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SOIL MICROBIAL DYNAMICS AND BIOGEOCHEMISTRY IN TROPICAL

FORESTS AND PASTURES, SOUTHWESTERN COSTA RICA

CORY C. CLEVELAND,1,2,3 ALAN R. TOWNSEND,1,2 STEVEN K. SCHMIDT,2 AND BRIANA C. CONSTANCE1

1Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Campus Box 450, Boulder,
Colorado 80309 USA

2Department of Environmental, Population and Organismic Biology, Campus Box 334, University of Colorado, Boulder,
Colorado 80309 USA

Abstract. Tropical rain forest ecosystems are currently undergoing unprecedented rates
of land conversion and land use change. Recent research suggests these activities profoundly
influence nutrient cycling, but the principal mechanisms driving variation in nutrient status
following land conversion are still not well understood. In this study, we used soils of
varying fertility (oxisols and mollisols) in Costa Rica to investigate how conversion of
tropical rain forest to cattle pasture affects the size and function of the microbial community,
and to explore possible relationships between microbial dynamics and biogeochemistry.

Our pasture sites are relatively lightly managed, and total pools of carbon (C), nitrogen
(N), and phosphorus (P) were not significantly different from their forest counterparts.
However, pools of available elements were different; most notably, plant available forms
of P were significantly lower in the oxisol pasture than in the oxisol forest site. In addition,
we found that land conversion led to fundamental changes in the size and activity of the
soil microbial community. Microbial biomass was consistently higher in forests than in
pastures, particularly in the oxisol sites, where it was more than twice the pasture value.
Forest sites were also characterized by a microbial community that was more active, re-
sponded more rapidly to carbon substrate additions, and showed strong seasonal variation.
Our results provide evidence that changes in biogeochemical cycling following land con-
version observed here and elsewhere may be directly related to changes in microbial com-
munity structure and function.

Key words: carbon; land use change; mollisols; nitrogen; nutrient limitation; Osa Peninsula,
Costa Rica; oxisols; phosphorus; soil microorganisms; tropical rain forest.

INTRODUCTION

On a global basis, deforestation and subsequent land

use in tropical ecosystems removes roughly 2% of the

remaining forest cover per year (Williams and Chartres

1991, Houghton 1994, Nepstad et al. 1999). The ma-

jority of cleared tropical forests are converted to cattle

pasture (Fearnside 1996), a change that can have pro-

found effects on biogeochemical and biophysical pro-

cesses. For example, forest-to-pasture conversion can

lead to (1) declines in total soil organic matter (SOM)

and plant productivity, (2) increased emissions of ra-

diative and chemically active trace gases, (3) substan-

tial changes in the hydrologic cycle, and (4) elevated

losses of important limiting elements through leaching

(Uhl and Jordan 1984, Buschbacher et al. 1988, Cerri

et al. 1991, Nepstad et al. 1991, Matson et al. 1997,

Neill et al. 1997, Townsend et al. 2002).

The environmental consequences of land conversion

in tropical ecosystems are potentially quite serious at

multiple scales, and thus have been the focus of nu-

merous recent studies. A growing body of evidence

now suggests that land conversion can lead to funda-

Manuscript received 29 April 2002; revised 22 July 2002;
accepted 22 July 2002. Corresponding Editor: D. S. Schimel.

3 E-mail: cory.cleveland@colorado.edu

mental changes in carbon (C) and nutrient cycling, but

that the nature and extent of such changes vary widely

across gradients in climate, soil type, and management

strategies (Sanchez et al. 1983, Werner et al. 1984,

Buschbacher et al. 1988, Spaans et al. 1989, de Moraes

et al. 1996, Groffman et al. 2001). For example, strong

declines in soil carbon pools and in nitrogen avail-

ability have been reported for a variety of pasture

chronosequences (Buschbacher et al. 1988, Tiessen et

al. 1992, Veldkamp et al. 1994, Davidson et al. 1995),

but such declines are not ubiquitous for all managed

pastures (Neill et al. 1997). As well, recent evidence

showed that tropical land conversion could lead to sub-

stantial decreases in available phosphorus (P), the prob-

able limiting element in many lowland tropical eco-

systems (Tiessen et al. 1992, Asner et al. 1999, Town-

send et al. 2002). However, the patterns in P cycling

following deforestation varied with climate, soil type,

and management strategy (Garcia-Montiel et al. 2000,

Townsend et al. 2002). Thus, while the biogeochemical

patterns following land conversion are becoming well

documented, and the potential for losses of soil organic

matter and key nutrients has been clearly established

(Werner 1984, Buschbacher et al. 1988, Eden et al.

1991, Townsend et al. 2002), the principal mechanisms
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FIG. 1. Map of the Osa Peninsula in southwestern Costa Rica, indicating the study area (Drake).

driving the variation in and extent of such changes are

still not well understood.

To date, most work has focused on either abiotic or

plant-driven controls over biogeochemical changes fol-

lowing land conversion. However, a largely ignored

possibility is that land transformation disrupts the

structure and activity of the soil microbial community,

which in turn affects the measured biogeochemical var-

iables. The decomposition of soil organic matter and

the mineralization of nutrients are mediated by micro-

organisms, and the significant environmental changes

associated with land conversion are quite likely to alter

the structure of such communities (Bornemann and Tri-

plett 1997, Nüsslein and Tiedje 1999). While the links

between microbial community structure and key bio-

geochemical functions are still poorly understood, it

seems probable that significant disturbances to such

communities may in turn cause important shifts in bio-

geochemical cycling. Thus, an understanding of the

way microbial processes regulate biogeochemical cy-

cles along axes of disturbance may be essential to un-

derstanding biogeochemical patterns following land

conversion and land use change in tropical ecosystems.

In this study, we used soils of varying fertility (ox-

isols and mollisols) spanning both primary forest and

pasture to investigate changes in the size and function

of the microbial community following land conversion.

Previous work by our group (Townsend et al. 2002)

showed significant biogeochemical changes, especially

in phosphorus cycling, between forests and pastures on

both soil types. Here, we explore the possibility that

land use-driven disturbances to the soil microbial com-

munity may help explain these patterns.

