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Director: Steven W. Running } l’l

The dissertation is presented as three separate studies. The first study presents the development and
application of a set of methods for estimating near-surface meteorological parameters in complex terrain.
given an arbitrarily-spaced network of meteorological measurement stations. Predicted parameters are
daily maximum and minimum air temperature. daily total precipitation. daily shortwave radiation. and
daily average water vapor pressure. Required observations are daily maximum and minimum air
temperature. and daily total precipitation. Provisions are included for missing data. and for spatial and
temporal variation in station density. Estimation proceeds in two steps: an interpolation between stations.
followed by an extrapolation to account for differences in elevation between station and estimation points.
Interpolation is based on a truncated Gaussian convolution filter. the radius of which varies in response to
local station density. Parameters for the shape and size of the filter are determined through a cross-
validation procedure. Extrapolation is based on a diagnosis of the local relationships between temperature.
or precipitation. and elevation. Errors were about 2.0 and [.0 °C. for daily and annual average temperature
predictions. respectively. Annual total precipitation errors were about 20%.

The second study describes the development and testing of a numerical model for simulating terrestrial
ecosystem processes. The model focuses on primary production. and includes treatments of surface water
and shortwave radiation budgets. belowground carbon and nitrogen dynamics. and seasonal and
interannual allocation of primary production within plants.

In the third study. meteorological parameters, derived in part by the methods of the first study. are
combined with satellite-based observations of visible. near-infrared. and thermal infrared radiances. to
produce a mapped estimate of the surface resistance to sensible heat transport. This resistance (r) is an
important parameter for the surface energy budget calculations described in the second study. and has
previously been poorly defined. Predictions from the surface energy budget algorithm were supported by
evidence from the satellite and surface-based temperature observations. [n particular. there was a strong
negative relationship between vegetation cover and predicted r,. Different vegetation types exhibited
different slopes in this relationship. which could be explained by broad differences in leaf morphology and
stand structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

[t has been my great fortune, since arriving in Missoula six years ago, to be in the company ot people full
of encouragement. good will. and happy lunacy. My everlasting gratitude goes out to Dr. Steve Running.
for providing me with both the opportunity to experience new worlds of knowledge and the resources to
explore them. I have always been able to rely on his guidance and generosity with time. and his confidence
in my abilities was strong when my own was flagging. The ground [ covered in my siudies has seen other
explorers: [ extend a salute and my heartfelt thanks to Dr. Ramakrishna Nemani for blazing some of the
more exciting trails. My warmest regards go out to Dr. Joseph White. who. although we are presently
antipodal. has been my closest consort on this journey. Exemplary of character and light with mirth. his
friendship has more than once given me bravery in the wilderness: may we meet again soon over a yard of
the finest. For the vears of harmonic cohabitation. for the hours of chess over the belly of the demon. and
for losing track of how many games of pool he won. I thank Dr. Robert Kremer. Thanks to Mike White for
subjecting himself to my untested code. and for sharing with me the fruits of his implacable curiosity.
Thanks to Dr. Lars Pierce. Galina Churkina. Dr. Kathy Hibbard. Alisa Keyser. and Dr. John Kimball. for.
among other kindnesses. poring over the details of various versions of the models described here. tracking
down bugs. and suggesting many improvements. Many thanks to Joe Glassy. for fielding my endless
programming questions. For the very best in technical and administrative support. thanks to Saxon
Holbrook. Youngee Cho. Deb Kendall. Hal Dorsman. and Kim Hodgeson. Very special thanks are due the
other members of my committee. Drs. LLoyd Queen. Bob Keane, and Hal Salwasser. for their many useful
suggestions and helpful comments. To my parents. Helen and Kirby Thomton. I otfer my deepest love and
appreciation. for setting me out with a heart full of riches on such a rewarding path. Thanks to Chris and
Matt for their lifelong encouragement, brothers in spirit as well as body: and to Polly. thank vou for vour
songs and your love. and for showing me the glory of nature where I'd missed it before. Finally. to my
wife Michele. without whom the beauty of these mountains would shine less brightly. thank vou for
unfailing faith. unwavering love and devotion. for hearing and helping me through my daily struggles. and
for giving me joy and humor when [ needed them most.

Some of the data used here was collected by researchers at the Forest Service Intermountain Fire Sciences
Laboratory. and by members of the science staff at Glacier National Park. Thanks to Jim Menakis.
Cameron Johnston. and Marty Beck of the Forest Service. and Carl Key at Glacier NP for their efforts on
my behalf. Thanks also to Drs. Sue Ferguson and Miriam Peterson of the Forest Service Pacific Northwest
research lab for helpful discussions and access to their computer resources.

[ received financial support during my studies from NASAs Office of the Mission to Planet Earth. in the
form of a Graduate Student Fellowship in Global Change Research. for which I am most grateful.

it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

Abstract i
Acknowledgments . il
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1
Introduction .- I
1. Statement of research problems .. ..ccoov oot 1
2. Review of research problem investigated in Chapter 2 l
3. Review of research problem investigated in Chapter 3 3
4. Review of research problem investigated in Chapter 4 5
Chapter 2
Generating Surfaces of Daily Meteorological Variables over Large Regions of Complex Terrain... 6
[. Background and model development 6
2 Methods 8
2.1 Interpolation 8
2.2 Temperature predictions 10
2.3 Precipitation predictions .. .12
2.4 Extrapolation smoothing . 13
2.5 Humidity predictions 14
2.6 Radiation predictions 15
1.7 Case-study description and database filtering 16
2.8 Parameterization and validation 20
2.9 Spatial scaling analysis 21
2.10 Temporal scaling analysis . 21
3. Results 22
3.1 Parameterization 22
3.2 Validation 27
3.3 Spatial and temporal scaling analysis . .37
3.4 Example output eeeneenennnee 40
4. Discussion 40
5. LAterature Clted ..ot sce e e eeceee e 52
Chapter 3
Description of a numerical simulation model for predicting the dynamics of energy. water. carbon. and
nitrogen in a terrestrial ecosystem. eeeereroersoce s nn s e s a s e e s e s saeneees 56
L INIPOQUCHION ettt ettt e s s s s sssse s e s s e s s e s e s 56
2. Overview of model structure and COMPONENES....c.crmrermreercereecieeeece e eeseeneen oo renees 57
3. Detailed description of shortwave radiation budget 61
3.1 Shortwave radiation inputs . 61
3.2 Canopy radiation absorption and fractionation between sunlit and shaded portions
. 62
4. Detailed description of the water budget..... reeeeseneeee s s e seaeenaeneae 66
4.1 Soil water potential and volumetric water content ..66
4.2 Precipitation input and canopy interception 68
4.3 Evaporation of canopy intercepted WAaLET w..cvservserersreescrsesessesssssmssessessmnsesenes 69

4.4 Losses from the snowpack......ecceeceeeceeeeeccennccnnecene
4.5 Evaporation from the litter/soil surface

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 Transpiration and controls on stomatal conductance 73

4.7 Soil water balance and hydrologic outflow estimation 79
5. Detailed description of the carbon and nitrogen budgets 30
5.1 Photosynthetic carbon fixation and canopy nitrogen distribution ................... 81
5.2 Maintenance respiration 91
5.3 Growth respiration 91
5.4 Leaf and fine root phenology 92
5.5 Whole-plant mortality 94
5.6 Litter and soil carbon and nitrogen budgets 95
5.7 Carbon and nitrogen allocation 118
6. Example simulations 128
7. Literature cited 150
Chapter 4
Estimation of surface resistance parameters from remote sensing and surface meteorological
observations
1. Introduction

2. Review of theory of mass and energy storage and transport
2.1 Radiation budget

2.2 Energy balance

3. Review of relevant literature
3.1 Early investigations. pre-1970

3.2 Current literature. 1970-present......

3.2.1 Reflectance data: surface resistance and flux estimation

3.2.2 Thermal infrared emission data: energy balance studies
J

.2.3 Thermal infrared emission data: empirical relationships
3.2.4 Combined thermal infrared and retlectance data....................
3.3 Summary of literature review with respect to current research problem
4. Operational statement of the research problem et e et neas
5. Methods
5.1 Study area and topographic data layers
5.2 Estimation of daily surface meteorological parameters
5.2.1 Generation of Daymet input database

5.2.2 Parameterization of Daymet for the study region and period......... 201
5.2.3 Daymet simulations and summary of results.....ooceveemieneincncs 208
5.3 Estimation of subdaily meteorological parameters.................... 211
5.3.1 Subdaily air temperature estimates 211
5.3.2 Subdaily radiation eSHMALES ......cocerreeeemveeirrerrnniveerensnns 226
5.3.3 Subdaily humidity estimates. e 227
5.4 AVHRR database generation..........ccovveeemvencccennene. . e 227
5.4.1 Cloud and snow detection and screening 229
5.4.2 Satellite zenith angle screening .......ccccevveceeeecrennen. 232

5.4.3 Estimation of time of day of satellite data acquisition

5.4.4 Estimation of sun-sensor angle .

5.5 Estimation of land surface temperature using a split-window als_omhm .........

5.6 Prediction Of I ceecceeeeceeeeeeeeeieeeeccreeteeeeeeccrceessseeenres e e nees

5.7 Evaluation of predicted r ...

6. Results
6.1 Multiple regression analysis

6.2 Predicted r,: variation with canopy closure and NDVI..............

7. Summary of results and discussion of applications........covveeeeeceeieiiiiicmimereeeeieeeeeeaeaes 267
8. Literature cited . ereteteate et n st e g e st e s e e s s e e e e ar e e s R s e s e e a et e senan 270

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

Chapter 2

Table I: Numbers of meteorological observation stations
Table 2: List of model parameters
Table 3: Cross-validation error statistics
Table 4: Summary of daily precipitation occurrence predictions vs. observations ...c.ceocceeeccveveucee-

Chapter 3

Table I: Estimates of k,;, derived from other studies
Table 2: Annual mortality fraction from data in Sollins (1982)
Table 3: Regression results for C decomposition experiments
Table 4: Results of numerical experiments for tests of decomposition models

Chapter 4

Table [: Results of t-tests comparing constant with temporally-varying parameterization of GSP..
Table 2: Final cross-validation analysis estimates of error and bias
Table 3: Annual and 5-year mean statistics for Daymet output......
Table 4: Station data for 13 stations used in assessment of subdaily air temperature........cccoceurueec.n
Table 5: Regression coefficients for the prediction of NTCl14,
Table 6: Mean absolute prediction errors (°C) for subdaily temperature
Table 7: Cloud detection criteria
Table 8: Frequencies of landcover and canopy closure classes
Table 9: Landcover types reclassed from the Loveland classification
Table 10: Multiple regression results for AT vs. (R, NDVIL. VPD. P,.. )
Table L1: Predicted r,, and observed NDVI, average by covertype
Table 12: Comparison of predicted r, against independently determined canopy closure classes....

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
27
27

2

30

69
95
101
103

204
206
209
213
219
221
232

248
251
253
255
260



List of Figures

Chapter 2

Figure [: Location of study region: Northwest U.S. 17
Figure 2a: TMAX: mean absolute error for daily predictions (°C) 23
Figure 2b: PRCP: mean absolute error (% of annual total) 24
Figure 3: PRCP: mean absolute error vs. f 26
Figure 4a: TMAX: predicted vs. observed daily values 29
Figure 4b: TMIN: predicted vs. observed daily values 30
Figure 4c: TMAX: predicted vs. observed event frequency 31
Figure 4d: TMIN: predicted vs. observed event frequency 32
Figure Sa: PRCP: predicted vs. observed annual total 34
Figure 5b: PRCP: predicted vs. observed event frequency 35
Figure 6: Spatial frequency of dry stations: predicted vs. observed 36
Figure 7: Successful PO predictions vs. frequency of dry stations 38
Figure 8: Daily average PRCP vs. proportion of wet stations (log:log) 39
Figure 9: Annual vs. daily predictions of annual total PRCP 41
Figure 10a: Temperature vs. elevation regression SIopes.....cc.oovvccrrreeeecrecorcecrncncerevnnceenes 42
Figure 10b: Precipitation vs. elevation regression slop 43
Figure [ la: Detail of study region (color plate) 44
Figure 1 1b: Annual average daytime temperature (color plate) 45
Figure [ lc: Annual average daytime VPD (color plate) 46
Figure 1 ld: Annual total of wet days (color plate) 47
Figure [ le: Annual total precipitation (color plate) 48
Figure I If: Annual average of daylight average incident shortwave radiative flux density ............. 49
Chapter 3

Figure la: Stomatal conductance response to daylight average PPFD.... 76
Figure Ib: Stomatal conductance response to daylight average temperature 77
Figure 2a: 200-year total NPP vs. SLA ratio (no daily allocation)................. 86
Figure 2b: 200-year total NPP vs. SLA ratio (with daily allocation) 87
Figure 3: Decomposition model structures 98
Figure 4: Homogeneous substrate decomposition data fitted to M3 model 106
Figure 5: Litter and soil carbon dynamics for ID-BGC 108
Figure 6a: “C glucose decomposition data eeemereseteeeseaeseneae s ensannseneeane 109
Figure 6b: "C cellulose decOMPOSIHON LA ...cuueumcmemcrcuececrecnemisesecseeenesseessescsensasasansemsessssnaes 110
Figure 6¢: "“C lignin decomposition data 111
Figure 7: Primary linkages between C and N in the plant-litter-soil system [16
Figure 8: Stem C vs. average stand height for unmanaged stands 126
Figure 9a: Simulated leaf C under severe N-limitation . 129
Figure 9b: Simulated soil mineral N under severe N-IImitation......ooveeeeeeeremmeceermireerecccceeieeeneee 130
Figure 10a: Simulated leaf C during and after N-limitation... 132
Figure 10b: Simulated soil mineral N during and after N-lmitation ......c.coceeveemeeeeeenieeeeeeeeeee 133
Figure I la: Simulated annual minimum soil Water CORENt ......ovvemeerrmemeeeeeteicieeeieeee e 134
Figure [ 1b: Simulated annual soil water content 135
Figure 12: Simulated annual net primary production eeereetrreeneeresess s e nanenes 136
Figure 13a: Simulated leaf C. constant vs. variable climate........ccouevemeececeeeeiecrneenne 138
Figure 13b: Simulated leaf C, constant vs. variable climate ........ reeeeeeeeaee e nsneenae 139
Figure [4a: Simulated leaf C. normal N-HMitation .......ceeeeeoeeomeenieeeree et 141
Figure [4b: Simulated annual net primary production SO 142
Figure l4c: Simulated dead Stem C.. ettt et (44

vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 14d: Simulated annual stem growth increment
: Simulated annual stem growth increment vs. annual total precipitation
Figure 14f: Simulated annual net ecosystem production

Figure l4e

Chapter 4

Figure I:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 8a:
Figure 8b:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure [4:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 23:
Figure 26:
Figure 27:
Figure 28:

Variation in (T, — T,) with respect to variation in R,

Elevation over study region

MAE for monthly averages of predicted Tmax. Tmin and Prcp. with optimal GSP .........

Precipitation terrain smoothing width

Monthly Prcp bias vs. monthly Prcp

Results of Daymet estimation of meteorological parameters

T,o vs. growing-season average Tmax
Predicted vs. observed 14-day deviations from T,

Predicted vs. observed daily deviations from T,
Observed diurnal temperature curve (mean and 9 stations)

Schematic of diurnal temperature prediction logic
Daily mean prediction error for subdaily air temperature....

Predicted vs. observed subdaily air temperature
Observed and predicted hourly air temperatures at Missoula, MT
Number of cloud/snow contaminated periods

Frequency of cloud/snow contaminated compositing periods

Number of periods with excessive SATZ
Frequency of compositing periods with excessive SATZ

Solar zenith angle vs. iocal solar time

Average time of satellite overpass
Average emissivity difference vs. average NDVI

Landcover classes. recoded from Loveland
Predicted r,. also showing landcover subsets

Frequency of predicted r,
Average growing-season NDVI. 1991-1994

Frequency of average growing-season NDVI
Predicted r,vs. NDVI. landcover averages

Average predicted r, vs. average NDVI....
Graph-of-averages. r, vs. NDVI. by landcover.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145
146
148

| £ 2 £ I §6 g 06 }
W Uy ta
(@)Y

V19tV
DO ON Wy
WV O

6



Chapter 1

Introduction

1. Statement of research problems

The broad objective of my dissertation research was to develop a set of numerical tools to
facilitate studies in terrestrial ecology over large spatial domains. [ approached this objective through the
investigation of the following three narrow suppositions: (a) Accurate estimates of land-surface
meteorological parameters at an arbitrary landscape location can be derived from a knowledge of those
same parameters at a collection of distant points and a knowledge of the relative horizontal and vertical
positions of the observation points and the prediction point. (b) A small number of well-established
physical. biological. and ecological principles can be integrated. in conjunction with the land-surface
meteorological parameters trom (a) and a specification of an initial state. to estimate the dominant
components of the storage and transport of mass and energy at the land surface as they evolve over time.
(c) The spatial and temporal patterns of observed radiometric surface temperature as made from a polar-
orbiting satellite can be explained using a combination of estimated surface meteorological parameters and
surface energy balance theory as developed in the investigations of suppositions (a) and (b). These three

suppositions are addressed in turn in Chapters 2. 3. and 4.

2. Review of research problem investigated in Chapter 2

The hypothesis investigated in Chapter 2. that accurate fields of surface meteorology can be
derived from distant observations and their spatial context. is based on the presupposition that a network of
observation points exists in the vicinity of the point of desired prediction. and that the spatial density of
observations in the network is high enough to record the dominant meteorological dynamics at the spatial
scale of relevance to the intended application of the estimated fields. For example. if the intended
application required an annual estimate of the number of days with above- and sub-freezing surface air

temperature. then a density of observation points with several hundred kilometers between points might be
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adequate. If. however. the intended application required a discrimination on each day of the vear of above-
and sub-freezing surtace air temperature. then an adequate observation density would necessarily be
higher. with a spacing between points that would resolve the passage of frontal air masses of greatly
difterent temperatures. The required density in this more demanding case would depend on the average
speed of frontal passage and the average size of frontal air masses. As an additional constraint. when the
intended application requires the resolution of topographic eftects in rugged terrain. the hypothesis
presupposes that the vertical distribution of observation points is sufficient to sample the important aspects
of topographic intluence on the meteorological fields of interest. A further logical antecedent to my
hypothesis. when applied to estimation in rugged terrain. is that a particular meteorological field will be
most sensitive to a particular scale of topography. depending on the physical processes sampled in the
measurement network and on the network density. It has already been demonstrated by other research that
this is true tor estimates of annual total precipitation over very large (sub-continental) regions of complex
terrain. and part of the effort in Chapter 2 is directed toward the establishment of this presupposition for
daily estimates of both precipitation and temperature. A final presupposition is that a particular
meteorological field. as sampled within a particular station network. will be best estimated when the
observed values are temporally aggregated or smoothed to some characteristic degree. This should be so
when the spatial sampling density and/or the temporal sampling frequency in the network are too low to
completely capture the meteorological dynamics of interest. [f some aspect cf these dvnamics is stable or
slowly varying over time. and is sampled in the network over a period of time. the temporally smoothed
observations should give a better prediction than the observations from any single period.

In order to demonstrate that accurate surface meteorological fields can be derived from a network
of observations with a known spatial context. [ used as an experimental system the network of daily
observations of minimum temperature. maximum temperature. and total precipitation operated in the
United States by the National Weather Service and the Natural Resources Conservation Service. [ gathered
all of the available daily observations for these three variables for one year over an area of approximately

800.000 km" which included parts of several mountain chains as well as extensive areas of gentle terrain. [
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developed an interpolation and extrapolation strategy which incorporated dependencies on station density.
station vertical distribution. topographic scale. and temporal aggregation or smoothing. [ then tested the
hypothesis that changes in these dependencies resulted in changes in the accuracy of estimates. and that
these changes were coherently related. such that optimal values for the strengths of the various

dependencies could be derived by minimizing the estimation errors.

3. Review of research problem investigated in Chapter 3

Having demonstrated the validity of my first supposition in Chapter 2. [ set out in Chapter 3 to
demonstrate that these same meteorological parameters. together with descriptive information concerning
the initial states of mass at the land surface. can be incorporated in a mechanistic numerical framework of
physical. biological and ecological principles in such a way that the dominant processes of storage and
transport of mass and energy at the land-surface can be estimated with some contidence. The fundamental
presupposition in this investigation is that the core components of the numerical framework. the underlying
physical. biological. and ecological principles. are each individually already well-detined. For example.
evaporation of water is one of the dominant processes of water (and energy) transport at the land surface.
and has been studied in depth by many investigators under many conditions. My basic assumption with
respect to the treatment of the evaporation process is that the results of these prior investigations are valid
under certain circumstances. and that by considering the logical constraints and intended application of my
integrated numerical framework. I could incorporate them and thereby gain the benefits of earlier efforts.
My objective was to identify the dominant processes of storage and transport and to determine whether or
not the existing knowledge of mechanisms affecting individual processes. together with the meteorological
and initialization data. was sufficient to generate estimates of all the dominant storage and transport
processes. [ assumed that the land-surface vegetation is the appropriate point of focus for an assessment of
dominant processes of storage and exchange. Vegetation is a functional crossroads for the storage and
exchange of incident solar radiation. water, carbon dioxide (CO.) and nitrogen (N) at the land surface. and

its presence or absence can serve to indicate the most general features of land surface processes. [ further
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assumed that processes in the upper layers of the soil were important to the overall dynamics at the land
surface. through the interactions ot vegetation with soil water and organic matter and mineral nutrient
content. as well as through the influence of sensible and latent heat exchange at the soil surface on the
surface energy balance.

With these basic assumptions as a foundation. [ developed a logical framework that connected
processes of storage and transport together and relied only on the available meteorological data and the
specification of an initial state. Through literature survey. [ identified individual components of this
tramework that had already been the subject of investigation. and used relevant studies to derive
quantitative formulations for implementing my logic. From the field of biophysics. [ used the well-
developed theories of radiation interception and its conversion to sensible and latent heat fluxes. including
assessments of the variation in those processes with respect to varying vegetation cover. From the field of
soil physics [ used a combination of physical theory and empirical evidence to formulate a relationship
between soil texture and soil water-holding characteristics. From investigations of the biology of
decomposition in litter and soil [ derived a quantitative treatment of the below-ground dynamics of carbon
and nitrogen in organic and mineralized forms. From studies in plant ecology [ derived a treatment of the
acquisition by plants of soil mineral nitrogen. the distribution of that nitrogen to various plant parts. and the
sensitivity of that distribution to meteorological conditions. Also from the ecological research literature I
derived a simulation logic for allocating plant growth to various organs. dependent on meteorological
conditions and the plant state. This effort amounts to a synthesis of the research literature on the dominant
terrestrial mass and energy storage and transport processes. in the form of a single operational algorithm.
Although [ was able to make some novel deductions in certain corners of the mechanistic detail. the
primary innovation in this part of my study was the construction of a logical framework which permits the

coherent integration of theory and empiricism from a broad range of disciplines.
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4. Review of research problem investigated in Chapter 4

[ set out in the final chapter to demonstrate that estimated meteorological fields. derived trom
methods described in Chapter 2, in combination with the theoretical framework for estimating mass and
energy storage and fluxes. described in Chapter 3. can provide a reasonable explanation for the variability
of radiometric land surface temperature. as observed over sub-continental regions and for multiple years
from a sensor onboard a polar-orbiting satellite. Because the surface temperature is an integral component
of'the surface energy balance. [ make the supposition that a correspondence will exist between observed
surface temperatures and the variables that are predicted. by the theory presented in Chapter 3. to have the
strongest influence on the energy balance. This hypothesis is founded on the following three
presuppositions. (a) Factors which complicate the determination of surface temperature from the satellite
sensor observations can be identified and either corrected for or safely ignored. (b) The true range of
variation in surface temperature is large enough to exceed the lower limits of detection at the instrument.
given instrument accuracy and non-instrument sources of error. (c) The physical and analytical theory for
predictions of the surface energy balance is generally valid. and is applicable at the spatial and temporal
sampling resolution of the sensor. A significant part of my effort in Chapter 4 is in testing the validity of
these presuppositions. The purpose of such tests is to provide confidence in the usefulness of my methods
in verifving the hypothesis that observed surface temperatures can be explained using results from

Chapters 2 and 3. and to help me identify likely causes in the event that the hypothesis is deemed invalid.
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Chapter 2
Generating Surfaces of Daily Meteorological Variables over Large

Regions of Complex Terrain

1. Background and model development

Much of the recent literature concerning spatial interpolation of meteorological fields has focused
on the generation of surfaces of long-term average or climatological precipitation. Particular attention has
been given to the development of sophisticated statistical methods which. given certain assumptions.
generate explicit optimality criteria and guarantees of unbiased predictions. Some examples are optimal
interpolation (Gandin. 1965). kriging and its variants (e.g. Phillips et al.. 1992). and smoothing splines
(Hutchinson and Bischof. 1983). Simpler methods which lack such optimality criteria and guarantees of
unbiasedness have been applied extensively for the determination of mean areal precipitation. The method
of nearest neighbors (Thiessen. 1911) is an early example. and others include multiple nearest neighbors.
inverse-distance weighting schemes. and arithmetic means.

Several studies have compared the performance of various sophisticated and simple spatial
interpolation methods in the context of rainfall predictions (Creutin and Obled. 1982. Tabios and Salas.
1985. Phillips et al.. 1992). Other studies have focused on one method but offered comparisons to others
(Chua and Bras. 1982. Hevesi et al.. 1992). These studies show that although the statistical methods are for
the most part more accurate than the simple methods. they are not overwhelmingly so. For example. from
Tabios and Salas (1985. Table 10). there is no significant difference between inverse distance methods and
a suite of statistical methods. judged on the basis of coefficients of determination for estimates of mean
annual precipitation from five sites in homogeneous terrain. [n the same study the nearest neighbor

method was significantly inferior to the more sophisticated methods. but only by approximately 10%.
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These results suggest that an effective. efficient interpolation method could be developed using the simple
methods as a starting point.

A recent example in this vein is the work of Daly et al. (1994). who developed an approach for
distributing climatological precipitation. combining geographical and statistical elements. which they
demonstrate to be both more flexible and more accurate than kriging and some of its variants. Another
example is the method of climatologically aided interpolation (CAI). developed by Willmott and Robeson
{1993) and applied to the interpolation of yearly temperature averages. CAl uses a relatively simple
inverse-distance weighting scheme to adjust a spatially high-resolution climatology. The method produces
low validation errors. and its accuracy is attributed in part to the incorporation of terrain effects provided
by the high-resolution climatology. A third example. pertinent for its utilitarian and flexible approach. is
the recursive filter objective analysis used in the operational analysis of meteorological satellite soundings
(Hayden and Purser. 1995). The recursive filter method is designed to handle large data volumes in an
operational setting. and employs an iterative algorithm that makes the method sensitive to spatial
variability in data density. Although none of these methods are perfectly suited to my purposes. they do
embody a desirable spirit of simplicity and utility.

Since [ require large interpolated surfaces for a suite of daily meteorological variables. with
simulations (typically) of 1-5 vears. grids on the order of 500 x 500 cells. and incorporating hundreds ot
observation sites. computational efficiency is an important factor. The faithful application of any of the
statistical methods would require at least one parameterization for each variable for each day. and previous
studies suggest that even this would be insufficient for methods such as kriging. given the large and
climatically heterogeneous domains of interest. An alternative is to resort to a single parameterization of a
statistical method. but this negates what seems to me the principal attraction of such methods. that they
generate unbiased results. Rejecting both of these alternatives. [ proceed with the development of a method
which lacks both formal optimality criteria and guarantees of unbiasedness. but which can be

parameterized once for a given set of observations and applied effectively to the daily observations as often

as needed.
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In developing a new method. [ borrow from the nearest-neighbor method the assertion that the
area of relative influence for a given observation should be inversely related to the local observation
density. [n other words. a relatively isolated observation should influence predictions over a larger area
than should an observation in a data-rich region. The most serious tault of the nearest neighbor method is
that it generates a discontinuous surface. the familiar tessellated surface of Thiessen polygons. A
continuous interpolation surface would be preferable. From the inverse-distance method I borrow the
assertion that relative influence should decrease with increasing distance from an observation. The most
serious flaw of the usual implementation of the inverse-distance method is. in my view. that its asymptotic
condition forces the surtace through all observations. generating spatially anomalous distributions. [ desire
a method that is. in this sense. a smoother as opposed to an interpolator. in that the resultant surface is not
required to pass through the observations.

[ adopt. as a basic interpolation framework. the spatial convolution of a truncated Gaussian filter
with a surtace containing the horizontal projections of the observation locations. In the spirit of efficiency.
truncation of the filter serves to reduce the number of observations included in predictions at a given point:
an untruncated filter gives finite weight to all observations at each point of prediction. but the majority of
those weights are diminishingly small. Truncation causes a loss ot higher-order smoothness. but still results
in a continuous surface. [ choose a Gaussian function because it is simple to evaluate. and has the desired
features of being both an inverse distance algorithm and a smoothing filter. The descriptions here are given
with respect to interpolation over an evenly spaced grid of prediction points. but the same methods could

be applied to the generation of predicted values at arbitrarily placed points.

2. Methods

2.1. Interpolation

The general form of the truncated Gaussian filter. with respect to its central point. p. is:
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0; r>R,
Eq.l W(I’)= ‘/r 2
elr,) “—e®: TSR,

where W(r) is the filter weight associated with a radial distance r from p. R} is the truncation distance from
p- and « is a unitless shape parameter.

