated for the GC-MS sample time and
compared to the PIT-MS ERs to CH3OH calculated for the
whole fire. The orthogonal regression slope of 1.15± 0.02
(not shown) indicates that the GC-MS ERs to CH3OH for
the other 181 NMOC measured by the GC-MS may have
been biased slightly upward on Fire #32. However, a sim-
ilar comparison for the PTR-MS species on Fire #16 sug-
gested a∼ 3 % downward bias could have occurred for the
GC-MS ERs to CH3OH on that fire. For the study as a whole
no significant bias in the GC-MS ERs to CH3OH was de-
tected (Gilman et al., 2013).

In step two of the EF calculation, all the ERs to CH3OH
and HCOOH were converted to ERs to CO by multiplying
with the OP-FTIR fire-integrated CH3OH or HCOOH ERs to
CO. In step three of the EF calculation, after all species (in-
cluding unidentified species) were expressed as ERs to CO,
we then calculated emission factors (EF) using the carbon
mass balance method. Several aspects of implementing step
three are discussed in the following paragraphs.

The assumptions of the carbon mass balance method are
satisfied most rigorously if we account for all the emitted car-
bon including that in unidentified species. Since the amount
of carbon in the unidentified species is unknown we esti-
mated it based on the properties of the identified species. We
found empirically that a plot of the number of carbon atoms
versus molecular mass for the identified species emitted by
the lab fires was well fit with a line (Eq. 1):

n = 0.0824× MM − 1.38(r2, 0.912) (1)

In Eq. (1), MM is the molecular mass of an identified species
andn is the number of carbon atoms in the identified species.
The predictions of Eq. (1) have increasing certainty with in-
creasing mass and most of the unidentified species are at
higher mass. We used Eq. (1) to estimate the number of car-
bon atoms in each unidentified species as part of our carbon
mass balance.

A major goal of the analysis described here was to gen-
erate a reasonably complete estimate of NMOC that does
not overlook unidentified species. In many cases, the OP-
FTIR or NI-PT-CIMS real-time data or the GC-PIT-MS or
GC-MS grab samples suggested an identity for part or all
of the signal observed at a MM by the PIT-MS, but a rig-
orous “assignment” of a mass peak requires calibration with
standards and consideration of possible fragments (Veres et
al., 2010b). In the current analysis our goal is a rough, unbi-
ased estimate of the fraction of the total signal on the PIT-MS
that was accounted for by species quantified on other instru-
ments. This is important so that we can avoid two gross er-
rors: (1) “double-counting” when most of the PIT-MS signal

could be accounted for by species identified on other instru-
ments, or (2) overlooking an important contribution from an
unassigned mass channel when only a small fraction of the
PIT-MS signal could have been due to species measured on
other instruments. When the “other instrument” was GC-MS
it is important to acknowledge that grab sampling and fire-
integrated, real-time sampling probe different periods of a
dynamic mixture. A simple estimate of the uncertainty this
contributes to a synthesis of these two different types of sam-
pling can be obtained from the variability when 2–3 GC-MS
grab samples were obtained in the same fire. For a selection
of ∼ 20 GC-MS species generally measured with high signal
to noise, the coefficient of variation was approximately 50 %.
However, as discussed above, the grab sampling procedure
used by the GC-MS does not introduce a bias in our results.
The two potential errors mentioned above could also have a
small impact on the calculation of total carbon and the EF.
Thus, to minimize the errors while producing our estimates
with a reasonable effort, we sorted all the ER to CO for iden-
tified and unidentified species by increasing mass to facilitate
comparisons and then applied two filters to the unidentified
species.

Filter 1: if the total unidentified contribution at a mass
measured by the PIT-MS was more than twice the sum
of the identified species measured at that same mass by
other instruments, then we retained both the uniden-
tified MM and the identified species at that mass. A
more rigorous treatment would make a small down-
ward adjustment to the unidentified contribution to re-
flect that some of it was known, but this correction
would be time-consuming and inexact due to the dif-
ferent sampling approaches. Consequently, application
of filter 1 alone would tend to slightly overestimate the
total NMOC.

Filter 2: if the total unidentified contribution at a mass
as measured by the PIT-MS was less than twice the
sum of the species identified by other instruments, then
we deleted the unidentified PIT-MS contribution at that
mass. (This is only approximately equivalent to consid-
ering the peak “assigned.”) Filter 2 alone would tend to
underestimate total NMOC and thus, offset the error in-
troduced by Filter 1.

We briefly give some examples of the application of these
filters next. After sorting by mass we noted that the study-
average ER to CO for propyne (MM40) measured by GC-
MS was actually larger than the study-average ER to CO for
“unidentified mass 40” measured by PIT-MS. This can be
due to the lack of a calibration of the PIT-MS with propyne.
For purposes of this study only, we eliminated the PIT-MS
MM40 data and retained the GC-MS propyne data. This ef-
fectively informally assigns MM40 to propyne, but a rigor-
ous assignment would require calibrating the PIT-MS with
propyne and eliminating other MM40 candidates including
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fragments. The unidentified MM42 via PIT-MS was about
double the OP-FTIR propylene, however we retained only
the latter. The remainder of the MM42 signal on the PIT-
MS is likely from fragments of several NMOC (e.g. ace-
tone and acetic acid). In similar fashion, the PIT-MS unas-
signed MM43 was deleted while we retained the NI-PT-
CIMS HNCO, which was only slightly larger on average for
the study. On both MM68 and MM72, the PIT-MS amount
was somewhat larger than the sum of identified species and
we eliminated the PIT-MS contribution. On these two chan-
nels, the PTR-MS amount was in good agreement with the
PIT-MS amount and also somewhat larger than the sum of
identified species. For these two channels only we computed
the additional, unspecified PTR-MS contribution and show it
for illustrative purposes. On the other hand, the only identi-
fied species at MM114 was n-octane, which was observed by
GC-MS. The ER to CO for n-octane was only∼ 2–16 % of
the ER to CO for MM114 measured by the PIT-MS. In ad-
dition, octanes are very poorly detected by PIT-MS and thus
the much larger PIT-MS MM114 ER almost certainly reflects
a very large contribution of species other than octanes, but
with the same mass. Therefore, we retained both entries. The
case where the unidentified contribution detected by PIT-MS
was much larger than the sum of the identified species was
far more common in the lab fires as a whole. The PIT-MS or
PTR-MS amounts at MM 106, 120, and 134 had already been
assigned to C8, C9, and C10 aromatics, respectively and they
consistently agreed well with the sum of individual aromatic
species measured at those MM by GC-MS. Thus, we retained
only the individual GC-MS species. A few cases were am-
biguous in that the PIT-MS amount was more than double
the sum of identified species for some fuel types, but equiv-
alent or even smaller for other fuel types. In those cases we
retained all the information. In summary, given the inherent
uncertainties and complex, variable data, the methodology
used to handle overlapping information should yield reason-
able results. One other factor affecting the accuracy of our
estimates is difficult to assess. An unknown, probably small,
amount of gas-phase NMOC were present in the smoke, but
could not be detected by any of the instruments we employed.
For example, NMOC with proton affinity below that of water
that were not quantified by the FTIR, NI-PT-CIMS, or GC-
MS. The presence of compounds undetected by any instru-
ment is minimized by the complementary nature of GC-MS
and proton-transfer MS since “sticky” compounds that are
difficult to detect by GC-MS usually have high proton affin-
ity.

The results of the above calculations are shown in Sup-
plement Table 1. A few of the lab fires that were attempted
are not included in Table S1 mostly because of very low sig-
nal levels caused by poor fuel consumption and also a few
instrumental problems. Table S1 shows emission factors for
up to 357 species for 71 fires grouped by fuel type (typically
3–6 fires per fuel type) as well as an average and standard
deviation for each fuel type. In addition, Table S1 shows a

separate overall average and standard deviation for the two
main ecosystem types in this study, pine-understory fires and
semiarid shrubland fires, and for coniferous canopy fires. The
EFs for the single fires in organic soil and garbage are also
shown.

3 Results and discussion

There is a 1: 1 correspondence at very high specificity be-
tween the fuels in some of the fires sampled in the field with
the fuels burned in some of the lab fires. For instance, on
11 November 2009, the Block A fire sampled from the air
in the morning and the Block B fire sampled from the air
in the afternoon were in “coastal sage scrub” and “maritime
chaparral” fuel types, respectively (see Table 1 in Burling
et al., 2011). Fuels were collected from both of those land
management units and burned in the lab five times each (see
Table S1 or Table 1 in Burling et al., 2010). However, the
mean EF for these two fuel types did not differ by more than
one standard deviation for most compounds in the lab fires. A
more general issue is that fifteen different specific prescribed
fire fuel types were burned in the lab, but only 14 prescribed
fires could be sampled in the field studies. Also, many of the
field fires burned several of the lab fuel types either simulta-
neously or in rapid succession. Thus, we cannot support an
analysis of the field data at the same level of fuel-specificity
as the lab fires.

3.1 Comparing the emissions from field fires in different
fuel/vegetation types

We can aggregate our field results into two less detailed vege-
tation/fuel categories: pine understory fires (n = 8) and semi-
arid shrubland fires (n = 6). The comparison is instructive
and is shown in Table 1. The last column in Table 1 shows
that, with the exception of a few species such as NH3 or
PM2.5, the average emission factors measured in the field
from the two different major ecosystems were actually fairly
similar to each other in this study. This may be surprising
because it is well documented that fire emissions are highly
variable and there appear to be reproducible differences be-
tween the EF for e.g., savanna fires and tropical deforestation
fires (Akagi et al., 2011). One way to rationalize the above
observations is to postulate that the fuel or vegetation type
may not always be a major factor controlling the trace gas
emissions of wildland fires. Stated differently, we can con-
sider the possibility that the fuel type may sometimes be less
important than the environmental conditions under which the
fire occurs. For instance, in a study of 56 wildland fires in
Mexico, Yokelson et al. (2011) found that wind speed, de-
position of air pollution, season, etc., might be major fac-
tors driving EF variability. However, we recognize that in
some other studies (or with a larger sample size) the vegeta-
tion community could show an effect on the emissions more
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clearly than we observed in this study. It is also well-accepted
that terrestrial vegetation communities are associated with a
range of environmental conditions under which prescribed
fires are safest to implement or wildfires are most likely to
propagate. Thus “ecosystems” are tightly coupled to other
drivers of fire behavior and emissions (Greene et al., 2007;
Keeley et al, 2009). The environmental conditions may also
be a major factor influencing the post-emission smoke evolu-
tion as discussed by Akagi et al. (2012a). Despite the relative
insensitivity of our field trace gas EF to the major ecosystem
type, we did find that classification by the major ecosystem
type was useful in comparing the lab EF to field EF as de-
tailed next.

3.2 Comparison of emission factors measured in the lab
and the field

The ability to deploy more instrumentation on the lab fires al-
lowed many more important species to be measured than was
possible on the field fires. These additional species, includ-
ing the unidentified ones, could significantly influence the
post-emission smoke plume chemistry if they were present
in similar amounts in the smoke from field fires (Trentmann
et al., 2005; Alvarado and Prinn, 2009). Thus, it is impor-
tant to explore how well the EFs measured on lab fires rep-
resent the EFs for field fires. Sixteen trace gas species were
measured by a similar FTIR-based approach on both the lab
and field fires and PM2.5 was also measured on both the lab
and field fires. This allows us to make a fairly direct com-
parison of the lab and field data for a suite of 17 species
that includes both organic and inorganic gases and flaming
and smoldering compounds. In making the comparison, we
recognize that fire emission factors depend on the “modi-
fied combustion efficiency” (MCE, in this case fire-integrated
1CO2/(1CO2 + 1CO)), a proxy for the relative amount of
flaming and smoldering combustion as discussed elsewhere
(Christian et al., 2003; Yokelson et al., 2008). Thus, for a pre-
cise comparison we plotted the lab and field EF versus MCE
for all 17 species measured in both the lab and field. Each
plot compared all the EF from all the lab and field fires to-
gether on the same graph for one of the two major ecosystem
types (pine-understory and semiarid shrublands). The lab EF
were computed via the carbon mass balance method using
just the FTIR species for this comparison to avoid a small
downward bias on the lab EF. We show typical examples of
these plots in Figs. 2 and 3.