MATERIALS AND METHODS

Study site and sample collection

The study area was near the town of Drake on the

Osa Peninsula in southwestern Costa Rica (Fig. 1). This

region lies within the tropical wet lowland forest bio-

climate (Holdridge et al. 1971). Rainfall is heavy

(.5000 mm/yr) and peaks during summer to early fall

(June–October). Like most tropical rainforests, those

on the Osa Peninsula still experience a dry season; in

this region, it occurs from January to March. These

dry seasons are quite short in comparison to many other

tropical forests, and overall rainfall is very high, thus,

nearly all forms of vegetation persist in an evergreen

state throughout the year.

The entire Osa Peninsula was formed in three large

seafloor volcanic events between ;75 and 40 million
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years ago, but some parts of the region were below sea

level in more recent geologic eras (Berrange and

Thorpe 1988). This created a wide range in the ages

of parent materials and subsequent soil types, from

highly weathered oxisols $40 million years old to

highly fertile alluvial mollisols of Quaternary origin.

Thus, forests in this region occur on three general soil

types: (1) old, highly weathered oxisols on steeply dis-

sected terrain that rarely exceeds a few hundred meters

in elevation, (2) much younger ultisols (2–4 million

years old) on roughly similar upland terrain, and (3)

the highly fertile mollisols found on the alluvial plains.

Our sites are located in the northwest corner of the

Drake River Valley (88439 N, 838379 W), near the tran-

sition between the old upland oxisols and the younger

lowland mollisols. We selected two forest and two pas-

ture (20 yr old) sites representing each soil type, here-

after referred to as Oxisol Forest (OF), Oxisol Pasture

(OP), Mollisol Forest (MF), and Mollisol Pasture (MP)

sites. All four sites are only a few hundred meters apart,

and are thus identical climatically (mean average tem-

perature is 268C, mean average precipitation is ;5100

mm/yr). The pasture sites were dominated by the in-

troduced C4 grass Panicum maximum, while the forests

were characterized by high diversity, with no dominant

single species. All pastures were originally cleared us-

ing slash-and-burn methods, but have not been burned

since the initial clearing; woody encroachment is con-

trolled via cutting and herbicides.

We sampled soils from all sites during February and

June 2000. At each site, eight 6 3 10 cm soil samples

were extracted every 5 m from two randomly placed

25-m transects bisecting each site, for a total of 10

samples per site. Soils were sampled to 10 cm, reflect-

ing the region of greatest microbial density and activity

commonly observed in the soil profile (Ekelund et al.

2001). The soils at all sites lacked a distinct organic

layer, and samples from 0–10 cm were texturally sim-

ilar to deeper mineral soil (Townsend et al. 2002).

Within 72 h of collection, soils were returned to the

laboratory and coarsely sieved (4 mm) to remove plant

material. A portion of each sample was then removed

and air dried for chemical analysis. Fresh soil samples

for microbial analyses were stored at 108C, and all

experiments were initiated within 96 h of soil sampling

to minimize artifacts incurred during long-term storage.

Soil biogeochemical characteristics

We measured pH on air-dried soils using a soil:de-

ionized water paste (1:1). Soils to be tested for organic

C and N were ground to pass a screen of 0.5 mm and

analyzed using a Carlo Erba EA 1110 elemental ana-

lyzer (CE Elantech, Incorporated, Lakewood, New Jer-

sey, USA). Extractable N (NH4
1/NO3

2) was determined

using a 2 mol/L KCl solution, extracted for 24 h and

analyzed for NH4
1 and NO3

2 colorometrically on an

Alpkem autoanalyzer (OI Analytical, College Station,

Texas, USA). Soil bulk density was determined using

an excavation method (Parent and Caron 1993).

P fraction analyses

One gram of soil from each sample was analyzed for

P fractions using the first two steps of the modified

Hedley fractionation described by Tiessen and Moir

(1993). Briefly, soil was subjected to a resin extraction

(in water), followed by a bicarbonate extraction. A per-

sulfate digest was also performed after the bicarbonate

extraction, and organic P was determined by difference.

These two fractions (resin and bicarbonate) are the

most labile forms of P, and their sum is often taken as

a proxy for readily available (labile) P; previous studies

have shown that bicarbonate-extractable P is well cor-

related with plant growth (Bowman et al. 1978, Levy

and Schlesinger 1999). Total P in soil samples was

determined by digesting 5 g of sieved, air-dried soil in

H2SO4 and H2O2. Phosphate concentrations in all mea-

sured fractions were determined using the ammonium

molybdate–ascorbic acid method (Kuo 1996).

Microbial biomass C and N

Microbial biomass C and N were determined using

the chloroform fumigation-extraction method (Brookes

et al. 1985). Fumigated (5 d) and unfumigated samples

(10 g dry mass) were extracted with 0.5 mol/L K2SO4,

centrifuged for 5 min at 5400 rev/min and filtered

through ashed 1.0-mm Gelman GF/F glass fiber filters.

Organic C in the extracts was analyzed using a Shi-

madzu TOC-5050A total organic carbon analyzer (Shi-

madzu Corporation, Kyoto, Japan). Microbial biomass

C was determined as the difference between extractable

C in fumigated and unfumigated samples using pro-

portionality constant (Kc) of 0.45 (Vance et al. 1987).

Filtered extracts were also analyzed for NH4
1 and NO3

2

colorimetrically using an Alpkem autoanalyzer. Total

N in soil extracts was determined following digestion

with potassium persulfate (D’Elia et al. 1977). Micro-

bial biomass N was determined as the difference be-

tween extractable N in fumigated and unfumigated

samples using a correction factor (Kn) of 0.54 (Brookes

et al. 1985).

Microbial activity and active biomass

Phosphatase activity.—Potential phosphatase activ-

ity was measured using a method in which enzyme

activity releases p-nitrophenol (pNP) from added sub-

strates, and levels of pNP are determined colorimet-

rically (Tabatabai and Bremner 1969). Briefly, 2–3 g

of soil (dry mass) was combined with 150 ml of acetate

buffer at pH 5. The pNP-phosphatase substrate was

added to the slurry and incubated at 258C for 2 h.

Individual samples were centrifuged, and the super-

natant mixed with NaOH to halt enzyme activity and

cause coloration of the samples. Levels of pNP were

measured at 410-nm absorbance using an Agilent 8453

benchtop spectrophotometer (Agilent Technologies,
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Palo Alto, California, USA). Although this method is

not sensitive enough to separate abiotic, extracellularly,

or intracellularly released enzymes, for enzyme activity

to be detected using this assay, enzymes must cleave

substrates that are too large to pass through cell mem-

branes. Therefore, this assay effectively measures ac-

tivity occurring outside of microbial cells and plant

roots (Olander and Vitousek 2000).