The spatial convolution of this filter with a set of horizontal station locations results. for each
point of prediction. in a list of weights associated with observations. Because of the spatially heterogeneous
distribution of observations. a constant value for R; results in a large disparity in the number of
observations with non-zero weights between points in the least and the most densely populated regions of
the prediction grid. I desire a system by which R, can be reduced in data-rich regions. using information
from a smaller radius. and increased in data-poor regions. One possibility is the specification ot a fixed
number of observations to be used at every prediction point. but this can be shown to violate the
requirement for a continuous surface. Instead. [ specify N. the average number of observations to be
included at each point. R, is then varied as a smooth function of the local station density in such a way that
this average is achieved over the spatial domain. The smooth variation of R, ensures a continuous
interpolation surface. and is accomplished through the iterative estimation of local station densirty at each
prediction point. as follows:

(1) For all grid cells. the same user-specified value. R. is used to initialize R,,.
(2) Given R,,. Eq. 1 is used to calculate weights W,. where i = (1.....n) are observation locations. and the
local station density D, (# of stations/area) is then determined as:
W,
b= SW
P RRE
p

where W is the average weight over the untruncated region of the kernel. defined as:

Rp
. J’ W(r)dr

W: 1) 3 = —e
T R, a
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(3) A new R, is calculated as a function of the desired average number of observations. N. and the most

recent calculation of D, as:

where N” = 2N for the first [-] iterations, and N* = N for the final iteration. where [ is the number of
iterations to be performed. This modification of N is a result of filter truncation. and helps to avoid the
occassional occurrence of excessively large station counts in regions of strongly heterogeneous station
spacing.
(4) The new R, is substituted in step (2). and steps (2)-(4) are iterated [ times.
Final values of R, are incorporated in Eq. | to generate the interpolation weights W, used in predictions for
all days at the point in question.

The interpolation method for a given set of observations and a given prediction grid is defined by
the four parameters R. [. N. and «. Given an arbitrary variable x;. measured at each of the i = (l.....n)
observation points. values for the interpolation parameters are specified once and held constant over all
days and all prediction points. Taking the case of a single prediction point on a single day. the interpolated

value X, is determined in general as:

zn:Wi Xi
— izl
Z Wi
i=l

This general method is refined below. making it specific to predictions of daily temperature extremes and

Eq.2 x,

daily total precipitation. incorporating an objective analysis of the influence of elevation differences.

2.2. Temperature Predictions

Prediction methods for TMAX and TMIN are identical. and [ will refer here to a general daily
temperature variable. T. I focus on the generation of a prediction T, at a single point and for a single day.

based on observations T.. and interpolation weights W;. for the i = (.....n) measurement sites. Prediction of
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T, requires a modification of Eq. 2 to include a correction for the effects of elevation differences between
the observation points and the prediction point. This correction is based on an empirical analysis of the
relationship of T to elevation. which is performed once for each day of prediction.

[ introduce a set of transformed variables for the empirical analysis of elevation relationships.
under the hypothesis that these relationships may have characteristic spatial and temporal scales which are
not well represented by the recorded station elevations (Z,) and the daily temperature observations (T;).
These new variables are z, and t,. a spatial transform of the recorded station elevations and a temporal
transform of the daily observations. respectively. In a later section [ examine the explicit connection
between the transformed and untransformed variables. Note that the use of these transformed variables is
limited to the assessment of influence of elevation on predictions of T,. and that the untransformed daily
observations T; are incorporated in the eventual prediction algorithm.

A weighted least squares regression is used to assess the relationship between t and z. The daily
regression is pertormed over all unique pairs of stations. and the regression weight associated with each
point is the product of the interpolation weights associated with the stations in a pair. The independent
variable is the difference in the transformed elevations associated with a pair of stations. and the dependent
variable is the corresponding difference in the transformed temperatures associated with the pair. This

gives a regression of the form:

S—

(tl —t )=B()+Bl(zl—zl
where subscripts | and 2 indicate the two stations of a unique pair. and f3; and f, are the regression
coefficients.

T, is then predicted as follows:

n

Wi (Ti + Bt B (Zp - zs))
iWi

Eq.3 T,=-+
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where z, is the elevation assigned to the prediction point. and T, would. in practice. be replaced by either
TMAX, or TMIN,.
2.3. Precipitation Predictions
Predictions of precipitation are complicated by the need 1o predict both daily occurrence and.
conditional on that result. daily total precipitation. Under the assumption that there is some spatial
coherence to the patterns of precipitation occurrence (wet vs. dry) when measured zﬁ the time scale of a
day. [ define a simple binomial predictor of spatial precipitation occurrence as a function of the weighted
occurrence at surrounding stations. Taking the case ot a single prediction point on a given day. and given
observations of daily total precipitation P,, and interpolation weights W,. [ estimate a precipitation
occurrence probability. POP:
n

> W, PO;

POP, = +—

ZWi

0:Pi=0
PO; =
l1:Pi>0

where the PO, are binomial variables related to observed precipitation occurrence. Daily binomial
predictions of precipitation occurrence at a given point. PO,. are based on the comparison of POP,, with a
specified critical value. POP_

0 :POP,<POP.u
PO, =
l < POPp 2 Popcri[
POP_,, is held constant for the entire spatial and temporal domain of the simulation.
Conditional on precipitation occurrence (PO, = ). [ proceed with the prediction of daily total

precipitation. P,. Under the same assumptions outlined for temperature predictions. [ introduce the

transformed variables p; and z in the objective analysis of the relationship of precipitation to elevation.
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Again [ use a weighted least squares regression. with the same form for the weights and the independent
variable as described for temperature predictions. The dependent variable in this case is defined as the
normalized difference of the transformed precipitation observations. giving a regression of the form:

E'l_,—& =B0+Bl(Zl_Zl )

P, TP

[n generating the predicted daily total. P, the interpolation weights are multiplied by the station

occurrence variable. PO,. giving weight only to those stations which record precipitation for the day in
question. as follows:

- I+f
ZWiPOi(I__?)

P,= i=1

i Wi PO

i=1

Eq. 4
£ =Pyt Bl(zp —Zi)

The form of the precipitation prediction requires that |f] < [. [ introduce another parameter. f__ (< [.0). and
force |t] = f,, whenever{fi>f, ..
2.4. Extrapolation Smoothing

[ hypothesize that the processes controlling the observed variation of temperature and
precipitation with elevation may have characteristic spatial and temporal scales different from those
implied by the recorded station elevations or by observations at a daily time-step. For example. it may be
that better predictions are obtained from regressions using a spatially smoothed elevation field as opposed
to recorded station elevations for the calculation of elevation differences. or that the variation with
elevation is better explained using multiple-day running averages of observations as opposed to the daily
observations themselves. [ introduce the parameters Sg and S; to describe the spatial and temporal
smoothing characteristics for regressions of each variable with elevation.

The parameter Sg describes the degree of spatial smoothing incorporated in the transformation

from Z, to z; for a particular variable, and S; describes the degree of temporal smoothing incorporated in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

the transformation from T, or P, to t, or p;. g, measured in km. defines the width of a rectangular region
around the presumed location of a particular station for which elevation data from a digital terrain grid is
averaged to generate the transformed elevation. z; (see below for a discussion of station location). S;.
measured in days. defines the width of a two-sided linearly tapered smoothing filter applied to the time
series of T or P to generate t or p. Ends of the series are padded with zeros for the purpose of this
smoothing filter. In the case of precipitation time series. the smoothing weights for days with no
precipitation are set to zero. so the resulting smoothed value represents a weighted average of daily
precipitation events. This correction is required to avoid the "constant drizzle" bias associated with a
simple smoothing filter.
2.5. Humidity Predictions

Predictions of humidity are based on the assumption that minimum daily air temperature (T,,) is a
reasonable surrogate for dew-point temperature (T,). Tests of this relationship over a wide range of
climatic settings indicate that its accuracy decreases with increasing aridity (Kimball et al.. 1995). but that
in general it is an adequate approximation in the absence of high-quality humidity measurements (Running
etal.. 1987. Glassy and Running. 1994). [ generate estimates of humidity in terms of the average daytime

saturation vapor pressure deficit VPD (Pa), as:

VPD =¢,(T.) —em

where e(T,) is the saturated vapor pressure (Pa) at the average daytime site temperature T, (°C). and ¢, is
the ambient vapor pressure (Pa) as inferred from the assumption that T,, = T4. Vapor pressures are
calculated using Murray's (1967) formulation:

e.(T.) =610.78 ¢ 775 %

em=010.78 e’t%’r?}

Tests of the assumption T, = T,, have not focused explicitly on the sensitivity of the relationship to

variation in T,, due to local topography. While the mole fraction of water vapor in a well-mixed air column

is insensitive to variation in pressure and temperature. partial pressure of water vapor is not. [ therefore
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expect e, to vary with terrain height. and [ assume that the methods described above to analyze the
dependence of TMIN on elevation are also applicable to the purpose of estimating variation in e,,. and [ set
T,, = TMIN,. Similarly. the variation in T, with respect to elevation has an important effect on VPD. and

following Running et al. (1987) [ specify:

T. =0.606 TMAX, +0.394 TMIN,
2.6. Radiation Predictions

Direct and diffuse components of incident shortwave radiation are calculated on a sub-daily
timestep (typically 10 min.) using expressions that analyze the sun-earth geometry. including corrections
for slope and aspect in complex terrain. Radiative fluxes at the top of the atmosphere are attenuated as a
function of atmospheric transmissivity. including corrections for optical air mass and cloudiness. [ use the
same equations for sun-slope geometry and the empirical treatment of diffuse radiation described by
Hungerford et al. (1989). but substitute the following calculation of daylength. DL (s). for a flat surface

with unimpeded horizons:

HSS=acos(_ sin(LAT)sin(DECL) )

cos(LAT) cos(DECL)

it HSS<-n then HSS=—-n (24 hrdaylight )
if HSS>n then HSS=n (0 hrdaylight )

DL =2 HSS-13751.0

where HSS (radians) is the hour angle of sunset. measured from solar noon. LAT (radians) is the latitude.
DECL (radians) is the declination angle of the sun and the constant 13751.0 converts from radians of hour
angle to seconds of daylength. This algorithm reduces errors at high (and southern) latitudes associated
with the original daylength algorithm in MTCLIM (Forsythe et al., 1995). DL from this formula is
truncated for sloping surfaces as in the original model documentation. but corrections to horizon angles for

shading from adjacent terrain elements are not implemented here.
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The algorithm of Bristow and Campbell (1984) is used to derive a daily average cloudiness

correction to atmospheric transmissivity from the observed diurnal temperature range, DTR. as:

Eq.5 PCST=1.0 — ¢l-®0mr)

where PCST is the proportion of clear-sky transmissivity on the day in question. and B and C are empirical
parameters (see Glassy and Running. 1994, for a discussion of the B and C parameters: here [ use the
values -0.003 and 2.4, respectively). This method has been shown to successfully predict a large proportion
of the variation in daily radiation fluxes (Running et al.. 1987. Glassy and Running, 1994). but no analysis
has related its parameters to temperature variability imposed by topographic features. I observe that the
environmental lapse rate for minimum temperature is generally of smaller magnitude than that for
maximum temperature, and so DTR in a neighborhood will generally decrease with increasing elevation. A
strict application of Eq. 5 to the predicted surfaces of DTR (TMAX, - TMIN,) would yield consistently
lower transmissivity at the higher elevations in a neighborhood of complex terrain. [n general.
transmissivity is expected to increase with increasing elevation. due to a reduction in optical air mass.
While some argument could be made for more frequent cloudy conditions over high terrain. [ think it is
unlikely that this phenomenon is responsible for the observed differences in maximum and minimum
temperature lapse rates. My solution is to neglect the influence of elevation on TMAX, and TMIN; for the
purpose of calculating DTR,, performing a simple interpolation of the observed DTR,. using the same form
as in Eq. 3 and regarding B3, and 3, as 0.0.

Final predictions of SRAD are made by summing the direct and diffuse shortwave components of
radiation over the day and dividing by the daylength. giving the daylight average instantaneous shortwave
flux density in W/m".

2.7. Case-Study Description and Database Filtering

[ implemented these methods for a one-year simulation of daily TMAX. TMIN. PRCP. VPD. and
SRAD over an area of 399.360 km® (832 km x 480 km) in the inland northwestern United States (Figure 1.
topographic detail shown in color plate 11a). The region includes southeastern Washington. northeastern

Oregon. central [daho. and southwestern Montana, and was selected to include a diversity of climatic and
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Location of Study Region: Northwest U.S.

— ~

Figure 1.

Northwestern United States, showing state outlines, major river systems, and the approximate boundaries
of the study region.
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topographic regions. Elevations over the region range from sea level to 4000 m. Although there is
considerable variation, vegetation is generally grassland. agriculture. and desert at elevations up to 700 m.
with coniferous forest dominating at higher elevations. and limited alpine tundra at very high elevations. A
notable exception is the dense forest cover ranging from sea level to about 1000 m on the west slope of the
Cascade range. The region extends just to the west of the Cascade Range in Washington and Oregon.
encompassing the transition from maritime to continental climates across the Cascade divide. The western
Cascade slope is characterized by frequent heavy precipitation. with a gradual increase in annual total
precipitation with elevation. The eastern Cascade slope is characterized by a dramatic precipitation
gradient. with semi-arid conditions extending 200-300 km eastward of the foot of the range. Relatively hot
and dry conditions prevail across the southern extent of the region. through the northern end of the Basin
and Range province. to the Snake River Plain. The eastern portion of the region is dominated by a
multitude of Northern Rocky Mountain ranges with elevation ranging from 800 to 4000 m. and very
complex topography. Storm tracks are generally from the west. and the west side of this group of ranges
receives more precipitation than the east. A minority of storms track from the southeast. and the southern
ranges receive the bulk of the moisture from these storms. For the region as a whole. wintertime
precipitation comes from large frontal systems. while most summer precipitation is due to local convective
activity. An exception is the region west of the Cascade divide. where frontal precipitation dominates year-
round.

Daily meteorological data tor 1989 were obtained from the National Climatic Data Center (NWS)
and from the Western Regional Climatic Data Center (USDA). Data for stations outside the validation area
was incorporated in the predictions for the validation stations in order to mitigate the influence of data-
sparse edges on interpolation errors. Not all stations recorded all three of the primary variables. and so the
number of stations differs somewhat for predictions of temperatures and precipitation. Many SNOTEL
stations measured precipitation but not temperature, while most NWS stations recorded all three primary
variables. resulting in larger numbers of precipitation observations (Table 1).

Table I: Numbers of meteorological observation stations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Organized by station type (WS = National Weather Service Cooperative Observers Network station. ST =
Natural Resources Conservation Service SNOTEL station) and by inclusion in validation data set (IN =
inside validation region. USED = inside region or in bordering area).

IN USED
Variable Total WS ST Total WS ST
TMAX/TMIN 280 213 67 436 344 92
PRCP 365 220 145 498 321 177

The original station list was filtered separately for temperature and precipitation data to exclude
stations with excessive missing data. Stations were dropped from the initial database if they contained more
than 25 days of missing data for the vear or if they contained more than 5 consecutive days of missing data.
Stations included in temperature predictions were required to pass this criteria for both TMAX and TMIN.
since these are required in tandem for predictions of radiation. Days with missing data for stations passing
these criteria were excluded from parameterization and validation analyses.

Station records include the longitude. latitude. and elevation for each station. Longitude and
latitude are recorded by the NWS to the nearest arc minute. and elevations are recorded to the nearest
meter. An accuracy of = | arc-minute corresponds to a potential error in station location of 3.7 km for
latitude and 2.5 km for longitude (at 47 °N). This is a considerable error. and it creates some difficulties in
the registration of station locations to digital terrain maps. [n this study [ used a digital terrain grid with a
grid-cell spacing of 500 m (from USGS). with elevations accurate to about = 6 m. The projection of
recorded station longitude and latitude onto this elevation grid results in absolute differences between grid
and station elevations which average about 90 m. with a standard deviation of 151 m. Some of this
variation is likely due to the sampling methods used to generate the terrain grid. but I suspect a large
proportion of the variation is due to inadequate station location data. Given the relative accuracy of station
and terrain grid elevations compared to horizontal station locations, [ reassigned the station locations to the
central point of the 500 m grid cell within a 4.5 km x 4.5 km neighborhood around the recorded station

location for which the error between recorded and terrain grid elevations was minimized. The average
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absolute difference between grid and station elevation after this location adjustment was 11 m. with a
standard deviation of 39 m. The average change in horizontal location was 1.9 km. with a standard
deviation of 0.7 km. There were no significant differences between precipitation and temperature stations
or between NWS and SNOTEL stations in relocation distances.

2.8. Parameterization and Validation

Cross-validation analysis was used to test the sensitivity of these methods to variation of
parameters and to estimate the prediction errors associated with the final selected parameters. The general
cross-validation protocol is to withhold one observation at a time from a sample. generating a prediction
error for the withheld case by comparison with the observed value. and repeating over all observations in
the sample to generate an average prediction error. The sample in this case is the set of stations which
record TMAX. TMIN. or PRCP on a given day. VPD and SRAD are derived from TMAX and TMIN and [
am unable to validate them in this framework. having no pertinent observations. [ am interested in both the
absolute value and the sign of prediction errors generated in this manner. and I chose the mean absolute
error (MAE) and the bias as prediction error statistics. MAE does not exaggerate the influence of outliers.
as does the more common root mean squared error (RMSE) statistic. and it therefore provides a more
robust parameterization framework than RMSE.

The parameterization of these methods is iterative. in that all parameters relevant to the prediction
of one of the primary variables must be specified in order to generate cross-validation prediction errors.
even though optimal values for some (or. at first. all) of the relevant parameters are unknown. I isolated
sets of parameters which were not strongly mutually dependent. and tested the covariation of parameters
within these sets independently. and afterwards combined the results and performed the covariation tests
again to correct for the weaker between-set dependencies. After values for all parameters were established.
a final cross-validation analysis was performed. in which predictions were compared against observations
for both daily values and annual averages (or totals, in the case of precipitation). In the assessment of
validation results I give particular attention to daily event frequency histograms. and to the predicted and

observed relationships between precipitation occurrence and amount.
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2.9. Spatial Scaling Analysis

My methods are designed to be independent of prediction grid resolution: the process of
parameterization and validation is carried out with what are essentially point observations. and I assume
that these predictions maintain their validity when applied to the points of a prediction grid. There is
another level of abstraction involved in translating these predictions to areal totals or averages as
determined by the area of grid boxes centered on the prediction points. [ examined the effects of prediction
grid resolution on results expressed as areal totals or averages by generating a sequence of increasingly
larger prediction grids. ranging in resolution (grid point separation) from 500 m to 32 km. Digital terrain
data with a resolution of 500 m provided the starting point for this analysis. and [ aggregated this data to
successively larger grids with resolutions of 1. 2. 4. 8. 16. and 32 km. taking care to maintain the areal
correspondence of all grids. Step-wise resampling with bilinear interpolation was used to generate grids
with progressively larger cell sizes. Daily simulations for one year were performed over each grid. and a
comparison made of the areal results.
2.10. Temporal Scaling Analysis

Although these methods are formulated with a daily timestep in mind. they can be transtormed to
longer timesteps in a relatively straightforward way. [ am encouraged to attempt this transformation
because the majority of other published methods operate on monthly or annual timesteps. and because
there is ongoing interest in the intercomparison of methods. including this one. with respect to the
prediction of annual total precipitation. Here [ make a simple analysis comparing the annual average (for
temperature) or total (for precipitation) of daily predictions with an implementation that predicts the annual
averages or totals from averages or totals of the observations. This transformation is quite simple for
temperature predictions. where I replace the daily observations with the corresponding annual averages.
ignoring the S; parameter. For the case of precipitation. [ neglect the occurrence prediction. and proceed
with the amount prediction in the same way. assuming all PO, = | and ignoring S;. All other parameters are

retained as the optimized values for the case of daily predictions.
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3. Results

3.1. Parameterization

For each of the three primary variables, the interpolation parameters (c«: shape parameter. N:
average number of stations with non-zero weights. [: number of station density iterations. and R: initial
truncation radius for iterative density algorithm) are estimated independently. [ find that the prediction
errors are quite insensitive to the choice of R for all variables. as long as it is large enough that on the first
density iteration at least one station is found inside the truncation radius for each point in the prediction
grid. Given the average station density in this case. [ assign R = 140 km for interpolations for all three
primary variables. [ also find that values for [ > 3 do not generate substantially different smoothed surfaces
of R, than I = 3. and so [ = 3 is used by default in all interpolations.

Prediction errors associated with the two remaining interpolation parameters. « and N. are found
for all three primary variables to exhibit substantial covariation. Prediction errors for TMAX and TMIN
were examined for daily predictions and for annual averages of those daily predictions. and in all cases a
linear trough of minimized MAE extends from (N.«) = (25.2.0) to (45.6.0) and beyond. Because a low
value of N leads to computational savings in the interpolation process. [ chose N =30 and a = 3.0 for
interpolations of both TMAX and TMIN. The error surfaces for TMAX and TMIN predictions are similar,
and an example is given for the daily prediction of TMAX (Figure 2a). Prediction error for annual total
precipitation. summed from daily predictions and expressed as a percentage of the total observed
precipitation, also shows a linear trough over a range of N and «. but with optimal values markedly
different than for the temperature predictions (Figure 2b). I chose N =20 and « = 6.25 for the precipitation
interpolations.

S and S were tested in tandem for each of the primary variables. For both TMAX and TMIN. the
lowest prediction errors were associated with the use of recorded station elevations in the elevation
regressions: prediction error increased linearly with increasing spatial smoothing. Ss. Similarly. prediction
errors increased linearly for both TMAX and TMIN with increasing S;. with minimum errors obtained

using the unsmoothed temperature observations. Prediction errors for precipitation. on the other hand. were
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Figure 2.

Contours of mean absolute error plotted against the two most sensitive interpolation parameters,

a (Gaussian shape parameter), and N (average number of stations with non-zero weights), for a) daily
predictions of TMAX, and b) annual totals of daily predictions of PRCP. Dashed lines represent the
approximate location of the trough of minimized error, as referenced in the text. Star (*) indicates the

coordinate pair selected as the final parameter values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23



PRCP: Mean Absolute Error (% of annual total)
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found to be substantially reduced by both spatial and temporal smoothing: Sg between 2 and 8 km. and S, =
5 days. gave optimal results.

The final two model parameters. POP_, and f,_,.. are specific to the daily precipitation algorithm.
The value for POP_,, should be close to 0.5, since it sets the probability of rainfall given the weighted
occurrence at a sample of nearby stations: [f half or more of these stations record rainfall. one would
intuitively predict an event occurrence. otherwise not. Values lower than 0.5 should result in overprediction
of events. and therefore a positive bias and a large MAE for rainfall amount. Conversely. values much
higher than 0.5 should result in too few predicted events. a negative bias. and again a large MAE for
rainfall amount. This is in fact what is observed. with the smallest MAE and bias closest to zero at a value
of POP_,, = 0.50 when the annual total error statistics are measured as cm of precipitation. Expressing
MAE as a proportion of the observed totals gives an optimal value 0f 0.55. As [ am not sure which error
statistic to favor. [ chose a value of 0.52 as a compromise.

As noted in the description of the precipitation algorithm. the parameter f_,_is used to constrain
the righthand side of Eq. 4 in the case of large elevation differences and strong precipitation-elevation
gradients measured at relatively low stations. This parameter essentially embodies the method’s lack of
predictive ability for the very highest and wettest terrain. [t must assume a value less than 1.0. and should
ideally be set very close to this limit in order to allow as much information as possible from the regression
with elevation to enter the predictions. Values too close to 1.0 will result in excessive predictions at high
elevations. increasing the MAE estimated from predicted annual totals. There is a gradual decline in MAE
as f,. increases from 0.1 to 0.95. with a sharp increase in MAE for values approaching 1.0. (Figure 3).
Results are the same for MAE measured in cm of total annual precipitation and as proportions of observed

totals. and f, is set to 0.95 for these simulations. All parameters and their values are listed in Table 2.
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PRCP: Mean Absolute Error vs. fmax
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Figure 3.
Influence of £, on MAE (% of annual total) for predicted annual total precipitation. MAE is minimized at
f.. = 0.95. Similar results are obtained for MAE measured in cm.
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Table 2: List of model parameters.
(ALL indicates that this parameter is used for TMAX. TMIN, and PRCP with the same value)

Param. Description Variable Value Units
[ Number of station density iterations ALL 3 none
R Truncation radius for Gaussian filter ALL 140 km
« Shape parameter for Gaussian filter TMAX 30 none
TMIN 3.0 none
PRCP 6.25 none
N Average number of stations with non-zero weight TMAX 30 none
TMIN 30 none
PRCP 20 none
S Spatial smoothing width for elevation regressions ~ TMAX 0 km
TMIN 0 km
PRCP 3.5 km
St Temporal smoothing width for elevation regressions TMAX l days
TMIN l days
PRCP 5 days
POP_, Critical precipitation occurrence probability PRCP 0.52 none
£ Precipitation regression constraint PRCP 0.95 none

3.2. Validation

Given the parameter values established above (Table 2). [ performed a final cross-validation
analysis to assess the accuracy of these methods. [ examine here the performance of the daily predictions as
well as their annual averages and the frequency distribution of daily observations and predictions. MAE
and bias statistics for TMAX. TMIN, DTR. and PRCP are summarized in Table 3.
Table 3: Cross-validation error statistics.
Statistics for predictions of daily temperatures, annual average temperatures. and annual total precipitation.

averaged over all stations within the validation region. for 1989. Precipitation statistics are given both in
cm of precipitation per year and % of observed annual total.

Daily predictions Annual predictions from Annual predictions from
from daily daily observations annual observations
observations

Variable MAE Bias MAE Bias MAE Bias
(units)
TMAX (°C) 1.76 -0.0002 0.72 -0.07 0.72 -0.07
TMIN (°C) 1.95 +0.0001 1.24 +0.05 1.24 -0.05
DTR (°C) 2.30 -0.0003 1.41 -0.12 141 -0.12
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PRCP (cm) NA NA 13.36 -2.21 [2.24 +0.27

PRCP (%) NA NA 19.27 +3.03 18.47 +7.09

Cross-validation MAEs for daily predicted vs. observed TMAX and TMIN are 1.8 and 2.0 °C. and
MAEs for annual averages of daily estimates are 0.7 and 1.2 °C. respectively. Bias for annual average
TMAX and TMIN are -0.1 and +0.1 °C. respectively. These errors are very similar in magnitude to those
reported for annual predictions from a global database. using a simple interpolation method (Wilmott and
Robeson. 1995). and to errors for a recent point estimation method (Degaetano et al.. 1995). where a larger
prediction error for TMIN than for TMAX is also reported. Scatter-plots and frequency histograms of all
daily cross-validation temperature predictions show good agreement over most of the observed range. with
a tendency to under-estimate very warm temperatures and to over-estimate very cold temperatures (Figure
4).

MAE for daily and annual estimates of DTR are 2.3 and 1.4 °C. respectively. with a bias in the
annual averages of -0.1 °C. The trequency histogram for DTR (not shown) indicates a more serious error in
prediction of extreme values than observed for TMAX and TMIN. which is the expected result for an
aggregate variable. This information is included to give a general notion of the likely errors in the radiation
routine as a result of errors in DTR: since corrections to DTR for elevation are neglected in the radiation
algorithm there are no strictly applicable error statistics.

The validation of the daily precipitation model is somewhat more involved due to the influence of
daily occurrence predictions. Strict estimates of daily error. as performed for temperature variables. are
unenlightening: [t is a curious fact that these errors are minimized by assuming no precipitation
whatsoever. since for the climate in question this is true on a large majority of station-days. MAE estimated
from annual totals of daily predictions, as used in the model parameterization, is a much more robust
indicator of model performance. but it sheds no light on the relationship between occurrence and amount.

For example. a reasonable annual total could be attained with a large number of very small daily events or
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TMAX: Predicted vs. Observed Daily Values

i [ T T T l T T T 1 T T T I
40— s
20+ -

x L u

<

=

h i~ —

=

3 o} _

o

)

o of -

k=)

48]

a - i
-20— -
40!/ . . . ] . , . ] . . , ] , . ‘ ]

-40 -20 0] 20 40
observed daily TMAX ('C)
a)
Figure 4.

Scatter-plots and frequency histograms for daily cross-validation predictions and observations of
temperature extrema: a) TMAX scatterplot. b) TMIN scatterplot. ¢) TMAX frequency histograms. d)
TMIN frequency histograms. Solid line in scatterplots shows 1:1 relationship. Vertical histogram axes are
log-scaled to show detail in the ends of the distributions.
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TMIN: Predicted vs. Observed Daily Values
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TMAX: Predicted vs. Observed Event Frequency
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TMIN: Predicted vs. Observed Event Frequency
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with a small number of large events, and both cases are likely inaccurate. Assessments of both annual totals
and the relationship between occurrence frequency and amount are required.

MAE:s obtained from simple differences in annual totals and from percents of observed annual
totals are 13.4 cm and 19.3%. respectively. Prediction errors increase with increasing observed totals. but
are normally distributed on a log scale (Figure 5a). Estimated biases in annual totals are -2.1 cm and
+3.0%. by the two methods, and the difference in sign between these two estimates reflects the
compromise in the parameterization of POP_, mentioned earlier. Frequency histograms of predicted and
observed daily precipitation amounts (Figure 5b) show a small but consistent underprediction of event
frequency in the middle of the range (2-8 cm/day). and an overprediction of event frequency around |
cm/day. My methods accurately reproduce the frequency of both dry days and extreme precipitation
events.