We focus first on the lab/field comparison for methane and
gas-phase NMOC produced primarily by smoldering com-
bustion (e.g. CH3OH and HCHO) in the top three rows of
Fig. 2. For all three of these species (and others not shown)
there is clearly good agreement between the lab and field
for the pine-understory fuels (left column), but a large off-
set to lower EF in the lab for the semiarid shrubland fuels
(right column). We speculate that the offset to lower EF for
smoldering compounds from the lab semiarid shrubland fires

Fig. 2. Comparison of EF versus MCE from the lab and the field
fires for smoldering compounds and PM2.5 for pine understory (left
column) and semiarid shrubland (right column). The “Grd” (green
symbols) indicate data for residual smoldering combustion provided
for context (see text).

could have partly resulted from lower fuel moisture in the lab
fuels as discussed in more detail in Sect. 3.8. PM2.5 emis-
sions also tend to increase with lower MCE similar to the
smoldering NMOC as shown in the bottom row of Fig. 2.
However, in the case of PM2.5, the EF for pine-understory
fuels are offset to significantly lower values for the lab fires
and the EFPM2.5 for semiarid shrubland fuels agree fairly
well at lower MCEs when measured in the lab or field.

For the three flaming compounds measured in both the
lab and field there was good agreement between the lab and
field for both ecosystems. This is illustrated with the plots for
NOx, HONO, and C2H2 in the top three rows of Fig. 3. HCN
is an important biomass burning tracer that was associated
with smoldering combustion or both smoldering and flaming
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Fig. 3. Comparison of EF versus MCE from the lab and the field
fires for flaming compounds and HCN for pine understory (left col-
umn) and semiarid shrubland (right column).

combustion in past studies (Akagi et al., 2011). In this study
HCN was strongly associated with smoldering combustion
in both the lab and field for both ecosystems as shown by
its increasing EF at lower MCE (bottom row Fig. 3). The
lab/field comparison for HCN was also similar to the com-
parison shown for smoldering compounds in Fig. 2.

The plots for the pine-understory fuels in Figs. 2 and 3 also
show the RSC EF measured from the ground (Burling et al.,
2011) for context and because of the potential high contribu-
tion of RSC to air quality impacts and wildfire emissions that
we noted earlier. The RSC measurements are of individual
smoldering fuel elements rather than a blended convection
column and thus do not normally fit the pattern established
by airborne measurements (Akagi et al., 2012b). For context
and relevance to wildfires, we also present the lab EF we ob-
tained for fires in coniferous canopy fuels and organic soils

in this paper. However, the RSC EF shown in Figs. 2 and
3 are not included in the lab/field comparisons in this paper
since RSC did not contribute strongly to the prescribed fire
emissions in this study.

The lab/field plot-based comparison is systematically
summarized in Table 1 for all 17 species measured in both
the lab and field using two different mathematical approaches
employed previously in the literature and briefly described
next. In Christian et al. (2003) the lab EFs for smoldering
compounds for African savanna fuels were systematically
smaller than the field EFs because the lab fires burned at
higher MCE. Thus, they plotted the lab EF versus MCE and
used a linear fit to calculate EFs at the average MCE mea-
sured in the field on African savanna fires. This approach
yielded lab-based projections that were within 15 % of the
field values, on average, as shown in Fig. 3 and Table 3 of
Christian et al. (2003). In contrast, Yokelson et al. (2008)
compared lab and field results for tropical deforestation fires
and obtained the lowest error of prediction by simply multi-
plying the lab results by the average field/lab ratio.

In Table 1 we show the results of treating our current lab
and field EF with both approaches previously used to “trans-
form” lab EF to field EF. Specifically, columns 5, 6, 11, and
12 show the predictions of the lab MCE-based equation adja-
cent to how those predictions compare to the field data for the
pine and semi-arid ecosystems, respectively. Columns 7 and
13 show the lab/field EF ratios for the two ecosystems. The
inverse of the average ratio for each ecosystem is the sim-
ple correction factor in the approach employed by Yokelson
et al. (2008). CO and CO2 predictions from the lab equa-
tions fitting EF to MCE are not included in Table 1, because
MCE is defined in terms of CO and CO2. The ratio of the
lab-average EFCO2 to the field-average EFCO2 is also not
included in Table 1 because this quantity will always be near
unity and inflate an assessment of the average agreement for
the data set as a whole. For the pine-understory fuels, for
both “mapping” approaches, the average value shown at the
bottom of Table 1 is close to one, but that good agreement
reflects some offset of positive and negative errors. Most no-
ticeably, a large lab value for formic acid is offset by small
lab values for HCN and PM2.5. However, in general the EF
based on the lab equation is within 30 % of the field-average
EF for 8 of the 14 smoldering species and the lab average
EF is within 30 % of the field-average EF for 9 of the 14
species considered. The lab-average EFs are, on average,
110± 60 % of the field-average EFs suggesting that a rel-
atively un-biased estimate of the field average EF can be
obtained simply and directly from the lab-average EF with
about 50 % uncertainty on average. Although the equation-
based approach appears to work “perfectly” on average, no
statistically significant increase in accuracy results from ap-
plying the more complex equation-based mapping approach
to the pine-understory data. As a result we suggest that the
lab-average EF presented for∼ 330 additional smoldering
species for pine understory fuels in Table S1 can be used
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directly to estimate the EF for these species from field fires
in pine-understory fuels.

For semiarid shrubland fuels, the lab-based equations pre-
dict field EFs a bit closer to the EFs measured on the field
fires than simply using the lab average EFs. However, both
approaches require subsequently applying a large normaliza-
tion factor to get good agreement and have essentially equal
error of prediction. Thus, applying an equation and then a
normalization factor, rather than just applying a normaliza-
tion factor to the lab average EFs for over 300 compounds
does not add enough accuracy to justify the added complex-
ity. As a result, we suggest that dividing the lab EFs for smol-
dering compounds by 0.37 (see the bottom of column 13) or,
equivalently, multiplying by 2.7 is the preferred way to pre-
dict the EFs expected in the field for semiarid shrubland fires.
The normalization factor is large, but we note that applying
this factor makes the EF for the lab semiarid shrubland fires
closer to the EF for the lab pine-understory fires, which re-
covers the small EF dependence on ecosystem that was ob-
served in the field.

3.3 Emission factors for prescribed fires in temperate
ecosystems

In Table 2 we present our best estimate of the emission fac-
tors for PM2.5 and all the trace gas species measured in
this series of studies (including unidentified species) for pre-
scribed fires in pine forest understory and semiarid shrub-
land and fires in coniferous canopy fuels and organic soils.
The EFs in Table 2 were generated by applying simple se-
lection rules to the lab emissions data in Table S1 and the
field emissions data in Table 1. In Table 2 we selected the av-
erage emission factor for a species that was measured on the
field fires during the four field deployments for all the species
that were measured in the field. We used the average lab fire
EFs when no field measurements were made of that species.
For the semiarid shrubland fires, the lab EFs for smoldering
compounds were multiplied by 2.7 to better represent field
fire emissions as discussed above. In practice, this affected
all the lab data used from the semiarid shrubland category ex-
cept alkynes higher than C2H2 (Akagi et al., 2012b) and SO2,
HCl, and HNCO, which were not measured in the field and
were identified as flaming species in the lab study by their
temporal correlation with CO2 (Burling et al., 2010; Roberts
et al., 2010). In a more complex calculation, the field EF for
both pine-understory and shrubland fires would be decreased
by 1–5 % to account for the addition of more total carbon in
the form of species measured only in the lab, but we have
ignored that unwieldy, statistically insignificant potential ad-
justment here. We note also that readers preferring the origi-
nal un-normalized EF for their application can retrieve those
values from Table S1. For the coniferous canopy fuels and
organic soil all the data are lab data.

3.4 Some fundamental characteristics of fresh smoke
revealed by full mass scans

Important impacts of NMOC on smoke plume chemistry
include the potential to contribute to O3 and secondary
aerosol formation. In broad terms, oxidation of NMOCs in
the presence of NOx generates both O3 and secondary or-
ganic aerosol (SOA). In general, oxidation of the lower MM
NMOCs (volatile organic compounds (VOCs)) tends to gen-
erate CO and CO2 as end products and HOx as an interme-
diate that converts NO to NO2, which photolyzes to pro-
duce O3. However, the larger VOCs can also be oxidized
to more soluble or less volatile compounds (semivolatile
organic compounds or intermediate volatility organic com-
pounds, SVOC and IVOC, respectively). Subsequent oxida-
tion or cooling of IVOC and SVOC can generate O3 and
SOA on various time-scales (Finlayson-Pitts and Pitts, 2000).
The SVOC and IVOC already present in fresh emissions are
perhaps more likely to contribute to SOA on shorter time
scales: e.g. during the several hours that many biomass burn-
ing plumes exist as coherent isolated entities in the bound-
ary layer (or in smog chamber experiments) (Yokelson et al.,
2009; Hennigan et al., 2011). Thus, estimating or modeling
the potential for smoke photochemistry to generate O3 or sec-
ondary particle mass requires realistic estimates of the rela-
tive amounts of total VOC, IVOC, SVOC, NOx, etc., in fresh
smoke and the chemical behavior of the species in these cate-
gories. In Table 3 we address the question of relative amounts
by computing estimates of the lumped categories mentioned
above that take unidentified species into account. We also
show ratios between these lumped categories and/or NOx and
PM2.5 for each of the four fuel types in our broad classifica-
tion scheme.

Table 3 shows an average NMOC/PM2.5 ratio for our two
main fuel types of about three with higher values up to
about nine possible for organic soil. The gas-phase NMOC to
condensed-phase organic aerosol (OA) ratio would be higher
since biomass burning PM2.5 is typically about 60–80 % OA
(Reid et al., 2005). It is also of interest to estimate the IVOC
and SVOC fraction of the gas-phase NMOC to roughly as-
sess the potential amount of SOA production on the time
scale of a few hours. Definitions of SVOC and IVOC are
not straightforward or identical for all users of these terms.
For instance, the EU and USEPA broadly classify SVOC as
compounds with boiling points above 250◦ and 200◦C, re-
spectively, but the USEPA includes phenol as an SVOC de-
spite it having a boiling point of 182◦C. In a review article on
SVOC, Weschler and Nazaroff (2008) adopt a working defi-
nition of SVOC as having vapor pressure lower than 10 Pa at
room temperature. We note that toluene is well established as
an OA precursor and so we have based a crude estimate of the
total intermediate and semivolatile gas-phase organic com-
pounds (IVOC+ SVOC) as the sum of species at or above
the mass of toluene. With this arbitrary choice, for both main
fuel types (i.e. pine understory and semiarid shrubland), we
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Table 2.Best estimate emission factors (g kg−1) for four types of fire: prescribed fires in semiarid shrubland and pine-forest understory, and
burning coniferous canopy or organic soils (see text for discussion).