Microbial activity.—We also assessed microbial ac-

tivity and active microbial biomass using the substrate-

induced growth response (SIGR) method described by

Colores et al. (1996). Briefly, 10–15 g dry mass equiv-

alent of each soil was placed in a biometer flask and

brought to 50% water holding capacity (WHC) with

deionized water. Amounts of carbon substrate previ-

ously determined to induce maximal respiration (sensu

Colores et al. 1996) were added to each flask with the

same uniformly labeled 14C substrate to yield 2500 Bq

(150 000 dpm) per flask, and 1 ml NaOH in the sidearm

to trap evolved CO2 (Colores et al. 1996). The base

trap was removed from each flask and refreshed at reg-

ular intervals. Radioactivity was measured by liquid

scintillation counting after mixing with Scintiverse II

scintillation cocktail (Fisher Scientific, Pittsburgh,

Pennsylvania, USA) to determine respiration rate.

Flasks were incubated at 228C until soil respiration

returned to its basal rate (;56 h). Respiration data were

analyzed with Kaleidagraph software (Synergy Soft-

ware 2000) using equations derived by Colores et al.

(1996). To convert units of SIGR biomass (mg CO2-C/

g soil sample) to mg C biomass/g, empirically derived

yields (Yc) of 0.50 for glutamic acid and 0.11 for sa-

lycilate were used in the equation Xa 5 X1 (Yc/1 2 Yc),

where Xa is the actual biomass in mg C biomass/g, and

X1 is the biomass in units of mg CO2-C/g (Colores et

al. 1996, Lipson et al. 1999). Substrate-induced res-

piration (SIR) estimates represent the initial respiration

rates measured 2–3 h after substrate additions.

Microbial response to C and P amendments.—Re-

sponses of microbial respiration following the addition

of different C compounds with and without the addition

of P were also determined using radiolabeled sub-

strates. In this study, we used two carbon substrates

that varied in quality, and thus targeted two individual

functional groups. First, we used the amino acid glu-

tamate to determine the physiological response of the

community to an N-rich, extremely labile C substrate.

Like glucose, glutamate may be mineralized by a large

percentage of the soil microbial community (Lipson et

al. 1999). However, glutamate elicits higher microbial

responses than other simple sugar compounds such as

glucose (glucose additions do not always elicit consis-

tent responses in the SIGR assay, even when added

with a full suite of nutrients), and glutamate has a car-

bon:nitrogen ratio (5:1) that is sufficient to promote

microbial growth (Lipson et al. 1999).

Next, we targeted a more specific functional group

by adding radiolabeled salicylate (Sal). Salicylate is

mineralized by the same general pathways as break-

down products from lignin and detrital polyphenols

(Ley et al. 2001), and does not contain N, thereby al-

lowing us to assess the effects of adding P alone, with-

out the possible confounding effects of N in the carbon

substrate. We thus used glutamate (2 mg glutamate-

C/g) in the assay to measure the response of the mi-

crobial population responsive to labile C substrates,

and salicylate (0.1 mg Sal-C/g) to measure the response

of a more specialized functional group that may utilize

more recalcitrant plant detritus and humic materials as

carbon and energy sources.

Phosphorus constraints on the soil microbial com-

munity have been previously demonstrated in tropical

soil, and P availability may regulate the response of

the microbial community to C inputs (Cleveland et al.

2002). Thus, in combination with our C-substrate ad-

dition experiments, we also tested the effects of adding

labile, inorganic P on the response of the microbial

community to our C-substrate additions in the substrate

addition incubations. For the fertilizer treatments, P

was added as KH2PO4 to water amendments to yield P

additions of 200 mg/g.

Statistical analyses

Differences between sites on the same soil type were

tested with t tests for independent samples (SPSS

2000). In time–course incubations, fluxes were log-

transformed before ANOVA. Differences in microbial

growth rates following substrate addition between sites

were determined with linear regression following log

transformation of rate data during the exponential

growth phase. Comparisons of different regression

lines to estimate homogeneity between growth rates

were done according to the methods described in Steel

and Torrie (1960). All results are reported as significant

when P , 0.05.

RESULTS

Soil characteristics

Soil biogeochemical patterns in the oxisol forest and

the oxisol pasture are shown in Table 1. Percentage of

soil C and N were significantly higher in the forest than

in the pasture sites, but the higher bulk densities of the

pasture soils result in no significant differences in total

soil C and N stocks (Table 1). Soil extractable inorganic

N at OP was less than half the value observed at OF,

with the forest site showing higher values for both ex-

tractable NO3-N and NH4-N.

At the mollisol sites, soil C and N stocks were not

significantly different. However, while total extractable

N was not significantly different at MF and MP, the

patterns in NH4
1 and NO3

2 were strikingly different;

97% of the extractable N at MP was NH4-N vs. 59%

in the MF forest. Perhaps somewhat surprisingly, soil

pH values decreased from the forest to the pasture sites

on both soil types (Table 1).
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TABLE 1. Soil biogeochemical characteristics (0–10 cm) of forest and pasture soils on oxisol and mollisol soils at the study
site in tropical wet lowland forest in southwest Costa Rica.