Daily precipitation occurrence predictions are summarized in Table 4. Of all simulated station-
days. these methods predicted 71.5% dry and 28.5% wet. compared to observed values of 75.8% dry and
24.2% wet. with an overall success rate for occurrence prediction of 83.3% (91.4% for dry days. and
63.0% for wet days).

Table 4: Summary of daily precipitation occurrence predictions vs. observations.
For 3635 stations. over a single year (1989), for a total of 133.225 station-days.

Error matrix. % of station-~ Predicted
days
Dry Wet
Observed Dry 65.3 10.5
Wet 6.2 18.0

As an assessment of the ability of these methods to reproduce. for a given day. the relative
proportions of wet and dry areas in a large region. the predicted vs. observed spatial frequency of dry
stations is plotted in Figure 6. The frequency of dry stations is underestimated on days with widespread
precipitation, and overestimated on days with scattered precipitation. The spatial frequency is predicted

correctly in the middle of the range, when about half of the stations are wet and half dry. Figure 6
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PRCP: Predicted vs. Observed Annual Total
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Figure 5.

a) Scatterplot of annual total of daily cross-validation predictions and observations of precipitation. log-log
scales, soild line shows 1:1 relationship. b) Frequency histogram of daily cross-validation predictions and
observations of precipitation, vertical axis is log-scaled to show detail for extreme events.
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PRCP: Predicted vs. Observed Event Frequency
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Spatial Frequency of Dry Stations: Predicted vs. Observed
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Figure 6.
Predicted vs. observed spatial frequency of dry stations (scaled as a proportion of all stations); one point
per day.
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illustrates the accuracy of the average predicted occurrence distribution over the study area on any day. but
does not provide any information on the accuracy of the predicted spatial distribution of occurrence.
Plotting the spatial frequency of correct occurrence predictions against the observed spatial frequency of
dry stations (Figure 7) shows that predicted spatial distributions of occurrence are most accurate on very
wet and very dry days. and suffer in the middle range where wet and dry stations are mixed evenly.

As an indication of the accuracy with which these methods reproduce the observed relationship
between daily areal coverage of precipitation and daily average precipitation intensity. [ plot observations
and predictions of the daily total precipitation (averaged over stations) vs. the daily proportion of wet
stations. The predicted distribution matches the observations very well. with the exception of the
underprediction of the proportion of wet stations on very dry days (Figure 8).

3.3. Spatial and Temporal Scaling Analysis

[ found that areal means (for temperature predictions) or totals (for precipitation) over the study
region are preserved for a wide range of prediction grid resolutions. Areal mean annual average TMAX
and TMIN of 12.9 and -6.7 °C. respectively. and areal mean annual total PRCP of 65.2 cm were obtained
for independent simulations over nested prediction grids ranging in grid-point spacing trom 500 m to 32
km. A shift to larger grid spacing reduced the range of variation over the grid. as a result of reduced
variability in the elevations represented by the grid points.

Temporal scaling of the temperature outputs is perfect for all time steps larger than one day: the
exact same result is obtained by generating daily predictions from daily observations and averaging over a
longer time period as is obtained by generating predictions for the longer time period directly from
averaged observations for the period. This result is a consequence ot the linear nature of the prediction
algorithms. Temporal scaling of the precipitation algorithms is confounded somewhat by the binary
predictions of precipitation occurrence at the daily timestep. For predictions of annual totals from observed
annual totals. cross-validation MAEs were 12.2 cm and 18.5 %. lower by 1.2 cm and 0.8 % than MAEs
obtained from totals of daily predictions. These differences between the two time scales of prediction are

significant at the 0.01 level for both methods of estimating MAE. and provide a crude estimate of the
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Successful PO Predictions vs. Frequency of Dry Stations
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Figure 7.
Spatial frequency of correct precipitation occurrence predictions plotted against the spatial frequency of

dry stations (frequencies scaled as proportions of all stations); one point per day.
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Daily Average PRCP vs. Proportion of Wet Stations (log:log)
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Precipitation intensity vs. areal coverage for spatial averages of predictions and observations on each day

(log-log scales).
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contribution of occurrence prediction error to the daily prediction errors. There is no trend in the
differences between the daily and annual predictions over the range of predicted annual totals (Figure 9).
an indication that the prediction occurrence algorithm is not introducing significant biases which are
related to precipitation intensity. Biases for the annual predictions are +0.3 cm and +7.1 %.
3.4. Example Output

[t is not possible to illustrate here the daily sequences of predicted surfaces. and instead [ have
provided spatial output summaries. [ selected a prediction grid point spacing of 2 km for these example
results. As an example of the temporal variability in the diagnosed relationships of TMAX. TMIN. and
PRCP 1o elevation. time series of the spatially averaged regression slopes ([3,) are shown in Figure 10.
Annual aggregates of the predicted daily surfaces are shown in Figure 11 (color plates). with TAVG. VPD
and SRAD shown as annual averages, PO shown as the number of wet days for the year. and PRCP shown

as the annual total.

4. Discussion

The methods described and implemented here are essentially ad hoc. in that their design has been
guided by the particular needs of regional hydroecological process simulation. However. since one of these
needs is that the methods be applicable to multiple variables and purposes (e.g. the use of the same
interpolation weights to drive predictions of both precipitation occurrence and intensity). I arrive at the
curious case of an ad hoc methodology which is also quite general. Much of this generality stems from a
conscious decision to allow the observations to dictate. to a large extent. the interpolation and extrapolation
parameters. For example. while Daly et al. (1994) have stressed the importance of an explicit accounting of
the influence of leeward and windward aspect in distributing precipitation in mountainous terrain. [ find
that these methods faithfully reproduce the extreme differences in precipitation gradient on the west and
east sides of the Cascade range without recourse to anisotropic filtering criteria (Figure 1le). This is not to

suggest that prevailing wind conditions are an unimportant component of precipitation distribution. but
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Annual vs. Daily Predictions of Annual Total PRCP
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Figure 9.
Influence of temporal scaling on predictions of annual total precipitation: annual totals from daily
predictions plotted against annual totals from a single annual prediction (log-log scales).
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Temperature vs. Elevation Regression Slopes
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Figure 10. )
Time series of spatially averaged regression slopes (B,) for a) TMAX and TMIN, and b) PRCP. Only grid

points for which the weighted average difference in elevation berween observation and grid-cell elevafion
exceeds 200 m are included in this average. This restricts the spatial average to areas of complex terrain.
For clarity, an 1 l-day tapered smoothing filter has been applied to these time series.
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Precipitation vs. Elevation Regression Slope
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c)
Annual Average Daytime Vapor Pressure Deficit (Pa)
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f)
Annual Average Shortwave Radiation (Daylight average W/m?)
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rather to call attention to the ability of simple, isotropic methods to extract such information from a
topographic neighborhood.

The same empirical arguments for simplicity can also be made with respect to the relationship
between precipitation occurrence (or areal coverage) and intensity. In a discussion of stochastic
precipitation predictions. Hutchinson (1995) notes the disparity in spatial and temporal scales of correlation
between event-based precipitation occurrence and intensity. and suggests that these processes should be
treated separately in spatial interpolations. [ find. however. that an extremely simple abstraction of
occurrence likelihood and intensity. derived from the same spatial and temporal interpolation parameters.
gives quite reasonable results for a daily timestep (Figures 5b. 6. and 8). These results are due in part to the
use of observed as opposed to modeled or stochastic sequences of daily precipitation. Even at densities
which would generally be considered too low to resolve important spatial precipitation features. enough
information is retained to produce realistic daily time series of both occurrence and intensity trom a single.
point-wise isotropic interpolation.

The point-wise isotropic nature of these methods is in contrast to its spatially varying scaling
properties. Sensitivity to local observation density. by way of the iterative station density algorithm. is a
trait my method shares with the smoothing splines method as implemented by Hutchinson (1995). the
recursive filter objective analysis of Hayden and Purser (1995). and to some extent the topographic facet
logic of Daly et al. (1994). I suggest that it is this feature which most distinguishes these methods from
other. both sophisticated and simple. methods.

The results of my tests of the characteristic spatial and temporal smoothing scales associated with
regressions against elevation are in agreement with results reported for precipitation-elevation regressions
by Daly et al. (1994). who suggest an optimal DEM cell-size of 4-10 km. compared with my result of 2-8
km for the smoothing width. [ have not found any relevant studies with which to compare my results for
temporal smoothing width. nor have [ found any relevant references for either spatial or temporal
smoothing parameters for temperature regressions. These regressions appear to be quite sensitive to local

topography. and to atmospheric conditions with short time scales (Figure 10). It is worth noting that the
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average regression slope for TMAX is -6.0 °C/km, which agrees well with general observations of
environmental lapse rates and with the default lapse rate employed in the original MTCLIM logic (Running
etal.. [987). I plan to examine the relationship of these diagnosed slopes to synoptic atmospheric
conditions. Temporal sequences of predicted temperature surfaces show the distinct passage of fronts. and
[ hope to derive a relationship between frontal position and characteristic regression slopes using a logic
similar to the synoptic classification scheme described by Pielke et al. (1987).

The results of the spatial and temporal scaling exercises are encouraging. although the exercises
themselves are not very sophisticated. [ can be reasonably certain that the choice of prediction grid
resolution will not have any noticeable effect on areal averages or totals of the primary variables when
measured at scales considerably larger than the grid resolution. For example. if only very coarse spatial
outputs are required. a widely spaced grid will give the same result as a finer and more computationally
expensive grid. given that care is taken in the translation of the elevation data between grids. The temporal
scaling properties of the temperature prediction algorithms eliminate any uncertainty associated with
predictions at different time-steps. The close agreement between predicted annual total precipitation at
daily and annual timesteps (Figure 9) gives confidence in the application of these methods in a
climatological mode. but a more detailed analysis is warranted.

Spatially distributed and relatively accurate near-surface air temperatures. in combination with
remotely sensed surface temperature, can provide estimates of surface resistances (Reginato etal.. 1985.
Seguin et al.. 1994). Such estimates. based on observation. can be used to validate and refine spatially
explicit estimates of surface resistance that are derived from simulations. The combination of surface and
satellite observations should allow a regional assessment of evaporation and resultant soil moisture stores
as presented by Saha (1995). and could lead to improvements in the initialization of surface moisture tields
for coupled atmosphere-terrestrial ecosystem simulations (Pielke et al.. 1993). Ten years ago. Eagleson
(1986) reported that macroscale field observations were limiting the advance of hydrological science: [ see

the methods presented here as an attempt to overcome such limitations.
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Chapter 3
Description of a numerical simulation model for predicting the

dynamics of energy, water, carbon, and nitrogen in a terrestrial

ecosystem

1. Introduction

[ will refer to the model described here as |D-BGC (1 Dimensional BioGeoChemistry). [ have
three purposes in this description of ID-BGC. My first purpose is to present the theoretical background in
biophysics. physiology. and system-level ecology from which an outline of the processes controlling matter
and energy dynamics in a generalized terrestrial ecosystem can be drawn. My second purpose is to distill
from this outline a logic by which the most critical processes and states can be predicted. given the need for
input parameters which have been, or which can be, observed for a large range of ecosystem types. My
third and final purpose is to present the operational detail of an implementation of this logic. with attention
to the points where [ see the most potential for future improvements in the faithtul representation of the
essential processes and states.

The definition of "essential processes and states" represented by a model depends largely on its
intended application. The design criteria for the model presented here were not set entirely by the
objectives of my dissertation research. but were defined more broadly. Much of the fundamental logic for
[D-BGC springs from the FOREST-BGC family of models (Running 1984. Running and Coughlan 1988.
Running and Gower 1991. Hunt and Running 1992). Some important changes in model structure and
function have been implemented since the last complete model description (Running and Coughlan 1988.
Running and Gower 1991) was published, and a new reference point was required for the ongoing research
programs using the BGC model family. Since [ had created a new "standard" model version during my
participation in the [nterior Columbia River Basin Ecosystem Assessment. and since that version had been

found to be generally useful. [ took on the task of formalizing. updating. and documenting a new version of
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the model. The result is ID-BGC. and this chapter serves as a complete description of the new model

version.

2. Overview of model structure and components

The most basic component of the model is its temporal framework. which consists of'a dual.
discrete timestep approach similar to the implementation in previous versions of the BGC logic. Most
simulated ecosystem activity occurs at a daily timestep. driven by daily values for temperature.
precipitation. radiation. and humidity. Examples of processes assessed daily are soil water balance.
photosynthesis. new leaf and fine root growth and litterfall. and carbon and nitrogen dynamics in the litter
and soil. A few processes. including the determination of phenological timing and the allocation of plant
stores of carbon and nitrogen to growth of new tissue. are treated on an annual timestep. The model
structure assumes that a simulation begins on January | and ends on December 3| any number of vears
later. with all years having 365 days (no leap days). Since it is intended for general application over global
domains. there is treatment of both northern and southern hemisphere simulations. without having to start
them on different days.

The next most fundamental characteristic of the model is its spatial framework. The model's

name. One Dimensional BioGeoChemistry. implies a simple spatial structure. The single dimension in

question is defined by the vertical extent of a vegetation canopy and its rooting system. None of the
simulated processes are influenced by lateral or horizontal dimensions. and so influences such as
subsurface water drainage from upslope sources or the effect of adjacent land surfaces on the temperature
and humidity of the near-surface air are ignored. For convenience in calculations. and to keep model
parameters and outputs dimensionally consistent with observations. an arbitrary unit of horizontally
projected area is defined. over which all fluxes and storages are quantified. Complete horizontal
homogeneity is assumed within that unit area. which by default is one square meter. This horizontal square
meter and the vertical extent of the canopy and its rooting system define the maximum physical boundaries
of the simulation system. which I will refer to often as simply "the system". It includes all the living and

dead plant material. the air within the leaf or shoot boundary layer. the air within the boundary layer of the
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litter/soil surface. all mineral and organic matter making up the soil and litter down to a depth at which
penetration by the root system is negligible, all the water held in the soil down to that same depth. and any
water held on top of the soil as snow.

che structural and functional attributes of 1D-BGC are founded on the principles of conservation
of energy and conservation of mass. These principles are applied to four fundamental quantities. or state
variables: shortwave radiant energy. water. carbon. and nitrogen. The principle of conservation means that.
for any one of these state variables, the sum of all inputs to the system. less the sum of all outputs. is equal
to the net storage of that component within the system. The basic structural components of 1D-BGC are
compartments. or pools. capable of accepting, releasing, and storing the state quantities. The basic
functional components of the model are fluxes linking these pools to each other and to the external
environment. and which are driven and controlled simultaneously by a range of external and internal
factors.

System behavior over time is regulated by various control mechanisms generally consisting of
feedback loops by which knowledge of a previous state or flux influences a current flux. In the
development of ID-BGC. I have tried to limit the number of feedback control mechanisms. [ view them as
the embodiment. in algorithm form. of the evolutionary history of the ecosystem. the anti-entropic
responses of the plants and microorganisms to their environments. They are difficult aspects of the
ecosystem to quantify (Hunt er al. 1985. Field et al. 1992. Makeld er al. 1996. Beringer et al. 1996). and are
difficult aspects of an ecosystem model to defend. My goal has been to represent the physical and
biochemical processes in as much detail as can be quantified for a wide range of global vegetation types.
and to include only enough feedback controls, judiciously placed. to provide the plants with buffers against
the more extreme intra- and inter-annual variations in their physical environments. To this purpose. [ have
excluded a number of widely recognized genotypic and phenotypic feedback responses. such as the
influence of water and nitrogen availability on leaf to fine root allocation ratios, and the influence ot soil
nutrition on foliar nutrient content. The rationale for such exclusions is my belief that an understanding of

system dynamics can be obscured by the excessive implementation of feedback control. I would rather
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present a model that is too simple, but tractable. and improve it by adding controls as deemed essential.
than present a model that is too complex, and through intractability be forced to excise inessential controls.

[n the following paragraphs I outline the principal flows and storage compartments for each of the
state variables: shortwave radiant energy, water, carbon. and nitrogen. These outlines are faithful
condensations of the details presented later. and their purpose is to introduce the reader to the basic model
structure, to highlight the points of input and output. and to demonstrate that numerous linkages exist
between components.

Shortwave radiant energy input is prescribed. Upon entering the system it is divided into a
reflected proportion and an absorbed proportion. The reflected proportion is assumed to leave the system
without further interactions (e.g. there is no explicit within-canopy scattering of shortwave radiation).
Absorbed radiation is further partitioned between a fraction absorbed by the canopy and a fraction absorbed
beneath the canopy at the litter/soil surface. Of the fraction absorbed in the canopy. a further division is
made between a fraction absorbed as direct radiation on sunlit leaves and a fraction absorbed as diftuse
radiation on shaded leaves. Each of the absorbed fractions of the incident shortwave radiation is made
available as energy which is either used for the evaporation of water at the absorbing surface or stored at
the surface in the form of kinetic energy which serves to increase the surface temperature. Absorbed
photosynthetically active radiation (APAR) is calculated as a function of the canopy absorption of
shortwave radiation and used in the photosynthetic sub-model described below.

Water input to the system occurs only as precipitation. which is prescribed. Precipitation can
occur as Snow or as rain. As snow. it enters a snowpack compartment which can later be melted. Rainfall
may be intercepted on the canopy. where it either evaporates or falls to the surface as leaf-drip. Raintall
not intercepted on the canopy, as well as leaf-drip and melted snow water. enter the soil water
compartment. Depending on a prescribed soil texture. water entering the soil can be immediately or slowly
released as runoff. or it can remain in the soil until it is either evaporated from the litter/soil surface. or
transpired through the canopy. Evaporation and transpiration are driven by absorbed shortwave radiation.
atmospheric vapor pressure, and surface temperature and humidity, and are mediated by conductances to

the transport of sensible heat and water vapor. Water leaving the system through transpiration is strongly
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controlled by the conductance of stomates to water vapor diffusion. which is a biological feedback response
depending on APAR. leaf temperature, atmospheric water vapor pressure. soil water content. and the night
minimum temperature. The surface conductance of the litter/soil surface to evaporated water vapor is a
function of the time since a rain or snowmelt event. All evaporation and runoff flows are considered as
outputs from the system.

Carbon enters the system through the process of photosynthetic fixation of atmospheric carbon
dioxide (CO,). This process is driven by APAR. the canopy air concentration of CO., and the
concentration and activity of photosynthetic enzymes in the leaves, and is mediated by leaf temperature and
the stomatal conductance to CO,. Carbon fixed by photosynthesis can either be deposited as new growth in
any of the plant tissues (leaf. live stem. dead stem. live coarse root. dead coarse root. or fine root). or
respired and returned to the atmosphere. Growth of new tissue requires a one-time expenditure of fixed
carbon as growth respiration. and all live tissue requires an expenditure of fixed carbon as maintenance
respiration during every daily timestep. Maintenance respiration is sensitive to tissue temperature and
tissue nitrogen content. Carbon fixed as growth of new leaves or new fine roots can leave the live plant
compartments and enter the litter either through litterfall or through whole-plant mortality. Carbon fixed as
live stem or live coarse root growth can turn over to dead stem and dead coarse root. and both live and dead
stem and coarse root components can enter a coarse woody debris compartment as the result of whole-plant
mortality. Through physical disintegration, coarse woody debris enters the litter pools. Litter is acted upon
by decomposing microorganisms. resulting in both respiration and conversion of litter carbon to soil
organic matter carbon. Soil organic matter carbon is itself acted upon by microorganisms. resulting in
respiration and further organic matter conversions. Litter and soil organic matter decomposition rates are
related to gross chemical composition (e.g.. cellulose. lignin. and humic material have distinct
decomposition rates). to substrate carbon to nitrogen ratios (C:N), to soil mineral nitrogen availability. and
to soil temperature and water content. Respiration (autotrophic and heterotrophic) is the only pathway for
carbon leaving the system.

Nitrogen enters the system through the deposition of mineral nitrogen from the atmosphere to the

soil. where it enters the soil mineral nitrogen pool. Soil mineral nitrogen can be incorporated into soil
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organic matter through the action of soil microorganisms that are feeding on litter material
(immobilization). or it can be taken up by the vegetation for incorporation into new tissue growth, or it can
be leached from the soil under conditions of soil water saturation. Nitrogen immobilized in soil organic
matter can later be released in mineral form (mineralized) as the carbon component of the organic matter is
respired. Mineralized nitrogen enters the soil mineral nitrogen pool. All the same factors controlling the
decomposition of litter and soil organic matter carbon also influence the immobilization and mineralization
of litter and soil nitrogen. Nitrogen taken up by plants can either be incorporated in new growth. or. in the
case of excess nitrogen with respect to some other growth-limiting resource (carbon. water. or light). it can
be returned to the soil mineral nitrogen pool. Nitrogen fixed in new growth can be returned to the litter
through littertall of leaves and fine roots. or it can leave the plant as a component of coarse woody debris.
after which it undergoes physical disintegration before entering the litter. Nitrogen leached from the soil

mineral pool leaves the system. and this is the only pathway for system nitrogen loss.

3. Detailed description of shortwave radiation budget

Shortwave radiation is defined here as all radiation in the spectral region between 300 and 3000
nm. Over 98% of the solar energy entering Earth's atmosphere occurs in this wavelength region. about
45% of that occurring as visible wavelengths (~ 400-700 nm). 53% as near- and mid-infrared wavelengths
(700-3000 nm), and the remaining small fraction as ultraviolet radiation (~ 300-400 nm) (Jones 1992.
Nobel 1991).

3.1 Shortwave radiation inputs

The model requires an input time series of daily shortwave radiation. quantified as the radiant flux
density in Wm™. measured normal to the simulation surface. averaged over the daylight portion of the day.
Daylight is defined as the period when the sun would be above a flat horizon. ignoring the influence on

daylength of topographic shading of direct radiation.' [n addition to this daylight average shortwave

! Note that in practice. when a 1D-BGC simulation is driven by output from Daymet or its one-dimensional
predecessor MT-CLIM (chapter 1), daylength is calculated as described above, but total radiation in each
discrete sub-daily time interval is calculated by summing diffuse and direct radiation. with the local slope
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radiant flux density (Rs. W m™), the model also requires the daylight average radiant flux density occurring
as photosynthetically active radiation (PAR), in the wavelength region from 400-700 nm (Rp.g. W m™). for
use in driving the photosynthesis sub-model. This quantity can either be supplied from an external source.
or the following simple assumption relating Rpag to R can be employed within the model when only R, is
available as an external data source (Nobel 1991):

Rpar =045 R,

An important simplifying assumption implicit in the model is that the radiation inputs (both Ry
and Rp4gr) for each day consist of a direct component (sunlight) and a diffuse component (skylight). with
the ratio between them remaining constant through the course of a day. This assumption is obviously
unrealistic. since it ignores the fact that differences in cloudiness alter the proportions of daily total
radiation received as direct and diffuse components. However. since the assessment of sub-daily. or even
daily. proportions of direct and diffuse radiation with better accuracy than provided by the gross
assumptions made here would be very difficult over large areas without intensive measurement effort
(Gates 1980). The inclusion of an explicit treatment of variable direct and diffuse components of incident
radiation complicates the estimation of radiation absorption by the vegetation canopy (e.g.. de Pury and
Farquhar 1997). [ have therefore chosen to ignore the complicating details and accept the ensuing errors.
3.2 Canopy radiation absorption and fractionation between sunlit and shaded portions

A simplification made in many ecosystem process models is to assume a single average irradiance
for the entire vegetation canopy as a function of the canopy projected leaf area index (Lp. the projected leaf
area per unit of ground area, unitless) and a unitless coeflicient describing the progressive absorption of
shortwave radiation with increasing Lp (the extinction coefficient. ks) (Running and Coughlan 1988.
Running and Gower [991. Hunt and Running 1992. Potter er al. 1993. Sellers et al. 1992. Keane er al.
1996a). The responses of leaf-scale stomatal conductance and photosynthesis are non-linear with respect to
absorbed radiation. and so the big-leaf assumption can result in serious errors in both water and carbon

budgets for the whole canopy. as has been demonstrated in theory and through comparison with

and aspect influencing the duration through the day of direct radiation inputs. Shading from adjacent
terrain elements is still ignored.
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observations by Sinclair et a/. (1976). Norman (1980). and de Pury and Farquhar (1997). Division of the
canopy into multiple layers having different radiation loads helps to correct for these errors. de Pury and
Farquhar (1997) show that a division into only two layers. corresponding to sunlit and shaded canopy
fractions. is a significant improvement over the single-layer approach. and is nearly as accurate as an
approach using more than two layers. [ elected to implement a two-layer approach in 1D-BGC. with
estimates of radiation interception, canopy evaporation. stomatal conductance. transpiration. and
photosynthesis treated separately for the sunlit and shaded canopy fractions. My implementation is not as
refined as that described by de Pury and Farquhar (1997). having a simpler treatment of direct and diffuse
radiation components. The new algorithms use the same model input parameters required by the big-leaf
treatment in earlier BGC versions. Details of the canopy radiation absorption and transmission algorithm
are presented below.

Total shortwave flux density absorbed at the surface (Rs 1) is calculated as a function of incident
radiation and reflectance from the surface (surface shortwave albedo. us. unitless):

Rsr=Rs (1.0 - ag)
where Ry 1 includes both canopy and litter/soil absorption. Of this total. the amount absorbed in the canopy
as a whole (the total of sunlit and shaded layers) is estimated by assuming a Beer's law form for canopy
radiation interception (Campbell 1977):

Rsc = Rsr (1.0 - exp(-kq Lp))
where R ¢ is the total canopy absorbed shortwave flux density (W m™). The extinction coefficient kg is
prescribed. and is defined as the total leaf area projected on a horizontal surface (when the leaves are in
their canopy orientation) divided by the total projected leafarea. The shortwave radiation transmitted
through the canopy and absorbed at the ground surface (Rs ) is calculated as:

Rsg=Rs1-Rsc

Leaves are relatively transparent to near-infrared wavelengths. compared to visible wavelengths.
and so in general the canopy extinction coefficient for PAR is higher than for total shortwave radiation.
while the percent surface reflectance is lower (Jones 1992). Based on data in table 2.4 from Jones (1992). 1

define the surface albedo in the PAR region (ctpar) and the canopy extinction coefficient for PAR (kpag) as:
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apar =as/ 3.0

kpar = 1.2 kg
and the total par absorbed by the canopy surface (Rparc) as:

Rearc = Rpar (1.0 - apag) (1.0 - exp(-Kpar Le))
Separate calculations for canopy absorption of shortwave radiation and of PAR are employed because leaf
temperature and therefore canopy evaporation and transpiration depend on total shortwave radiation. while
stomatal conductance and photosynthesis depend more directly on PAR.

The theoretical treatment of canopy fractions in sunlit and shaded conditions by Campbell (1977).
Jones (1992). and de Pury and Farquhar (1997). depends on sub-daily resolution of instantaneous solar
elevation angles and incident fluxes. A mechanistic description of the canopy light interception mechanism
is developed most naturally for this instantaneous flux case. but it is computationally expensive. and
sensitive to details of canopy leaf orientation which are frequently poorly defined over large regions. In
contrast. | D-BGC makes the simplifying assumption that a single daily estimate of canopy radiation
processes can be performed using daylight average radiant flux density and extrapolated meaningfully to a
daily integral through the calculated daylength. This assumption remains largely untested. Some support
for the assumption comes from a recent comparison of sensible and latent heat fluxes and soil water
dynamics simulated by various land-surface parameterization schemes (including Biome-BGC). The
schemes showed similar results for annual totals of evapotranspiration even though some of them operated
on sub-daily timesteps. some on daily timepsteps. and some on monthly timesteps. Predictions of
seasonal total evaporation from the daily and monthly models came nearer to observed values than did
predictions from the models with sub-daily timesteps (Shao and Henderson-Sellers 1996. Parton er al.
1996).

The theoretical formula for the sunlit leaf area index (L,,,) in a canopy with horizontally oriented
leaves receiving only direct sunlight is independent of solar elevation angle. and is defined as (Jones 1992):
Eq. 3.1 L,,,=1.0-exp(-Lp)
while the same quantity for a canopy with leaves oriented at an angle is dependent on an extinction

coefficient (k) that varies with leaf angle and solar elevation:
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Eq.3.2 Ly, =(1.0-exp(-k Lp))/k
These equations imply that. for a horizontal leaf angle, the maximum sunlit leaf area index is 1.0. while the
maximum for an angled leaf canopy is L/k, which is typically less than 1.0 for the sun lower than 40° above
the horizon and greater than 1.0 for the sun higher than 40° (Jones 1992). Eq. 3.1 then resembles an
average of Eq. 3.2 over a typical low-to-mid latitude range of diurnal solar angles. Since the 1D-BGC
algorithm is intended to approximate the average daylight condition. [ use Eq. 3.1 to predict the leaf area
receiving direct sunlight. Because the incident radiation is assumed to be calculated as a value normal to
the ground surface. and because the empirical, prescribed value of kg is intended to account for the
cumulative influence of leaf angle, leaf clumping, and solar angle variations on radiation interception
(Campbell 1986. Sampson and Smith 1993. Yang et a/. 1993, Fassnacht er al. 1994. Hirose and Werger
1995). [ use the following formula to calculate the shortwave radiation intercepted per unit projected leaf
area in the sunlit fraction of the canopy (R'sq,) (Jones 1992):

R'ssun = ks Rg
while the total radiation absorbed in the sunlit canopy fraction (Rg s.) 18:

Rssun = ks Rs Lyun
The remainder of the total canopy absorbed shortwave radiation is assumed to be the total absorbed by the
shaded canopy fraction (Rg spade):

Rsshade = Rs.c - Rsun
The shortwave radiation absorbed per unit of projected leaf area in the shaded canopy fraction (R's sa¢c) 1s
then:

1 —
R S.shade — RS.shad: / Lshadc

where Lg,q. is the shaded canopy leaf area index, defined by:

Lhade = Lp - Lsun

Because L, does not depend on any factors that differ in treatment between shortwave radiation
and PAR. the same values for L, and L. are used in the equations for the fractionation of canopy

absorbed PAR:

Rparsun = Kpar Rpar
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R'par.sun = Rearsun / Lsun

Rparshage = Rpar.c = Rparsun

R'p R shade = Rpar shade / Lshade
where Rpag sun 15 the total PAR absorbed by the sunlit canopy fraction, R'pag suq is the PAR absorbed per
unit sunlit projected leaf area. Rpag_snage iS the total PAR absorbed by the shaded canopy fraction. and
R'parshade 15 the PAR absorbed per unit shaded projected leaf area. The values for radiation absorbed in the

canopy and by the litter/soil surface are used to estimate evaporation. transpiration. and photosynthesis.