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

MCE 0.935(0.017) 0.936(0.025) 0.925(0.036) 0.850
Methane (CH4) 16 3.69(1.36) 3.01(2.43) 3.27(1.42) 7.50
Ammonia (NH3) 17 1.5(1.43) 0.499(0.692) 0.936(0.538) 2.67
UnknownPITMM25 25 5.09E-3(3.98E-3) 5.10E-3(5.44E-3) 4.09E-3(2.31E-3) 0.0226
Ethyne (C2H2) 26 0.213(0.041) 0.298(0.067) 0.433(0.251) 0.0969
Hydrogen Cyanide (HCN) 27 0.749(0.255) 0.592(0.133) 0.181(0.14) 1.36
Carbon Monoxide (CO) 28 73.8(18.4) 72.2(26) 85.3(38.3) 129
Ethene (C2H4) 28 1.01(0.2) 1.16(0.28) 1.56(0.76) 1.43
Nitric Oxide (NO) 30 0.771(0.242) 0.88(0.34) 1.74(0.19) 0.559
NOx as NO 30 2.18(0.78) 2.55(0.41) 2.40(1.47) 0.674
Formaldehyde (HCHO) 30 1.33(0.2) 1.51(0.52) 1.32(0.61) 1.88
Ethane (C2H6) 30 0.48(0.61) 0.541(0.707) 0.417(0.237) 1.339
Methanol (CH3OH) 32 1.35(0.4) 1.05(0.98) 0.99(0.667) 3.24
Hydrochloric Acid (HCl) 36 0.134(0.149) 0.0643(0.0656) 0.0477(0.0295) –
Propyne (C3H4) 40 0.0283(0.0384) 0.0253(0.0218) 0.0696(0.0738) 0.0424
Acetonitrile PTR (CH3CN) 41 0.146(0.074) 0.132(0.091) 0.139(0.061) 0.739
Propylene (C3H6) 42 0.532(0.216) 0.405(0.277) 0.497(0.228) 1.22
Isocyanic AcidNI-PT-CIMS (HNCO) 43 0.0815(0.0486) 0.0905(0.0519) 0.168(0.143) 0.271
Carbon Dioxide (CO2) 44 1674(38) 1668(72) 1670(128) 1147
AcetaldehydePTR (CH3CHO) 44 0.563(0.401) 0.687(0.514) 0.792(0.402) 2.70
Propane (C3H8) 44 0.889(2.067) 0.293(0.245) – 0.797
UnknownPITMM45 45 0.0923(0.0488) 0.102(0.076) 0.083(0.0193) 0.495
Nitrogen Dioxide (NO2) 46 2.58(1.05) 2.68(0.35) 1.01(0.61) 0.176
Formic Acid (HCOOH) 46 0.0775(0.0859) 0.0943(0.0868) 0.216(0.18) 0.733
Ethanol (CH3CH2OH) 46 0.0553(0.051) 0.156(0.23) 0.0416(0.0209) 0.495
Nitrous Acid (HONO) 47 0.535(0.142) 0.506(0.155) 0.421(0.203) 0.0280
UnknownPITMM48 48 0.0114(0.0091) 0.0157(0.0145) 0.0147(0.0063) 0.137
UnknownPITMM49 49 1.92E-3(3.09E-3) 2.47E-3(2.32E-3) 2.28E-3(2.83E-3) 0.0251
UnknownPITMM50 50 8.07E-3(4.53E-3) 9.47E-3(7.05E-3) 7.50E-3(4.20E-3) 0.0909
1,3-Butadiyne (C4H2) 50 5.82E-3(6.58E-3) 8.98E-4(8.91E-4) 5.37E-3(8.58E-3) 9.04E-3
UnknownPITMM51 51 7.32E-3(6.76E-3) 3.50E-3(3.40E-3) 4.56E-3(1.60E-3) 0.0208
UnknownPITMM52 52 8.46E-3(4.26E-3) 6.65E-3(8.67E-3) 0.0133(0.0082) 0.0342
Butenyne (C4H4) 52 9.35E-3(8.63E-3) 3.22E-3(3.08E-3) 0.0102(0.0147) 0.0176
Acrylonitrile PIT (C3H3N) 53 0.026(0.0106) 0.0218(0.022) 0.0282(0.0227) 0.151
1,3-ButadienePTR (C4H6) 54 0.121(0.072) 0.111(0.086) 0.192(0.099) 0.293
1,2-Butadiene (C4H6) 54 2.50E-3(3.15E-3) 1.64E-3(1.69E-3) 5.49E-3(4.85E-3) 3.62E-4
1-,2-Butyne (C4H6) 54 8.77E-3(5.44E-3) 3.95E-3(2.93E-3) 8.07E-3(5.42E-3) 0.0135
UnknownPITMM55 55 0.0368(0.0289) 0.0369(0.029) 0.0436(0.0211) 0.317
Propanenitrile (C3H5N) 55 0.0117(0.0068) 0.0113(0.0126) 0.0116(0.0112) 0.0235
trans-2-Butene (C4H8) 56 0.0156(0.0199) 0.0304(0.0331) 0.0314(0.0276) 0.125
1-Butene (C4H8) 56 0.0909(0.0733) 0.1(0.091) 0.172(0.106) 0.311
2-Methylpropene (C4H8) 56 0.0262(0.0314) 0.0566(0.0656) 0.0356(0.0377) 0.246
cis-2-Butene (C4H8) 56 0.0147(0.0182) 0.0254(0.0265) 0.0277(0.0207) 0.0976
Acrolein (C3H4O) 56 0.386(0.543) 0.248(0.172) 0.42(0.297) 0.590
UnknownPITMM57 57 0.0391(0.0479) 0.0455(0.0363) 0.0549(0.0268) 0.448
AcetonePTR (C3H6O) 58 0.31(0.2) 0.353(0.278) 0.371(0.203) 1.39
i-Butane (C4H10) 58 0.0214(0.0237) 0.0725(0.1307) 0.0152(0.0101) 0.238
n-Butane (C4H10) 58 0.0446(0.0637) 0.101(0.113) 0.0512(0.0361) 0.479
Propanal (C3H6O) 58 0.0969(0.1297) 0.101(0.083) 0.108(0.053) 0.353
UnknownPITMM59 59 0.0622(0.077) 0.092(0.0859) 0.0946(0.0555) 1.20
Acetic Acid (CH3COOH) 60 1.91(0.94) 1.33(1.27) 1.19(0.98) 7.47
Glycolaldehyde (C2H4O2) 60 0.199(0.172) 0.242(0.454) – –
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Table 2.Continued.

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

Methyl Formate (C2H4O2) 60 0.0732(0.107) 0.0219(0.0149) 0.0265(0.0175) 0.0493
1,1-Dimethylhydrazine (C2H8N2) 60 0.046(0.0807) 0.0329(0.0602) 0.0219(0.0273) –
UnknownPITMM61 61 0.0647(0.0864) 0.102(0.086) 0.093(0.0629) 0.722
UnknownPITMM62 62 0.0173(0.0109) 0.0363(0.0287) 0.034(0.0161) 0.368
UnknownPITMM63 63 2.62E-3(3.44E-3) 7.58E-3(6.62E-3) 6.74E-3(3.82E-3) 0.0542
Sulfur Dioxide (SO2) 64 0.681(0.146) 1.06(0.39) 1.06(0.41) 1.76
UnknownPITMM65 65 3.08E-3(4.32E-3) 3.74E-3(4.97E-3) 3.57E-3(4.32E-3) 0.0703
1,3-CyclopentadienePIT (C5H6) 66 0.0257(0.0147) 0.0293(0.0328) 0.0451(0.0329) 0.125
Pentenyne isomers (C5H6) 66 8.23E-3(4.96E-3) 3.03E-3(2.94E-3) 9.60E-3(7.82E-3) 0.0122
UnknownPITMM67 67 0.0318(0.0318) 0.0314(0.0293) 0.0485(0.0329) 0.327
Pyrrole (C4H5N) 67 0.0127(0.013) 0.0101(0.0123) 0.0144(0.0138) 0.0509
Furan (C4H4O) 68 0.302(0.142) 0.197(0.212) 0.16(0.066) 1.00
UnspecMM68 PTR 68 – 0.155(0.121) 0.207(0.115) 0.558
Isoprene (C5H8) 68 0.0465(0.0332) 0.066(0.0615) 0.097(0.0856) 0.0786
trans-1,3-Pentadiene (C5H8) 68 0.0264(0.0163) 0.0277(0.0229) 0.0338(0.0175) 0.0535
cis-1,3-Pentadiene (C5H8) 68 0.0221(0.0159) 0.0171(0.0142) 0.0236(0.0127) 0.0355
Cyclopentene (C5H8) 68 0.0406(0.0419) 0.0327(0.0298) 0.0386(0.0285) 0.0595
Carbon suboxide (C3O2) 68 1.20E-3(1.21E-3) 1.03E-3(1.04E-3) 7.32E-4(7.84E-4) 3.75E-3
Pentadiene isomer (C5H8) 68 6.17E-3(7.80E-3) 3.33E-3(3.23E-3) 6.14E-3(5.54E-3) 0.0115
UnknownPITMM69 69 0.0372(0.0436) 0.0413(0.0336) 0.0529(0.0294) 0.420
Cyclopentane (C5H10) 70 8.20E-4(9.93E-4) 2.39E-3(2.45E-3) 1.58E-3(1.10E-3) 0.0119
1-Pentene (C5H10) 70 0.0177(0.0199) 0.0265(0.0275) 0.0325(0.0285) 0.0832
2-Methyl-1-Butene (C5H10) 70 9.66E-3(1.25E-2) 1.16E-2(1.17E-2) 0.0124(0.0083) 0.0256
trans-2-Pentene (C5H10) 70 0.0132(0.0163) 0.0121(0.0121) 0.0165(0.0109) 0.0333
Methacrolein (C4H6O) 70 0.0426(0.0471) 0.0458(0.0381) 0.0803(0.0666) 0.102
Methyl Vinyl Ketone (MVK, C4H6O) 70 0.227(0.328) 0.221(0.172) 0.302(0.196) 0.421
Crotonaldehyde (C4H6O) 70 0.182(0.238) 0.209(0.167) 0.193(0.109) 0.494
3-Methyl-1-Butene (C5H10) 70 3.28E-3(3.87E-3) 4.44E-3(5.18E-3) 2.69E-3(2.59E-3) 0.0103
cis-2-Pentene (C5H10) 70 0.0315(0.0274) 0.0446(0.0412) 0.041(0.027) 0.0487
2-Methyl-2-Butene (C5H10) 70 0.0147(0.0081) 0.0306(0.0293) 0.0261(0.0167) 0.0269
2,5-Dihydrofuran (C4H6O) 70 0.0153(0.0259) 3.81E-3(9.82E-3) 1.27E-3(2.54E-3) –
UnknownPITMM71 71 0.0311(0.0307) 0.0458(0.0398) 0.0612(0.0329) 0.3853
Acrylic Acid NI PT CIMS (C3H4O2) 72 9.74E-3(3.10E-2) 0.0388(0.0276) 0.0443(0.0403) 0.153
UnspecMM72 PTR 72 3.04E-2(2.08E-2) 0.0874(0.0689) 0.101(0.067) 0.191
2,2-Dimethylpropane (C5H12) 72 1.24E-4(1.61E-4) 3.60E-4(7.47E-4) 1.89E-4(2.19E-4) 4.97E-3
i-Pentane (C5H12) 72 8.63E-3(1.31E-2) 2.73E-2(3.58E-2) 7.32E-3(5.40E-3) 0.136
n-Pentane (C5H12) 72 0.0172(0.0239) 0.0368(0.0408) 0.0225(0.018) 0.212
n-Butanal (C4H8O) 72 0.0226(0.0264) 0.0241(0.0216) 0.0313(0.0182) 0.114
Methyl Ethyl Ketone (MEK, C4H8O) 72 0.105(0.143) 0.121(0.112) 0.118(0.062) 0.422
2-Methylpropanal (C4H8O) 72 0.0439(0.0519) 0.043(0.048) 0.0256(0.0199) 0.0924
Tetrahydrofuran (C4H8O) 72 1.59E-3(1.31E-3) 4.98E-4(5.74E-4) 1.74E-3(1.02E-3) 6.37E-3
UnknownPITMM73 73 0.0412(0.0551) 0.0575(0.0515) 0.0791(0.0497) 0.645
UnknownPITMM74 74 0.228(0.17) 0.345(0.323) 0.547(0.408) 3.33
Ethyl Formate (C3H6O2) 74 0.0126(0.0072) 9.91E-3(1.03E-2) 7.87E-3(5.40E-3) 0.0239
1-Butanol (C4H10O) 74 0.208(0.268) 0.098(0.118) 0.0292(0.016) 1.18
Methyl Acetate (C3H6O2) 74 0.259(0.139) 0.17(0.135) 0.0996(0.058) 0.277
UnknownPITMM75 75 0.0177(0.0399) 0.0223(0.0243) 0.0405(0.0223) 0.470
Glycolic Acid NI PT CIMS (C2H4O3) 76 4.55E-3(6.68E-3) 0.038(0.039) 0.0184 0.0904
UnknownPITMM76 76 0.0158(0.0098) 0.0327(0.0299) 0.0337(0.016) 0.443
UnknownPITMM77 77 0.0312(0.0143) 0.0246(0.0182) 0.022(0.0094) 0.201
BenzenePTR (C6H6) 78 0.451(0.287) 0.184(0.17) 0.617(0.591) 0.586
Divinylacetylene (C6H6) 78 6.81E-3(5.51E-3) 2.61E-3(2.05E-3) 9.16E-3(6.40E-3) 0.0158
UnknownPITMM79 79 0.0409(0.0418) 0.032(0.0329) 0.0457(0.0296) 0.420
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Table 2.Continued.