Parameter

Site

OF OP MF MP

pH
Soil C (%)
Soil C (% change)
Soil N (%)

5.4 6 0.2*
6.5 6 0.3*

0
0.6 6 0.0*

5.1 6 0.3*
5.0 6 0.6*
223
0.4 6 0.0*

6.0 6 0.3
6.8 6 0.4*

0
0.6 6 0.0*

5.9 6 0.2
5.6 6 0.2*
217
0.5 6 0.0*

Extractable N (mg/kg) 42.8 6 4.8* 21.0 6 2.6* 45.7 6 3.8* 30.6 6 4.1*

Extractable NO3-N (mg/kg)
Extractable NH4-N (mg/kg)

15.9 6 0.9*
26.9 6 4.5*

6.7 6 1.9*
14.3 6 2.0*

18.7 6 1.3*
27.0 6 2.7

0.9 6 0.6*
29.7 6 3.8

Soil P (m/g)
Bulk density
Total C (kg/m2)
Total N (kg/m2)

557.1 6 18.5
0.52
3.4
0.3

639.5 6 51.8
0.75
3.7
0.3

1051.4 6 43.1
0.66
4.5
0.4

1228.0 6 88.7
0.99
5.5
0.5

Total P (g/m2) 28.9 33.2 69.4 81.0

P fraction (mg/g)

Resin Pi

Bicarb Pi

Bicarb Po

4.2 6 0.4*
3.4 6 0.1*
13.7 6 0.6*

2.0 6 0.5*
2.7 6 0.1*
20.3 6 0.8*

8.9 6 0.9
5.1 6 0.5*
27.6 6 1.1*

9.4 6 2.7
7.4 6 1.7*
33.5 6 0.9*

Notes: Table entries are means 6 1 SE and represent eight samples per site. Abbreviations are: OF, oxisol forest; OP, oxisol
pasture; MF, mollisol forest; MP, mollisol pasture; Pi, inorganic P; Po, organic P.
* P , 0.05.

TABLE 2. Seasonal phosphatase activity, extractable C, microbial biomass and activity, and elemental ratios within the
microbial biomass from forest and pasture sites on oxisol and mollisol soils in southwestern Costa Rica.

Parameter

Site

OF OP MF MP

February 2000 (dry season)

Soil moisture (%)
Ptase (mmol pNP·g21·h21)
Ptase (mmol pNP·mg microbial C21·h21)
Microbial C (mg/g soil)
Microbial C (mg/g soil C)
Microbial C (% change)
Microbial N (mg/g)

38.4
4.8 6 0.2*

0.005
952.3 6 46.7*
14.7 6 7.2

0
251.3 6 6.1*

31.5
4.1 6 0.1*

0.008
529.7 6 129.0*
10.6 6 2.4

228
153.9 6 21.3*

42.8
3.4 6 0.3*

0.003
991.5 6 95.0
14.6 6 1.4

0
231.3 6 15.9*

32.8
5.2 6 0.4*

0.007
773.5 6 150.2
13.8 6 2.5

25
142.0 6 17.0*

June 2000 (wet season)

Soil moisture (%)
Ptase (mmol pNP·g21·h21)
Microbial C (mg/g soil)
Microbial C (mg/g soil C)
Microbial C (% change)
Microbial N (mg/g)

51.4
5.1 6 0.4

1967.0 6 119.7*
30.3 6 1.9*

0
324.1 6 18.1*

40.3
NA

802.1 6 153.4*
16.0 6 3.1*

247
107.4 6 15.0*

46.0
4.3 6 1.0

1307.4 6 109.1
19.2 6 1.6

0
221.1 6 20.2*

47.3
NA

1029.1 6 94.9
18.4 6 1.7

24
137.4 6 25.9*

Notes: Table entries are means 6 1 SE and represent the results of six samples per site. Abbreviations are: OF, oxisol
forest; OP, oxisol pasture; MF, mollisol forest; MP, mollisol pasture; Ptase, phosphatase; pNP, p-nitrophenol.
* P , 0.05.

Soil P shows some striking differences between the

forest and pasture sites (Table 1). While total P (mg/g)

values were not significantly different between OF and

OP, resin inorganic P (Pi) and bicarb Pi in the OF forest

site were both higher than the values for the same frac-

tion in the OP pasture sites. Resin Pi in the forest site

was more than double the value observed in the OP

site. In contrast to the inorganic fractions, the bicarb

organic P (Po) fraction at OP was significantly higher

than at OF. On the mollisol soil, while total P was not

significantly different at MF and MP, the patterns for

labile P were opposite to those at the oxisol sites (Table

1). Specifically, bicarb Pi and bicarb Po fractions were

significantly higher at MP than at MF; resin Pi was also

higher at MP than at MF, although not significantly.

Phosphatase activity was consistently low across all

sites (Table 2; Olander and Vitousek 2000). However,

in the oxisol sites, phosphatase activity in the forest

(4.75 6 0.16; mean 6 1 SE) was significantly higher

than in the pasture (4.12 6 0.12). In the mollisol sites,

phosphatase activity was significantly higher in the pas-

ture site (5.16 6 0.36) than in the forest site (3.40 6

0.31).

Microbial C and N

Samples fumigated with chloroform were sampled

in February 2000 (dry season) and in June 2000 (wet
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FIG. 2. Soil respiration rate following addition of 14C-labeled glutamate (‘‘Glu’’), with and without P, to forest and pasture
soils from oxisol and mollisol sites. Circles represent forest sites, and squares represent pasture sites; open symbols represent
the effects of C additions, and closed symbols represent the effects of C 1 P additions. Error bars are 6 1 SE.

season). At all sites, microbial biomass C and N were

consistently higher in soil sampled during the wet sea-

son, when soil moistures were all .40%. Seasonal pat-

terns from the oxisol and mollisol sites are depicted in

Table 2. Microbial biomass C and N were consistently

significantly higher at OF than OP, regardless of season

(Table 2). In the oxisol sites in February, microbial

biomass C and N were both significantly higher in the

forest site. In June, microbial biomass C at OF was

nearly four times its value in February, and more than

double the value at OP. Microbial biomass N at OF in

June was also greater than its value in February, and

greater than biomass N in the oxisol pasture.

At the mollisol sites, the spatial and seasonal patterns

of microbial biomass C and N were less pronounced,

although values at the mollisol sites were higher in June

when soil moistures were greater (Table 2). In Febru-

ary, microbial biomass C at MF and MP were not sig-

nificantly different, although microbial biomass N was

significantly higher at MF than at MP (Table 2). In

June, microbial biomass C was higher at MF than at

MP, although not significantly. Similar to the patterns

observed in February, microbial biomass N was sig-

nificantly higher in June at MF than at MP.

C substrate additions

Previous work in these sites revealed that forest soil

microbial community responses to C inputs are tightly

constrained by P availability, especially in the oxisols

(Cleveland et al. 2002). Here, we tested whether this

constraint extended to pasture systems by adding mul-

tiple C substrates, with and without P. In the oxisol

sites, both OP and OF showed a muted response to

glutamate alone (Fig. 2, Table 3). However, when added

in combination with P, glutamate additions caused rapid

responses in OP and OF (Fig. 2). While the response

to added P was less striking in the mollisol sites, both

the MP and MF site again responded more rapidly to

glutamate additions in combination with labile P than

with C alone (Fig. 2, Table 3).