4. Detailed description of the water budget

Water state variables are denoted by a subscripted W. and are all defined with units of kg (H,0)
m™ (ground surface). Water can be stored in the snowpack. in the soil water. and as canopy intercepted
water. Of these. the snowpack and soil water compartments can accumulate and lose water mass over the
entire duration of a simulation. while the canopy intercepted water compartment is forced to zero mass by
the end of each daily timestep, with no day-to-day storage of intercepted water on the canopy. Water
fluxes. denoted by a subscripted Q, are calculated either as kg m~ d™' oras kg m™s™. but all tluxes are
converted for final reporting and integration with other sub-model components to units of kg m=d™".

Water input is entirely from precipitation. Output is either as evaporation (from litter/soil surface.
from canopy intercepted water. or from transpired soil water), or hydrologic outflow. Evaporation is
assumed to enter the atmosphere without changing the prescribed surtace humidity. Hydrologic outtlow is
assumed to drain to soil layers below the level at which the vegetation rooting system becomes negligible.
or 1o enter a stream channel either through overland or subsurface flow.

4.1 Soil water potential and volumetric water content

The balance of water inputs to and outputs from the soil water compartment determines the soil
water content. All inputs and outputs are accounted for at the end of each daily timestep. and the
volumetric soil water content (8, volume of water per volume of soil in rooting zone) relevant to
calculations during a given day is the value resulting from the balance between the previous day's inputs

and outputs. The soil volume in the rooting zone is calculated for a reference area of | m” by multiplying
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the prescribed depth of the rooting zone (d;oor) by | m% In prescribing d,, it is assumed that any fraction
of the soil volume taken up by rocks is corrected for by reducing dy. In the estimation of stomatal
conductance to water vapor diffusion, described below, an estimate is required of the soil water potential
(w. MPa). An empirical estimate of y can be obtained from the relationship:
b
E¢¢1w=wmﬂgq
Oar

where v, is the soil water potential at saturation. 0,,, is the volumetric water content at saturation. and b is
an empirical shape parameter (Clapp and Hornberger 1978. Cosby er al. 1984. Saxton et al. 1986). An
empirical study by Cosby er al. (1984) related the parameters . 0. and b 0 soil texture for 1448 soils of
differing textures and source regions. They defined texture as the percentage. by volume. ot sand (Pgng).
silt (Py,y). and clay (P.p,y) in the soil. after correcting for rock fraction. Particle classes were defined by size
according to the USDA system (Saxton er al. 1986), where sand = 2.0 to 0.05 mm. silt = 0.05 t0 0.002 mm.
and clay <0.002 mm. Multivariate regressions from the Cosby et a/. (1984) are used in ID-BGC to
estimate W, 85 and b. using prescribed values for Pag. Poy, and P,y

W = -9.8e-5 exp[(1.54 - 0.0095 Pgpq + 0.0063 Pyy) log(10.0)]

8,5 =(50.5 - 0.142 P4 - 0.037 Py, / 100.0

b=-3.10-0.157 Py + 0.003 Pyppg
The treatment of hydrologic outflow requires an assessment of the volumetric water content at tield
capacity (8y.), where field capacity is defined as a water potential of -0.015 Mpa (W. Parton. personal
communication). 8y is calculated by inversion of eq. 4.1. with . =-0.015 MPa. to give:

!

—0015]5
Wen

O = esa((

Also required in the calculation of soil water balance are the field capacity and saturation values for 6
converted to soil water contents (W and W, kg H.O m? ground area). and these are calculated as:
W = 1000.0 d,o,; B¢

W = 1000.0 dyop1 B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

where 1000.0 is the density of water, assumed to be constant (kg m?).
4.2 Precipitation input and canopy interception

Water input as precipitation is prescribed as a daily total. When the daily average air temperature
(T, calculated as the average of prescribed daily maximum and minimum temperatures) is above
freezing. all precipitation is assumed to enter as rain (Wpq,,). and when T,,, is at or below freezing
precipitation is assumed to enter as snow (Wy,o.) . Snow enters the snowpack compartment (W goupaet)-
ignoring the possibility of interception of snow on the canopy.

On days with rain. the daily total of rain intercepted on the vegetation canopy (W,,) and
throughfall of rain entering the soil water compartment (Qpunson) are estimated as:

Eq. 4.2 W, =thelesser of jkin Waoin Lal or Wl

Qrinson = Waun - Win
where Kkqy, 1s the canopy rainfall interception coefficient. with units of kg water intercepted per kg water in
gross rainfall per unit all-sided leaf area index per day. and L, is the all-sided leaf area index. L, is used
here instead of Lp because the majority of literature studies of use in parameterizing kg, report L. and
conversions to projected LAI are not always available from the source literature. A more mechanistic
approach to interception estimation is possible when the sub-daily timing. intensity and duration of rainfall
are known. in which case interception losses can be estimated from the simultaneous accumulation and
evaporation of canopy intercepted water. assuming knowledge of a canopy storage parameter (Gash 1979.
Dolman 1987. Lankreijer er al. 1993. Gash et al. 1995). Since the design of | D-BGC is predicated on the
assumption that only daily total precipitation is available. a more approximate. empirical approach is
required.

A comparison of several explicit models for canopy interception and evaporation. using
observations from both needleleaf and broadleaf canopies in temperate climates. found that total canopy
water storage capacity (related to leaf type and leaf area) and evaporation environment during precipitation
events (related to general climatology) dominate the interception process (Lankreijer et al. 1993). This
result suggests that an empirical model such as Eq. 4.2 could be parameterized on the basis of studies

covering the major vegetation types and climatic regions of the world (e.g.. temperate needleleaf. tropical
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broadleaf. etc.). The empirical parameter k,;, can be determined from observations of gross rainfall (P).
interception loss (I), and canopy leaf area. Several studies have reported these data for a variety of
vegetation types and climates, and estimates of ki, derived as:

Knin =17 (P L4)
fall in a relatively narrow range from 0.035 to 0.063 (Table 1).

Table 1. Estimates of k.;, derived from other studies

I/’P L, Keain climate vegetation reference

0.19 53 0.036 temperate pine Kelliher et al. 1992
0.12 23 0.052 temperate pine Gash et al. 1995
0.19 54 0.035 temperate broadleaf Klaassen et al. 1996
0.20 4.9 0.040 temperate broadleaf Lankreijer et al. 1993
0.40 6.4 0.063 wopical broadleaf Scatena 1990

The mean k., for temperate forests is 0.041. The single value in Table 1 for tropical forests may be higher
than is typical for most tropical forests. due to relatively high VPD and low rainfall intensity at the study
site (Scatena, 1990). Many studies reporting P and [ do not report the canopy LAI (in either all-sided or
projected units). With some additional information for these sites the number of useful studies could be
doubled.

Eq. 4.2 may be an unwarranted oversimplification of the interception process. since it appears that
the relationship between [ and P for a constant LAl is linear. but that it has a positive intercept. such that for
precipitation events smaller than some critical value, all precipitation is intercepted (Giacomin and Trucchi
1992). [t is not clear from the available studies whether and how this intercept varies with changing LAL
The result of ignoring this intercept in Eq. 4.2 is that interception losses for low precipitation events will be
underestimated and losses for larger events will be overestimated. Since the parameterization of Ky
depends on long-term average data. the resulting long-term average predictions should still be accurate.
Because daily variation in rainfall intensity. duration. and atmospheric evaporative demand during
precipitation results in significant variation of interception losses around the average value obtained for kpyn
(Gash 1979. Gash et al. 1995), corrections to Eq. 4.2 for positive intercept may be insignificant in
comparison with other confounding factors.

4.3 Evaporation of canopy intercepted water
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Of the canopy daily intercepted rainfall some may be evaporated. with any remainder sent to the
soil water. The Penman-Monteith equation is used to calculate the evaporation of canopy intercepted water
as a function of the air temperature, air pressure. vapor pressure deficit (VPD. Pa), radiant flux density. and
resistances to the transport of sensible heat and water vapor. Currently. all canopy intercepted water
evaporation is assumed to take place during the daylight portion of the day. On a given day. there can be
both evaporation of canopy intercepted water and transpiration of soil water through the canopy. Because
these two processes. evaporation from and transpiration through the canopy. both depend on the radiation
absorbed in the canopy during the day. and because transpiration will be limited when the evaporation of
intercepted water is occurring (due to a low VPD between the intercellular air space and a moist leaf
boundary layer). [ assume that the daylight period is split between a period when only canopy evaporation
ot intercepted water is occurring, and another period when only transpiration is occurring. In order to
calculate this split. an instantaneous rate of canopy evaporation (E,,. kg m™ s™") is first calculated from the
Penman-Monteith equation (hereafter referred to as PM(T.R.r.r,), where T will be replaced with the
relevant air temperature (°C). R will be replaced with the relevant radiant flux density (W m™). and r, and
r, will be replaced with the relevant resistances to the transport of heat and water vapor (s m™).
respectively) as:

Ein = PM(Taay- Rs . Ten- tev)
where Ty, is the daylight average air temperature. and rcy and rc, are. respectively. the canopy total
resistances to sensible heat and water vapor transport. For the case of evaporation from the leaf surface. rey
and rc, are equivalent. and are equal to the inverse of the leat boundary layer conductance (gy. m s see
discussion in section 4.6, below) scaled by the projected leaf area index for evaporation from canopy
elements in parallel:

teh = Tew = 1.0/ (go Lp)

The time required to evaporate all the intercepted canopy water (tg. s) is then calculated as:

te = Win/ Eint

[f tc is shorter than the daylight part of the day (tji. s), then the daily amount of canopy water evaporated

(Quneg) is:
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Qine = Wint
and the remaining daylight time is allocated for transpiration (tr. s):

tr = Gighe - g
Otherwise. the daylight period is not long enough to evaporate all the canopy water. and the actual amount
evaporated is defined as:

Qince = Eine Uight
and tr is set to 0. since the entire daylight period is used evaporating canopy water. In this case. the
difference between W, and Qj, g is sent to the soil water compartment:

Qinesoit = Wi = Qince
4.4 Losses from the snowpack

Water can leave the snowpack either through melting. by which it enters the soil water
compartment. or through sublimation. by which it is lost to the atmosphere. Melting is only possible when
T, is above freezing. and consists of two components. one driven by the air temperature and another
driven by the radiation absorbed by the snowpack. The daily amount of snowmelt due to temperature
(Qsnow.r) 18

Qsnow.r =0.65 Tyyy
where 0.65 is the temperature snowmelt coefficient. with units of kg H,O m™ d"' °C”' (Running and
Coughlan 1988). The daily amount of radiation-driven snowmelt (Quow.r) for above-freezing conditions is:

Qunowr =0.33 Rs g tight / He
where Hy, is the latent heat of fusion of water (J kg") and 0.33 is the assumed absorptivity of snow in the
shortwave region (Marks er al. 1992). No sublimation (or evaporation) occurs on days with T, above
freezing. With T, at or below freezing, only sublimation occurs. and is estimated as:

Esnow = 0.6 RsG tiighe / Haup
where H,,, is the latent heat of sublimation of water (J kg™"). Total snowmelt water entering the soil water
compartment (Qgowson) 1S then:

anow.sml = anow.T + anow.R

with the following condition testing for daily snowmelt greater than total snowpack:
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if (Qunow.sott > Winow) * Qsnow.soit = Wnow. and Wiew =0.0
4.5 Evaporation from the litter/soil surface

When there is no snowpack. water can be evaporated from the litter/soil surface. The resistance to
water vapor transport across this surface is estimated as a function of the number of days since the last
rainfall or snowmelt event, in an effort to simulate the retarding etfect of soil surface drying on the
diffusion of water vapor from lower soil layers to the surface. Based on a number of studies in which the
apparent soil surface resistance was measured as the soil surface was progressively dried. [ set the soil
surface resistance to water vapor transport (rs,, s m”') over the first 8 days after the most recent rainfall or
snowmelt event as:

rs, = [500. 1000. 2000, 4000. 8000. 16000, 100000. 1000000]
and rs, = 1000000 s m™ for more than 8 days since the most recent rainfall or snowmelt event (Camillo and
Gurney 1986. Mahtouf and Noilhan 1991. Van de Griend and Owe 1994). The Penman-Monteith equation
is used to estimate the instantaneous evaporation from the soil surface under daylight average
meteorological conditions (Esoy, kg m s as:

Eson = PM(Tsou: RsG- Tshs Tsv)
where T, is the estimated soil temperature (°C)in the upper 10 cm of the soil. determined using an 1 l-day
running average of the daily average air temperature (T,.,). according to the methods in Zheng er al.
(1993). The total flux leaving the soil water compartment due to evaporation (Q;oug) is:

Qsoite = Esou ighe

The variable rg, is the soil surtace resistance to sensible heat transport. which. in theory. varies
with windspeed near the soil surface, soil surface roughness. and vertical air temperature profile. It has
been found in practice to have a relatively small range with an average value close to 50 s m™ (van de
Griend and Owe. 1994). [ have taken that value as a constant. Soil water loss to evaporation is removed
from the soil water compartment. [t may. in future model development. be advantageous to introduce a
slightly more complicated treatment of soil water, which would account for the top one or two cm of the
litter/soil depth as a separate compartment from which soil water evaporation would be drawn. This would

allow for a more rigorous treatment of both soil surface resistance and soil surface evaporation (Mahfouf et
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al. 1996. Shao and Henderson-Sellers 1996, Shao ez al.. 1994. Mahfouf and Noilhan 1991). Some testing
of this approach is warranted, and data from intensive field measurement campaigns are available for
comparison of model and observed fluxes under several different climates (Mahfouf et al. 1996). Since
one additional soil layer amounts to more than a doubling of the complexity of the soil water calculations.
improvements would need to be significant to warrant a change from the current model logic.

4.6 Transpiration and controls on stomatal conductance

Fluxes of transpired water vapor are calculated at the level of the leaf. using the Penman-Monteith
equation. Separate calculations are made for the average leaf-level conditions in the sunlit and the shaded
canopy fractions. These fluxes are scaled to canopy values by multiplying by the relevant leaf area. and the
total canopy transpiration flux is obtained as the sum of the canopy-level fluxes for the sunlit and shaded
canopy fractions.

The Penman-Monteith equation relies on a description of resistances or conductances to sensible
heat and water vapor transport away from a surface. where conductance (g. m sy is simply the inverse of
resistance (g = 1/r). In most of this section I use conductances. since it simplifies the algebra. The source
of sensible heat for a leaf is assumed to be the leaf surface. and so the pathway of transport of sensible heat
away trom the leaf consists simply of passage through the leaf boundary layer. the thin layer of laminar
(non-turbulent) tlow adjacent to the leaf. The conductance associated with passage of sensible heat through
the leaf boundary layer (g,) depends on the size and shape of the leaf and the windspeed. and is typically
large for narrow or needle-shaped leaves (~0.1 m s’l) and smaller for broad leaves (~0.01 ms™) (Jones
1992, Nobel 1991). The source of water vapor being transported away from a leaf during transpiration is
assumed to be the exposed cell-walls inside the stomatal cavity. and the pathway for this transport is more
complicated than for sensible heat. Water vapor can leave the stomatal cavity either through the stomates
or through the leaf cuticle. Conductance along the stomatal pathway varies depending on stomatal
aperture. Conductance along the cuticular pathway is relatively constant and generally very low. Leaf-
scale stomatal conductance (g,) approaches cuticular conductance (g.. 0.00001 to 0.0004 m s, Kdmer
1995. Jones 1992. Nobel 1991) when stomatal aperture is at its smallest. and increases with stomatal

opening (maximum values 0.001 to 0.025 m s™'. with an average for many vegetation types of ~0.005 m s~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

"). After exiting the stomatal cavity, water vapor must also cross the leaf boundary layer. and the
conductance for sensible heat and water vapor transport along this pathway are generally equivalent (Jones
1992). The total conductance for leaf-level transport of water vapor during transpiration (gr,) is therefore
the parallel conductances of stomate and cuticle. together in series with the boundary layer conductance.

giving:
Eq- 4.3 g'[". =

as the general case.

Stomatal conductance varies in response to the radiant flux incident on the leaf. the leaf
temperature, the difference in water vapor pressure between the atmosphere and the interior of the leaf. the
soil water potential in the rooting zone, and the atmospheric concentration of CO,. among other factors
(Kelliher er al. 1995. Kérner 1995, Jones 1992). This variation in stomatal conductance has a strong
influence on the rate of transpiration (Jarvis and McNaughton. 1986). The treatment of environmental
influence on stomatal conductance in 1D-BGC is very similar to that described by Running and Coughlan
(1988) for FOREST-BGC. The basic logic is to assign a level of stomatal control (from 0.0 for complete
closure to 1.0 for full opening) for each of a series of environmental influences. and to arrive at the overall
stomatal control as the product of all the individual controls. The following environmental parameters are
assumed to have influence the stomatal conductance: radiant flux density. air temperature. soil water
potential. daily minimum temperatures below freezing, and vapor pressure deficit. Of these. only radiant
flux density is assumed to vary between the sunlit and shaded canopy fractions. This control is calculated
separately for each fraction. and the other controls are calculated once and applied to both fractions.

The influence of radiation on stomatal conductance is generally found to follow a hyperbolic
relationship. and although there is variation in the hyperbolic curvature found for different species. for
different leaves (sun and shade) of the same species. and for the same species growing in different
environments. many studies find that rapid increases in stomatal conductance occur between 50 and 500
umol m™ s of photosynthetically active photon flux density (PPFD) for trees (e.g.. Holmgren et al. 1996.

Jones 1992. Petersen et al. 1991, Gutschick 1995, Barradas et al. 1994, McCaughey and [acobelli 1993). I
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use a simple hyperbola to describe this influence on the stomatal conductance multiplier for intercepted
radiation (mppep. unitless):

mppep = PPFD / (PPFDs, + PPFD)
where PPFD is defined as:

PPFD =4.55 R'par
which converts values for PAR radiation intercepted per unit of projected leaf area (either for sunlit or
shaded canopy fractions) from W m™ to umol m~ s’ with4.55 being the average energy (umol J™') of PAR
photons. PPFDy, is the hyperbolic shape parameter. which defines the level of PPFD for which mppgp =
0.5. In a recent review of stomatal conductance studies. Kémer (1995) suggests a range of values between
50-100 for PPFDy in late successional woody species. with values perhaps twice as high for grasses. Since
Koémer's analysis is based on the PPFD incident on a flat surface. and not corrected for leaf angle. the
difference between woody and graminoid species in PPFDs, relevant to PPFD calculated as interception per
unit projected leaf area. as here. should be reduced. as should be the range for woody species. with a shift
to the lower end of the PPFDsj range. In addition, field studies report the influence of instantaneous PPFD
on g,. but the daylight average PPFD is more relevant for ID-BGC. which also should tend to reduce the
model value of PPFDs,. [ therefore use a constant value of 75 pmol m~ s for PPFDjs, (Figure la).

The influence of air temperature on stomatal aperture is generally an increase from freezing to the
typical summer maximum temperature experienced by the plant. with a decrease in stomatal aperture at
temperatures substantially higher than the average mid-summer maximum temperature (Jones. 1992). As
a representation of the influence of temperature on stomatal conductance. [ adopt the function specified by
Rastetter er al. (1991). and used in Hunt et al. (1996). which specifies the stomatal conductance multiplier
for daylight average air temperature (myq,y, unitless) as a function of a maximum (critical) temperature. an
optimal temperature. a shape parameter, and a condition that forces the multiplier to 0.0 at 0°C:

Mygay = €XP(0.1 In((Tert = Tetay)(Tene = Tope)) (Tere = Top)) €xp(0.1 (Taay - Tope))

and. if (Tgy < 5.0°C) : mygyy = Migay Tday/ 5.0
where T, is the critical temperature, above which myg,, = 0.0. T,y is the optimal temperature. at which

Mgy = 1.0. Tgyy is the daylight average air temperature, and 0.1 is a unitless shape parameter (Figure Ib).
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Stomatal conductance response to daylight average temperature
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Daily minimum temperatures below freezing are assumed to limit stomatal conductance. with an
arbitrary lower limit of -8°C. below which stomatal conductance is forced to 0.0 (Graham and Running
1984. Smith er al. 1984). The multiplier for this effect (myyy,, unitless) is a linear function from 0.0 at -8°C

to 1.0 at0°C.

Stomatal aperture for many species is known to be sensitive to changes in the atmospheric
exaporative demand (Schulze and Hall 1982. Monteith 1995). This demand is commonly quantified as the
vapor pressure deficit (VPD. Pa). the difference between the water vapor partial pressure in the air
surrounding the leaf and in the stomatal cavity air. Air in the stomatal cavity is usually assumed to be
saturated with respect to water vapor at the leaf temperature. [ assume for the general model development
that leaf temperature is the same as air temperature (in Chapter 4 an extension to the ID-BGC logic is given
which treats the leaf temperature more explicitly). The multiplier describing the influence of VPD on
stomatal conductance (mypp. unitless) is defined as a simple linear relationship. varying from 1.0 ata
prescribed minimum VPD (below which no stomatal control is exercised) to 0.0 at a prescribed maximum
VPD. above which stomates are assumed to be completely closed. Kérer (1995) suggests that the
minimum VPD at which stomatal closure begins is around 1000 Pa for a variety of species. and that a
relatively linear decrease in conductance occurs until VPD reaches 4000-5000 Pa. at which point stomatal
conductance is around /5 to 1/10 of its value under high humidity.

The final control on stomatal conductance is that due to soil water potential (m,,. unitless).
Stomates are known to respond to the average soil water status. by beginning to close as the soil water
potential drops below a certain point and reaching full closure at a critical soil water potential (the wilting
point) (Schulze er al. 1980, Graham and Running 1984. Tenhunen et al 1987). | define this relationship as
a simple linear function. with a prescribed soil water potential at which stomatal closure begins. and
another prescribed soil water potential at which full stomatal closure is experienced.

The total response of the stomatal conductance to these environmental factors (m,qy) is defined as

their product, with separate treatment for the sunlit and shaded canopy fractions:

Mioial.sun = MppFD.sun Miday Mimin Myvpp My
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Myotal, shade = MPPFD.shade Miday Mymin Mypp My
The actual daily leaf-level stomatal conductance to transpired water vapor (g;) is assessed as the maximum

leat-scale stomatal conductance to water vapor (g,,q..) scaled by the final conductance multiplier:

Essun = Csumax Mioral.sun

Zsshade = Es.max Meotal.shade

Total leaf-level conductance to transpired water vapor is calculated for sunlit and shaded fractions using
these stomatal conductances and Eq. 4.3. The instantaneous transpiration per unit projected leat area for the
sunlit and shaded canopy fractions at daylight average meteorological conditions is then estimated from the
Penman-Monteith formula as:

T'sun = PM(Tyaye Rssune s Trvsun)

T'shadc = P‘NI(Tda)'- RS.shndce TThs rTv.shadc)
where rr, is the resistance to sensible heat transport relevant to the transpiration flux calculation. which is
simply /gy, and rp, 54 and rr. shage are the total leaf-level resistances to transpired water vapor. defined as
1/g1y sun and 1771y shage. respectively. The daily total transpiration flux (from both canopy fractions) is
tinally calculated as:

Qsort.t = tr (T'sun Loun + Tshade Lshade)

This treatment of leaf-level conductances requires prescribed values for maximum stomatal.
cuticular and leaf boundary layer conductance. Since conductance through air varies with the air
temperature and pressure. the prescribed values are assumed to be given for standard conditions of 20 °C
and 101300 Pa. Based on the prescribed daily air temperature (converted to Kelvins) and an air pressure
estimated from a prescribed elevation (p,, Pa, assuming a standard atmosphere. Irbane and Godson 1981).
the prescribed standard conductances (g's ma. 2, and g'y) are converted to actual conductances for the day
according to Jones (1992):

omax = €'smax (Taay273.15)/293.15 K) (101.3 kPa/p,)
and similarly for the other two prescribed conductances.

4.7 Soil water balance and hydrologic outflow estimation
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At the end of each daily timestep, the soil water compartment is balanced and hydrologic outflow
is estimated. [nputs to the soil water compartment over the course of the day (Q,,) are calculated as:

Qin = Qranson T Qincsoit ™ Qsnow.sonl
Outputs from the soil water compartment (Q,,) are calculated as:

Qou( = Qsoai..E - Qso:I.T

Inputs and outputs are balanced with the soil water from the end of the previous daily timestep (W) 10
estimate the new soil water content as:

Weoit = Wiaitprew * Qin = Qour
[f the new W,y > W,. then the soil water content in excess of W, is immediately released as saturation
outtlow:

Qsoisattiow = Wian - Wiy

Wit = Waai = Qsoitsauttow
[f no saturation flow has occurred. and if W; > W, then the soil water in excess of field capacity drains to
outflow as a fraction of the excess on each timestep when the excess occurs:

Qsortdramttow = 0.5 (Weqii - We)

\lel =W sotl = Qsml.dmmﬂow

where 0.5 indicates that 50% of the soil water in excess of field capacity on each day drains to outtlow.
The net result of the outflow algorithm is that water in excess of saturation leaves immediately as the
equivalent of overland flow. while water in excess of field capacity drains slowly. approaching field

capacity as an exponential decay in the absence of other net losses.

5. Detailed description of the carbon and nitrogen budgets

[ present the description of these budgets under a single heading because the model dynamics of
carbon (C) and nitrogen (N) are tightly coupled, and numerous mutual dependencies make an isolated
description and discussion of either budget difficult. State variables (denoted by subscripted C or N) are
expressed in units of kg (C or N) per m* ground area, while fluxes (denoted by subscripted CF or NF) are

expressed in units of kg (C or N) per m’ ground area per day. although other intermediate units are also
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used. The carbon state variables include plant compartments for leaf. live stem. dead stem, live coarse root.
dead coarse root. fine root. and growth storage pools for leaf and fine root growth that have been allocated
but not vet displayed. Litter and soil carbon state variables include litter soluble carbon. litter cellulose
carbon. litter lignin carbon. soil microbial biomass and byproduct carbon. and recalcitrant soil organic
matter carbon. A coarse woody debris compartment is used as an intermediate litter storage pool. Nitrogen
state variables include compartments corresponding to all of the plant. litter. soil. and coarse woody debris
carbon compartments. as well as a soil mineral nitrogen compartment representing ammonium and nitrate
in the soil. The model includes two additional state variables serving as storage compartments between
allocation events: photosynthetically fixed C (Cpoar). and mineral N taken up from the soil (Npai).
5.1 Photosynthetic carbon fixation and canepy nitrogen distribution

The sole input of carbon is through photosynthetic fixation of atmospheric CO.. The
photosynthetic process is described through a sequence of algorithms. some of which are motivated mainly
by biochemical insight and others of which are driven more by empiricism. The representation of
photosynthesis in 1D-BGC differs significantly from that in previously published descriptions for the BGC
family of models. The FOREST-BGC representation of photosynthesis (Running and Coughlan 1988)
relies on the parameterization of a mesophyll conductance to CO., with fixation estimated as a diffusion
process driven by an assumed intercellular CO, concentration (C,. Pa). FOREST-BGC does not implement
an explicit treatment of the photosynthetic biochemical pathways. In the generalization of FOREST-BGC
to other biomes (BIOME-BGC: Hunt and Running 1992) a more detailed model was implemented. with an
explicit treatment of photosynthetic biochemistry (Farquhar et al. 1980. Leuning 1990). The BIOME-BGC
implementation includes a pseudo-iterative calculation of C,, as well as an explicit calculation of the CO,
compensation point ([". Pa). The implementation of photosynthetic biochemistry in 1D-BGC is closely
related to the BIOME-BGC logic in that it is based on the biochemical model of Farquhar ez al. (1980). but
the resulting set of equations is somewhat different due to differences in the logical constraints applied. I
solve a quadratic system of equations by elimination of C.. instead of specifying a value for C, as an initial
condition. Other differences from BIOME-BGC include a more detailed dependence of the kinetic and

enzyme activity parameters on temperature (Woodrow and Berry 1988). and a simplifying assumption that
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empirically relates the maximum rate of electron transport to the maximum carboxylation velocity.
{Wullschleger 1993). 1D-BGC does not currently include a treatment of the C, photosynthetic pathway.
although such a treatment will be required for global applications.