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

UnknownPITMM80 80 0.361(0.206) 0.352(0.279) 0.765(0.47) 0.907
Methyl Cyclopentadiene (isomer 1, C6H8) 80 5.73E-3(5.25E-3) 9.00E-3(1.20E-2) 0.0146(0.0119) 0.0282
Methyl Cyclopentadiene (isomer 2, C6H8) 80 5.39E-3(5.59E-3) 9.11E-3(1.21E-2) 0.0141(0.0152) 0.0309
Hexenyne (C6H8) 80 6.19E-3(4.45E-3) 3.73E-3(4.74E-3) 0.011(0.0085) 0.0208
UnknownPITMM81 81 0.0467(0.0588) 0.0397(0.0341) 0.0641(0.0442) 0.455
1-Methylpyrrole (C5H7N) 81 0.0119(0.0194) 3.44E-3(4.51E-3) 3.70E-3(5.12E-3) 0.0147
UnknownPITMM82 82 0.203(0.171) 0.243(0.198) 0.356(0.23) 2.91
3-Methylfuran (C5H6O) 82 0.0129(0.0099) 0.0207(0.0173) 0.0291(0.014) 0.0725
cis-1,3-Hexadiene (C6H10) 82 1.89E-3(1.52E-3) 2.01E-3(2.01E-3) 1.67E-3(6.41E-4) 4.46E-3
trans-1,3-Hexadiene (C6H10) 82 3.73E-3(2.27E-3) 4.37E-3(3.83E-3) 5.92E-3(3.57E-3) 7.65E-3
1-Methylcyclopentene (C6H10) 82 0.0117(0.0069) 0.016(0.0154) 0.0185(0.0116) 0.0194
Cyclohexene (C6H10) 82 0.0116(0.0101) 0.0114(0.0095) 0.015(0.0103) 0.0153
Other C6H10 (isomer1) 82 1.50E-3(1.62E-3) 1.05E-3(1.07E-3) 1.91E-3(2.06E-3) 1.42E-3
Other C6H10 (isomer2) 82 1.71E-3(1.39E-3) 1.90E-3(1.77E-3) 3.60E-3(2.60E-3) 3.64E-3
Other C6H10 (isomer3) 82 0.0155(0.0131) 0.0107(0.0103) 0.0204(0.0125) 0.0162
2-Methylfuran (C5H6O) 82 0.159(0.1) 0.213(0.211) 0.199(0.1) 0.537
Other C6H10 (isomer4) 82 2.94E-3(3.03E-3) 4.35E-3(4.57E-3) 4.38E-3(3.47E-3) 8.01E-3
Other C6H10 (isomer5) 82 1.31E-3(1.52E-3) 2.04E-3(2.07E-3) 2.44E-3(1.76E-3) 3.85E-3
1-Methylpyrazole (C4H6N2) 82 5.09E-3(4.56E-3) 6.27E-3(5.94E-3) 6.56E-3(4.17E-3) 0.0276
Cyclopentenone (C5H6O) 82 0.0748(0.0994) 0.304(0.414) 0.172(0.13) 0.201
UnknownPITMM83 83 0.0552(0.0812) 0.0615(0.0534) 0.078(0.049) 0.934
1-Methylcyclopentane (C6H12) 84 4.54E-3(6.39E-3) 5.66E-3(6.84E-3) 2.64E-3(1.99E-3) 0.0151
PentenonePIT (C5H8O) 84 0.231(0.233) 0.335(0.29) 0.474(0.328) 3.78
2-Methyl-1-Pentene (C6H12) 84 0.0674(0.0643) 0.0603(0.0512) 0.084(0.063) 0.117
1-Hexene (C6H12) 84 0.0673(0.0561) 0.0622(0.0547) 0.0842(0.0637) 0.0114
Cyclohexene (C6H12) 84 1.74E-3(2.31E-3) 2.42E-3(2.20E-3) 9.75E-4(6.65E-4) 5.68E-3
Hexenes (sum of 3 isomers, C6H12) 84 0.0571(0.0312) 0.063(0.0696) 0.0935(0.0708) 9.60E-3
cis-2-Hexene (C6H12) 84 0.0147(0.0115) 0.0204(0.0259) 0.0271(0.0154) 5.46E-3
Cyclopentanone (C5H8O) 84 0.0834(0.0425) 0.138(0.147) 0.13(0.079) 0.199
2-Methyl-2-Butenal (C5H8O) 84 5.91E-3(5.11E-3) 8.15E-3(7.91E-3) 6.96E-3(4.24E-3) 0.0230
UnknownPITMM85 85 0.0466(0.0867) 0.0481(0.0439) 0.0695(0.0436) 0.768
UnknownPITMM86 86 0.249(0.166) 0.367(0.305) 0.513(0.318) 3.27
2,2-Dimethylbutane (C6H14) 86 4.41E-5(7.79E-5) 5.12E-5(1.21E-4) – 2.36E-3
n-Hexane (C6H14) 86 9.23E-3(1.26E-2) 2.11E-2(2.62E-2) 0.0143(0.0115) 0.110
2,3-Butadione (C4H6O2) 86 0.146(0.179) 0.19(0.166) 0.217(0.134) 0.694
3-Methylpentane (C6H14) 86 3.18E-3(5.30E-3) 4.91E-3(6.28E-3) 1.14E-3(7.84E-4) 0.0142
2-Methylbutanal (C5H10O) 86 0.0422(0.0464) 0.0445(0.0547) 0.025(0.0216) 0.0920
3-Methyl-2-Butanone (C5H10O) 86 0.0228(0.0239) 0.0284(0.027) 0.0196(0.0116) 0.0390
2-Pentanone (C5H10O) 86 0.0524(0.0597) 0.0378(0.0337) 0.0314(0.0185) 0.0966
3-Pentanone (C5H10O) 86 0.03(0.0249) 0.0293(0.0278) 0.0238(0.013) 0.0647
Vinyl Acetate (C4H6O2) 86 3.29E-4(9.88E-4) – 1.05E-3(2.10E-3) –
Methyl Acrylate (C4H6O2) 86 8.45E-3(4.82E-3) 7.74E-3(5.46E-3) 8.83E-3(5.98E-3) 0.0454
2,3-Dihydro-1,4-Dioxin (C4H6O2) 86 2.53E-3(4.32E-3) 2.32E-3(2.72E-3) 4.16E-3(3.98E-3) 0.0158
UnknownPITMM87 87 0.0286(0.0402) 0.0326(0.029) 0.0497(0.0258) 0.449
Pyruvic Acid NI PT CIMS (C3H4O3) 88 8.87E-3(1.12E-2) 0.0189(0.0218) 0.0128(0.0141) 0.269
UnknownPITMM88 88 0.0593(0.0476) 0.12(0.114) 0.141(0.093) 0.906
Methyl Propanoate (C4H8O2) 88 9.82E-3(1.24E-2) 4.77E-3(4.59E-3) 4.14E-3(2.25E-3) 2.42E-3
UnknownPITMM89 89 9.93E-3(1.19E-2) 1.67E-2(1.50E-2) 2.28E-2(1.08E-2) 0.286
UnknownPITMM90 90 0.0218(0.0225) 0.0311(0.0261) 0.0486(0.0269) 0.789
UnknownPITMM91 91 0.0256(0.0207) 0.0239(0.0184) 0.0256(0.0099) 0.215
ToluenePTR (C6H5CH3) 92 0.174(0.127) 0.141(0.121) 0.249(0.118) 0.488
Heptadiyne (isomer 1, C7H8) 92 2.03E-3(2.16E-3) 1.63E-3(1.80E-3) 3.91E-3(2.91E-3) 5.23E-3
Heptadiyne (isomer 2, C7H8) 92 2.41E-3(2.28E-3) 3.54E-4(5.33E-4) 4.96E-3(4.49E-3) 1.57E-3
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Table 2.Continued.

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

UnknownPITMM93 93 0.0477(0.0723) 0.0388(0.0357) 0.0543(0.0381) 0.684
Phenol (C6H5OH) 94 0.453(0.192) 0.335(0.377) – –
UnknownPITMM94 94 0.183(0.219) 0.168(0.152) 0.424(0.346) 2.08
Methyl Diazine (isomer 1, C5H6N2) 94 0.0105(0.0056) 0.0139(0.0131) 0.013(0.0067) 0.0435
Methyl Diazine (isomer 2, C5H6N2) 94 9.24E-3(1.20E-2) 6.23E-3(5.34E-3) 5.32E-3(9.95E-4) 8.96E-3
Methyl Diazine (isomer 3, C5H6N2) 94 2.21E-3(3.05E-3) 3.29E-3(5.85E-3) 4.90E-3(3.52E-3) –
UnknownPITMM95 95 0.0962(0.1441) 0.0776(0.0746) 0.111(0.08) 0.982
UnknownPITMM96 96 0.456(0.507) 0.613(0.593) 0.812(0.619) 8.72
2-Ethylfuran (C6H8O) 96 9.38E-3(7.36E-3) 1.36E-2(1.45E-2) 0.0156(0.0074) 0.0482
1-Methylcyclohexene (C7H12) 96 6.99E-3(4.81E-3) 9.87E-3(9.63E-3) 8.30E-3(5.50E-3) 0.0104
2,5-Dimethylfuran (C6H8O) 96 0.0208(0.0141) 0.0346(0.0364) 0.0358(0.0216) 0.0763
3-Furaldehyde (C5H4O2) 96 0.0118(0.0087) 0.0214(0.0217) 0.0142(0.0093) 0.0588
2-Furaldehyde (C5H4O2) 96 0.279(0.249) 0.521(0.562) 0.266(0.179) 0.647
Cyclopentenedione (C5H4O2) 96 6.84E-3(8.33E-3) 0.012(0.016) 9.50E-3(8.30E-3) 0.0189
UnknownPITMM97 97 0.0928(0.1799) 0.0822(0.0787) 0.12(0.09) 1.45
UnknownPITMM98 98 0.185(0.23) 0.292(0.26) 0.4(0.301) 3.32
1-Heptene (C7H14) 98 0.0524(0.049) 0.047(0.0434) 0.0566(0.0399) 0.0881
1-Methylcyclohexane (C7H14) 98 2.81E-3(3.45E-3) 4.42E-3(4.42E-3) 2.26E-3(1.56E-3) 8.57E-3
UnknownPITMM99 99 0.0338(0.055) 0.0471(0.0424) 0.0676(0.0493) 0.591
UnknownPITMM100 100 0.143(0.128) 0.285(0.267) 0.386(0.265) 2.12
n-Hexanal (C6H12O) 100 0.0163(0.0173) 0.0257(0.0278) 0.0166(0.0122) 0.159
n-Heptane (C7H16) 100 0.0211(0.0241) 0.027(0.0279) 0.0168(0.0138) 0.0481
Methyl Methacrylate (C5H8O2) 100 0.0326(0.0271) 0.0374(0.0329) 0.0272(0.0153) 0.0759
3-Hexanone (C6H12O) 100 0.033(0.0289) 0.0308(0.0267) 0.0352(0.0231) 0.0536
2-Hexanone (C6H12O) 100 0.0153(0.0172) 0.0134(0.0127) 0.0106(0.0077) 9.67E-3
UnknownPITMM101 101 0.0265(0.0344) 0.0398(0.0362) 0.0532(0.0352) 0.548
UnknownPITMM102 102 0.104(0.101) 0.174(0.163) 0.227(0.172) 1.73
Methyl Butanoate (C5H10O2) 102 2.68E-3(1.93E-3) 0.0157(0.0358) 2.94E-3(1.59E-3) 4.20E-3
Ethynyl Benzene (C8H6) 102 0.0526(0.0776) 6.55E-3(5.70E-3) 0.0163(0.0198) 0.0425
UnknownPITMM103 103 0.0807(0.0657) 0.0692(0.0421) 0.0865(0.0598) 0.989
Benzenenitrile (C7H5N) 103 0.0557(0.0392) 0.0596(0.0609) 0.0308(0.0221) 0.101
UnknownPITMM104 104 0.0711(0.0516) 0.0697(0.0581) 0.11(0.07) 0.720
Styrene (C8H8) 104 0.0881(0.1051) 0.0491(0.0386) 0.0783(0.0747) 0.117
UnknownPITMM105 105 0.03(0.0278) 0.0238(0.0217) 0.0402(0.0173) 0.262
Ethylbenzene (C8H10) 106 0.0401(0.0507) 0.0385(0.04) 0.0396(0.0294) 0.104
m,p-Xylenes (C8H10) 106 0.0692(0.0742) 0.0978(0.1049) 0.111(0.08) 0.178
o-Xylene (C8H10) 106 0.0308(0.0369) 0.0343(0.0372) 0.0308(0.0176) 0.101
Benzaldehyde (C7H6O) 106 0.243(0.398) 0.194(0.181) 0.155(0.093) 0.583
UnknownPITMM107 107 0.0428(0.0558) 0.0342(0.0285) 0.0539(0.0383) 0.626
UnknownPITMM108 108 0.226(0.297) 0.162(0.138) 0.348(0.279) 2.60
2-Ethylpyrazine (C6H8N2) 108 4.14E-3(3.23E-3) 6.95E-3(7.03E-3) 6.72E-3(3.82E-3) 0.0212
UnknownPITMM109 109 0.0569(0.1257) 0.0427(0.0383) 0.0765(0.0595) 0.724
ResorcinolNI PT CIMS (C6H6O2) 110 0.189(0.197) 1.37(1.24) 1.15(1.04) 2.69
UnknownPITMM110 110 0.172(0.29) 0.242(0.218) 0.472(0.41) 4.86
Octadiene (C8H14) 110 0.0231(0.0154) 0.0284(0.0252) 0.0308(0.0173) 0.0503
UnknownPITMM111 111 0.0392(0.0685) 0.0414(0.0413) 0.0898(0.0755) 0.867
UnknownPITMM112 112 0.138(0.179) 0.268(0.259) 0.397(0.32) 3.06
1-Octene (C8H16) 112 0.0522(0.0531) 0.0476(0.0476) 0.0388(0.0273) 0.0867
UnknownPITMM113 113 0.0348(0.0488) 0.0477(0.0468) 0.0744(0.0588) 0.677
UnknownPITMM114 114 0.116(0.159) 0.215(0.21) 0.299(0.231) 2.35
n-Octane (C8H18) 114 0.019(0.0205) 0.024(0.0237) 0.0125(0.0088) 0.0390
UnknownPITMM115 115 0.0307(0.0386) 0.0465(0.04) 0.0663(0.0508) 0.548
UnknownPITMM116 116 0.139(0.205) 0.175(0.158) 0.34(0.255) 2.13
Indene (C9H8) 116 0.0305(0.0292) 0.0204(0.0198) 0.0333(0.0369) 0.0506
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Table 2.Continued.