We also performed a second set of incubations fol-

lowing the February 2000 sampling in which we added

salicylate (instead of glutamate) to the soils. Salicylate

is mineralized by the same general pathways as the

breakdown products from lignin and detrital (poly-)

phenols and was used to target a more specific group

of microorganisms that may mineralize relatively re-

calcitrant plant detritus and humic materials. The sa-

licylate additions were also done to test the effects of

P additions without the simultaneous N additions that

glutamate provides. The microbial responses to salic-

ylate additions showed similar patterns to those ob-

served with glutamate. Mineralization of salicylate was

clearly limited by available P in the oxisols, and while

the relative response was much smaller in the mollisols,

P additions again had a significant effect on C pro-

cessing in both MF and MP sites (Fig. 3).

Thus, P appears to constrain microbial activity in

both forest and pasture systems, and on both soil types,

although the relative responses to P do differ across

the sites. Therefore, the remaining results depict the

response of the soil microbial community to added C

and P. In other words, in order to investigate differences

in microbial activity between sites without the funda-

mental and varying influence of P constraints, we elim-

inated the possibility by adding labile P in the re-

mainder of the experiments.

In June, glutamate additions to OF samples resulted

in significantly higher rates of respiration throughout

the incubation than in OP. In addition, the microbial

community reached higher maximum growth rates,

achieved higher maximum respiration rates, and sug-

gested a more rapidly responding microbial community

than in OP. In addition, while SIR values were higher
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TABLE 3. Seasonal indices of microbial activity following glutamate addition (1P) to forest and pasture soils from oxisol
and mollisol sites in southwestern Costa Rica.

Parameter

Site

OF OP MF MP

February 2000 (dry season)

Initial rate (SIR; mg CO2-C·g
21·h21)

Biomass (mg/g)
Growth rate (/h)
Maximum respiration rate
(mg CO2-C·g

21·h21)
C respired (%)

4.86 6 0.50
14.46 6 1.67*

0.20*
74.72 6 13.13*

57.30

4.28 6 0.06
27.61 6 3.01*

0.13*
55.56 6 0.99*

51.03

8.9 6 0.4
29.97 6 13.47

0.24*
140.5 6 5.9*

63.19

7.3 6 0.1
29.35 6 5.83

0.16*
70.9 6 3.4*

56.44

June 2000 (wet season)

Initial rate (SIR; mg CO2-C·g
21·h21)

Biomass (mg/g)
Growth rate (/h)
Maximum respiration rate
(mg CO2-C·g

21·h21)
C respired (%)

8.1 6 0.9*
44.62 6 9.24*

0.14
73.7 6 0.6*

54.0

3.7 6 0.5*
23.49 6 3.95*

0.13
60.0 6 1.2*

52.4

15.0 6 0.8*
120.01 6 34.91*

0.14*
86.3 6 0.2

52.4

10.1 6 0.4*
40.11 6 7.05*

0.17*
84.5 6 1.4

51.2

Notes: Table entries are means 6 1 SE and represent the results from duplicate samples. Abbreviations are: OF, oxisol
forest; OP, oxisol pasture; MF, mollisol forest; MP, mollisol pasture; SIR, substrate-induced respiration.
* P , 0.05.

FIG. 3. Soil respiration rate following addition of 14C-labeled salicylate (‘‘Sal’’), with and without P, to forest and pasture
soils from oxisol and mollisol sites. Circles represent forest sites, and squares represent pasture sites; open symbols represent
the effects of C additions, and closed symbols represent the effects of C 1 P additions. Error bars are 6 1 SE.

in OF than OP (Table 3), initial glutamate mineralizer

biomass was actually lower in OF than OP, eliminating

the possibility that our results depict merely a biomass

effect. In the wet season (June), glutamate mineralizer

biomass at OF was nearly twice that in OP, and nearly

three times the value observed in February. In contrast,

pasture biomass changes little seasonally in the oxisol

sites. However, unlike the dry season, maximum

growth rates did not differ between oxisol forest and

pasture sites.

In the mollisol sites in February (dry season), the

microbial community at MF responded with higher SIR

values, higher maximum respiration rates, higher

growth rates, and higher proportions of C utilized than

at MP over the course of the experiment (Fig. 2, Table

3), in spite of nearly identical glutamate mineralizer

biomass estimates. In June, as in the oxisols, glutamate

mineralizer biomass increases dramatically in the for-

est; pasture biomass in June is slightly greater than its

February value. Again, as with the oxisols, maximum

growth rates of the microbial community at MP vary

little seasonally, while the June MF value is signifi-

cantly lower than the February MF value and the June

pasture value.

Salycilate additions to oxisol soil (dry season) also

revealed differences between forest and pasture sites

(Fig. 3, Table 4). Specifically, over the course of the

experiment, the salycilate-degrading functional group

at OF had higher initial respiration rates, achieved

higher growth rates, reached higher maximum respi-

ration rates, and mineralized a greater percentage of

the added substrate than the microbial community at
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TABLE 4. Dry-season indices of microbial activity following salicylate addition (1P) to forest and pasture soils from
oxisoland mollisol sites in southwestern Costa Rica.

Parameter

Site

OF OP MF MP

February 2000 (dry season)

Initial rate (SIR; mg CO2-C·g
21·h21)

SIGR biomass (mg CO2-C/g)
Biomass (mg/g)
Growth rate (/h)
Maximum respiration rate (mg CO2-C·g

21·h21)
C respired (%)

0.14 6 0.00*
2.48 6 0.84
0.31 6 0.10

0.10*
3.62 6 0.08*

48.22

0.12 6 0.00*
2.76 6 0.54
0.34 6 0.07

0.08*
2.63 6 0.06*

41.11

0.11 6 0.01
2.23 6 1.24
0.27 6 0.15

0.11*
5.35 6 0.08*

55.51

0.11 6 0.00
1.67 6 0.34
0.21 6 0.04

0.09*
4.39 6 0.13*

46.54

Notes: Table entries are means 6 1 SE and represent the results from duplicate samples. Abbreviations are: OF, oxisol
forest; OP, oxisol pasture; MF, mollisol forest; MP, mollisol pasture; SIR, substrate-induced respiration; SIGR, substrate-
induced growth response.
* P , 0.05.