Required inputs to the photosynthesis subroutine are the leaf-level conductance to CO., the
daytime leaf maintenance respiration rate, the leaf nitrogen per unit projected leaf area. and daily
meteorological variables including air pressure, daylight average air temperature. and PPFD. Conductance
to CO,. PPFD. and leaf nitrogen per unit projected leaf area (N, kg m™) differ between the sunlit and
shaded canopy fractions. while all other inputs are assumed constant with canopy fraction. Separate
estimates of instantaneous photosynthetic rate are made for the sunlit and shaded canopy fractions. and
total daily canopy photosynthesis is estimated as these instantaneous rates weighted by projected leaf area
in their respective fractions and multiplied by daylength.

The leaf-level conductance is estimated directly from gr,. under the assumption that the transport
pathway for water vapor and CO, between the leaf interior and the canopy air are equivalent. The ratio of
conductances for water vapor and CO, is then simply the ratio of their molecular weights (Nobe! 1991).
which is 1.0/1.6. Because the photosynthesis submodel uses mole units instead of mass units to estimate
CO, flux. a unit conversion for conductance is required (from (m s to (umol m~ s Pah). Jones 1992).
Together. these conversions result in the following leaf-level mole-based conductance for COs (gt}

gnre = 16 g1, 7 (1.6 R (Tggy + 273.15))
where R is the universal gas constant (8.3143 m* Pa mol™ K™).

The estimation of daytime leaf maintenance respiration rate (CFyyn,) is described in a later section.

4

For the purpose of the photosynthesis submodel. a unit conversion is required. from the usual units (kg m”
ground area d™') to mole units on a projected leaf area basis (MR, pmol m™ s™). using the molecular
weight of CO> (12.011 g mol™) and the daylength:

MRy = CFyme / (12.01 1€-9 Lp tiiun)

The concentration of leaf nitrogen per unit of leaf C (N, the inverse of leaf C:N ratio) is
prescribed and assumed constant for any given canopy (although variable by species or vegetation type.

Field and Mooney 1986). but the concentration of leaf nitrogen per unit of projected leaf area. Nyy,. varies
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within a canopy between the sunlit and shaded portions as a tunction of changing specific leaf area (SLA.
m” projected leaf area m™ ground area). On any given daily timestep, the total leaf area (Lp) is determined
on the basis of the total leaf C (C,) and a prescribed average canopy SLA (SLA,,,). as:

Le =G SLA,,,
After calculating Ly, and 4. (section 3.2), the specific leaf area for the sunlit and shaded canopy
fractions (SLAun- SLAg.) are defined on the basis of the prescribed ratio between them (SLA ;. =

SLAshad¢ / SLAsun) as:

+ Lshadc

Lsun SLA
SL Asun - ratio
G

SLAshad: = SLAsun SI-Amuo
Values for leaf N per unit of projected leaf area in the sunlit and shaded canopy fractions (N'sy, and N,

kg m™) are then defined as:

N

N' = _—-mass

sun SLASU"

e = Nnmss
shade =
SLAshndc

N'

My assumption of constant N, through time and with canopy depth is supported by several
recent studies. Pereira (1995) found that the primary response of increased N availability in Eucalyptus
forests is an increase in leaf area. rather than an increase in Ny, Dewar (1996) presents a theoretical
model of canopy nitrogen distribution. and reports that the model prediction of changes in leaf area as
opposed to changes in Ny, under fertilization is supported by many observations from field-grown plants.
but contrary to other observations from potted-plant studies. Similar results are reported by Reich and
Walters (1994) for a variety of broadleaf rainforest communities in Venezuela. and by Ellsworth and Reich
(1993) and Reich et al. (1995) for temperate deciduous broadleaf and evergreen needleleaf canopies. where
the dominant response to a gradient in canopy radiation was an increase in SLA and N, with depth

(constant Np.). and that changes in N,.ss were of secondary importance and occurred mostly in response

to increasing leaf age. Hollinger (1996) found a similar pattern for a broadleaf Nothotagus canopy. and
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reported that while the response of decreasing SLA with increasing PPFD was very significant and
explained much of the canopy variation in N, the actual canopy variation in SLA was not as strong as
was predicted from a model of optimal N, variation. Haxeltine and Prentice (1996b) suggest on the basis
of simulations and observations of N,,;ss over a temperature gradient in deciduous broad-leaved forest that
the primary influence of N limitation over large spatial scales would be on leaf area rather than on N,.

A significant change in N, is reported for sclerophylous shrubs in California (Field 1983. Field
and Mooney 1983), where the primary mode of correlation between N,,,,s and mass-based photosynthetic
rate was due to changes in specific leaf area at relatively constant N, and was poorly correlated with the
variation in radiation at characteristic leaf age class positions in the canopy. [t seems likely that this
response is due to N dilution through the accumulation of low-N compounds (e.g. starch) in the aging
leaves, which may be acting as temporary photosynthate storage organs (Randlett er al. 1996). In this case.
photosynthesis on a mass basis (A,.) is reduced by the dilution effect. but photosynthesis on an area basis
(Auna) remains relatively constant (Field 1983, Reich and Walters 1994).

Sims and Pearcy (1989) found a constant N, but an increase in SLA, Ny, and Ay, in response
to increasing PPFD during growth for a tropical understory herb and a related crop species. Hirose and
Werger (1994) showed that for an herbaceous canopy with linear leaves. variation in Ny, dominated the
response of Ny, to varying PPFD through the canopy for individual species. but that between-species
variation was mostly the result of differing SLA. Because different species occupied characteristic canopy
positions. this result can be interpreted as a community-level response dominated by changing SLA.
Hikosaka er al. (1994) pertormed experiments on a vine to assess the relative importance of leaf age and
PPFD in determining N,.,. and they found the light response to be greater under nonlimiting N conditions.
but that both responses are strong under N limitation. They do not report SLA. so the importance of
variation in Ny, vs. SLA in the N, response could not be determined.

The constant Ny, assumption with varying SLA is supported by the data reviewed by Field and
Mooney (1986) for evergreen shrubs and trees and for South A frican shrubs. but not for old field annuals.
and only partly for Death Valley annuals and deciduous chaparral shrubs. The variation in Ny, in the

chaparral shrubs may be due to N-dilution not related to changes in the photosynthetic system. as already
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noted. and the same may be true for the annuals. The relationship between increasing N, and A s
explored by Field and Mooney (1986) is probably most important in describing the variation in productivity
between sites with different species compositions. or in describing the trajectory of productivity at a single
site as the canopy species composition changes through time. Both of these kinds of community-level
difterences in Ny, and A,ass could be related to variation in the availability of soil mineral N. Since the
explicit goal of this model is to represent changes over time in productivity and resource dynamics for a
specified vegetation community, and since [ am not concerned here with possible changes in species
composition or vegetation growth form under the influence of changing environmental conditions or
resource availability. [ believe the constant Ny, assumption is reasonable. Predictions of productivity
under temporal gradients in resource availability would be improved by a mechanism which allowed the
simulation of shifting species composition. as provided. for example. by the biogeography models of
Nielson (1993). Nielson and Marks (1994), Prentice et al. (1992). and Haxeltine and Prentice (1996a).
Observation typically shows a range of SLA,,, between 2 and 3. depending on L,. canopy
extinction coefficient. and average irradiance (Sims and Pearcy 1989. Ellsworth and Reich 1993. Reich and
Walters 1994, Reich er «l. 1995, Hollinger 1996). [ performed a series of simulations to test the sensitivity
of canopy net photosynthesis (gross photosynthesis minus leaf maintenance respiration) to variation in
SLA,,, with respect to SLA jp,4.- and found that the maximum assimilation occurred in the range of SLA,
from 1.5 to 6. with higher values for higher kp z. Simulation results are shown for the 200-year total net
primary productivity of a pine forest developing in a Missoula-like climate. using an allocation scheme that
excludes daily leaf growth (Figure 2a) and a scheme that includes daily leaf growth (Figure 2b). Allocation
schemes are discussed in a later section, but for now notice that although the total productivity is higher
with daily allocation. the pattern of sensitivity to SLA,,, is the same for both schemes. [n studies
comparing predictions of canopy nitrogen distribution based on optimality arguments with observations
from real canopies. the real canopies usually show a more homogeneous nitrogen distribution than the
predicted optimal distribution (Field 1983, Hollinger 1996. de Pury and Farquhar 1997). This may result
from the sensitivity of the real distributions to diurnally and seasonally variable canopy light environments

(Medlyn 1996. de Pury and Farquhar 1997). Note in Figure 2 that the slope of the productivity vs. SLAq,
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200-year Total NPP vs. SLA ratio
for varying canopy light interception coefficient (K)
(not using daily allocation)
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200-year Total NPP vs. SLA ratio
for varing canopy light interception coefficient (k)
(using daily allocation)
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curve is typically lower for values of the ratio above 2.0 than for values below 2.0. This suggests that the
benefits to the plant of increasing SLA,;, above 2.0 are small. and if there are significant costs associated
with the plasticity in leaf morphology required to achieve high values of SLA,, it may be that the true
optimum would be closer to 2.0 for canopies having light extinction coefficients close to 1.0. for example
in broadleaved or heliotropic canopies (Jones 1992).

Given the required inputs. just described. photosynthesis rates for the sunlit and shaded canopy
fractions are calculated according to the biochemical model for C; photosynthesis described by Farquhar er
al. (1980). In the present implementation of that model. the actual rate of assimilation (A. ttmol m?2styis
calculated as the lesser of two potential rates, one controlled by the activity of the carboxylating enzyme
(ribulose-1.5-bisphosphate carboxylase-oxygenase. "rubisco") and the other controlled by the regeneration
of the carboxylation substrate. Rubisco activity (ACT, umol CO» kg™ rubisco s') and the kinetic constants
for rubisco carboxylation and oxygenation reactions (K. and K, respectively. Pa) are corrected for the

daylight average temperature on the basis of the Q) relationships given by Woodrow and Berry (1988).

which are. for Ty, > 15 °C:

i T.h} -25
ACT= ACTZSQIOACI'[ 10 ]

[’ Ty —25)
rveas|

Kc = KC:SQIOK\ Lo

and. for Ty, <= 15°C:

{ Ty =151
ACT:“\CTISLSQWA(TL 10 J
QlO.‘\CT
Ty -15)
Kczsl-stK‘[ 10 J
¢ QlOKL.

and. for any Tg,,:

i Tday—lS)
K,= KoszmK“L 10
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where: actys, K.a5. and K25 are the values at 25°C for ACT, K, and K,; and Qgact. Quoke. and Qoko are
coefficients describing the sensitivity to changing temperature of ACT, K., and K,, respectively. The CO»
compensation point in the absence of leaf maintenance respiration (I"*. Pa) is calculated from the formula
given in Farquhar et al (1980):

[*=0.105 K. O/K,
where O, is the atmospheric partial pressure of oxygen (Pa).

The maximum rates of carboxylation (V.. tmol m> s™) for sunlit and shaded canopy fractions
are calculated as:

Vemaxsun = N'sun fep 7.16 ACT

Vemaxshade = N'shade frup 7.16 ACT
where fy,,p is the fraction of leaf nitrogen in rubisco. prescribed and held constant for both sunlit and
shaded fractions. and 7.16 is the weight proportion of rubisco to its nitrogen content. derived from data for
the enzyme in spinach (Kuehn and McFadden [969a, Kuehn and McFadden 1969b. Fasman 1976). The
parameter f\,relates total leaf nitrogen to the amount in the dominant photosynthetic enzyme. This value
varies over different vegetation types. from typical values of 0.1 for evergreen needieleaf trees. 10 0.3 for
agricultural crop species (Evans 1989).

The maximum rate of electron transport (J;pz,. wmol m~ s} is related to Vg, on the basis of the
empirical relationship established by Wullschleger (1993) for a wide range of species:

Jmax = 2.1 Vonae
The potential rate of electron transport (J, pmol m* sh depends on J;,, and PPFD. and is found as the
smaller root of the quadratic solution to the following equation given by de Pury and Farquhar (1997):

0.7 J? = (Jmax + (PPFD/2))J + Jox (PPFD/2) =0
Values for J are found for both the sunlit and shaded canopy fractions, using th:e appropriate values for
V cmaxs Jimax- and PPED.

Finally. the following system of three equations. describing the constraints on A due to diffusion
of CO, into the leaf (eq. 5.1), the rate of carboxylation (eq. 5.2), and the electron-transport driven rate of

substrate regeneration (eq. 5.3), can be solved:
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Eq- 5.1 A(v ory) = ZinTe (Ca - CI)

vcmu(ci - I-.‘)
C; +K. (1+0,/K,)

Eq. 5.2 A\, = - MRM

Eq. 5.3 Aj =‘_J(L[J)'—.'—MRH
4.5C; +10.5T

by solving Eq. 5.1 for C, and substituting to eliminate C, from Egs. 5.2 and 5.3. Quadratic solutions for A,

and A, are then found as:

-b+vb* —dac

A, =

2a
where
a= —l/ng\:
V. -
b=caf( ¢ max MRId)"'Kc(l'f'oz]
€mTe Ko
c=V. ol -ca)+ MR,d[Ca + Kc[l 2 J]
KO
and
A= —b+yb" —4ac
i~ 2a
where

a= —4'5/ngc

b=4.5C, +10.5T" LIZAMRy
EmTe
c=3 -, )+ MR (4.5, +10.5T")
This system of equations is solved once during each daily timestep for each of the canopy fractions.
substituting the generic values of gnte, Vemax. MRy, and J shown above with their values for the sunlit and

shaded canopy fractions, in turn. [n each fraction. the daylight average instantaneous assimilation rate (A)

is found as the lesser of A, and A;. Daily gross accumulation of carbon due to photosynthesis (CF yrosspsy) 1S
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then found by multiplication of the average instantaneous rates by the daylength. weighting for the canopy
leaf area in the two fractions, converting from mole to carbon units, and adding back the daytime leaf
maintenance respiration that was subtracted for the instantaneous rate calculations, to give:

CFa = (Asun Laun * Ashade Lsnade) tigne [2.011€-9 + CFigp,
Calculations for gross photosynthesis are carried out only on timesteps for which leaf area is non-zero.
5.2 Maintenance respiration

The rates of maintenance respiration observed in different plant parts generally reflect the amount
of living tissue in those parts (Kramer and Kozlowski 1979). Maintenance respiration in |D-BGC is
calculated as a function of tissue nitrogen concentration, using the same base respiration rate for all live
plant compartments and making corrections for temperature. The empirical model of Ryan (1991) is used.
in which daily total maintenance respiration at 20°C (CF,20) is determined for each compartment on the
basis of the total compartment N:

CFup=0.218 N
where the constant 0.218 is derived from Ryan's (1991) regressions. and represents the mass of carbon
respired per mass of tissue nitrogen per day at 20°C. The actual daily maintenance respiration is calculated
assuming a Q,, relationship with Qo = 2.0 for all components. as:

CF,y = CFpppap Qi ™2 10
where T is the temperature relevant to the particular tissue respiration rate. For live stem tissue. T=T,,,.
For tine roots and live coarse root tissue, T=T,,,. For leaves. a separate maintenance respiration rate is
calculated for the day and for the night (see section 5.1), with the daylight rate calculation using T=Ty,,.
and the night rate calculation using T=T;,. The leaf rates are also scaled for the daylength. so that they
sum to the total daily respiration. Note that the dead stem wood and dead coarse root components are
assumed to consist entirely of conducting xylem and/or heartwood. with any parenchyma which might in
reality extend through these dead components assigned by definition to the live stem wood and live coarse
root compartments. Dead woody compartments thus have no maintenance respiration associated with
them.

5.3 Growth respiration
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Growth respiration is calculated on the basis of the construction costs for different tissue types.
with one construction cost applied to woody tissue growth, and another applied to non-woody tissue
growth. From Table 6.1 in Larcher (1995), I estimate the growth costs in terms of mass of respired carbon
per mass of new tissue carbon for woody tissue (G, for live and dead stem wood and coarse root) to be
2.0. and for non-woody tissue (G,, for leaf and fine root) to be 1.2. These values are taken as constants.
with the total growth costs determined by multiplying the new growth by the relevant constant. A more
sophisticated treatment of the growth respiration costs could be implemented. by changing the growth
constants as a function of tissue type. for example by implementing different values of Gyquwoos for different
leaf growth forms. Since the variation in construction costs as indicated by the literature reviewed by
Larcher (1995) is small. the current simple treatment may introduce errors which are small in comparison
to other sources of unaccounted variation.

5.4 Leaf and fine root phenology

In previous versions of BGC the timing of new leaf and fine root appearance and litterfall was
prescribed. with the total annual new leaf and fine root growth appearing on a single day and the total
annual litterfall also occurring on a single day. The timing of leaf growth and litterfall events and the
duration of the growing season greatly influence productivity (Pereira 1995). and there is abundant
evidence that this timing is sensitive to climatic and meteorological conditions (e.g. Sparks and Carey
1995. also see review in White er al. 1997). In addition to provisions for prescribed dates of new growth
and litterfall. [ have incorporated the phenological model for temperate deciduous trees and temperate
grasslands described in White er al. (1997). [ have also extended the predictions from that model to
evergreen vegetation. Based on long-term and current growth season meteorological data. the model
predicts the date for 50% of new leaf expansion in the spring and for 50% of annual canopy loss in the fall.
Instead of having all growth and litterfall occur on a single day. [ allow for prescribed periods of new leaf
growth and litterfall. These parameters are not generated by the phenological model. The timing of new
leaf growth and fine root growth are assumed to be the same. This is likely a gross over-simplification of
the general pattern of fine root growth and literfall (Vogt er al. 1986, Nadelhoffer and Raich 1992.

Pregitzer et al. 1993, Holmes and Zak 1994). The measurement of fine root growth and tumover is very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



difficult and subject to a wide range of errors (Nadelhoffer and Raich 1992, Beets and Whitehead 1996).
and so a more sophisticated treatment of fine root dynamics is difficult to justify. I choose to follow the
logic of Raich and Nadelhoffer (1989) and Nadelhotfer and Raich (1992) in connecting the global-scale
patterns of belowground production and turnover to leaf production and litterfall.
Justification for the form of the phenology model and details of its development and testing are
found in White et al. (1997). Here [ will describe the details relevant to the integration of the phenology
model into the larger structure of |D-BGC. [ assume that the same logic developed for deciduous tree
phenology applies to new leaf growth and leaf litterfall for evergreen canopies as well. An evergreen
canopy is defined as having a leaf tumover rate less than 1.0 yr™.
The phenology model consists of two independently formulated components. one for predictions
of dates of onset and offset in forest systems. and the other for such predictions in grasslands. For trees. the
date of onset is predicted as a function of the summation (referenced from phenological vearday |. which is
defined as January | in the northern hemisphere and July 1 in the southern hemisphere) of the daily soil
temperature values that exceed 0 °C. When this summation exceeds a critical value (Phyeeon). Onset is
predicted to occur. The critical soil temperature summation is a tunction of the long-term mean daily
average temperature ( T,y cim) at a given site:
Phyecon = €xp(4.795 + 0.129T 1, clim)
The date of offset for trees is predicted as a function of daylength and soil temperature. Two scenarios can
result in offset: (1) if midsummer has past, and the daylength is less than 10.9 hours. and the soil
temperature has fallen below the long-term average soil temperature for the range of phenological veardays
between 244 and 305. or (2) if midsummer has past and the soil temperature is less than 2 °C.

Predictions of onset and offset in grasses is more complicated. and less accurate (White er al.
1997). Predicted onset depends on the annual summation of daily soil temperature in excess of 0 °C and on
the summation of daily total precipitation, referenced from phenological yearday . These summations are
compared to critical values for the soil temperature sum (Phyrg i) and the precipitation sum (Phyags pene)
which are given as:

Phrasssten = (0.5 (1380.0 - 418.0) (t,-1)/(t;+1)) + 900.0
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t; = exp(32.9 (Tavpctim - 9-0))

Phyrgspent = 0.15 PRCPyyya0n
where PRCP,,,..n, is the long-term average annual total precipitation (cm). The conditions for onset in
grasslands are that the annual soil temperature summation exceed Phyg siene and that the annual
precipitation summation exceed Phye perir. Offset in grasslands is predicted to occur under two sets of
conditions: hot and dry, or cold. Offset due to hot and dry conditions is not permitted within one month of
onset. and offset due to cold conditions is not permitted before phenological yearday 182. The hot and dry
condition for offset requires that the previous 3 l-day total precipitation be less than 1.14 cm. that the next
7-day total precipitation be less than 0.97 cm, and that the current daily maximum temperature be greater
than 0.92 times the long-term maximum value of the daily maximum temperature. The cold condition for
offset requires that the 3-day running average of daily minimum temperature be less than the long-term
average daily minimum temperature.
5.5 Whole-piant mortality

In addition to the seasonal loss of leaves and fine roots. | D-BGC includes a mechanism for the
transter of carbon and nitrogen from all plant compartments into the litter. This transfer is prescribed as an
annual fraction of the plant biomass, which is then scaled to a daily loss rate and implemented once each
day. Forexample. if the prescribed annual mortality fraction is 0.01 (1% per vear). on each day an amount
equal to 0.0000274 times the compartment mass would be removed from each of the plant compartments.
and sent to the litter compartments. This is functionally equivalent to losses due to wind-throw or insect
infestation or disease. in which individuals are removed from a stand. resulting in a loss of leaf. stem.
coarse root. and fine root biomass in proportion to their ratios in the stand as a whole. [n a woody system.
this is the only pathway by which stem wood and coarse root wood (live or dead) can leave the plant pools
and enter the litter pools. [n earlier BGC versions. a turmover fraction for stem and coarse root was
specified. which served a similar purpose.

In addition to the removal of mass from the plant compartments already mentioned. mass in the
abstract storage pools for carbon and nitrogen is also subject to mortality losses. Although these

compartments are not associated with any particular plant tissue, they are supposed to represent actual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



storage mechanisms which could be localized in different compartments during different parts of the
growth cycle (Kramer and Kozlowski 1979).

Observations of mortality are difficult and rare because they require permanent plots that are
maintained over long periods of time (Sollins 1982). Data from Sollins (1982) indicates a relatively narrow
range of mortality rates for stands of different ages and different species dominance (Table 2).

Table 2. Annual mortality fraction from data in Sollins (1982).
Forest type age  AGB' AGI® AGMP

Douglas fir 95 558 2.2 0.0039
Hemlock-spruce 105 647 3.1 0.0048

Douglas fir 450 654 3.0 0.0046

Douglas fir 450 654 4.5 0.0069

Mean 275 628 32 0.0051

l. AGB = above ground biomass (Mg ha™)

3. AGI = above ground mortality inputs (Mg ha™ yr'™)
3.  AGMF =above ground mortality fraction (vr'")

Other data for deciduous forest types and for both evergreen and deciduous types in different climates is
desirable. but [ have not yet obtained any. As will be discussed below. inputs of stem and root wood to the
litter compartments have an important impact on the cycling of nitrogen through the litter. soil. and plant
compartments. and so an accurate representation of long-term mortality rates is important in cases where
the long-term dynamics of the nitrogen cycle are of interest. For clarification. this mortality does not
represent disturbances. such as fire or grazing, that result in system losses of carbon and/or nitrogen. These
disturbance processes are themselves important, but it is beyond my scope in this project to address them in
any detail. [ will. in a later discussion, address the importance of such disturbances on the model
predictions of long-term equilibrium in the plant and soil carbon and nitrogen budgets.
5.6 Litter and soil carbon and nitrogen budgets

A representation of cycles of carbon and nitrogen in litter and soil is required because the
availability of nitrogen for new plant growth is directly linked to the inputs of dead plant material to the
litter and the processing of these materials by microorganisms to turn them into soil organic matter. In
addition. the release of carbon dioxide to the atmosphere during this decomposition process is an important
component of the carbon budget in the global biosphere. and many questions relevant to the understanding

of global terrestrial ecosystem responses to variable climate and increasing atmospheric concentrations of
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carbon dioxide can not be answered without a consideration of these processes (Rastetter er al. 1991. Field
et al. 1992, Potter et al. 1993, Randerson er al. 1996, Hunt ez al. 1996).

The fundamental assumption underlying my treatment of litter and soil processes is that the
process of decomposition can be treated as an exponential decay, with recognizable transformations
between components. and where each component has a characteristic decay rate (van Veen er al. 1984).
Plant litter chemical composition is quite complex and variable. and the most accurate description of decay
would treat the process along a continuum of substrate quality and decomposition rate (Carpenter 198 1.
Bosatta and Agren 1985). [t has been recognized for some time. however, that a realistic representation of
nitrogen dynamics during the decay process is possible by considering only a small number of chemically
distinct substrate materials (Melin 1930, Richards and Norman 1931, van Veen and Paul 1981. Hunt er al.
1988). Many studies have related rates of mass loss and nitrogen cycling to the chemical qualities of litter
by considering the fractionation of heterogeneous litter materials into chemically homogeneous
components (Minderman 1967. Hunt 1977, Aber and Melillo 1980, Sorensen 1981. Edmonds 1984. Parton
et al. 1987, Berg and Tamm 1994). One common classification of the chemical tractions distinguishes
between the litter component soluble in water and alcohol-benzene (typically proteins. starches and sugars).
the part of the remaining component soluble in acid (typically cellulose and hemicellulose). and the non-
soluble fraction (mostly lignin) (e.g. Taylor et al. 1989). These fractions are relatively easily determined
and so have been measured for many different types of litter, providing a strong empirical base for
simulations across a variety of vegetation types (e.g. Taylor er al. 1989. Aber et al. 1990). Justas
important. from the point of view of numerical simulations of the decomposition process. is the fact that
these classes have very distinct rates of decomposition under the same conditions of temperature. and water
and nitrogen availability (Minderman 1967, Serensen 1981, Entry et al. 1987. Aber er al. 1990). Itis also
recognized that each of these broad classes of litter material is acted upon by a characteristic subset of the
soil taxa (Stevenson 1986). and so there is both a chemical and a biological basis for supposing that these
litter fractions should have distinct decomposition dynamics.

Decomposition of a fresh litter substrate begins with its colonization by soil microorganisms

(mostly bacteria and fungi) which metabolize the substrate through various enzymatic reactions in order to
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obtain energy. carbon. and nutrients for growth, reproduction. and maintenance (Bolin 1983. Stevenson
1986). The resulting mass of new microbial cells is less than the mass of the metabolized litter due to
respiration required to produce enzymes. perform reproductive functions, and build and maintain cellular
structure. These respiration losses occur as carbon dioxide released to the atmosphere. and they can be
quantified as a fraction of the total mass loss of the substrate (van Veen and Paul [981. van Veen er al.
1984). The non-respired fraction is assimilated into the microbial biomass. initiating a process of
secondary decay as this biomass is itself metabolized by other microbes (Waksman and Gerretsen [931.
Hunt 1977). This process of biomass recycling operates over multiple generations. usually through a
complex series of taxa (Stevenson 1986), and results in progressive degradation in substrate quality for
each successive generation. with concomitant losses in biomass due to respiration at each step.

This thought-model of the decomposition process can be translated to a simple compartmentalized
flux model. as illustrated in Figure 3a. where compartment L is the unmetabolized litter material and
compartment S1 is the soil organic matter, which consists in this simple case of the entire soil microbial
biomass as well as any metabolic waste products that are accumulating as the result of microbial activity.
This is a discrete (as opposed to continuous) time model. and assuming a timestep of one day. the flux out
of L and out ot S| on each timestep (F., Fs,) is given as:

FL =My k'L

Fs1 = Mg K’
where M and Mg, are the masses in L and S1, and ks, and k' are the discrete-time model rate constants
for fluxes from L and S1. with units of (day™). Respiration fluxes are indicated by the curved arrows
leaving L and S1. For L. the respiration flux (F,) is calculated as a function of the F,_and the respiration
fraction (fi). as:

Fi.=f FL
For Sl. in this simple formulation, it is assumed that the entire flux leaving the compartment occurs as

respiration. since all other fluxes result in new microbial biomass or new microbial byproducts assumed to

be a part of S1.
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This configuration of compartments and fluxes provides the basis for a powerful numerical tool by
which the dynamics of homogeneous substrate decomposition can be explored. For the case of an
experiment in which a known quantity of fresh homogeneous substrate is allowed to decompose under
controlled conditions while the release of CO. is either continuously of periodically monitored. and under
the assumption that the rate of metabolism of L is substantially higher than the rate of subsequent
respiration from S1. the fraction of original mass remaining (y) at time t can be approximated by a double
exponential model. hereafter referred to as M 1. and defined as:

M1 v =ag exp(-k_ t) + as exp (-ks, t)
where k; and kg, are the continuous-time counterparts of k't and k's). given in general as:

¢=-In(1-k")

(Olson 1963). The assumption of k; >> kg, is necessary because M1 assumes that L and S| are initialized
at time =0 with fractions of the total input mass equal to a; and as;, when in fact the experiment begins
with all of the mass in L and nothing in S1. Given k;>>ks,, however. the transfer of the unrespired
proportion of the input substrate mass from L to S! (implicitly undergoing transformation to microbial
biomass and metabolic byproduct along the way) is rapid with respect to its subsequent disappearance from
S1. and the errors in estimation of a, will be small.