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

UnknownPITMM117 117 0.0407(0.0547) 0.0355(0.0299) 0.0592(0.0379) 0.486
BenzofuranPIT (C8H6O) 118 0.103(0.102) 0.0874(0.0736) 0.167(0.113) 0.908
Indane (C9H10) 118 8.70E-3(6.85E-3) 7.11E-3(6.13E-3) 6.39E-3(3.70E-3) 0.0102
1-Propenylbenzene (C9H10) 118 4.60E-3(4.95E-3) 2.38E-3(2.66E-3) 3.82E-3(2.66E-3) 1.16E-3
alpha-Methylstyrene (C9H10) 118 4.69E-3(2.89E-3) 3.39E-3(3.34E-3) 6.23E-3(4.82E-3) 3.89E-3
3-Methylstyrene (C9H10) 118 0.02(0.0128) 0.0169(0.0171) 0.022(0.016) 0.0342
2-Methylstyrene (C9H10) 118 0.0135(0.0093) 0.01(0.0101) 0.011(0.0071) 0.0194
2-Propenylbenzene (C9H10) 118 5.95E-3(4.77E-3) 5.99E-3(5.80E-3) 6.03E-3(3.61E-3) 8.69E-3
4-Methylstyrene (C9H10) 118 6.21E-3(4.64E-3) 8.49E-3(9.25E-3) 7.66E-3(3.90E-3) 0.0134
UnknownPITMM119 119 0.0315(0.036) 0.0238(0.0223) 0.0587(0.0386) 0.577
1-Ethyl-3-,4-Methylbenzene (C9H12) 120 0.0163(0.0183) 0.0228(0.0238) 0.0323(0.0264) 0.0433
1,2,4-Trimethylbenzene (C9H12) 120 0.0166(0.0209) 0.0242(0.0254) 0.0212(0.0134) 0.0555
1-Ethyl-2-Methylbenzene (C9H12) 120 0.0111(0.0094) 9.71E-3(1.04E-2) 9.50E-3(6.20E-3) 0.0122
1,2,3-Trimethylbenzene (C9H12) 120 0.0183(0.0138) 0.0314(0.0366) 0.0231(0.0196) 0.0291
Isopropylbenzene (C9H12) 120 6.08E-3(4.42E-3) 6.03E-3(6.05E-3) 8.08E-3(7.33E-3) 6.43E-3
n-Propylbenzene (C9H12) 120 9.60E-3(6.30E-3) 1.05E-2(9.64E-3) 8.60E-3(6.20E-3) 0.0124
1,3,5-Trimethylbenzene (C9H12) 120 0.0143(0.016) 0.0139(0.0147) 0.0104(0.0064) 0.0212
UnknownPITMM121 121 0.0343(0.0504) 0.0317(0.0273) 0.0676(0.0501) 0.525
UnknownPITMM122 122 0.114(0.145) 0.129(0.11) 0.332(0.272) 2.02
UnknownPITMM123 123 0.0442(0.0643) 0.0487(0.0479) 0.0954(0.0624) 1.13
UnknownPITMM124 124 0.139(0.227) 0.216(0.203) 0.465(0.406) 5.10
Nonadiene (C9H16) 124 2.06E-3(2.25E-3) 3.37E-3(3.45E-3) 4.80E-3(3.10E-3) –
UnknownPITMM125 125 0.0425(0.076) 0.0401(0.0391) 0.118(0.089) 2.93
UnknownPITMM126 126 0.116(0.195) 0.151(0.143) 0.28(0.223) 2.74
1-Nonene (C9H18) 126 0.0103(0.0083) 0.012(0.0135) 0.0117(0.0082) 0.0230
UnknownPITMM127 127 0.04(0.041) 0.0368(0.0336) 0.0806(0.0602) 0.725
NaphthalenePTR (C10H8) 128 0.173(0.097) 0.199(0.182) 0.286(0.19) 0.815
Nonane (C9H20) 128 0.013(0.0164) 0.0143(0.0159) 9.20E-3(7.70E-3) 0.0225
UnknownPITMM129 129 0.0564(0.0478) 0.0528(0.0481) 0.0998(0.0712) 0.834
UnknownPITMM130 130 0.0844(0.1141) 0.116(0.111) 0.225(0.175) 1.87
1-,3-Methyl Indene (C10H10) 130 1.43E-3(1.13E-3) 1.90E-4(4.92E-4) 2.49E-3(2.25E-3) 1.75E-3
1,2-Dihydronaphthalene (C10H10) 130 6.83E-3(4.60E-3) 6.87E-3(8.79E-3) 7.83E-3(4.84E-3) 6.44E-3
1,3-Dihydronaphthalene (C10H10) 130 7.39E-3(4.65E-3) 7.88E-3(9.53E-3) 0.01(0.0057) 7.24E-3
UnknownPITMM131 131 0.0374(0.0555) 0.0305(0.0276) 0.0587(0.0419) 0.387
UnknownPITMM132 132 0.126(0.168) 0.0988(0.085) 0.24(0.19) 1.33
1-Butenylbenzene (C10H14) 132 2.49E-3(2.57E-3) 2.69E-3(4.86E-3) 4.22E-3(2.15E-3) 1.92E-3
Methylbenzofuran (isomer 4, C9H8O) 132 8.72E-4(2.62E-3) – 2.66E-3(3.95E-3) –
Ethylstyrene (C10H12) 132 4.34E-3(3.49E-3) 3.95E-3(5.65E-3) 5.66E-3(3.55E-3) 2.10E-3
1-Methyl-1-Propenylbenzene (C10H12) 132 0.0321(0.0551) 0.0142(0.0172) 0.0131(0.0106) 5.23E-3
Methylbenzofuran (isomer 1, C9H8O) 132 0.0121(0.0076) 0.0135(0.0156) 0.0114(0.0041) 0.0235
Methylbenzofuran (isomer 2, C9H8O) 132 0.019(0.0118) 0.0229(0.0284) 0.0187(0.0064) 0.0380
Methylbenzofuran (isomer 3, C9H8O) 132 0.0324(0.026) 0.0323(0.0418) 0.0222(0.0073) 0.0517
UnknownPITMM133 133 0.0675(0.1622) 0.033(0.0303) 0.0659(0.0508) 0.357
p-Cymene (C10H14) 134 0.117(0.323) 0.056(0.075) 0.0509(0.0519) 0.059
C10H14 non-aromatic (e.g., hexahydronaphthalene) 134 2.39E-3(2.19E-3) 3.54E-3(5.04E-3) 4.84E-3(3.26E-3) –
Isobutylbenzene (C10H14) 134 5.06E-3(5.18E-3) 7.89E-3(9.35E-3) 7.31E-3(5.61E-3) 7.55E-3
Methyl-n-Propylbenzene (isomer 1, C10H14) 134 4.38E-3(3.50E-3) 8.70E-3(1.02E-2) 6.99E-3(4.40E-3) 2.45E-3
Methyl-n-Propylbenzene (isomer 2, C10H14) 134 3.69E-3(2.96E-3) 7.41E-3(8.61E-3) 5.39E-3(3.45E-3) 1.73E-3
n-Butylbenzene (C10H14) 134 6.61E-3(6.03E-3) 1.19E-2(1.34E-2) 9.90E-3(6.52E-3) 0.0131
1,4-Diethylbenzene (C10H14) 134 1.54E-3(2.03E-3) 2.72E-3(4.86E-3) 5.68E-3(3.50E-3) 1.76E-3
Ethyl Xylene (isomer 1, C10H14) 134 6.29E-3(6.11E-3) 8.76E-3(1.18E-2) 7.31E-3(4.06E-3) 2.68E-3
Ethyl Xylene (isomer 2, C10H14) 134 4.12E-3(4.10E-3) 4.77E-3(5.98E-3) 4.54E-3(2.71E-3) 1.88E-3
UnknownPITMM135 135 0.0432(0.0663) 0.0395(0.0378) 0.18(0.161) 0.526
MonoterpenesPTR (C10H16) 136 0.146(0.083) 0.253(0.238) 0.619(0.46) 0.695
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Table 2.Continued.