OP, even though the salycilate-degrading biomass was

not different between the two sites (Table 4).

In the mollisol sites, the microbial community at MF

again appeared to respond more rapidly than at MP.

Salycilate mineralizers at MF had higher growth rates,

higher maximum respiration rates, and respired more

salycilate than at MP. However, while not significant,

initial salycilate mineralizer biomass was higher at MF

than MP, which may influence the higher maximum

respiration rate seen at MF (Table 4).

DISCUSSION

Soil physical and biogeochemical characteristics

Management intensity in our Costa Rican pasture

sites is relatively light compared to many other tropical

pasture systems. For example, grazing rates are low,

despite a favorable climate with a short dry season, and

burning is not used as a management tool to reduce

weedy in-growth, thus eliminating a major pathway for

the loss of key elements (Kauffman et al. 1995, 1998).

We chose lightly managed sites on purpose, to explore

whether even less intense land use would still lead to

significant biogeochemical and/or microbial changes.

Despite the light management, we observed a variety

of significant changes in soil properties and major bio-

geochemical cycles between forest and pasture on each

soil type. Many of these changes are discussed in great-

er detail in Townsend et al. (2002); here, we report

some additional data, and the major patterns in soil

physical and biogeochemical characteristics are sum-

marized in Table 1. We observed increases in soil bulk

density, which may be suggestive of significant soil

compaction during pasture use (Veldkamp 1994, de

Moraes et al. 1996). Soil pH also changed from forest

to pasture, but unlike most reports (e.g., Reiners et al.

1994), we observed decreases in pH in each pasture,

although only the oxisol change was significant. The

lack of burning as a management strategy in the pasture

systems in Costa Rica may preclude the increase in pH

commonly observed in tropical systems, and may help

explain the declines in our sites.

Past studies of C stocks following conversion of

tropical forest to pasture have shown a range of re-

sponses, including increases, decreases, or no net long-

term changes in soil C (Cerri et al. 1991, Tiessen et

al. 1992, Trumbore et al. 1995, de Moraes et al. 1996,

Neill et al. 1997). In our lightly managed sites, sig-

nificant declines in soil C (percent) are balanced out

(and likely partly caused) by increased bulk density

and soil compaction, resulting in no significant changes

in total soil organic carbon (SOC) in either soil type

(Table 1). However, we did observe significant changes

in both nitrogen and phosphorus cycling in each forest–

pasture comparison.

In general, our pasture sites showed smaller pools

of extractable N relative to their forest counterparts. In

addition, we observed that in both oxisol and mollisol

sites, NO3
2 pools were higher in forests than pastures,

and at least in the mollisol sites, NH4
1 was higher in

the pasture than in the forest. As suggested in previous

studies, these data support decreased rates of plant

NH4
1 uptake, and/or decreased rates of nitrification in

pastures, and perhaps decreases in the overall rate of

N cycling in pastures relative to forests (Vitousek 1984,

Vitousek and Sanford 1986, Matson et al. 1987, Reiners

et al. 1994, Neill et al. 1996).

Numerous studies have suggested that P limits eco-

system processes in tropical forest ecosystems, and that

conversion of forest to pasture may exacerbate P con-

straints (Tiessen et al. 1992, Townsend et al. 2002).

Not surprisingly, the most striking biogeochemical dif-

ference between the forest and pasture sites, particu-

larly in the oxisol sites, was related to P status. First,

in the oxisol sites, which represent the dominant soil

type in this area and in the humid tropics globally,

resin-extractable inorganic P in the pasture was less

than half the value of its forest counterpart. As well,

the OP site had significantly less (;20%) inorganic

bicarbonate-extractable P than the oxisol forest site.

The sum of resin- and bicarbonate-extractable inor-

ganic P are often taken as the best index of plant-

available P (Bowman et al. 1978, Levy and Schlesinger
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1999), thus, despite no declines in total soil organic

matter (SOM), forest-to-pasture conversion in the ox-

isols appears to have caused significant declines in P

fertility. Third, organic forms of P increase from OF

to OP, and total soil P increases. All forms of P mea-

sured were higher in the mollisol sites, perhaps reflect-

ing alluvial inputs of P in this lowland site, combined

with lower biomass P uptake in the MP relative to the

MF site.

Soil microbial community structure and function

While P limitation to microbial processes has been

demonstrated in forest systems (Cleveland et al. 2002),

our data suggest such constraints are also present in

the pastures. Even in the (relatively) P-rich mollisol

site, responses to C inputs are greater with P additions

in both forest and pasture systems (Fig. 2). Thus, fol-

lowing conversion, P limitation of the microbial com-

munity appears to remain in spite of simultaneous in-

creases in organic and total P. This may indicate the

importance of available P in regulating microbial pro-

cesses in both forest and pasture systems even on soils

that are relatively rich in P.

Our results also suggest that conversion of forest to

pasture can lead to dramatic changes in the overall size

of the microbial community. In the oxisol pasture, mi-

crobial C was between 45% and 60% lower than values

in the forest (on a per gram soil basis), depending on

season. In addition, our analysis suggests that the ob-

served decrease in microbial biomass was not driven

entirely by changes in SOM between forest and pasture

sites. In the oxisol sites, SOM decreased by 23% from

forest to pasture (Table 1). However, on a per gram C

basis, the decreases in microbial biomass from forest

to pasture are greater. In February, microbial biomass

decreased by 47% from forest to pasture, and in June,

by 69% from forest to pasture. Thus, while a change

in soil C from forest to pasture may explain some of

the decrease in microbial biomass, the much larger de-

clines in microbial biomass suggest that they are driven

by environmental changes beyond those in their pri-

mary energy source.

Microbial biomass C also appears to decline from

forest to pasture in the mollisols, although the differ-

ence in total biomass is not significant (Table 2). In

addition, in the mollisol sites, on a per gram of soil C

basis, microbial biomass does not decrease to the same

extent that SOC decreases from forest to pasture, and

the differences do not change seasonally. This differ-

ence does not change seasonally. Thus, it appears that

these relatively rich sites are more ‘‘stable’’ than the

nutrient-poor oxisol sites, but still not immune to

changes in the microbial community as a consequence

of forest-to-pasture conversion.