An obvious extension of M1 is to include more than one microbial biomass recycling
compartment. These might be in parallel with each other. representative ot two or more distinct microbial
communities metabolizing the same substrate. or they might be in series. which amounts to a finer
resolution of the microbial recycling process, in which the metabolism of first-generation microbes and
their byproducts by other members of the soil microfauna is treated explicitly. The case of two soil organic
matter compartments in series with the litter substrate is illustrated in Figure 3c. and can be represented as a
triple exponential model (M3). An intermediate stage between M1 and M3 can also be entertained. in
which the last compartment has no decomposition rate, and represents a permanent storage pool (M2.

Figure 3b). The exponential models which approximate M2 and M3 are given as:
M2 y=a exp(-k_t)+ag exp(~kgt)+ v

M3 v=a, exp(-kt) +ag, exp(—kg,t)+ag, exp(—ksat)
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where k. ks;. and ks> are the continuous-time model decomposition rates for the compartments L. S1. and
S2 in Figure 3. and fi and fs; in Figure 3 are assumed for the moment to be related to a; and ag; as:

fi =a.

fsi =agi 7/ (1-ay)

These numerical tools can be difficult to apply in practice. Because 1D-BGC is designed to
estimate processes occurring under field conditions, the relevant decomposition rates will be for
homogeneous litter substrate in association with natural assemblages of soil microorganisms. In the case of
a soil sample collected in the field for laboratory testing of litter decomposition under controlled
environmental conditions. native soil organic matter will be abundant relative to the new biomass and
microbial byproducts generated as the result of experimental additions. Control experiments are possible.
but there are many confounding errors related to differences in native soil organic matter respiration rates
under varying conditions of substrate input (van Veen and Paul 1981). Tracer experiments using organic
matter labeled with the "*C isotope avoid many of the problems associated with non-labeled decomposition
experiments (Voroney and Paul 1984). Many such experiments have been reported. and the methods lend
themselves to the illumination of organic matter transformations along particular pathways in the litter-soil
system (Jenkinson 197 1).

[n order to assess the differences between the decomposition dynamics of the major homogeneous
litter fractions. [ collected studies reporting the release of “C-CO, from labeled glucose. cellulose. and
lignin. To be included in my assessment, these studies had to use pure glucose. cellulose. or lignin. and
not. for example. mixtures of cellulose and lignin, as in the case of many studies on straw or other labeled
plant parts. Because the rates of decomposition depend on temperature and soil water content. all included
studies were conducted with temperature fixed between 20 and 30 °C. and with soil moisture maintained at
or above 60% of saturated capacity. Using Sigmaplot 4.0 (SPSS Inc.. © 1997). numerical methods were
used to fit each of the three models discussed above (M 1. M2. and M3) to observations of mass loss due to
respiration from single-component decomposition experiments. In addition. for each homogeneous
substrate component in question, a fit was performed for each model on the pooled data from all relevant

experiments. Least-squares fitting results from these analyses are shown in Table 3.
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Table 3. Regression results for *C decomposition experiments
Values in parentheses are standard errors.
Glucose experiments. fit to M1

e ki Ks1 adj. r rel
0.47 (0.02) 0.589 (0.072) 0.0058 (0.0009) 0.963 1
0.34 (0.01) 0.642(0.087)' 0.0033 (0.0005)" 0.997 2
0.44(0.02) 0.581 (0.089) 0.0062 (0.0010)* 0.996 2
0.43 (0.02) 1.545 (0.184) 0.0020 (0.0002) 0.973 3
0.43 (0.03) 0.711 (0.157) 0.0104 (0.0024) 0.979 4
0.35(0.01) 0.742(0.050) 0.0025 (0.0020) 0.946 5
0.56 (0.03) 0.622 (0.067) 0.0038 (0.0008) 0.988 5
— pooled data —

0.48 (0.02) 0.600 (0.057) 0.002(0.001) 0.905
Glucose experiments. fit to M2

a K asy Kst adj ref
0.40 (0.02) 0.748 (0.116) 0.21 (0.02) 0.044(0.012) 1.938 1
0.39 (0.0 0.761 (0.043)' 0.24 (0.01) 0.036 (0.003) 1.000 2
0.31 (0.01) 0.906 (0.066) 0.20 (0.01) 0.041 (0.009) 0.999 5
— pooled data —

0.37 (0.03) 1.170 (0.270) 0.20 (0.02) 0.064 (0.018) 0.920
Glucose experiments, fit to M3

Q. ke as Ksi Ks2 adj l'y ref”
0.39 (0.06) 0.785 (0.229) 0.16 (0.13) 0.066 (0.101)° 0.0021 (0.0058)" 0.988 1
0.39 (0.00) 2.299 (0.314) 0.11(0.02) 0.060 (0.021) 0.001 1 (0.0002) 0.991 3
— pooled data —

0.37 (0.03) 1.190 (0.290) 0.19 (0.03) 0.070 (0.030)’ 0.0002 (0.0007) 0.920
Cellulose experiments, fit to M1

n ™ [ adj.r el
0.74(0.03} 0.050 (0.005) 0.0005 (0.0002) 0.979 6
0.66 (0.03) 0.049 (0.007) 0.0005 (0.0001) 0.972 6
0.68 (0.02) 0.045 (0.004) 0.0005 (0.0001) 0.987 6
0.57 (0.02) 0.060 (0.006) 0.0005 (0.0001) 0.986 6
— pooled data —

0.66 (0.02) 0.051 (0.004) 0.0003 (0.0001) 0.960
Cellulose experiments. fit to M2

Q Ke ast kst adjr ref
0.70 (0.05) 0.056 (0.008) 0.18(0.04) 0.0030 (0.6020)° 0.981 6
0.37 (0.10) 0.125 (0.050)" 0.44 (0.10) 0.0140 (0.0040) 0.980 6
0.63 (0.03) 0.033 (0.006) 0.22(0.03) 0.0029 (0.0010)’ 0.990 6
0.53 (0.02) 0.070 (0.006) 0.26 (0.02) 0.0023 (0.0006) 0.991 6
— pooled data —

0.61 (0.03) 0.060 (0.006) 0.23 (0.03) 0.0030 (0.0009) 0.964
Cellulose experiments. fit to M3

A Ke asy Ksy Ksa :ldj l": rel’
0342(0.365 0.085 (0.057)" 0.37(0.35)° 0.0230 (0.0180)° 0.0003 (0.0002) 0.980 6
0.29 (0.1 1) 0.166 (0.100)° 0.46 (0.10) 0.0211(0.0064) 0.0003 (0.0001) 0.984 6
0.59 (0.19) 0.057 (0.018) 0.17(0.13)° 0.0082(0.0182)°  0.0003(0.0002)°  0.990 6
- pooled data —

0.48 (0.14) 0.077 (0.023) 0.25(0.14)° 0.0145 (0.0091 0.0003 (0.0001) 0.96+4
Lignin experiments. fit to M1

& ke ks adj.r ref
0.44 (0.04) 0.0135(0.0026) 0.0006 (0.0002) 0963 7
0.25 (0.02) 0.0123 (0.0018) 0.0004 (0.0000) 0.986 7
0.26 (0.04) 0.0135(0.0034) 0.0007 (0.0001) 0972 7
0.15(0.07)' 0.0079 (0.0052)° 0.0005 (0.0001) 0.953 7
-— pooled data —

0.27 (0.05) 0.0126 (0.0044)" 0.0005 (0.0001) 0.780
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Lignin experiments. fit to M2

Q K asi Ksi adjr ref
0.16 (0.08)" 0.0229 (0.0143)° 0.47 (0.05) 0.0024 (0.0013)° 0972 7
0.05(0.07)* 0.0241 (0.0460)* 0.48 (0.08) 0.0019 (0.0012) 0972 7
—- pooled data —

0.24(0.19)* 0.0141 (0.0111) 0.45 (0.52) 0.0012 (0.0036)* 0.786
Lignin experiments. fit to M3

ay ke asi Kst Ks2 adj ret’
— pooled data —

0.24(0.73)° 0.0141 (0.0271)* 0.38 (31.26)° 0.0014 (0.0810)° 0.0001 (0.0395)° 0.784 7

' not significant at P <0.01

* not significant at P < 0.03

References: 1: Degens and Sparling 1996, 2: vanVeen ez al. 1984, 3: Mary er al. 1993. 4: Sagaar er al.
1994. 5: Ladd et «l. 1992, 6: Serensen 1981, 7: Martin ez al. 1980.

The purpose of this analysis is to identify the simplest model structure that accounts for the
observed variation in respiration fractions and rates of ransfer between compartments. Of the models
included here. M3 is likely to be the most realistic representation of the true litter and soil organic matter
dynamics. since it is recognized that litter material experiences successive stages of metabolism as it ages.
with different stages having characteristic respiration fractions and rates (van Veen and Paul 1981). On the
other hand. the number of observations in this analysis is too small to get highly significant estimates of the
parameters for M3. especially for the lignin experiments. One possible interpretation of the results in Table
3 is that M| parameters were most consistently significant. and so the true dynamics might be best
represented using that model. Another possible interpretation is that M3 is in fact the better representation.
and the low significance of many parameters is the result of too few observations. variations in the actual
parameters between experiments, or experimental error.

Because of the approximate nature of the exponential models. owing to the difference between the
assumption of instantaneous distribution into the various compartments and the reality of lagged
distribution as biomass moves through progressive stages of decomposition, a theoretical assessment of the
expected responses to changes in the underlying model was not attempted. [nstead. [ performed an
empirical numerical experiment to test the behavior of the least-squares fitting procedure for cases in which
the true underlying model behavior was known. I tested two hypotheses: first. that the true model was M 1.
and second. that the true model was M3. with parameters in both cases specified as in the regressions for
pooled data in Table 3. In all [ performed six experiments, by testing the M1 and M3 models

parameterized from the regression results for pooled data on glucose, cellulose, and lignin decomposition.
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For each experiment [ prepared a data file by sampling the output of a numerical simulation model that
operated on the basis of either M1 or M3, according to their structure as illustrated in Figure 3. Using
parameters taken from Table 3 for the pooled data analysis for each substrate type and for fits to M1 and
M3. I generated a 500-day sequence of total mass simulations. beginning. as in the “*C experiments. with
all of the mass in L and correcting the total mass on each timestep for the amounts respired from all
compartments. From this 500-day sequence, [ sampled 19 days to represent a sampling regime similar to
that in the "*C experiments, with more frequent sampling at the beginning than at the end of the experiment.
[ sampled on days 0. 1. 2.4.6.9, 12, 16, 20, 30, 40, 60. 80. 120, 160. 240. 320. 400. and 499. In each
experiment | performed the same numerical least-squares fitting procedure used for the analysis in Table 3.
generating fits for M1. M2. and M3 to the test data. By comparing changes in fitted model parameters for
M. M2. and M3 between the "*C experimental data and the numerical experiment data. [ hoped to
demonstrate that the patterns in the isotope data were more likely to have resulted trom one or the other
underlying model. Results of the numerical experiments are shown in Table 4. together with the results of
pooled data regressions replicated from Table 3 for comparison.

Table 4. Results of numerical experiments for tests of decomposition models

Glucose
Fitted Fit Fitted values Fitted values Fitted values
parameter to for M1 expt. for M3 expt. for "C expts.

a, Ml 0.48 0.47 0.48

aL M2 0.48 0.37 0.37

a M3 0.48 0.35 0.37

ke M1 0.5978 0.47 0.60

ke M2 0.5978 1.10 [.17

ke M3 0.5978 1.19 1.19

ag; Ml 0.52 0.50 0.52

ag; M2 0.52 0.21 0.20

ag; M3 0.0 0.21 0.19

ks1 Ml 0.0020 0.0006 0.002

ke1 M2 0.0020 0.052 0.064

ks1 M3 0.1453 0.070 0.070
Cellulose
Fitted Fit Fitted values Fitted values Fitted values
parameter to for M1 expt. for M3 expt. for “C expts.

a Ml 0.55 0.61 0.66

a M2 0.54 0.45 0.61
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a. M3 0.29 0.42 0.48
ke M1 0.0513 0.0496 0.0510
ke M2 0.0513 0.0722 0.0600
ke M3 0.0513 0.0770 0.0770
agt Ml 0.45 0.38 0.34
agg M2 0.45 0.30 0.23
ag; M3 0.25 0.30 0.25
ks M1 0.0005 0.0011 0.0005
ks, M2 0.0005 0.0i11 0.0030
ks, M3 0.0513 0.0145 0.0145

Lignin

Fitted Fit Firted values Fitted values Fitted values

parameter to for M1 expt. for M3 expt. for "*C expts.
ap Mt 0.24 0.22 0.27
ap M2 0.24 0.20 0.24
a. M3 0.24 0.20 0.24
ke Ml 0.0126 0.0130 0.0126
ke M2 0.0126 0.0141 0.0141
ke M3 0.0126 0.0141 00141
ag; Ml 0.76 0.78 0.73

. agy M2 0.76 0.46 045

agy M3 0.37 0.39 0.38
ks, Ml 0.0005 0.0006 0.0005
ks, M2 0.0005 0.0013 0.0012
ks M3 0.0005 0.0014 0.0014

The clear result from Table 4 is that the variation in parameters for the *C experimental data fitted
to progressively more detailed models (from M1 to M2 to M3) is consistent with the variation that would
be expected if the real system were more like M3 than M 1. The pattern observed in the numerical
experiments with M1 as the underlying model shows that the more complicated models can be fit just as
well as M 1. but that these fits result in redundant parameters. For example. in the fit of the cellulose M
model results to the M3 model. a; and ag; have simply split the mass that was really in the L compartment.
and k; and ks, have the same value, making the dynamics of these two compartments indistinguishable.
This pattern of redundant parameters is not apparent in the models fitted to "“C experimental data. On the
other hand. for the numerical experiments using M3 as the underlying model. the variation in parameters

with fitting to progressively less complex models results in a pattern that is very similar to the fitted
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parameters for the "*C experimental data. In the case of every parameter. the qualitative pattern in the *C
results is observed also in the M3 numerical results, and. with a few exceptions. the quantitative
information of the "*C results is preserved as well.

Based on my analysis of the results summarized in Table 4. [ selected M3. of the two tested
models. as the more likely to represent the decomposition dynamics of these homogeneous substrates. The
basis for selecting M3 over M1 was equally strong for all three substrates. [t appeared that errors due to the
assumption of simultaneous decomposition were manifested mostly in a_ and ag,. since even though the
underlying M3 model used the parameters derived from the "*C data. the fitted parameters for the numerical
experiments deviated from the input parameters for a; and as;, but were very accurate for k;_and kg;.

Fitting to M3 always underestimated the value for a; (average error -11.5%) and overestimated the value
for as; (average error +4.4%). This result suggests that values for f; and f5, should be corrected. and
lacking a more substantial theoretical basis, [ made such corrections based on differences between
parameters for the M3 numerical data fitted to the M3 model. and parameters derived from fitting the M3
model to "*C experimental data under the assumption of instantaneous partitioning. The M3 model
parameters for the three substrates after correction are shown in Figure 4.

Dashzd lines in Figure 4 connect soil compartments between the models for glucose. cellulose.
and lignin that have identical rate constants controlling the fluxes into them. as derived from completely
independent data sources. Given that decomposition is principally an enzymatic process and that soil taxa
are specialized to metabolize substrate of a certain chemistry on the basis of their enzvine production
(Stevenson 1986). and given that successive generations of microbes recycling the same biomass will
progressively lose quality as substrate materials for further biomass production as free energy is extracted
for growth and maintenance (Hunt 1977). I propose that the compartments connected by dashed lines in
Figure 4 are functional equivalents, representing sub-populations of the soil taxa with enzymatic production
specialized to metabolize substrate of a certain chemical quality. This implies. for example. that the
material resulting from a first generation of zlucose metabolism is itself metabolized to form a second
generation of microbial biomass and microbial byproducts which would at that point be indistinguishable

from the primary products of cellulose metabolism. The same conclusions are drawn for the case of the
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Homogeneous Substrate Decomposition Data Fitted to M3 Model

Glucose Cellulose Lignin

Figure 4
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second generation of microbes and byproducts from cellulose metabolism and the tirst generation from the
metabolism of lignin.

The final structure of the litter and soil decomposition model! is shown in Figure 5. This structure
reflects the arguments presented above, and stands as a testable hypothesis explaining decomposition
dynamics of heterogeneous substrates as coupled decomposition pathways for three homogeneous
components. In the generalization of the results from Tables 3 and 4. [ have considered the glucose
decomposition experiments to be representative of the labile. or water and alcohol soluble. litter fraction in
general (Minderman 1967). [ have also considered the S2 compartment from the M3 model fit to lignin
decomposition data to represent the most recalcitrant fraction of soil organic matter labeled R in Figure 3.
This treatment is suggested by Hunt (1977). who concluded from model comparisons with decomposition
data that humic (recalcitrant) material accumulation resulted from the death and decay of soil
microorganisms. The same conclusion was reached by Wieder and Lang (1982) after testing a number of
different numerical formulations for litter decay against observations. There is debate over whether the
processing of lignin by soil microbes. leading eventually to the accumulation of recalcitrant soil organic
matter. proceeds mostly extracellularly or intracellularly (Martin er al. 1980). The low respiration fraction
for lignin decomposition suggests that much of the lignin material proceeds through the first stage of
processing without undergoing substantial metabolism. [ avoid any explicit dependence on the localization

of lignin metabolism as either internal or external to the microbes. since my treatment ignores the

g

mechanisms of microbial metabolism and concentrates instead on inputs to and outputs from various stages
of microbial processing. This treatment is consistent with the notion of soil microbial biomass acting as a
transformation station. through which all litter material must pass (van Veen er al. 1984).

Based on the structure in Figure 5, [ performed simulations of the decomposition of single
homogeneous substrate components. The simulation results for each component are plotted in Figures 6a.
6b. and 6¢. together with each component's pooled data and M3 regression curve. As [ demonstrated
through the numerical experiments in which data generated using M3 was subsequently fit to the M1
model. the rate from the final compartment in the series arrangement is underestimated. presumably

because it is an amalgamated rate of progressively slower processes. By expanding the series of
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Litter and Soil Carbon Dynamics for 1D-BGC

Lab = Labile litter fraction
Cel = Cellulose litter fraction

Lig = Lignin litter fraction

S1 = Soil organic matter 1

S2 = Soil organic matter 2

S3 = Soil organic matter 3

R = Recalcitrant soil organic matter

Figure 5
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C Glucose decomposition data
Showing M3 regression and model
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4C Cellulose decomposition data
Showing M3 regression and model
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14C Lignin decomposition data
showing M3 regression and model
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compartments, these rates can be resolved. Given rates lower than those resolved for S3 in Figure 3. the
resolution of compartments beyond R would require multiple-year sampling, but sampling periods longer
than two years are rare. Other authors have resorted to radioactive dating methods to determine the half-
lives for the slowest soil organic matter pools, yielding values between 200 and several thousand vears (van
Veen and Paul [981. Parton er al. 1987). It may be essential for some purposes to include a representation
of this very slowly decomposing pool. but a treatment of the problem is beyond the scope of this work.
[gnoring the influence of suboptimal temperature and soil moisture on decomposition rates. the half-life for
decomposition from the slowest pool in Figure 5 is about 20 years,. Cooler temperatures and dryer soils
could easily push this half-life into the observed range for slow decomposition pools. Stevenson (1986)
states that respiration losses from the recalcitrant soil organic matter pool are typically between 2 and 5%
year™. with the higher values for warmer and wetter climates. This gives a daily rate of release 0£0.0001
for the upper end of that range, which is the value determined from the decomposition experiments under
favorable temperature and moisture conditions.

The rate constants shown in Figure 5 are derived from experiments carried out at uniform
temperature between 20 and 30 °C with moist soils. [t is known that temperature and moisture conditions
affect decomposition rates. From Lloyd and Taylor (1994). I include a correction tor the decomposition
rate constants on the basis of temperature above or below 25 °C:

Keorr = k exp(4.34 - 308.56/(T,,+46.02))
where k is any of the rate constants. and T, is the estimated daily average soil temperature in the upper 10
cm (Zheng et al. 1993). Decomposition is assumed to be negligible below -10 °C. From studies of the
effect of soil moisture on decomposition rates (Orchard and Cook 1983, Andrén and Paustian 1987). [

derived the following rate constant correction for variation in soil water potential:

Koy = kln| ——1 0¥
In(~10.0/y )

The availability of soil mineral nitrogen acts as a final control on decomposition rates. As litter
material is metabolized to become soil microbial biomass and microbial byproducts. some carbon is lost

through respiration. but nitrogen from the original material is retained. Nitrogen (as well as other nutrients)
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is required for microbial biosynthesis and growth. and the ratio of carbon to nitrogen (C:N) in microbial
tissue is relatively conservative, ranging from about 8:1 to 15:1 (Aber er a/. 1990. Smolander et al. 1994).
When the C:N of'a microbial growth substrate is higher than about 12:1, after accounting for loss of C due
to respiration. mineral nitrogen (ammonium and nitrate) in the soil may be incorporated in the new
microbial biomass during substrate metabolism (immobilization) to make up the nitrogen deficit and bring
the final microbial C:N down to around [2:1 (Stevenson 1986). For substrates with higher N concentration
or for high respiration fractions, more N may be present in the metabolized substrate than is required for
microbial growth, and the extra N is released to the soil in a mineral form (mineralization).

Immobilization and mineralization occur simultaneously in soils having organic matter in varying stages of’
decay. and over some period of time the net result may be an increase in soil mineral N (net
mineralization), or a decrease in soil mineral N (net immobilization).

The N requirements for the decomposition of a particular substrate depend on the substrate C:N.
the respiration fraction. the microbial C:N, and on possible N losses during metabolism. [t is commonly
observed that low N availability with respect to N demand results in an increased respiration fraction for
the same quality of substrate (Melin 1930. Waksman and Gerretsen 1931. Allison and Murphy 1962. Berg
and Tamm [994). Presumably this results from the additicnal respiration costs of active N transport. as
opposed to passive diffusion which dominates under non-limiting N conditions (Taylor er al. 1991).
Reduction of N limitation by low-level fertilization increases decomposition rates for whole-plant materials
(Waksman and Gerretsen 193 1. Berg and Tamm 1994) and for homogeneous cellulose and lignin fractions
(Melin 1930). Asshown by McClaugherty et al. (1985), additions of N under conditions for which the N
immobilization demand is already met by the N mineralization rates do not result in increased
decomposition rates.

Based on observations of reduced decomposition rates under N limitation. decomposition rates for
the litter and soil compartments in 1D-BGC are limited by net mineralization rates in a two-step process.
First. all decomposition processes are estimated with temperature and moisture corrected rates from Figure
5. Any flux that results in N mineralization is allowed to proceed at this daily potential rate. and the

addition to soil mineral N from all such mineralizing fluxes is calculated. These fluxes are added to the soil
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mineral N pool remaining from the previous day. and the total soil mineral N available for decomposition
fluxes that result in N immobilization is determined as 90% of the mineral N pool. Next. if the estimated
immobilization due to potential decomposition fluxes is less than this available soil mineral N. then these
fluxes are allowed to operate at their daily potential rates, and mineral N is immobilized according to the
initial estimates. [f. on the other hand, available mineral N is less than required by the potential
immobilizing fluxes. all the immobilizing fluxes are scaled uniformly to adjust the demand to exactly meet
the supply. resulting in a maximum of 90% of the soil mineral N pool being immobilized by decomposition
fluxes on each day.

After all mineralization and immobilization fluxes have been reconciled. any remaining soil
mineral N is made available for uptake by plants. When the phenological signals are such that fine roots
are present. the plant takes up 90% of the available soil mineral N. No N uptake occurs on days when fine
roots are not present. [n earlier BGC versions, plant N uptake was treated as a function of the fine root
biomass and a maximum rate of N uptake per unit of root mass (Hunt and Running 1992). This approach is
also used by Rastetter et al (1991) who make N uptake a function of total root N content. Compared to
other processes in terrestrial ecosystems, belowground production and the division of total production
between above and belowground components are poorly understood (Nadelhofter et al. 1985. Raich and
Nadelhoffer 1989. Holmes and Zak 1994, Zak er al. 1994). For this reason. even though it may be a
realistic approach. [ have rejected the connection between fine root mass or N concentration in the
determination of N uptake. Another approach (McMurtrie 1991. Potter er al. 1993) is to specify a range for
foliar nitrogen concentration and allow the plant to take up as much nitrogen as is available until the
maximum foliar concentration is reached, after which surplus mineral N remains in the soil. | argued in
Section 5.1 that leaf N concentration can remain constant if leaf area is assumed to be the dominant
mechanism for plant response to N limitation. Potter er al. (1993) find that their model generally reaches
its specified maximum foliar N concentration, and they report that variation in leaf area rather than

variation in the photosynthetic capacity of leaves is the dominant mode of variation within a lifeform class

for their global simulations.
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In my treatment of plant N uptake, I need to accommodate both daily and annual carbon and
nitrogen allocation models (see Section 5.7). The implication for N uptake is that part of the N demand is
unknown until the end of the growth season. The first part of the solution to this problem is to allow
"luxury” N uptake, as just discussed. Some of this N is used in new growth specified by the daily carbon
and nitrogen allocation model, part of it is used for woody tissue growth at the end of the growing season.
and part of it is stored to initiate new growth of leaves and fine roots in the following growth season. After
all these demands are met. there may be additional N that was taken up but not allocated. My solution to
this problem is to release this mineral N back to the soil mineral N pool in equal increments over the course
of the next year. The result of luxury N uptake, daily and annual allocation. and slow return of unused N
from the plant to the mineral soil pool is that net plant N uptake resembles N demand without having to
diagnose the true N demand for annual allocation in advance.

Figure 7 illustrates the dominant pools and processes and the linkages between C and N in the
plant-litter-soil system. For purposes of clarity. only one generic pathway through the litter and soil system
is included in this diagram. Note that although litter substrate decomposition is shown to immobilize N and
that decomposition from the first soil organic matter compartment is shown to mineralize N. both
immobilization and mineralization are possible at both these points, depending on the C:N of litter
substrate, the specified respiration fraction, and the specified C:N of the soil organic matter pools.

In addition to the active labile, cellulose. and lignin pools illustrated in Figure 5. there is a fourth
litter pool which represents cellulose that is not available for decomposition as the result of it being
associated with lignin which is shielding it from the microbial community (Donelly et al. 1990. Taylor et
al. 1991). Data from Taylor et al. (1991) show that decomposition rates for substrates containing both
cellulose and lignin decrease as lignin content increases from 10% to 28% of total litter mass. but that for
larger fractions of lignin the decomposition rate is relatively constant. This implies that lignin completely
dominates the decomposition dynamics at a lignin content of about 30%. Given a typical range for total
cellulose content of non-woody litters between 36 and 50% (Berg er al. 1984. Berg and McClaugherty
1989. Stump and Binkley 1993), and assuming an average value of about 40%. I estimate the maximum

level of lignin shielding of cellulose to occur at a ratio of lignin to cellulose of 0.7. For ratios greater than
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or equal to 0.7. 80% of the litter cellulose occurs in the shielded fraction. For ratios below 0.7 and greater
than 0.25. the amount of cellulose in the shielded fraction drops from 80% to 0%. with no cellulose
shielding for ratios lower than 0.25. The shielded cellulose pool becomes available for active
decomposition. according to the ratio between shielded cellulose and total lignin. as the lignin litter pool is
metabolized. Cellulose released from shielding simply enters the homogeneous cellulose litter pool and is
then treated as part of the total active cellulose pool.

The final component of the plant-litter-soil model is a storage compartment for coarse woody
debris. defined here to mean the cellulose and lignin fractions of the live and dead stem and coarse root
compartments that are being lost from the plant compartments due to whole-plant mortality (Section 5.5).
Coarse woody debris is included as a separate compartment because it must undergo a process of physical
fragmentation before decomposition can begin (Harmon et al. 1986). Grier (1978) found a fragmentation
rate constant of 0.015 yr' for Hemlock logs in Oregon. under conditions of high precipitation and mild
temperature. Sollins (1982} obtained similar results for bole fragmentation in western Oregon and
Washington. with an average fragmentation rate constant of 0.018 yr™'. The dependence of fragmentation
on variation in moisture and temperature is poorly understood (Harmon ef al. 1986). I have assumed the
same dependence on temperature and moisture as for the metabolic decomposition rates. and have
furthermore assumed that the rates obtained in the Oregon and Washington studies are on the medium to
fast end of the fragmentation gradient due to climate. Therefore [ assigned a base fragmentation rate of
0.0001 day™' for all coarse woody debris. Lignin and cellulose are not discriminated within the coarse
woody debris compartment. but their relative proportions are maintained. with the result that material
leaving that compartment due to fragmentation fluxes is partitioned between the cellulose and lignin litter
pools on the basis of average coarse woody debris cellulose and lignin contents. Cellulose leaving the
coarse woody debris compartment is assumed to be shielded or not on the basis of the lignin to cellulose
ratio for the entire compartment.

Atmospheric N deposition occurs at a specified daily rate. with all atmospheric inputs entering the
soil mineral N pool. N leaching occurring in conjunction with soil water outflow is the only N removal

pathway. The rate of leaching loss is calculated by assuming that during outflow the water soluble fraction
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of the soil mineral N pool is being transported out of the system according to its concentration in the soil
water. [ assume that 10% of the soil mineral N pool is water soluble. and calculate the N leaching flux as
the soluble mineral N pool multiplied by daily outflow and divided by soil water content. Volatilization
tluxes from the soil mineral N pool to the atmosphere are not considered at present. A very simple
treatment of the volatilization fluxes is proposed by Parton er al. (1993), who estimate volatilization as 1%
of gross N mineralization. This treatment could easily be incorporated into [D-BGC if it were deemed
necessary.