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

beta-Pinene (C10H16) 136 0.0133(0.0258) 0.0182(0.0238) 0.053(0.0574) 0.0915
D-Limonene (C10H16) 136 0.0249(0.0227) 0.0665(0.0884) 0.277(0.425) 0.0848
Myrcene (C10H16) 136 0.0102(0.0095) 5.51E-3(5.99E-3) 0.0437(0.0665) 0.0355
3-Carene (C10H16) 136 0.0189(0.0403) 0.0179(0.0242) 0.0513(0.0765) 0.0226
gamma-Terpinene (C10H16) 136 5.33E-3(2.52E-3) 4.81E-3(7.48E-3) 0.0109(0.0123) 3.93E-3
Terpinolene (C10H16) 136 6.80E-3(3.17E-3) 7.51E-3(1.06E-2) 0.0114(0.0158) 6.69E-3
alpha-Pinene (C10H16) 136 0.0163(0.0295) 0.0518(0.0884) 0.272(0.429) 0.0837
Camphene (C10H16) 136 9.46E-3(1.53E-2) 2.66E-2(5.49E-2) 0.039(0.0529) 0.0812
iso-Limonene (C10H16) 136 2.87E-4(8.60E-4) 5.76E-3(6.72E-3) 7.37E-3(7.69E-3) 1.80E-3
UnknownPITMM137 137 0.0316(0.0481) 0.0462(0.046) 0.172(0.15) 0.737
UnknownPITMM138 138 0.0789(0.1041) 0.16(0.156) 0.325(0.265) 3.55
UnknownPITMM139 139 0.0257(0.0357) 0.0277(0.0284) 0.0611(0.0499) 0.676
UnknownPITMM140 140 0.0572(0.0842) 0.0749(0.0678) 0.148(0.117) 1.22
1-Decene (C10H20) 140 0.0125(0.011) 0.0174(0.02) 0.0227(0.0142) 0.0218
UnknownPITMM141 141 0.0252(0.0298) 0.0305(0.0279) 0.0453(0.0301) 0.556
UnknownPITMM142 142 0.108(0.163) 0.115(0.098) 0.254(0.196) 2.25
n-Decane (C10H22) 142 0.0148(0.0207) 0.0131(0.0154) 8.68E-3(6.85E-3) 0.0265
UnknownPITMM143 143 0.0308(0.0553) 0.0374(0.0328) 0.0629(0.0509) 0.681
UnknownPITMM144 144 0.102(0.25) 0.195(0.209) 0.271(0.231) 3.88
UnknownPITMM145 145 0.0276(0.0513) 0.0294(0.0264) 0.0583(0.0446) 0.550
UnknownPITMM146 146 0.0764(0.1249) 0.0773(0.0673) 0.192(0.149) 1.26
UnknownPITMM147 147 0.024(0.0463) 0.0191(0.018) 0.0528(0.04) 0.378
C11 AromaticsPTR 148 0.0547(0.0331) 0.0844(0.0722) 0.105(0.07) 0.228
UnknownPITMM149 149 0.0227(0.0436) 0.0232(0.022) 0.0558(0.0389) 0.376
UnknownPITMM150 150 0.0565(0.0795) 0.0894(0.0873) 0.216(0.174) 1.59
UnknownPITMM151 151 0.0215(0.0322) 0.0237(0.0221) 0.0575(0.0406) 0.418
UnknownPITMM152 152 0.0792(0.079) 0.0976(0.0929) 0.274(0.207) 2.29
UnknownPITMM153 153 0.0356(0.0374) 0.0282(0.021) 0.0779(0.0511) 0.574
UnknownPITMM154 154 0.0675(0.0923) 0.0614(0.0496) 0.148(0.1) 1.13
1-Undecene (C11H22) 154 0.0136(0.0125) 0.0222(0.0301) 0.0203(0.0096) 0.0364
UnknownPITMM155 155 0.0206(0.0335) 0.0151(0.015) 0.0447(0.0285) 0.340
UnknownPITMM156 156 0.0638(0.1101) 0.0589(0.0478) 0.146(0.11) 1.20
n-Undecane (C11H24) 156 0.0189(0.02) 0.0287(0.0353) 0.014(0.0078) 0.0429
UnknownPITMM157 157 0.0183(0.0356) 0.0149(0.0154) 0.0333(0.0215) 0.257
UnknownPITMM158 158 0.0363(0.0641) 0.0428(0.0397) 0.09(0.063) 0.623
UnknownPITMM159 159 0.0139(0.0301) 0.0128(0.0156) 0.0242(0.0149) 0.225
UnknownPITMM160 160 0.0372(0.0788) 0.0392(0.0387) 0.0994(0.0766) 0.846
UnknownPITMM161 161 0.0131(0.0341) 9.18E-3(1.27E-2) 0.0365(0.0267) 0.326
UnknownPITMM162 162 0.0375(0.0819) 0.0466(0.0399) 0.112(0.088) 1.11
UnknownPITMM163 163 8.51E-3(2.69E-2) 0.0104(0.0115) 0.0312(0.0208) 0.253
UnknownPITMM164 164 0.0284(0.0485) 0.0423(0.0391) 0.114(0.08) 0.942
UnknownPITMM165 165 0.0112(0.0202) 9.60E-3(1.16E-2) 0.0299(0.019) 0.240
UnknownPITMM166 166 0.0271(0.0413) 0.0301(0.0301) 0.0917(0.0627) 0.700
UnknownPITMM167 167 0.016(0.0274) 0.0126(0.0096) 0.0354(0.0242) 0.362
UnknownPITMM168 168 0.0504(0.081) 0.0347(0.0286) 0.125(0.071) 0.747
UnknownPITMM169 169 0.0165(0.0313) 8.29E-3(9.87E-3) 0.0344(0.0198) 0.314
UnknownPITMM170 170 0.0333(0.0791) 0.0306(0.0268) 0.0819(0.0582) 0.624
UnknownPITMM171 171 0.015(0.0326) 7.82E-3(8.37E-3) 0.0204(0.0139) 0.155
UnknownPITMM172 172 0.0252(0.0495) 0.0358(0.0338) 0.0524(0.0428) 0.396
UnknownPITMM173 173 9.54E-3(2.28E-2) 5.22E-3(7.33E-3) 0.0124(0.0112) 0.157
UnknownPITMM174 174 0.0304(0.0711) 0.0296(0.0293) 0.0557(0.0465) 0.527
UnknownPITMM175 175 9.19E-3(3.06E-2) 7.90E-3(9.28E-3) 0.0157(0.0109) 0.176
UnknownPITMM176 176 0.0189(0.0526) 0.0194(0.0195) 0.0551(0.0437) 0.501
UnknownPITMM177 177 7.09E-3(2.04E-2) 4.78E-3(7.85E-3) 0.0209(0.0122) 0.131
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Table 2.Continued.

Semiarid Pine-forest Coniferous Organic
Shrublands Understory Canopy Soil

Species MM avg(stdev) avg(stdev) avg(stdev)

UnknownPITMM178 178 0.019(0.0466) 0.016(0.015) 0.0681(0.0444) 0.376
UnknownPITMM179 179 8.55E-3(3.60E-2) 4.52E-3(5.58E-3) 0.0315(0.0196) 0.104
UnknownPITMM180 180 0.0137(0.0379) 0.0111(0.0137) 0.0435(0.0236) 0.383
UnknownPITMM181 181 8.55E-3(2.37E-2) 6.13E-3(1.10E-2) 0.0227(0.011) 0.260
UnknownPITMM182 182 0.0243(0.0475) 0.0167(0.0178) 0.0648(0.0411) 0.531
UnknownPITMM183 183 8.70E-3(2.53E-2) 5.05E-3(4.86E-3) 0.015(0.0092) 0.114
UnknownPITMM184 184 0.0142(0.041) 0.0156(0.018) 0.0448(0.0303) 0.327
UnknownPITMM185 185 5.65E-3(2.07E-2) 3.67E-3(6.91E-3) 0.0099(0.0115) 0.120
UnknownPITMM186 186 0.0116(0.0383) 0.0119(0.0135) 0.0318(0.0233) 0.345
UnknownPITMM187 187 4.86E-3(1.92E-2) 2.46E-4(5.54E-3) 0.0119(0.0103) 0.120
UnknownPITMM188 188 0.0149(0.05) 0.0153(0.0142) 0.0302(0.0323) 0.356
UnknownPITMM189 189 4.85E-3(3.19E-2) 6.18E-3(8.40E-3) 7.71E-3(1.13E-2) 0.203
UnknownPITMM190 190 0.0131(0.053) 0.0154(0.0164) 0.0365(0.0337) 0.334
UnknownPITMM191 191 8.84E-3(3.35E-2) 4.56E-3(9.08E-3) 0.0132(0.0104) 0.120
UnknownPITMM192 192 9.50E-3(2.86E-2) 4.60E-3(8.33E-3) 0.0238(0.0156) 0.295
UnknownPITMM193 193 2.26E-3(1.99E-2) 7.74E-4(1.02E-2) 8.10E-3(8.90E-3) 0.135
UnknownPITMM194 194 6.19E-3(2.61E-2) 6.79E-3(1.21E-2) 0.0191(0.0119) 0.209
UnknownPITMM195 195 6.74E-3(1.88E-2) 4.81E-3(9.40E-3) 0.0138(0.009) 0.146
UnknownPITMM196 196 0.0121(0.0333) 9.34E-3(1.21E-2) 0.0334(0.0262) 0.324
UnknownPITMM197 197 4.49E-3(2.13E-2) 3.04E-3(6.63E-3) 9.20E-3(1.06E-2) 0.183
UnknownPITMM198 198 3.86E-3(2.05E-2) 7.38E-3(9.91E-3) 0.0234(0.0214) 0.262
UnknownPITMM199 199 2.08E-3(1.79E-2) – 0.0103(0.0051) 0.131
UnknownPITMM200 200 3.29E-3(1.84E-2) 7.78E-3(1.21E-2) 0.0216(0.0161) 0.160
UnknownPITMM201 201 4.80E-3(1.99E-2) 2.22E-3(8.58E-3) 4.60E-3(9.30E-3) 0.122
UnknownPITMM202 202 7.55E-3(3.19E-2) 0.014(0.0189) 0.0186(0.0122) 0.258
UnknownPITMM203 203 3.85E-3(3.19E-2) 4.53E-3(1.46E-2) 0.0128(0.0076) 0.138
SesquiterpenesPIT (C15H24) 204 0.0167(0.014) 0.0502(0.0758) 0.0448(0.0251) 0.0949
UnknownPITMM205 205 9.44E-3(3.70E-2) 0.0232(0.0386) 0.0197(0.0189) 0.344
UnknownPITMM206 206 5.45E-3(1.81E-2) 8.24E-3(1.26E-2) 0.0118(0.0132) 0.224
UnknownPITMM207 207 7.02E-3(1.68E-2) 1.52E-3(8.22E-3) 0.0154(0.0102) 0.121
UnknownPITMM208 208 8.02E-3(1.46E-2) 4.07E-3(1.05E-2) 0.0132(0.0163) 0.128
UnknownPITMM209 209 5.26E-3(1.94E-2) 1.89E-3(1.01E-2) 0.0117(0.0107) 0.0775
UnknownPITMM210 210 8.78E-3(1.99E-2) 3.88E-3(9.93E-3) 0.0174(0.0139) 0.210
UnknownPITMM211 211 8.55E-3(3.06E-2) 2.00E-3(1.12E-2) 0.0149(0.0143) 0.234
UnknownPITMM212 212 2.05E-3(1.05E-2) – 7.38E-3(1.08E-2) 0.0942
UnknownPITMM213 213 3.12E-4(3.52E-3) 7.75E-4(3.16E-3) 1.34E-3(3.82E-4) 3.45E-3
PM2.5 7.06(1.5) 13.6(7.5) 7.44(5.83) 20.6

estimate that∼ 38 % of the mass of total NMOC fall in the
intermediate to semi volatile range and that IVOC+SVOC
are roughly equal in abundance to initial PM2.5. If we as-
sume OA is 70 % of PM2.5 and a SOA yield of 40 % for
the IVOC and SVOC, then OA could increase by∼ 60 % on
short time scales just from the co-emitted IVOC and SVOC
alone. This is not unreasonable and a little below the high-
est level of SOA formation observed to date in real biomass
burning plumes (e.g. factor of two in Yokelson et al., 2009).
It’s not likely that maximum SOA would occur in all plumes
(e.g. a small initial decrease in OA was observed by Akagi
et al., 2012a) dependent on factors such as dilution rate, tem-
perature, humidity, oxidant levels, etc. Investigating the com-

plex factors governing plume evolution is the province of
plume evolution measurements and models. Here we simply
provide a realistic estimate of the amount of precursors that
includes rarely measured species or those that are presently
unidentified. We also note that higher precursor/OA ratios are
suggested by Table 3 for the coniferous canopy and organic
soil fuels which are thought to be relatively more important
in wildfires.

Secondary inorganic aerosol (SIA) could be formed pri-
marily from nitrogen containing gases (NH3 to ammonium
and NOx to nitrate) and SO2 (to sulfate). The emissions of
these precursor gases are heavily dependent on fuel chem-
istry with foliage and crop residue having elevated levels. In
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Table 3.Calculation of some lumped categories in g kg−1 and indicated mass ratios or percentages (see text for category definitions).