Overall, our results suggest a possible gradient in

the response of microbial communities to land use

change, in which the impacts range from large in nu-

trient-poor sites to relatively modest in more fertile

sites. While studies such as this are relatively rare, most

of those that do exist also demonstrate that conversion

of natural vegetation to used land on nutrient-poor

soils, as well as agricultural intensification, leads to

significant decreases in microbial biomass (Luizao et

al. 1992, Henrot and Robertson 1994). In contrast,

Groffman et al. (2001) found that land conversion did

not decrease microbial biomass and activity in a rel-

atively nutrient-rich tropical riparian ecosystem in Cos-

ta Rica. This is practically relevant, given that mod-

erately fertile soils (such as mollisols) are uncommon

in the humid tropics, comprising ,15% of the total

land (Sanchez et al. 1982, Vitousek and Sanford 1986).

In contrast, soils of low fertility (oxisols and ultisols)

represent the most abundant soil types in tropical eco-

systems (Vitousek and Sanford 1986). As much of the

fertile land has already been converted to agriculture,

future development of new agricultural lands within

the humid tropics will undoubtedly be forced onto low-

fertility soils (Sanchez et al. 1982). Our results suggest

that conversion of land on infertile soil may have much

more profound consequences for microbial communi-

ties and biogeochemical cycling than has been ob-

served on more fertile soils. In addition, management

intensity in our Costa Rican pasture sites is relatively

light compared to many other tropical pasture systems.

Thus, we would also expect that the effects of more

intense management strategies (e.g., periodic fire to

control weed growth) would have an even greater im-

pact on the soil microbial community than we observed

in these sites.

Clearly, the conversion of forest to pasture causes

significant changes to the soil environment, leading to

changes in soil carbon sources, nutrient availability, pH,

and bulk density, among others. Not surprisingly, a few

recent studies have shown that the conversion of forest

to pasture in tropical rain forest ecosystems often in-

duces wholesale changes in belowground microbial

community composition. For example, Nüsslein and

Tiedje (1999) showed that a change from forest to pas-

ture in Hawaii led to a significant change in the dominant

bacterial phyla, and resulted in a 49% shift in overall

microbial composition. In addition, bacterial DNA anal-

ysis has shown substantial differences in community

composition between forest and pasture sites (Borneman

and Triplett 1997), with forest sites displaying greater

species diversity and redundancy in physiological

groups than disturbed pasture sites. The decrease in di-

versity may result from mineral leaching, lowered SOM

content, differing plant organic inputs, or lowered soil

aeration caused by soil compaction and loss of structure

following conversion (e.g., Vazquez et al. 1993).

Our incubation data with radiolabeled glutamate pro-

vide further evidence of community compositional

changes following land conversion. For example, in the

oxisols in February, glutamate additions revealed that

the forest microbial community responded more rap-

idly, grew faster, reached higher maximum rates of res-
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piration, and respired a greater percentage of added

labile C than did the pasture communities, in spite of

the fact that initial glutamate mineralizer biomass was

actually lower in the forest than in the pasture (Fig. 2,

Table 3). Glutamate additions to the mollisols showed

a similar pattern, suggesting that, at least in the dry

season, the mollisol forest is characterized by a phys-

iologically different, more responsive community than

is the mollisol pasture (Table 3). Thus, not only are

forests characterized by higher total microbial biomass

(chloroform labile), but our SIGR incubations suggest

that pastures and forest are also characterized by phys-

iologically different (and hence compositionally dif-

ferent) microbial communities.

In addition, our results suggest strong seasonal fluc-

tuations in the forest communities, which appear to be

absent in the pasture sites. For example, in June, glu-

tamate mineralizer biomass increased three-fold in the

oxisol forest and more than four-fold in the mollisol

forest, but stayed relatively constant in the oxisol pas-

ture and the mollisol pasture (Table 2). In addition,

growth rates of the glutamate-responsive microbial

community varied considerably seasonally in both for-

ests, but stayed relatively unchanged in the pasture

sites. These results suggest that the microbial com-

munities as a whole in the native forest sites are plastic

and responsive to seasonal changes (e.g., in resource

availability). In contrast, the SIGR assays suggest that

the microbial communities at the pasture sites are much

more physiologically static. We hypothesize that the

seasonal variability in microbial physiological param-

eters observed is indicative of a more compositionally

diverse community in the forests than in the pastures.

Clearly, there are dramatic decreases in plant diversity

following the conversion of a primary rainforest to a

grass monoculture. This change in itself almost cer-

tainly leads to changes in microbial community com-

position, and in fact has been demonstrated in similar

systems (Borneman and Triplett 1997, Nüsslein and

Tiedje 1999). While we have no direct evidence to

support this hypothesis here, our data do suggest im-

portant physiological differences between forest and

pasture communities, and support the notion that for-

est-to-pasture conversion leads to changes in not only

the size, but also the composition, of the soil microbial

community.

We also found that forest-to-pasture conversion not

only led to decreases in the magnitude, functional com-

position, and activity of the microbial community as a

whole, but also to declines in a specific functional

group. Salicylate is mineralized by the same general

pathways as breakdown products from lignin and de-

trital polyphenols, and its addition can be a test of more

restricted microbial communities that process this re-

calcitrant material (Ley et al. 2001). As with glutamate,

following salicylate additions, the microbial commu-

nity in both oxisol and mollisol pastures responded

more slowly, grew more gradually, showed lower max-

imum respiration rates, and respired a lower percentage

of added salicylate than the forest microbial commu-

nity, despite no significant differences in initial saly-

citale mineralizer biomass (Fig. 3, Table 4). This ap-

parent decline in a group that occupies a relatively

specific biogeochemical niche further supports previ-

ous research demonstrating that land conversion not

only decreases the magnitude of the microbial com-

munity, but also the alters its dominant composition

and physiology (Borneman and Triplett 1997, Nüsslein

and Tiedje 1999).

Implications for biogeochemical cycling

We believe that the observed changes in microbial

community structure and function observed here may

help explain biogeochemical patterns observed here

and in other studies. For example, the fact that organic

and total P pools can increase along forest–pasture

chronosequences (Garcia-Montiel et al. 2000, Town-

send et al. 2002) suggests that the conversion of forest

to pasture could increase the P fertility of a given site.