The plant-litter-soil model in ID-BGC is fully defined once the user has supplied the following
parameters: the C:N of live foliage(CNy), the C:N of foliage litter after retranslocation has occurred
(CNicantiner)- the C:N of fine roots (CNgy). the C:N of live wood (CNjy0q)- the labile proportion of leaf litter
and fine root litter (fLabyy, fLabj.y), the cellulose proportion of leaf litter. fine root litter. and dead wood
(fCelicar. fCeliroor-fFCeluwooa)- and the lignin proportion of leaf litter. fine root litter. and dead wood (fLig).,.
tLiggoor liiwood)-

5.7 Carbon and nitrogen allocation

On a daily basis. carbon is added to an abstract storage pool (Cp) as the result ot photosynthesis.
and is subtracted from the same pool as the result of maintenance and growth respiration. Similarly.
nitrogen is accumulated in an abstract storage pool (Npeor) as the result of daily plant N uptake. This section
treats the simulation of new growth resulting from the allocation of C and N from Cpq, and Ny, to other
plant compartments. This allocation can take place by two very different mechanisms: both can operate
within the same simulation. The first mechanism. which [ will refer to as annual allocation. occurs once
per vear. on the final day of litterfall (see Section 5.4). The second mechanism. referred to as daily
allocation. can take place on any day between the first day of the new leaf growth period in the spring until
the first day of the litterfall period. Of the two. annual allocation is more involved and more sensitive to
seasonal integrals of growth conditions. I first provide outlines for annual and daily allocation. and then
present more detailed descriptions

Annual allocation is a major point of reconciliation between the plant carbon and nitrogen cycles.

as well as an opportunity for the plant to respond to various signals from the growth environment which are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

not easily integrated in the more mechanistic treatments of daily biophysical and biochemical processes.
The fundamental assumption in the annual allocation mechanism is that all distributions of available carbon
and nitrogen between different plant compartments can be derived allometrically having specified only the
allocation to new leaf growth. Other ecosystem process models have used a similar logic (e.g. McMurtrie
1991. Rastetter er a/. 199 1. Running and Gower [991. Hunt and Running 1992, Potter ez al. 1993). All
plant growth controls can then be estimated through their impact on new leaf growth. This is logically
consistent with the hierarchy of growth precedence suggested by Waring and Pitman (1985) and Waring
and Schlesinger (1985). giving the highest precedence to new leaf growth and bud formation (preparation
for next growth season's new leaf growth). Four resource availability factors control new leaf growth: the
availability of carbon. the availability of nitrogen, the integrated seasonal water stress. and the availability
of unintercepted light. A secondary limitation is established by a user-prescribed value that sets an upper
limit on the percent difference between years in the carbon allocated to new leaf growth. These potential
limitations are considered together to determine the dominant control on new leaf growth. atter which all of
the mandatory allometric relationships are applied to determine the growth for fine roots and the live
components of stem and coarse root. [t is possible that carbon rematns after all mandatory allocation is
complete. and tor trees this remaining carbon is allocated to new growth of stem and coarse root wood.
which is assumed to enter the dead wood compartments (i.e.. new xylem tissue). For nonwoody plants. this
excess carbon is sent to the labile litter compartment over the course of the next growing season. emulating
the production of root exudate. Excess nitrogen. for both woody and nonwoody plants. is returned to the
soil over the course of the next year, as described above (Section 5.6).

The daily allocation mechanism is optional, and in that it uses carbon and nitrogen from the C
and Npe. it competes with the annual allocation mechanism. The user specifies the degree of dominance
between the daily and annual allocation by setting a linear function that determines. on each day between
the beginning of new leaf growth and the beginning of litterfall. the proportions of daily net photosynthesis
and plant N uptake available for daily allocation. The remaining proportions are retained in the Cp and
Npoor and are available at the end of the growing season for the annual allocation mechanism. Daily

allocation is much simpler than annual allocation, in that only controls due to carbon and nitrogen
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availability are considered. without any explicit treatment of water stress or light limitation. Because all
influences on resipiration. photosynthesis, and decomposition are manifest in the daily estimates of net
photosynthesis and N uptake, factors such as soil water depletion, high VPD. N mineralization rates. or
canopy light interception are acting on the daily allocation mechanism implicitly through many other model
processes. Given a fraction of the daily additions to the Cpeq and Ny new daily leaf growth is estimated
as the dominant limitation. and allocation to all other plant compartments is based on the same mandatory
growth allometry used in the annual mechanism. There is no explicit treatment of excess C or N for daily
allocation. since it is simply assumed to remain in the storage pools until the end of the growth season. at
which point it becomes available to the annual allocation mechanism.

A tundamental difference between the annual and daily allocation mechanisms is that the annual
allocation to new leaf growth is made at the end of the growth season. and enters a temporary storage pool
that will be moved into actual displayed leaf material only at the beginning of the next growth season
(controlled by the phenological model. Section 5.4). while new leaf growth allocated by the daily
mechanism is immediately displayed. Thus. the annual allocation mechanism is responsible for the
establishment of a plant architecture that is balanced with respect to long-term patterns in the growth
environment. while the daily allocation mechanism allows for a more immediate response of the vegetation
to the current year's growth conditions.

For the annual allocation mechanism, the user specifies the maximum percent change between
vears in the amount of carbon allocated to new leaves (lgfn,). This sets an upper limit on the amount of
new leaf growth when all other resources are adequate. and is intended to restrain growth rates in
accordance with the requirements for structural growth to support new leaf tissue. The maximum annual
amount of carbon allocated to new leaf growth (MA X .wicarc) 1S then given as:

MAX;ewiearc = PREV ewicare (1.0 + 18finas)
where PREV juiearc i the amount of new leaf carbon allocated in the previous growth season. The
parameter lgf,., also sets the maximum amount by which new leaf growth can be reduced from the

previous year due to water stress in the current year, as discussed below.
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The allometric constants defining the relationship of new leat growth to mandatory new growth in
the other plant compartments are specified by the user. They are: the ratio of new fine root growth to new
leaf growth (f}); the ratio of new live coarse root growth to new live stem growth (f3): the ratio of new live
stem growth to new leaf growth (f3); the proportion of Cpu to retain for the next growing season (f;): and
the proportion of N to retain for the next growing season (f5). Other relevant parameters include the
growth respiration constants for nonwoody and woody components (G, and G,,. see Section 5.3). and the
C:N ratios for live leaf. fine root. and live wood (CNi.p. CNgoo. and CNy,00q. S€€ Section 5.6). Based on
these parameters. the estimates of annual allocation of carbon to new leaf growth as controlled by C and N
availability (Cpewteare and Npewiearc- respectively) are defined for woody plants as:

Crewteart = Cpoat (1.0-6) 7 (1.0+G+ £, +£,Go+ 6+ 6G +H5+H6G,)

Niewteatc = Npoot (1.0-£5) / (1.0/CNieas + £1/CNgroor + (£53+F£5)/CNiwood)
and for nonwoody plants as:

Crewicatt = Cpoot (1.0-f3) 7 (1.0+G,+£,+£1Gy)

Niewieare = Npoot (1.0-£5) / (1.O/CNiap + £1/CNiroor)

The availability of water is known to limit leaf growth (e.g.. Grier and Running 1977). and |
include a mechanism that makes the annual allocation to new leaf growth sensitive to an index of integrated
water stress over the growing season. This mechanism is designed to maximize long-term productivity
under constant climatic conditions by reducing new leaf growth in years when complete stomatal closure
due to low soil water potential is reached. [ have found. for a constant climate simulation (i.e. a multiple
vear simulation which uses a single year of meteorological data repeatedly). that production is maximized
when leaf area is just sufficient to bring the soil water content to the point at which complete stomatal
closure occurs on one day during the growing season. Production falls off for leaf area resulting in more
than one day of complete stomatal closure due to water limitation. On this basis. [ define an annual
integrated water stress index as the number of days with complete stomatal closure due to water limitation
(ngr). and when ny, is greater than one day a control on new leaf growth due to water limitation (W etearc)
is implemented. defined as:

Woewteart = PREV eyieare (1.0 - (Igfinax (Ngn-1)/45)) for ng, <= 45 days. and
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Wiewteatc = PREV peiearc (1.0 - Igfnac) for ngy > 45 days

New leaf growth is also controlled by the availability of radiation. such that new growth is
inhibited when the fractional absormption of incident PAR approaches 100% (Larcher 1995). [ definea
linear control between 80 and 100% fractional PAR absorption (Rpar c/Rpar- see Section 3.2). and set a
control on allocation of carbon to new leaf growth due to light limitation (Lyewieac) as:

Loewtaatc = Poewtearc [1.0 + 1gfnac( 1.0 - ((Rpar.c/Rpar)-0.8)/0.2)] for Rpar.c/Rpar > 0.8

The dominant control on carbon allocation to new leaf growth (POT, i) is determined as the
minimum of five potential .ontrols: MAX ewicmc. Coewteac- Naewleat- Waewtearc- and Lpewicarc. Because new
leaf growth controls due to water and nitrogen limitations given above are implemented only when they are
the most limiting control. these controls by themselves can lead to abrupt growth declines when water or
nitrogen resource availability is changing rapidly. For example. in the case of an evergreen canopy which
is accumulating nitrogen in its leaves as canopy leaf area increases. the onset of nitrogen limitation may
occur abruptly. causing large differences between growth in two successive years. It seems plausible that
plants could have advance warning of such approaching limitations. resulting in reduced growth rates
before a particular resource limitation becomes dominant. Regardless of the existence of such a
mechanism in real plants. [ find that the implementation of such an preemptive growth limitation in 1D-
BGC helps to reduce interannual oscillations of leaf area in the vicinity of a point of co-limitation by
multiple resources. [ implement two such controls. causing a restriction of new leaf growth for either an
approaching water limitation or an approaching nitrogen limitation. These controls are implemented only
in vears when POT,eicarc > PREV yicarc. The secondary water control can only be implemented when
water is not the primary limitation. and likewise for the secondary nitrogen control. The secondary water
and nitrogen controls are implemented on the basis of water and nitrogen availability indices (Wy; and Ny;.
respectively). which are unitless scalars, defined as:

W =min{ .0, 2B - Ocm)’(Osat - Ocrir) |

N:\l =min i 1.0. (Nncwlg-alC/POTnewlcaf(‘) - [.O:
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where 0, is the growing season minimum value of the volumetric water content, 0., is the volumetric
water content at the soil water potential specified to cause complete stomatal closure. 8, is the saturated
volumetric water content (Section 4.1), and min/a.b} indicates "the lesser of a and b".

Only one of these controls can operate in a given year. and in order for either to be operative. its
value must be less than 1.0. When both W, and Ny, are less than 1.0. the lesser of them is selected as the
secondary growth control. and the actual carbon allocation for new leaf growth (ACT eviearc) 1S calculated
as:

ACT eutearc = PREV iearc + min{ Wiy . Nar} (POThewtcaic - PREViewtearc)

Otherwise. tor the case in which a secondary growth limitation is not invoked:

ACT pewicarc = PO T ewtearc
The effect of the secondary water limitation is to begin to reduce new leaf growth from its potential rate
when half of the available soil water is depleted at any time during the growing season. and to stabilize the
annual new leaf growth at its value from the previous vear when all the available soil water is used at any
time during the growth season. The effect of the secondary nitrogen limitation is to begin a reduction on
new growth rate when the primary nitrogen limit to new leaf growth is twice as large as the dominant
primary limitation. ending in no additional increase in new growth from the previous year just before N
limitation becomes dominant.

With the final prediction of carbon allocation to new leaf growth. the other mandatory growth
fluxes of carbon and nitrogen are given as:

C allocation to new leaf C storage = ACT ewlearc

C allocation to new fine root C storage = f; ACT pewtearc

C allocation to new live stem C =f; ACT jewicaiC

C allocation to new coarse root C = £ f; ACT ewtearc

N allocation to new leaf N storage = ACTeutearc / CNicar

N allocation to new fine root N storage = fiACT ewtcarc / CNgroor

N allocation to new live stem N = f; ACT cwtearc / CNiwood

N allocation to new coarse root N = f5 f; ACT jewtearc / CNiwood
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where woody allocation is only applied for woody plants.

For the case of woody plants, any carbon remaining in the Cpo in excess of the prescribed
retention fraction (f}) is used to produce new dead woody tissue. This mechanism is intended to represent
the luxury growth of xylem tissue in woody plants in years when growth conditions are favorable. My
purpose in distinguishing between live and dead woody components is to be able specify as mandatory
growth the "thin sheathing lateral meristem” of phloem which is alive. respiring. and an integral part of the
carbohydrate transport system between leaves and other plant parts (Kramer and Kozlowski 1979). while
allowing increased stem wood production under favorable growth conditions to enter a dead stem pool
representative of xylem tissue. This logic is consistent with observations of a decrease in the xylem to
phloem mass ratio under stressed conditions (Kramer and Kozlowski 1979), and with studies indicating that
this decreasing ratio is the result of reduced xylem production as opposed to increased phloem production
(Bannan 1955, Evert 1960). Nitrogen accompanies the luxury growth of new dead wood according to the
specified ratio of lignin to cellulose in dead wood and constant values for lignin and cellulose C:N ratios.
specified as CNjjgnin = 500 and CN.qyiose = 250. estimated from data on wood lignin and cellulose content
and nitrogen concentration (Berg er al. 1984. Berg and McClaugherty 1989. Aber ez al. 1990. Donelly er al.
1990. Taylor et al. 1991. Stump and Binkley 1993). [f not enough N is available to meet these fixed C:N
ratios. wood production occurs at lower values of C:N. using the same amount of C and all available N.

My treatment of mandatory new live stem and new live coarse root growth with respect to new
leat growth (parameters £ and f;. above) requires some comment. Earlier BGC versions treated live and
dead woody material as a single component. one for stem and another for coarse root material. This
treatment presents a problem for the estimation of maintenance respiration. since it is only the live cells
which respire. and a large fraction of the stem and coarse root material is dead. With the exception of axial
and ray parenchyma cells which extend into the sapwoad. all the living woody material is in the cambium
and the phloem. Differences in nitrogen content between the phloem (~2% N). the sapwood (~0.3% N).
and the heartwood (~0.1% N) reflect the differences in live material between these tissues (Kramer and
Kozlowski 1979). [ hypothesize that respiration from cambial and phloem tissue dominates the total

woody tissue maintenance respiration budget, and that live phloem is required as a transport pathway
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benween fine roots and leaves. Based on a logic analogous to that presented by Waring and Schlesinger
(1985) for the linear relationship between conducting xylem cross-sectional area and leaf area. [ propose
that a linear relationship should exist between phloem cross-sectional area and leaf area. The total phloem
mass. required in estimating maintenance respiration and mandatory live stem and live coarse root growth.
is then a function of the leaf area and the average stand height. By this logic two stands with equal leaf
area but unequal average height will have unequal phloem respiration costs. with the ratio of their
respiration costs varying as the ratio of their average heights. [ have made the additional assumption that
live woody material turns over at a rate equal to the leaf turnover rate.

This treatment depends on an estimate of average stand height. From tables of growth. yield. and
stand volume for various conifer forest types in the western United States and Alaska. [ estimated the total
stem C and average stand height for stands of different site index at various ages. [n my calculations [
assumed a constant green wood density of 400 kg m™. a constant water fraction of green wood weight of
0.5. a constant carbon fraction of dry weight of 0.5, and a conical growth form. with the reported diameters
at breast height taken as the cone base diameter. Results of these calculations using tables for unmanaged
stands of douglas fir (McArdle and Meyer 1930), western white pine (Haig 1932). Alaskan white spruce.
and ponderosa pine (Meyer 1938) are shown in Figure 8. Douglas fir and western white pine types are
grouped together for a single regression, and ponderosa pine and white spruce are grouped for another
regression. predicting height as a function of total stem C using a power relationship. The regressions
shown in Figure 8 are highly significant. with standard errors of estimation less than 4% for all parameters.
These results suggest that similar relationships could be derived for other woody vegetation types.
Regressions based on tabular data for managed stands were also significant. but had higher values tor both
regression parameters and lower values of R? (data not shown).

In non-woody vegetation. any excess carbon is assumed to be sent belowground. without an
associated nitrogen flux. This belowground carbon return enters the labile litter pool. and like the luxury N
return discussed in Section 3.6, this carbon return occurs in equal amounts on each day of the following
vear. The return of excess carbon is more a matter of maintaining a plant mass balance than of representing

any particular ecosystem process. A modeled surplus of photosynthate which is not needed in new leaf or
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Stem C vs. average stand height for unmanaged stands
from growth and yield tables
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root growth can be allowed to accumulate in the Cp Or it can be sent to another compartment. Exudation
ot carbon-rich solution through the roots of non-woody plants is well documented (e.g.. Schwenke and
Wagner 1992, Hoffland er al. 1992, Xu and Juma 1994), and careful study with "*C labeling has shown that
up to 10% of annual NPP in wild grasses is released as organic root exudate. the respiration of which
makes up greater than 30% of the total rhizospheric respiration in some cases (Johansson 1992. Cheng et
al. 1993). These studies do not relate root exudation directly to photosynthate surplus. but they do indicate
that exudation is common and can represent a large fraction of total production.

As discussed in Section 5.6. any N remaining in the N after annual allocation is complete. in
excess of the specified retention traction (f5). is returned to the soil at a constant rate over the course of the
next year.

Annual allocation of C and N for new leaf and new fine root growth is made to storage
compartments that are inactive until the first day of new leaf growth at the beginning of the next growing
season. At this point. under the control of the phenological signals discussed in Section 5.4. C and N are
moved from storage compartments into active leaf and fine root compartments. Maintenance respiration
costs are only incurred once leaves and fine roots are displayed. One important implication of this storage
in the fall for display in the spring is that the benefits of a good growing season in the current year are not
realized as additional leaf growth until the following year. This sort of storage is important for the
development of a positive photosynthetic balance in deciduous species during early new leaf growth
(Kramer and Kozlowski 1979). Although net production is quite responsive to current growth conditions.
the annual allocation mechanism does not allow for additional leaf growth during a favorable growth
season. The purpose of the daily allocation mechanism is to allow an option for immediate response in
growth to current conditions.

In comparison to the annual allocation mechanism. the treatment of daily allocation is very simple.
Using the same formulations for the C limitation and N limitation to new leaf growth given above for
annual allocation. but replacing the Cpoo and Npoor With the fraction of daily net C fixation and daily plant N

uptake available for daily allocation. daily C and N limits to new growth are calculated. The lesser of these
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is the actual new daily growth. and all the mandatory growth fluxes discussed above are applied. There is

no treatment of luxury C or N in the daily allocation mechanism.

6. Example simulations

[ have concentrated my discussion so far on the logic and reasoning behind the treatment of
individual processes in the | D-BGC model. and have presented justification for my decisions at what [
perceive as the most crucial junctions of these processes in the model structure. [n order to expand this
discussion to the integrative functioning of the whole model. I present here an analysis of some example
simulations. The purpose of this analysis is to provide an overview of the integrated model behavior. and
not to present a rigorous validation of any particular simulation component. [ will. however. present
various lines of evidence arguing that the overall model performance is not unreasonable. and will
comment on the integrative aspects of the model which suggest possible future improvements.

The first example consists of two 2000-year simulations begun with very low Lp and no organic
matter in the litter or soil compartments. The only source of N is from atmospheric deposition (0.4 gN m™
yr''). and I refer to this scenario as a case of severe N-limitation. because in the early part of the simulations
N-mineralization is very low due to lack of soil organic matter. The simulations are performed using one
repeated year (1984) of meteorological data from Missoula. MT. and are intended to represent the
establishment of an evergreen canopy starting from very low leaf area (Lp = 0.1). The sole difference
between the two simulations is that one uses both annual and daily allocation mechanisms (referred to as

dual allocation. and indicated by solid lines in Figures 9. 10. and 11), and the other uses only the annual

mechanism (dashed lines).

Leaf C on vearday 250 (prior to litterfall) for the first 200 years of the simulations is shown in
Figure 9a. illustrating that dual allocation and annual allocation both follow the same initial trend in canopy
development. but that dual allocation takes a stable trajectory while annual allocation exhibits damped
oscillations with a frequency of around 25 years. These oscillations are the result of fluctuating soil

mineral N levels, which are exaggerated by the one-year time lag in the response of new leaf growth to N
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Simulated soil minercl N under severe N—limitation
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availability for annual allocation. but which are damped by the sensitivity of current-year growth to
available N with the dual allocation mechanism (Figure 9b).

At around year 900 for both allocation schemes, the dominant limitation switches from available
N to available soi! water. The long initial period of N-limitation ends when coarse woody debris and litter
inputs have increased the soil organic matter content to levels at which annual N mineralization is sufficient
to supply the N-immobilization demands imposed by new litter material (Figure 10b). At this point the
canopy predictions trom the two schemes diverge as a result of the water limitation in the annual allocation
mechanism (Figure 10a). For annual allocation. the canopy development is curtailed when the annual
minimum soil water content reaches the critical value causing stomatal closure. For dual allocation. the
same is true for the part of each year's leaf growth coming out of storage from the previous year. but as
long as the daily carbon balance is positive and mineral N is being taken up. the daily growth mechanism
can increase leaf area above the level required to just reach critical water content. In this case. water is
used earlier in the season and the period of late-season water stress is extended. These dynamics can be
observed clearly in the water budget. The annual minimum soil water content over the entire simulation is
shown for both schemes in Figure 1 la. where the minimum for dual allocation is seen to fall below the
minimum for annual allocation after the annual scheme has reached its critical water content. The annual
courses of soil water content at vears [. 200. and 2000 are shown in Figure | lb. For years | and 200. the
two schemes have nearly identical soil water dynamics. and only one curve is shown for each vear for the
two simulations. [n year 2000. however. the soil water dynamics have diverged. as shown by the lowest
two curves in Figure 10b. Annual net primary production (ANPP) for the dual scheme is greater than for
the annual scheme after the divergence (Figure 12). The reason for a benefit in ANPP at a higher leaf area
is not immediately obvious. since a similar amount of water is being used in both schemes. but at different
times. The answer. in this case, is that high evaporative demand and reductions in stomatal conduction due
to vapor pressure deficit and high temperatures occur in the late summer period more than in the early
summer, so that for annual allocation, water saved until the late summer is being used more rapidly for a
given stomatal conductance and stomatal conductances are being driven down. while dual allocation results

in the same water being used earlier and under more optimal growth conditions.
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For comparison with the ANPP results in Figure 12. ANPP for ponderosa pine stands along an
elevation gradient in the Santa Catalina Mountains, Arizona (a dry-summer climate with annual average
temperature similar to the Missoula 1984 record) was observed to be 0.31 (kgC m™) fora stand with Lp =
1.9. and 0.35 for a stand with Lp = 2.4, after estimating root production as 30% of total production
(Whittaker and Niering 1968, Whittaker and Niering 1975). ANPP at the end of the annual allocation
simulation is 0.27. with Lp = 1.2, and at the end of the dual allocation simulation ANPP =0.32. with Lp =
23.

As an illustration of the sensitivity of the model to interannual variation in environmental
conditions influencing growth, [ performed two experiments analogous to those just described. but using a
44-year (1950-1993) meteorological data record for Missoula in place of the 1984 record. The 44-year
record was repeated as needed for the 2000-year simulations. Leaf C from simulations using the dual
allocation scheme are shown for the constant climate and the variable climate in Figure 13a. Note that
although the interannual climate variation results in large differences between years in leaf C. the trend due
to long-term changes in resource limitation is preserved. For the Missoula climate record. 1984 was milder
than average (average maximum temperature. minimum temperature. and vapor pressure deficit were 13.1
°C. 0.8 °C. and 838 Pa. respectively. compared with 13.5 °C. 0.1°C, and 900 Pa for the 44-year average
conditions). with average precipitation (34.5 cm in 1984 vs. 35.0 cm for the 44-year average). resulting in
predictions of leaf C for under the constant climate scenarios that are higher than the average predictions
from the variable climate simulations. A similar pattern is observed in comparing leaf C from the annual
allocation simulations for constant and variable climates (Figure 13b). Interannual vanation in leaf C is
more variable for dual allocation than for annual allocation.

The responses shown in Figures 9-13 represent the initiation of a canopy from what could be
considered a "scorched earth" scenario: the very slow response of increasing leaf area over the first 1000
vears is the result of a slowly accumulating nitrogen resource. and does not represent the expected behavior
of canopy reinitiation after a mature canopy with an equilibrated soil organic matter budget has been
removed by rapid disturbance. In order to illustrate the model's behavior under these more typical growth

conditions, I used coarse woody debris and soil organic matter values obtained at the end of the 2000-year
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Simulated lecf C, constant vs. variable climate
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simulations as the initial conditions for a 100-year simulation. but set all the plant carbon and nitrogen
compartments to very low initial values. [ pertormed four such 100-year simulations. with the same
variation between simulations as described for the 2000-year experiments. Two experiments were
performed with the 1984 climate and two were performed with the 1950-1993 climate. For each climate.
one simulation used both annual and daily allocation, while the other used only daily allocation.

Predicted leaf C at the middle of the growing season for these four scenarios over the 100-vear
simulation period is shown in Figure [4a. The same general patterns noted above are observed here as
well. with respect to the differences in equilibrated leaf area between the dual allocation and the annual
allocation simulations. and with respect to the relationship between the single climate-year simulations and
the variable climate simulations. Notice. however. that both allocation scenarios in the 100-year
simulations rise to their equilibrium leaf C values much more rapidly, due to a reduction in N-limitation.
The dual allocation mechanism allows for a more rapid leaf area increase after initiation. approaching
equilibrium after 20-30 years as opposed to 70-80 years for the annual allocation mechanism operating
alone. The rate of increase in total stem wood for the 1984-climate simulations averaged 0.106 kgC m™ yr’
! for the final ten years of the 100-vear simulations (0.103 kgC m™ yr”' for dual allocation and 0.110 kgC
m™ yr’' for annual allocation), which compares well with an average aboveground woody growth rate of
0.117 kgC m™ yr' observed by Whittaker and Niering (1968) and Whittaker and Niering (1975) for their
plots in Arizona. where the average stand age was 121 vears.

[t is interesting to note that the woody growth rates between the two different allocation scenarios
are quite similar. although the scenarios differ by a factor of two in leaf area. As shown in Figure 14b.
ANPP for the two allocation scenarios is more similar than leaf area. and since the dual allocation scenario
is using more of its ANPP for new leaf growth each year (both scenarios are defined to have the same leaf
turnover rate of 0.33 yr’™"), the production remaining for "luxury growth" of new dead woody material is
about the same in either case. Also note that interannual variation in ANPP is much greater than for leaf C.
in part because the 3-year leaf lifespan buffers changes in leaf C, while ANPP is more responsive to
current-year growth conditions. The accumulation of carbon in the dead stem compartment is illustrated in

Figure l4c. where again the similarity in growth rates for all scenarios by the end of the 100-year
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simulation is obvious. but it can also be seen that the annual allocation scenarios have accumulated less
dead stem C than the dual allocation scenarios by the time rates have equilibrated (around year 90). and that
the variable climate scenarios accumulate less than their constant climate counterparts. Simulated annual
stem growth increments are shown in Figure 14d. where it can be seen more clearly that stem growth rates
for the tour scenarios are very similar during the last ten years of the simulation.

[nterannual variation in annual stem growth increment is observed to be well-correlated with
climatic variation. including variation in precipitation. temperature. and radiation (Fritts and Swetnam
1989). A potentially valuable model validation tool would be a comparison between observed and
simulated dendroecological relationships. For example. the simulated annual growth increment for the last
44 years of these simulations. when plotted against annual total precipitation for the same years. shows a
reasonable correlation for the dual allocation scenario. and a weak correlation for the annual allocation
(Figure l4e). A comparison with observed dendroecological relationships could provide a basis for
selecting one or another of these scenarios as more realistic (€.g.. Keane er al. 1996b).

An exploration of predicted and observed responses to interannual climate variation resulting from
various levels of dominance between the daily and annual allocation mechanisms would be an interesting
exercise. and of relevance to studies of the global carbon budget under changing climatic conditions (Field
etal. 1995. VEMAP Members 1995). Urban er al. (1993) suggest that simulations of forest productivity are
sensitive both to internal model parameters and to the patterns of external climate forcing. My results here
indicate that the long-term average response of predic” i~ .-om 1D-BGC may be less sensitive to the
interannual pattern of climate forcing than to the combination of long-term average climatic conditions and
model representation of key processes (e.g. allocation). Botkin er al. (1992) reach the same conclusion in
testing the sensitivity of a forest gap-dynamics model to variation in model parameters and input climate
records. Recent model-based analyses of the responses of regional ecosystems to interannual climate
variation have concluded that human-induced changes (Burke et al. 1991) and periodic climate signals
(Yeakley et al. 1994) are at least as important as short-term climate variations in predictions of ecosystem
productivity. Model predictions of annual net ecosystem production (ANEP) are of particular relevance to

the question of global terrestrial ecosystem response to increasing atmospheric CO, and possible associated
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Simulated annual stem growth increment vs. annual total precipitation
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changes in climatic means or degrees of variation. Estimation of ANEP includes heterotrophic respiration
(the primary sources of which are litter and soil respiration) in addition to autotrophic (maintenance and
growth) respiration as losses in calculating the carbon budget.