Quantity or Ratio Semiarid Pine Average Coniferous Organic
Shrublands Understory Pine&Shrub Canopy Soil

PM2.5 7.06 13.55 10.31 7.44 20.60
“NOx as NO” 2.18 2.55 2.37 2.40 0.67
6NMOC 25.24 27.64 26.44 34.45 178.89
6(IVOC+SVOC) 8.71 11.26 9.99 17.10 114.78
6Unidentified NMOC 7.81 8.62 8.21 16.20 129.29
6NMOC/PM2.5 3.58 2.04 2.81 4.63 8.68
6(IVOC+SVOC)/PM2.5 1.23 0.83 1.03 2.30 5.57
6(IVOC+SVOC)/6NMOC 0.35 0.41 0.38 0.50 0.64
6NMOC/“NOx as NO” 11.58 10.84 11.21 14.35 267.00
Percent NMOC Unidentified 31 31 31 47 72

this study the emission factors of the NH3, NOx, and SO2
sum to about 4 g kg−1 compared to a generic EFPM2.5 of
∼ 10 g kg−1, suggesting that SIA should not be neglected in
smoke plume models. Substantial SIA has been measured in
the field in biomass burning plumes (Yokelson et al., 2009;
Alvarado et al., 2010; Akagi et al., 2012a).

The initial NMOC/NOx mass ratio is∼ 11 for the two
main fuel types investigated in both the lab and field with
much higher values (∼ 267) observed in the lab for smolder-
ing organic soil. Since NOx is rapidly converted to PAN and
particle nitrate downwind (Yokelson et al., 2009; Alvarado et
al., 2010; Akagi et al., 2012a) it is likely that O3 formation
would be NOx-limited over most of the lifetime of smoke
plumes in the absence of mixing with additional NOx sources
(Akagi et al., 2012b). Low NOx levels also favor SOA forma-
tion when biomass burning smoke is photochemically aged
in chamber experiments (e.g. Grieshop et al., 2009).

The prospects for fully mechanistic modeling of smoke
plumes and the adequacy of using only known, measured
species can be assessed from Table 3 as well. For the two
main fuel types∼ 31 % of the NMOC mass is unidentified
and∼ 72 % of the mass of NMOC is unidentified for the one
lab fire in smoldering Alaskan organic soil. In addition, the
majority of unidentified NMOC are in our “IVOC+SVOC”
category suggesting the need to model SOA with semi-
empirical approaches for some time to come (Robinson et
al., 2007).

Two important examples of how this data set could im-
prove modeling of global biomass burning are described
next. (1) Peat combustion is a major global type of biomass
combustion especially in El-Niño years (Page et al., 2002;
Akagi et al., 2011). In that light, we note that our labora-
tory smoldering organic soil fire had the largest PM2.5 emis-
sions (20.6 g kg−1), the largest EFNMOC (179 g kg−1), the
largest ratio of NMOC to PM2.5 (∼ 8.7), and the largest
fraction of NMOC in our “IVOC+ SVOC” category (0.64).
This fuel type may have very high potential for SOA, but
it is also the least well characterized. Tables 2 and 3 pro-
vide important new emissions data for smoldering organic

soils, but also highlight the need for further study of this
source. (2) Akagi et al. (2011) estimated global NMOC emis-
sions from biomass burning using only previously available
information. Their estimate of total EFNMOC (including un-
measured species) for temperate forests of 23.7 g kg−1 (their
Table S4) is close to the total EFNMOC measured in this
work for the pine-forest understory fires (∼ 27.6 g kg−1). Ak-
agi et al. (2011) derived an estimate of total EFNMOC of
97.3 g kg−1 for peatland fires, which is actually well below
the value of 179 g kg−1 measured for smoldering organic
soils in this work. The global NMOC estimate of Akagi et
al. (2011) was 4–7 times larger than some previous estimates
of organic trace gas emissions from fires that ignored oxy-
genated organic compounds and unidentified species, but it is
strongly supported by this work suggesting that global model
runs with much larger NMOC emissions per unit mass of
biomass burned are needed.

3.5 Gas-phase hazardous air pollutants present in
initial prescribed fire smoke

The health effects of smoke constituents are an important as-
pect of understanding the impact of prescribed burning. A
number of compounds that were measured in this study ap-
pear on the USEPA list of hazardous air pollutants (HAPS)
(U.S. EPA, 2005) and many are also on the USFDA list
of harmful and potentially harmful constituents of tobacco
smoke (HPHC) (U.S. FDA, 2012). The list of compounds
identified in this study common to each list is given in Ta-
ble 4. Isocyanic acid (HNCO) is not on either list, but has
been connected to smoke-related health effects through de-
tailed biochemical studies (Wang et al., 2007). A previous
publication has noted this connection and pointed out the
need for additional research on this compound (Roberts et
al., 2011). The exposure to toxic compounds in the initial
smoke produced by prescribed fires could be estimated us-
ing the EFs in Table 2 of this work. Alternatively, Sharkey
et al. (1997) coupled a few literature measurements of emis-
sion ratios to CO for air toxics in smoke with measurements
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of wildland firefighter exposure to CO to estimate firefighter
exposure to those air toxics and then compared that with per-
missible exposure limits as set by NIOSH or OSHA. Fol-
lowing that approach a more comprehensive assessment of
firefighter exposure is now available based on the data we
present in Table 2 coupled with measurements of CO on the
perimeter of South Carolina prescribed fires (Akagi et al.,
2013). We note however, that comparisons to exposure limits
for individual species ignore possible synergistic effects of
multiple pollutants acting in concert (Menser and Heggestad,
1966). Further, additional air toxics could be present among
the unidentified species and the mix of air toxics evolves
rapidly as smoke ages since e.g. 1,3-butadiene has a lifetime
of several hours while substantial PAN and O3 can form in
smoke plumes on similar time scales (Akagi et al., 2012a;
Gregg et al., 2003). A reasonable assessment of smoke health
effects would also necessarily include consideration of the
health effects of the particles (Pope and Dockery, 2006).
Since smoke could affect health via numerous, poorly un-
derstood, coupled mechanisms, empirical studies that relate
exposure to health outcomes are also valuable for assessing
risk (Rappold et al., 2011). In summary, a complete assess-
ment of smoke health effects is clearly beyond the scope of
this paper, but the data in Table 2 contributes to such an ef-
fort.

3.6 Particle elemental carbon emission factors and
metal profiles

Extrapolation of laboratory PM measurements to field fires
in the natural environment should consider MCE, fuel chem-
istry, and potential differences in the condensation rates of
SVOC (and possibly inorganics) due to the different dilu-
tion/cooling environments experienced by emissions in the
lab and in a natural setting. In our laboratory burns the aver-
age EC/TC (TC= EC + OC) ratio measured for the semi-
arid shrubland fuels was much larger than that measured for
the pine-forest understory fuels, 0.44± 0.15 vs. 0.13± 0.11,
and initially seems quite high compared to field studies. For
example, the review of Reid et al. (2005) reports EC/TC of
0.04–0.30 for fires in grass/savanna and temperate forest fu-
els. However, our EC/TC result for these fuels is in agree-
ment with the laboratory study of McMeeking et al. (2009)
who measured an EC/TC of 0.53 for chaparral and desert fu-
els. In our lab burns (Hosseini et al., 2012) and in McMeek-
ing et al. (2009), EF for OC and total PM2.5 were found to
be inversely dependent on MCE, while particulate-phase EF
for EC, metals, and other elements showed little correlation.
These findings suggest the discord with field observations
could stem in part from higher MCE in the lab experiments.
Akagi et al. (2012a) made field measurements of aerosol OC
and EC or black carbon (BC) from one of the same semi-
arid shrubland fuel types we sampled in the lab as part of
the series of studies synthesized in this paper. Their study
measured a fire-average refractory BC (rBC) to TC (where

Table 4.The list of compounds identified in this study that are also
considered either hazardous air pollutants (EPA) or harmful and po-
tentially harmful constituents in tobacco smoke (FDA).

Compound Molecular EPA FDA
Wt. HAP HPHC

Ammonia 17 No Yes
Hydrogen Cyanide 27 Yes Yes
Formaldehyde 30 Yes Yes
Methanol 32 Yes No
Hydrochloric Acid 36.5 Yes No
Acetonitrile 41 Yes No
Acetaldehyde 44 Yes Yes
Acrylonitrile 53 Yes Yes
1,3-Butadiene 54 Yes Yes
Acrolein 56 Yes Yes
Propionaldehyde 58 Yes Yes
Acetone 58 No Yes
1,1-Dimethylhydrazine 60 Yes No
Furan 68 No Yes
Crotonaldehyde 70 No Yes
Acrylic Acid 72 Yes No
Methyl Ethyl Ketone 72 No Yes
Benzene 78 Yes Yes
Vinyl Acetate 86 Yes Yes
Hexane 86 Yes No
Toluene 92 Yes Yes
Phenol 94 Yes Yes
Methyl Methacrylate 100 Yes No
Styrene 104 Yes Yes
Xylenes 106 Yes No
Ethylbenzene 106 Yes Yes
Catechol 110 Yes Yes
Naphthalene 128 Yes Yes

TC is taken as rBC+ OC) ratio of 0.26 (at MCE= 0.933)
for a prescribed fire in central California chaparral. The two
studies quantify the main types of carbonaceous aerosol dif-
ferently, but it is worth noting that extrapolation of our labo-
ratory EFOC to an MCE of 0.933 (using the lab EFOC versus
MCE relationship reported in Hosseini et al., 2012) predicts
EFOC= 4.31 g kg−1, which when combined with our mean
lab chaparral shrubland EFEC of 1.02 g kg−1 (Table S2) pro-
vides EC/TC= 0.19, similar to the rBC/TC reported by Ak-
agi et al. (2012a).

Emissions of K, Cl, and Na varied greatly across sites.
Chaparral fuels from Vandenberg Air Force Base (VAFB)
and Fort Hunter-Liggett (FHL) had the largest EFK, EFCl,
and EFNa and the southeast fuels had the smallest, while
EFCl and EFK for the oak savanna fuels at Fort Huachuca
fell in the middle (Table S2). Particulate emissions of in-
organic constituents are expected to depend heavily on fuel
chemistry (Kabata-Pendias, 2010), and we found that differ-
ences in K, Cl, and Na emissions can be explained largely
by the chemical composition of the fuels (see Hosseini et al.,
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2012). Both the location of origin and the vegetation commu-
nity comprising the fuel beds influenced the chemical com-
position of fuels and the emissions. Despite being in the same
region, EF for K, Cl, Na, and Br were significantly higher at
VAFB compared to FHL. Given that VAFB is on the coast,
while FHL is ∼ 10 km inland, this difference may reflect a
strong gradient in sea-salt deposition. These findings suggest
that PM source apportionment studies that use these elements
as source category tracers (e.g. K for biomass burning and K
and Cl for sea-salt) may face additional difficulties in quanti-
fying the contribution of fires to PM pollution in California.

We believe the lab measured EF for EC, metals, and other
elements are relevant to prescribed burning at the respec-
tive Department of Defense sites. However, the EFOC and
EFPM2.5 are likely low due mostly to the relatively high
MCE of the lab burns (especially for the semiarid shrubland
fuels). Therefore, the mass fractions of the emissions com-
posed of EC or metals implied by the lab EF are almost cer-
tainly higher than would occur on field fires.

3.7 Field measurements of fuel consumption on
prescribed fires

Table 5 presents all the available fuel consumption measure-
ments from the prescribed fires in the pine-forest understory
during the two North Carolina 2010 field campaigns (at or
near Camp Lejeune), the 2009 chaparral fires at Vandenberg
Air Force Base, the 2010 oak savanna fire at Fort Huachuca,
and the 2011 pine-understory fires at Fort Jackson, SC. (The
emissions data for the Fort Jackson fires is presented sepa-
rately by Akagi et al., 2012b.) Due to last-minute site access,
the pre-fire fuel loading measurements at Fort Jackson were
incomplete. In addition, at Fort Jackson, the pre- and post-
fire transects for dead and down woody fuels were not sta-
tistically different. The 2010–2011 pine-understory data is
supplemented with the fuel consumption measured on two
prescribed fires in 1997 at Camp Lejeune, NC where the
fuel loads were impacted by hurricane blowdown (Yokelson
et al., 1999). In principle, the 2010 and 2011 data can be
compared to each other and the 1997 data. However, there
are differences in vegetation and the fuel consumption mea-
sured on the 2010 burns was during an unusually wet spring,
while the measured fuel consumption in the fall 2011 burns
was after several months of drought. In the simplest analy-
sis, a generic fuel consumption of∼ 7.0± 2.3 (1σ) Mg ha−1

can be retrieved from this data for modeling pine under-
story prescribed fires. In similar fashion, a generic fuel con-
sumption of∼ 7.7± 3.7 (1σ) Mg ha−1 can be retrieved from
this data for modeling semiarid shrubland prescribed fires.
Both of these prescribed fire fuel consumption estimates can
be compared to reports of much higher fuel consumption
on wildfires (e.g.∼ 38 Mg ha−1, Campbell et al., 2007; 20–
70 Mg ha−1 (Cofer et al., 1988); 50–100 Mg ha−1 via RSC
alone in Turetsky et al., 2011).