However, over time, plants on converted sites (includ-

ing ours) often show strong signs of increasing P lim-

itation (e.g., Asner et al. 1999), concomitant with size-

able, significant decreases in forms of P available to

plants. Since inorganic P either remained constant or

declined with pasture age in our sites, while organic P

increased, it seems clear that the rate at which organic

P is mineralized must decline, especially on the oxisols.

The increases in organic P are not simply due to new

inputs, because they are not matched by increases in

total organic matter. Instead, the rate at which organic

P is converted to inorganic forms must decrease to

produce the patterns we report. Phosphorus minerali-

zation can occur via the production of extracellular

phosphatases by plant roots (Speir and Cowling 1991);

therefore, a change from forest to pasture vegetation

may be partly responsible for a decline in minerali-

zation rates. However, we suggest that the observed

changes in the structure, functional composition, and

activity of the soil microbial community following con-

version of forest to pasture may play a major role in

changing the P cycle and producing the patterns we

report.

For example, our results showed that extracellular

phosphatase activity in the oxisol forest was signifi-

cantly higher than in the oxisol pasture on a per gram

soil basis. In contrast, phosphatase production on a

biomass basis actually increased from forest to pasture

on both oxisols and mollisols (Table 2). One would

expect that a decline in labile inorganic P, along with

an increase in organic P (as seen in the oxisol pasture),

should trigger higher rates of phosphatase activity (Mc-

Gill and Cole 1981). However, although phosphatase

per unit biomass increased (thus suggesting that soil Pi

status should increase), the dramatic declines in mi-

crobial biomass lead to the observed net decrease in

phosphatase production on a per gram soil basis. Thus,
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the decrease in the size of the microbial community

from the oxisol forest to the oxisol pasture may lead

to the decreases in the plant-available inorganic P we

observed in the pasture. If so, this would provide a

direct linkage between a perturbation of a microbial

community (a decrease in total biomass) and a bio-

geochemical consequence (a net decrease in Pi pro-

duction via phosphatase activity).

Changes in the structure and function of the micro-

bial community following land conversion may also

have important implications for C cycling, and suggest

a possible mechanism for some of the observations

obtained here and in other studies in similar systems.

For example, many studies have shown substantial de-

clines in soil C immediately following conversion, but

that soil C reserves recover after a relatively short pe-

riod of time (e.g., Cerri et al. 1991, Neill et al. 1996,

1997). Some studies have suggested that this gradual

increase in pasture soil C following conversion results

from slow, but continuous increasing inputs of organic

matter from litterfall and turnover of root biomass (e.g.,

Tiessen et al. 1994). However, our results provide an

additional possible mechanism. Over time, the de-

pressed rate of C mineralization we observed in the

pasture soils, if a common pattern following land use

change, could prevent even further declines in SOC in

some sites, and facilitate the increases in soil C some-

times observed in others. In other words, we suggest

that, while declining SOC pools can certainly drive

declines in microbial biomass, the reverse can also be

true. For example, our data show far more dramatic

declines in microbial pools than in total SOC, sug-

gesting that much of the microbial response to land

conversion is due to changes in variables other than

SOC. The net effect of a greatly reduced microbial pool

may, in turn, be to reduce overall SOC decomposition

rates, simply due to first-order kinetic relationships be-

tween the size of the decomposer pool and C miner-

alization.

Next, in the tropics, the combination of intense but

episodic precipitation events and a large standing pool

of carbon in leaf litter make it likely that microbial

populations experience frequent inputs of high quality

C as dissolved organic carbon (DOC) flushes through

surface soils (Jandl and Sollins 1997). As well, exu-

dation of labile C from roots can be a significant carbon

flux in many ecosystems (Biondini et al. 1988). Based

on our results, the fate of this excess C in pasture sys-

tems (at least on oxisols) may be very different from

that seen in the forest ecosystems where microbial ac-

tivity responds more rapidly to C inputs. We also sug-

gest that during periods of high C availability, dimin-

ished C mineralization rates in pasture soils could cause

some fraction of labile DOC flushes to remain within

the ecosystem for longer periods of time. Longer res-

idence times for such C could increase the odds for its

stabilization in soils (Neff and Asner 2000), thus lead-

ing to increases in soil organic C over time, and/or

increasing potential losses via DOC leaching.

The diminished ability of the pasture microbial com-

munities to respond to C inputs also has some potential

implications for P cycling, and could contribute to the

declines in plant-available P observed in pastures here

and elsewhere. In the highly sorbing, phosphorus-poor

soils of the humid tropics, the microbial community

may serve as a valve connecting above- and below-

ground nutrient cycling, providing a critical nutrient

conservation system in P-poor oxisols and ultisols. Per-

turbation to the microbial community may damage this

valve, leading to fundamental changes in the biogeo-

chemical cycling of phosphorus. For example, the as-

sociation of P with soil DOC, either as part of those

molecules or electrostatically adsorbed by DOC, would

render this otherwise immobile element mobile, and

therefore subject to leaching (Donald et al. 1993). In

addition, if such dissolved organic matter (DOM) is

characterized by relatively low C:P ratios, losses of

DOM may lead to decreases in plant available forms

of P like those observed in this and other studies (Asner

et al. 1999, Garcia-Montiel 2000, Townsend et al.

2002). The observed decrease in microbial efficiency

following labile and recalcitrant C additions in the pas-

tures supports this possibility.

We also observed forest to pasture decreases in a

functional group that is at least partially responsible

for the decomposition of more recalcitrant organic

compounds (e.g., lignin and detrital polyphenols). This

result suggests a shift in the microbial community from

one that is adapted to degrading recalcitrant, lignin-

related compounds in the forest to one that is less able

to decompose such recalcitrant compounds in pasture

communities (Cerri et al. 1991). Since C and P cycling

are closely related, changes in microbial functional

groups may not only affect C cycling, but also the

cycling of P. Donald et al. (1993) found that recalci-

trant, hydrophobic-neutral dissolved organic matter

(i.e., lignin by-products) is often P-rich and is not read-

ily sorbed in the soil. If changes in the microbial com-

munity lead to decreases the efficiency of the biological

mineralization of such compounds (like those we ob-

served following salicylate additions), leaching of

these high molecular weight, P-rich, and potentially

mobile hydrophobic-neutral compounds may be in part

responsible for the losses of plant-available P often

seen in pasture systems, and we believe the possibility

merits further investigation.
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