3.8 Relevance of laboratory fires and context for this
work

It is worthwhile to briefly examine the level of agreement we
observed between the lab and field fires in a broader con-
text and to consider the possible impact of the major differ-
ences between lab and field fires. To put our comparison re-
sults in context, we note that the high level of agreement for
smoldering compounds emitted by pine-understory fires ap-
plies specifically to this work; in which pine understory fuels
were sampled in January 2009, burned in lab fires in February
2009, and then compared to field fires sampled in February–
March of 2010. In the 2011 field work, carried out under
different environmental conditions during the fall prescribed
fire season in the southeastern US, significantly higher EF
were observed for all NMOC in pine understory fuels (Akagi
et al., 2012b). Thus, while we apparently simulated the emis-
sions from the southeastern US spring prescribed fire sea-
son reasonably well, the total variability in emissions over
the course of a full year is a separate issue discussed else-
where (Akagi et al., 2012b). In addition, the poor agreement
observed for smoldering compounds in semiarid shrubland
fuels is for a scenario where the fuels were sampled in Jan-
uary 2009, burned in the lab in February 2009, and compared
to field fires sampled in November of 2009. A possible fac-
tor in this comparison could be the atmospheric river that
impacted our field study sites in California on 13-14 Octo-
ber of 2009 (http://www.usgs.gov/newsroom/article.asp?ID=
2327). Up to 53 cm per day of rain impacted the region.
The abnormal moisture made it difficult for land managers
to ignite fires and probably contributed to fuel consumption
that was lower than average for prescribed fires in chaparral
ecosystems. In Table 5 the average fuel consumption for our
November 2009 chaparral fires of 7.7± 3.7 Mg ha−1 is lower
than the average fuel consumption measurements we find
for chaparral prescribed fires in the literature: 24.5 Mg ha−1

(Hardy et al., 1996), 15 Mg ha−1 (Ottmar et al., 2000). How-
ever, we do not know if the weather and low fuel consump-
tion impacted the emissions since the EF we measured in
California in November 2009 actually agreed well with the
EF measured on other chaparral fires that had higher fuel
consumption (Burling et al., 2011). Thus, the field fires have
higher relevance, but the variability in field EF is not well-
known and the impact of environmental changes on emis-
sions is complex and not well understood.

An obvious difference between field and laboratory fires
is the ubiquitous presence of wind in the field to assist fire
propagation. Spread rates measured in the field are typically
0.2–1.6 m s−1 for grass fires (Shea et al., 1996; Stocks et
al., 1996), 0.06–0.23 m s−1 for chamise and mixed chaparral
fires (Chandler, 1963), and 0.01–0.05 m s−1 for prescribed
understory fires (Yokelson et al., 1999). On a one meter fuel
bed in the lab, spread rates this high would lead to fires that
last only∼ 0.6–100 s. Further, unpublished early work car-
ried out by one author (RJY) found that generating faster
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Table 5.Prescribed fire fuel consumption measurements from 1997, 2010, and 2011 for southeastern (SE) US and 2009–2010 for southwest-
ern (SW) US.

Fuel Fuel Pre-fire Total Fuel Fuel
Year Date Location Type Moisture Total Fuel Consumed Consumption

dd-mon % (dry weight) Mg ha−1 Mg ha−1 %

1997a 14-Apr Camp Lejeune pine-understory nm 9.0 5.6 62
1997a 26-Apr Camp Lejeune pine-understory nm 11.0 nm nm
2010b 11-Feb Camp Lejeune pine-understory nm 8.47 .893 11
2010b 1-Mar Camp Lejeune pine-understory nm 16.8 10.2 61
2011c 30-Oct Fort Jackson pine-understory nm nm 8.6 nm
2011c 1-Nov Fort Jackson pine-understory nm 8.5 5.7 67
2011c 2-Nov Fort Jackson pine-understory nm 11.9 4.7 40

SE US Field Average: nm 11.4(3.3) 6.95(2.32) 48(23)
2009d Feb-Mar Lab SE US Lab Average: 17.6(14.6) 20.9(15.4) 14.9(10.1) 76(17)

2009b 11-Nov Vandenberg coastal sage scrub 67 12.6 7.9 63
2009b 11-Nov Vandenberg maritime chaparral 67 15.6 11.3 72
2010b 29-Mar Fort Huachuca oak savanna 58(12) 8.8 3.8 43

SW US Field Average: 64(5) 12.6(3.5) 7.67(3.67) 59(15)
2009d Feb-Mar Lab SW US Lab Average: 14(9.1) 27.5(6.55) 23.0(9.86) 82(26)

a Additional site and emissions data in Yokelson et al., (1999).bThis work, Camp Lejeune (loblolly pine) and SW as shown with additional details in Burling et al.,
(2011).cThis work, Fort Jackson (longleaf pine) with emissions data in Akagi et al. (2012b).dThis work, lab data with additional details in Burling et al. (2010).

spread rates with a fan causes much of the smoke to miss
the collecting stack and can lead to a more patchy burn with
lower MCE, potentially impacting emissions measurements.
In the lab fires reported here we initially oriented the fuels in
a natural vertical position at loadings consistent with litera-
ture values, but only the pine understory fuels burned well in
this arrangement. To get greater than approximately ten per-
cent fuel consumption for the semiarid shrubland fuels in the
lab (in the absence of wind) it was necessary to stack them
horizontally. The fuel moisture was also different between
the lab and field. Live fuel moistures were 40–70 % for semi-
arid shrubland fuels in the field and the lab fuels burned at
18± 15 % and 14± 9.1 % for the pine understory and semi-
arid shrubland fuels, respectively. The overall fuel consump-
tion in the lab (field) was 15± 10 (7.0± 2.3) Mg ha−1 and
23± 10 (7.7± 3.7) Mg ha−1 for pine-understory and semi-
arid shrubland, respectively. Thus, our pine-understory lab
fires had a total fuel consumption that was closer to what
we observed in the field, but the fuel consumption on our
lab semiarid shrubland fires was still close to the literature
average for field fires. Another difference between field and
lab fires is that the emissions measured on the sampling plat-
form in the lab were sometimes briefly at temperatures as
high as 330 K, whereas the coolest plume samples in the
field were as low as 280 K. Huffman et al. (2009) found that
about 20–25 % of biomass burning organic aerosol could be
volatilized by a sustained 50◦C increase in a thermodenuder.
However, aerosol, as noted above, is predominantly a smol-
dering species and most of the aerosol in the lab fires was
measured when the smoke plume was near room tempera-

ture. Thus it is unlikely that temperature differences caused
significant lab/field differences. After a detailed considera-
tion of the relevant data we conclude that the fuel moisture
differences between the lab and field may contribute the most
to observed differences, but that the lab data, after normaliza-
tion for the semiarid shrubland fuels, provide a useful repre-
sentation of the somewhat variable emissions from field fires.

4 Conclusions

We present a detailed retrospective analysis of a series of
studies that included measurements of biomass burning trace
gas emissions with the most comprehensive selection of in-
strumentation to date as well as measurements of fine par-
ticle emissions, selected particle species (including elemen-
tal carbon), and biomass fuel consumption per unit area on
prescribed fires. We have confirmed that studying labora-
tory biomass fires can significantly increase our understand-
ing of wildland fires, especially when laboratory and field
results are carefully combined and compared. The analysis
presented here provides a set of emission factors (Table 2) for
modeling prescribed fire smoke photochemistry and air qual-
ity impacts that is greatly expanded beyond what was previ-
ously available. The new set of emission factors includes data
for hazardous air pollutants (Table 4) and numerous precur-
sors for the formation of ozone and secondary aerosol. New
measurements of the mass of fuel consumed per unit area are
presented in Table 5 that should be useful for model predic-
tions of the amount of smoke produced by prescribed burns.
Profiles of the elemental composition of prescribed fire par-
ticulate matter are presented in Table S2 that can be used to
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estimate prescribed fire contribution to ambient PM2.5 (Reff
et al., 2009). The results of this series of studies can be
applied most confidently to understanding springtime pine-
understory prescribed fires in the southeastern US and to a
lesser extent to prescribed fires in semiarid shrublands of the
southwestern US. Representing prescribed fire emissions in
models with similar confidence for other seasons (Akagi et
al., 2012b), other areas (e.g. Alves et al., 2010), or for wild-
fires will require more work as will understanding the factors
driving variability in emissions.

Several important conclusions about biomass burning in
general resulted primarily from the full mass scans per-
formed on the lab fire emissions. For instance, the organic
carbon initially contained in the gas phase is typically about
four times greater than the organic carbon contained in the
particle phase. Much of this gas-phase organic carbon has po-
tential to partition to the particles through various secondary
organic aerosol formation processes (Robinson et al., 2007).
In fact, a few studies have documented the OA evolution in
isolated, wildland biomass burning plumes. A small loss of
OA was observed in one study (cool-dry plume – Akagi et
al., 2012a) while an increase in OA by more than a factor of
two was observed in another (warm-wet plume – Yokelson
et al., 2009). Less direct field measurements and lab stud-
ies also show variable outcomes as discussed elsewhere (de
Gouw and Jimenez, 2009; Hennigan et al., 2011; Akagi et
al., 2012a) and more work is needed to understand “typical”
SOA yields for biomass burning and the forces controlling
the variability. Meanwhile this study provides an estimate
of the amount of gas-phase organic precursors that includes
a more quantitative assessment of the large contribution of
unidentified organic trace gases than was previously avail-
able. In addition, including the unidentified species in a cal-
culation of the NOx/NMOC ratio; and recognizing the rapid,
post-emission conversion of NOx to PAN and other species
(also documented in these studies) suggests that O3 forma-
tion in biomass fire plumes will usually be NOx-limited. Sim-
ilarly, OA evolution would normally occur under low-NOx
conditions.

The studies were primarily focused on quantitative mea-
surement of the NMOC emissions, yet they confirm that
up to ∼ 72 % of the NMOCs emitted by some fuel types
are unidentified using current technology. The unidentified
species are likely to be at least as reactive as the identi-
fied species and some provision for their presence should
improve photochemical models. However, given the lack of
quantitative knowledge of the properties of the unidentified
species they can only be recognized in models in qualita-
tive fashion. Thus we have a potentially unsettling clash be-
tween a quantitative and qualitative theme, which will per-
sist until instrumental advances eliminate this issue. Mean-
while this work advances our knowledge of identified species
so they can be treated more rigorously and it quantifies the
relative abundance of unidentified species so they can be
represented in models at realistic levels. Some smoke pho-

tochemistry models have already incorporated unidentified
species in a fashion that is roughly consistent with our mea-
surements of their relative abundance including Trentmann et
al. (2005) and Alvarado and Prinn (2009). Both those studies
noted improved model simulations of formation of ozone or
organic aerosol when provision for the unidentified species
was added. Ongoing efforts to better characterize the chem-
istry and oxidation products of the species that were identi-
fied in this work (Gilman et al., 2013) should improve mod-
els and also allow us to make a more-informed estimate of
the properties of the remaining unidentified species. Identi-
fying a greater fraction of the NMOC and better estimates
of the properties of those species that remain unidentified
can be addressed via new analytical techniques as they be-
come available. For example, high resolution mass spectrom-
etry could advance the elemental analysis of the organic trace
gases and examine the effects of oxidation, temperature, and
humidity on full mass scans.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/13/
89/2013/acp-13-89-2013-supplement.zip.
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