Schimel (1995) suggests that the global deviation of ANEP from zero. when averaged over a
period of several years, should be no greater than 1-2% of global ANPP. ANEP for the 100-vear
simulations is shown in Figure 14f. All scenarios show a negative ANEP (net loss ot C to the atmosphere)
during the canopy initiation phase. due to respiration from recalcitrant soil organic matter and coarse
woody debris pools that were initialized using values from the end of the 2000-year simulations. With a
period of low litter input as the canopy and woody biomass increase, heterotrophic respiration losses are
unbalanced. All scenarios show a positive ANEP at the end of the 100-year period. due to a steady increase
in dead stem and coarse root wood (Figure [4c). Plant wood production continues to increase over
multiple centuries for these simulations (results not shown), with long-term positive ANEP averaging 54%
of ANPP. suggesting that these simulations exhibit an unrealistically high accumulation of woody biomass.

One very likely explanation for excessive wood accumulation is the negligence of the influence of
fire. since it is the primary disturbance mechanism acting to eliminate woody biomass and litter in the
climate zone represented by the Missoula climate records (Agee 1993. Keane er al. 1990. Ryan 1991). A
fire disturbance mechanism will likely be especially important for accurate estimates of ANEP in climates
where dry or cold conditions limit decomposition and physical fragmentation ot coarse woody debris. The
incorporation of fire processes and effects in an ecosystem model such as | D-BGC presents many
problems, including the stochastic nature of the disturbance. the estimation of disturbance frequency. and
the simulation of fire intensity and effects on plant, litter, and soil once an event has been predicted to
occur. These difficulties have been addressed by Keane er al. (1990. 1996a. 1996b) in their development of
the FIRESUM and FIRE-BGC models. These models operate simultaneously at multiple spatial scales.
integrarting stand-level simulations, such as have been discussed here. with a representation of growth for
individual trees within subsamples of the stand. As a result of this detailed treatment. the models are
computationally intensive, and the spatial extent of their application has so far been relatively limited. Itis

conceivable. however. that the detailed treatment of fire processes and effects in FIRE-BGC could be
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exploited to derive a simpler parameterization of some of the most significant influences for incorporation
into the ID-BGC logic, for the purpose of improving long-term estimates of ANEP. [ see this as a
promising avenue for future model development.

The extension of ecological understanding derived from intensive study at the plot level to large
spatial and long temporal scales is necessary if interactions between projected alterations in the global
climate and integrative ecological processes such as net production are to be understood (Dale and
Rauscher 1994. Chase et al. 1996). The application of numerical simulation models is one powerful
approach to the problems of regional and global-scale ecosystem analysis (Nemani er al. 1996). but it is
difficult to validate regional and global extrapolations of ecological knowledge gained at much finer scales
(Running er al. 1989. McGuire er al. 1992. Wessman 1992. Running 1994). In Chapter 4 an extension of
the 1D-BGC logic is presented which allows a comparison between model predictions of the surface energy
budget and satellite observations of radiometric temperature. The study in Chapter 4. in conjunction with
the methods presented in Chapter 2. lays the foundation for a large-scale validation of the energy balance

components of the |D-BGC model.
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Chapter 4

Estimation of surface resistance parameters from remote sensing and

surface meteorological observations

1. Introduction

In the first section [ present some basic relationships relevant to surface flux and resistance
formulations. The purpose of this section is to establish a quantitative framework as a precursor to a
review of relevant literature. Some of the relationships introduced there are expanded upon in later
sections. Following this overview of theory [ present a discussion of relevant literature. Following the
literature review. [ present an operational statement of my research problem. This consists of a
condensation of the quantitative relationships predicted by the energy balance theory, and a schematic
presentation of the logic by which [ intend to test those relationships with the available data. [ then present

a detailed account of the methods used, followed by results and discussion.

2. Review of theory of mass and energy storage and transport

The first part of this discussion addresses the Earth’s surface radiation budget. and the second part
the surface energy balance. including convective transport terms and a discussion of micrometeorological
methods.

2.1 Radiation budget

Most of the commonly observed processes at the Earth’s surface (wind. waves. rain. cloud
formation. plant growth. etc.) are driven by energy received from the Sun. This energy arrives at the
exterior of the atmosphere in the form of electromagnetic radiation. photons. with an intensity and
distribution of wavelengths that is characteristic of the temperature of the radiating surface of the Sun. An

object’s characteristic distribution of energy over a range of wavelengths is known as its emission
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spectrum. The following equations describe the total amount of radiation (Eq. 1) and the dominant
wavelength (Eq. 2) in the emission spectrum of an ideal radiator. or black body (an object that absorbs and

emits perfectly at all wavelengths):
Eq.1 R;= oT?
where R; = total radiant energy (Wm™), T = radiant surface temperature (K). and o is the Stefan-

Boltzmann constant (53.67x10™° Wm~K™).

2.88x1073
T

Eq.2 %=
where 7., is the peak wavelength in the emission spectrum (m).

For a surface temperature of 6000 K. representative of the Sun. the emission peak predicted by Eq. 2 is at
about 0.48 um. in the middle of the visible spectrum. For a surface temperature of 300 K, typical of the
Earth’s surface. the peak emission is at about 9.6 um. in the thermal infrared range. Egs. | and 2 refer to
ideal radiators. In the case of real objects with non-ideal radiative properties a correction is applied: the
emissivity. €. Emissivity can vary with wavelength, in which case it is referred to as a narrowband
emissivity. For typical Earth surface emission temperatures. it is more usual to consider the emissivity in a

broad band. from 3-100 um. and for the moment that is the sense in which [ will use the term. The
corrected form of Eq. 1 is:
Eq.3 Ry=¢oT?

The radiant energy from the Sun passes through Earth’s atmosphere relatively easily: of 1367
Wm™ incident at the top of the atmosphere as much as 1000 Wm™ (i.e.. about 73%) can reach the surface
in the middle of a perfectly clear. dry day at a few thousand meters above sea level. Solar energy
transmitted through the atmosphere enters the Earth’s surface radiation budget as shortwave radiation. and
this component will be referred to below as incident shortwave radiation (S4). Some of this is reflected
from the surface (ST). and the rest is eventually absorbed. Some of this energy is converted to heat by
interacting with molecules of the surface and increasing their kinetic energy. The Earth’s surface

temperature is raised to its familiar levels primarily by this mechanism.
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Given some temperature, the surface itself radiates according to Eq. 3. and loses energy towards
the atmosphere primarily in the longwave or thermal infrared region of the spectrum (LT). At the same
time. the atmosphere. especially that part of it closest to the surface. is radiating back down toward the
surface as a function of its bulk temperature (L{). The net result of these radiative exchanges is called the
surface net radiation (R,) and is defined as:

Eq4 R, =S{-ST+LI-LT

This net radiation defines the input to the surface energy balance: it is the amount left over to do work at
the surface. for example by evaporating water. transporting heat. or participating in chemical reactions.
2.2 Energy balance

The energy associated with the net radiation from the radiation budget is conserved according to

the following balance:

Eq.5 R,=H+ZE+G+e

where H is the flux of sensible heat between the surface and the atmosphere (sensible heat being the energy
associated with molecular kinetic energy). 4 is the latent heat of vaporization for water. E is the transport of’
evaporated water vapor between the surface and the atmosphere, G is the transport of heat between the
surface and the interior of the surface (soil warming, for example). and e is an extra term associated with
other minor energy components. such as the photochemical reactions taking place in leaves. which de not
generally have much impact on the surface energy balance. Each term in Eq. 5 can be expressed as an
energy flux density (Wm™). The transport of sensible and latent heat away from the surface. as a result of
the net input of radiation from the Sun, is responsible for most of the heat and all of the water content of
the Earth’s atmosphere (Oke, 1987).

[t is common practice to treat the fluxes represented in Eq. 5 as the equivalent of molecular
diffusion processes. and to formalize the dependence of these fluxes on a relevant concentration gradient

with an equation of the form:

D; K;
Eq. 6 '[i =ZXL(C“ —Cil) --0r-- Ji ZA_;(-(CH -'ciz)
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where J; is a flux of species i, ¢;; and c;» are concentrations of species i at two points, Ax is the distance
between these two points and perpendicular to the concentration gradient. D, (m’s™) is a constant, called the
diftusivity of species i (a function of the properties of the material and the medium through which it is
diffusing). and K, (m’s™) is the eddy diffusivity for species i. The two different forms represent the
diffusion process in laminar flow regimes (on the left) and the idealized process for turbulent regimes (on
the right). Values of D, can be determined directly through experiment and are relatively constant for
constant temperature. but values for K; depend on the scale of the turbulent processes and are variable in
space and time. As such. they represent an abstraction or simplification of a complex process. They may
be difficult to measure, and their use may or may not be appropriate. depending on the particular situation.
[ introduce the concept here because extensive use is made of this abstraction in micrometeorological
studies and in the literature relating multispectral remote sensing information to surface flux and resistance
estimation. A resistance to the transport of species i (r;, s m™) is defined in terms of Eq. 6 as r; = AX/D,
(for laminar flows) or r, = [ dx/K, (for turbulent flows. where K, is varying with distance from the surface)

giving the following general form for fluxes:

_(eq =cir)

§

Eq.7 J;

Fluxes of sensible heat (H. W m™) can be expressed in terms of Eq. 7. where the relevant

concentration gradient for heat is related to the temperature difference. resulting in:

H < pC, (T, -T,)

Ty

Eq. 8

where p is the density of air (kg m™). C, is the heat capacity of air (J kg'K™"). T, and T, are the
temperatures of the surface and the overlying air (K). and r, is the resistance to sensible heat transfer across
the distance for which the temperature gradient is measured (s m™). This resistance. r,. is also commonly
referred to as the aerodynamic resistance, since it is largely a function of wind speed and the shape of
individual “roughness elements™ on the surface (leaves. for example). Under most circumstances. the use

of r, to represent the turbulent transfer processes is a gross abstraction, particularly when considering time
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and space scales beneath the characteristic scale of the turbulent processes. With long time periods and
large spatial scales the abstraction becomes more plausible. but also much more difficult to measure
directly (Crago. 1996). This state of affairs represents one of the most challenging problems facing energy
budget research at large spatial scales (Carlson et al., 1995b).

Fluxes of momentum are also typically handled in the form of Eq. 7, and another separate budget.
the conservation of momentum. can be invoked to treat this quantity. It is mentioned in the current context
because it has been widely used in micrometeorological studies as a tool with which to derive the

aerodynamic resistance. r,. at field scales. The diffusion form for momentum flux is:

Eq.9 t:E(ul_ul) --0r-- r=p(ul—u2)
Ax Cm

where T is the momentum flux density. or shear stress (kg m™ s, or Pa). v is the momentum diffusivity. or
kinematic viscosity (m’s™), u, and u, are wind speeds (m s") that define the gradient in momentum between
two points. and r,, is the resistance to momentum flux between these points (s m™).

The tlux of water across the surface due to evaporation (E) is the principle link between the
energy and mass balances at the surtace. since a large amount of energy is associated with the conversion
of liquid water to water vapor. This energy. equal to the product of E and the latent heat of vaporization
(7.). is transported in the gas phase as chemical potential energy and is released again as kinetic energy if

and when the vapor condenses. The mass form of the water vapor flux equation is:

(pvl ~P.2 )
T,

v

Eq.10 E=

where p,, and p,. are the vapor densities (or absolute humidities. kg m™) at two points defining the mass
concentration gradient for water vapor, and r, is the resistance to water vapor transport (s m™'). Eq. 10 can
take several other forms by specifying the concentration gradient in terms of a partial pressure. An

approximate form that is very useful in mass and energy balance calculations is:

paNI\\' (el —cl)
PM,

a

Eq.1l1 E=
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where p, is the density of dry air (kg m~), M,, and M, are the molecular weights of water and dry air (kg
mol™). e, and e, are the partial pressures (Pa) of water vapor at two points. defining the concentration
gradient in vapor pressure. and P is the total atmospheric pressure (Pa). The approximation involved in this
form is the assumption that P-e can be simplified to P. since e is very much smaller than P (typical values
of' e and P give errors in E of ~0.5%). Egs. 10 and 11 are converted to their energy equivalent forms by
multiplying on both sides by 7.

I will briefly present the theory of similarity that is used to relate the flux resistances for sensible
heat. latent heat. and momentum in micrometeorological studies, and which is now commonly applied to
fluxes at much larger scales over all sorts ot surfaces. The method described here is called the
~aerodynamic method™ for flux estimation, or the “micrometeorological method™ or “Monin-Obukhov
similarity theory™. or simply “similarity theory™. The central assumption is that the eddy diffusivities (and
by definition the resistances) for momentum. sensible heat. and latent heat flux are all equivalent. or at least
related in a simple and consistent way. A second assumption is that the mean wind profile over the surface
(variation of wind speed with height) is approximately logarithmic, with wind speed increasing rapidly
near the surface and more slowly with height. The simplest form for this relationship is suggested to be:

Eq.12 u, =u?ln(z/zo)

where u, is the wind speed at height z above the ground. u” is called the friction velocity. k is a
dimensionless constant (0.<1. the von Karman constant). and z, is the height at which the logarithmic wind
speed profile extrapolates to 0 (called the roughness length), which is typically assumed to be constant
under varying wind speeds for a given canopy. From Egs. 9 and 12 an expression can be derived for the
resistance to momentum transfer between the ground (reference plane) and some height z which is a

function only of z. the wind speed at z (u,), and the roughness length (z,):

[In(z/ z,)]
Eq. 13 =5
q fm k-u,
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The usefulness of this formula derives from the relative ease with which z, can be measured at the field
scale: a series of wind speed measurements are made over a range of heights above the canopy. and the
average results are plotted to determine the y-intercept of the logarithmic line. which is the roughness
length. z,. Afterwards. only one measurement of wind speed at some height z is required to estimate the
resistance to momentum transfer from the surface up to that height. and using one more wind speed
measurement and Eq. 9 the actual momentum flux can be calculated. The object of these measurements.
however. is not usually to estimate momentum resistances and fluxes. but rather to employ the basic
premise of the similarity theory to infer from wind speed measurements the resistances to sensible and
latent heat tluxes.

There are two important limitations to the application of this theory for flux and resistance
estimates. The first. already mentioned. is that it assumes the eddy diffusivities for momentum. heat. and
water vapor are equal. [n fact. the diffusivity for momentum, from which the others are obtained. is known
to be higher in most kinds of canopies than those for heat or water vapor. due to the influence of canopy
elements on local air pressure fields (the “bluff body effect™. (Jones. 1992. p. 302)). Various approaches
have been used to correct for this problem. and some of them will be reviewed in a later section. The
second limitation is that the logarithmic profile case is only valid under conditions of neutral stability. in
which the buoyant forces and the gravitational forces acting on air at the surface are balanced. The exact
specification of these conditions requires estimates of the rate of change of both wind speed and some other
variable (for instance temperature) with height in the planetary boundary layer (Iribane and Godson. 1981).
The atmosphere is in general not in a neutral stability state. and so further empirical corrections are
required. with the further complication that the correction factors themselves do not behave similarly for

momentum and the other fluxes (Oke. 1987, p. 382)

3. Review of relevant literature

In this section [ present a review of literature concerned with the use of surface temperature

estimates in studies of the land-surface energy budget. [ give particular attention to studies addressing the
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influence of vegetation on the surface fluxes of sensible and latent heat. and to studies incorporating
radiometric data obtained by satellite remote sensing instruments. The use of remotely sensed radiometric
data to estimate land-surface fluxes of energy and mass (and the resistances to such fluxes) has evolved
along multiple interacting trajectories. Here [ will follow an approximately chronological progression of
ideas.

3.1 Early investigations, pre-1970

The idea that radiometric data can be related to storage and transport of energy and mass at the
Earth’s surface has its origins in agricultural research. Early investigators, using first mercury
thermometers then later bimetallic thermocouples to measure the temperatures of single leaves or
individual plants. examined the relationship between transpiration and leaf-air temperature differences (e.g.
Clum. 1926a: Clum. 1926b: Curtis, 1936). and identified incident radiation. humidity. and wind speed as
important variables influencing this relationship. Later. these qualitative relationships were refined through
careful measurements of the leaf radiation budget (Gates. 1964) and extended from single leaves to entire
canopies by considering the variation of radiation with depth and the aerodynamic and thermal eftects of
neighboring plants (Idso and Baker. 1967).

This research proceeded mostly in the field of agriculture as methods were sought to specifv
irrigation schedules that were based on plant characteristics as opposed to the more common methods that
relied either on calendar scheduling or on crude meteorological indices. [t is interesting to relate these
developments to the expansion of dryland agriculture and the increasing demands being placed on limited
irrigation water resources. [t has been observed that by the early 1900°s most of the world’s choice (rain-
fed) agricultural land was already in production (Glantz. 1994). and while advances in agricultural
technology after 1900 have resulted in enormous increases in the productivity of that land. population
growth has mandated the development of increasingly marginal agricultural lands which require intensive
irrigation to maintain productivity (Beaumont. 1989). As the limited nature of the arable land resource
became more evident. and as the energy cost of development and transportation increased. more attention

was focused on ways to schedule the use of irrigation water to derive maximum productive gain from each
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unit of water expended (Jackson. 1982). We are just beginning to examine some of the less obvious costs
associated with water resource allocation, such as the dependence of aquatic biota on flow variation (Poff
and Ward. 1989). and of course human population growth continues. The practical implications of such
investigations are therefore of increasing importance.

The development of instruments that could record emitted thermal radiation made it possible to
extend temperature measurements from individual leaves to entire plant canopies. [t was suggested by
Monteith and Szeicz (1962. cited in Jackson, 1982}, reasoning from a theoretical model of the canopy
energy budget. that the recorded surface temperature could be related to the stomatal resistance of field
crops. Wiegand and Namken (1966) showed the sensitivity of leaf-air temperature differences in a cotton
crop to variation in leaf turgor and incident radiation using a wide spectrum thermal infrared radiometer.
Their paper also illustrates the cumbersome nature of the early instruments. At that time aircraft-mounted
scanning thermal radiometers were just being declassified and made available for civilian use. and truly
portable field radiometers measuring in the thermal infrared were not available until the early 1970°s
(Hsiao. 1973). In an early study of the application of aerial thermal remote sensing over forests. Weaver et
al. (1969) reported that midday thermal imagery was superior to nighttime imagery for distinguishing
different forest species on the basis of their canopy temperatures, and showed that midday canopy
temperatures were higher for a water-stressed coniter stand than for an adjacent well-watered broadleal
stand. The relative contributions of canopy and underlying soil and litter were not assessed.

The development of early thermal radiometric instruments and their use in the explicit study of
surface energy and mass fluxes coincided with an exploration of reflected visible and infrared spectra of
vegelation that could best be described as implicitly concerned with questions of fluxes and resistances.
By the early 1900°s. the importance of photosynthetic pigments in shaping the reflectance spectrum of
green vegetation in visible wavelengths was accepted (Knipling, 1969). As early as 1930. water absorption
bands in the mid-IR region had been noted and their usefulness in vegetation water status addressed.

(Forsythe and Christison. 1930: cited in Hoffer and Johannsen, 1969), and by the mid 1960’s.
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photographic infrared techniques were being widely used to record reflectances of vegetation in the near-
[R region (Knipling. 1969).

Hotfer and Johannsen(1969) suggested the potential use of one or more spectral regions for the
detection of plant water stress. and Jordan (1969) showed how the ratio of near-IR:red transmittance under
a forest canopy could be used to estimate biomass. Early speculation that “mesophyll collapse™ during
wilting would result in notable reductions of near- and mid-IR reflectances were shown to be inaccurate.
and it was established that infrared reflectance only decreases under severe desiccation {(Knipling. 1969).
Multispectral photographic techniques using blue, green, red. and near-infrared filtering and compact
housings with motion correction for aircraft deployment were in use by 1967. These were supplemented
with optical false-color compositing systems that allowed detailed and accurate land-use classifications. as
well as the interpretation of varying degrees of crop development and water stress (Yost and Wenderoth.
1967). These early reflectance studies lacked both a theory and adequate instrumentation for absolute
calibrations. and so were mostly concerned with empirical relationships. The impetus for the research was
much the same as discussed for thermal studies above. with the additional promise of spectral indices that
would allow areal biomass surveys.

3.2 Current literature, 1970-present
3.2.1 Reflectance data (visible and near-IR) for surface resistance and flux estimation

Tucker (1979) provides a review of the use of red and photographic (near) infrared combinations
for vegetation monitoring. and documents the introduction. in the early 1970°s. of both mechanistic and
stochastic canopy radiation models that accounted for the influence of solar geometry on reflectances
observed from an arbitrary angle (e.g.. the model of Suits. 1972). These models were able to corroborate
some of the results of observations and were typically applicable for cases of uniform land-use and flat
terrain. Many variations on the simple ratio of infrared to red reflectance had already been proposed by the
time of Tucker’s review. and others have been proposed since. These variants are mostly concerned with
reducing the influence of atmospheric path radiance (light multiply scattered in the atmosphere and making

its way to the sensor without interacting with the surface), atmospheric transmissivity effects due to
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aerosols and water vapor. and the confounding influence of soil background in applications where the
vegetation is the target of interest. [ will deal here only with the normalized difference vegetation index
(NDVI) defined as (NIR-red)/(NIR+red), where NIR is the near-IR reflectance and red is the red
reflectance. as recorded at the sensor, and reflectances are measured as proportions of incident radiation.
Jackson etal. (1983) related red and near-IR indices to water stress in a wheat crop. Hunt et al.
(1987) proposed an index using near-IR and mid-IR data from the Landsat Thematic Mapper instrument
that they found to be related to the relative water content of leaves. a measure of water stress. An
important advance in the use of spectral reflectance indices for quantitative studies of surface fluxes was
the demonstration by Asrar et al.. (1984) of a nearly linear relationship between the NDVI and the fraction
of photosynthetically active radiation (FPAR) absorbed by a wheat canopy. These results were supported
by a detailed radiative transfer model (Choudhury. 1987), and it was demonstrated that the NDVI-FPAR
relationship would be sensitive to background reflection properties (Asrar et al.. 1992). The connection
between NDVI and FPAR is relevant to surface resistance because radiation absorbed by leaves is one of
the most important variables influencing the stomatal resistance (Jarvis. 1976), the term that dominates the
control of evaporation in most vegetation types (Hall et al.. 1991). This connection between reflectance
and stomatal resistance was subsequently given explicit attention by a number of investigators who tested it
against both radiative transfer models (e.g.. Myneni and Ganapol. 1992), and field measurements (Verma
et al.. 1993). A recent development is the idea that vegetation indices can be used to parameterize the
ground heat flux component (G) of the surface energy balance (Kustas et al.. 1993). This component can
be measured in the field with heat flux plates buried at various depths in the soil, but few other methods are
available or have been proposed which are operable over large regions. The method proposed by Kustas et
al. (1993) relies on the observation that, for a long part of the daylight period. the ratio R /G is
approximately constant. and on the assumption that this ratio is controlled by the fraction of R reaching
the soil. Vegetation indices that are sensitive to fractional canopy cover or leaf area index should therefore

also be good predictors of this ratio.
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3.2.2 Thermal infrared emission data: explicit energy balance formulations for surface resistance and
flux

Building on a well-developed theory of radiative and convective energy transfer at terrestrial
surfaces (e.g.. Gates. 1964; Monteith and Szeicz, 1962). a large body of literature has grown around the
notion that remotely sensed thermal imagery can be used to estimate various components of the energy
balance over large regions. The bulk of these studies rely on the application of semi-empirical energy
balance formulations developed in micrometeorological research for the estimation of local flux
components. So. as an early example. Heilman et al. (1976) proposed a method for regional ET estimation
that relied on surface temperature measurement from thermal scanner imaging instrumentation flown on an
aircraft. Typical of these explicit energy budget studies. the proposed method required that a rather
extensive set of ground-based meteorological measurements be collected at the time of thermal imaging.
including net radiation (R,). soil heat flux (G). air temperature and wind speed profiles over the surface.
and atmospheric water vapor content (for correcting thermal emission data). Crop emissivities were
estimated using infrared thermometers. The resistance to sensible heat transfer was determined from a
form of the similarity theory similar to that shown in Eqs. 12 and 13. Sensible heat flux was calculated
from Eq. 8. and latent heat flux (evapotranspiration) was calculated as the residual of the other three energy
balance terms (#.E =R, - H - G).

The problems cited by Heilman et al. (1976) are characteristic of many such investigations. and
they deserve mention here. First. the calibration of scanner radiance to actual surface temperature was
difficult. Although radiation received by the scanner was compared against two internal calibration
standards set at temperatures that bounded the likely range of canopy temperature. the influence of water
vapor and other atmospheric components, such as CO, and aerosols. compounded the calibration problem.
Calibration to thermocouples installed on or in the leaves was required for accuracy within 1.5 °C.
Sampling strategy was a problem, since the variation in single leaf temperatures was large. due to variable
radiation environments in the canopy. Second, the estimation of resistance to sensible heat transport away

from the canopy and into the boundary layer (r,) relied on empirical relationships represented by Egs. 12
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and 13. In addition to any fundamental inadequacies of the similarity theory. measurement error for wind
speed and air temperature profiles impacted the determination of r,. Third, measurements of R, and G
depended on constant radiation inputs in order to avoid error due to transient temperature changes.
produced, for example. by the passage of clouds. Similarly, the timing of overflight had to correspond to a
period of steady radiation conditions. Fourth. a field with complete cover had to be selected to avoid the
influence of a mixture of soil and vegetation temperatures being observed by the scanner. All of the
formulas become more complicated in the case of mixed surface types. and opportunity for error increases.
Finally. all of the errors associated with estimating R, G. and H are carried to the latent heat estimate.
since it is calculated as a residual. Heilman et al. (1976) reported errors in ET estimates ranging from
+62.5% to -43.6%. with a mean absolute error of ~26%. as estimated from lysimeter measurements. [t
should be noted that this method provides an instantaneous estimate of ET flux. but not a cumulative
amount.

Soer (1980) describes a similar method for estimation of ET. and includes a comparison between
surface temperatures measured remotely and predicted by a soil-plant-atmosphere water and energy
balance model. He shows that the model generates crop surface temperatures that agree well with those
detected from an aircraft-mounted infrared scanner. and that the estimates of ET from the surface
temperature observations agreed with surface water balance measurements to within 30%. He also
included an error propagation analysis that showed ET errors to be in the range of 12-15% due only to
measurement error. Additional unestimated error, related to the formulation of the flux equations. was
acknowledged. This study also introduced a more detailed scheme for the treatment of near-surface
atmospheric stability corrections to the sensible heat resistance term. and illustrated that large errors are
likely in conjunction with the use of the similarity equations if such corrections are not made. Another
novel aspect of this study is that a comparison between simulated values of instantaneous and daily total
ET was used to scale the ET rates measured with remotely sensed surface temperature (an instantaneous

measurement) to their daily equivalent. Some such treatment of this problem is required if infrequent and
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instantaneous measurements of surface temperature are to provide quantitative surface water balance
information over long periods.

Many other studies have used essentially the same formulation for the energy budget. with the
same or similar ground-based meteorological requirements. Moran et al. (1989) used Landsat Thematic
Mapper data to compute instantaneous ET fluxes over an agricultural area and compared the results with
Bowen-ratio measurements and with aircrafi-flown radiometer estimates. They noted that the influence of
incomplete canopy cover was significant, that the estimation of surface roughness parameters over large
regions was problematic. and that the difficulties in extrapolating ground-based measurements of air
temperature and wind speed over complex terrain had not been adequately addressed. Vidal et al. (1994)
used data from the Advanced Very High Resolution Radiometer (AVHRR) to estimate instantaneous ET
fluxes over an 18-month period for a forested region in France. They generated an index of temporal
variation in forest ET. and then related this index to statistics on fire ignitions over the same period. They
found a strong relationship between their index and the number of fires, and produced a regional alarm
statistic that was based on the remote sensing data and estimated the probability of a fire event on each
observation day. Humes et al. (1994) computed energy balance components across a semi-arid watershed
in Arizona by scaling estimates from aircrafi-based remote thermal data against measured fluxes at one
reference site. Estimates were made at a number of other sites. and they found errors to be in the same
range as for comparisons between different ground-based measurement systems. They noted that spatial
variability in incoming solar radiation was a significant source of error. and that the level of uncertainty
attached to large-scale estimates of the resistance to sensible heat flux can create substantial errors in heat
flux estimates that propagate to ET estimates.

Kustas et al. (1996) addressed the problem of partial canopy cover in an energy balance model by
testing both single-source (canopy and soil treated as one unit) and dual-source (canopy and soil treated as
separate units, acting in parallel) models of land surface temperature. The principle assumption in their
treatment of canopy and soil temperatures for dual-source modeling was that the canopy and soil behaved

in parallel: that is. energy budgets could be calculated for each partition separately. without having to
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account for interactions between the two energy budgets. The single-source model is the more usual
approach. They found that the dual-source model gave more accurate estimates of ET over both a semiarid
and a humid test site. They also found that the single-source model could be parameterized to mimic the
dual-source model. but a general scheme for such parameterization was not found.

Another approach to regional resistance and flux estimation has been to combine remotely sensed
thermal data with a numerical model of planetary boundary layer (PBL) dynamics (PBL being the lower
0.5 - 2 km of the atmosphere which is turbulently mixed due to daytime surface heating and the drag
exerted by the surface on the atmosphere). Taconet et al. (1986) provide a detailed discussion of one such
model. A single midday measurement of surface temperature is the only remote sensing input. and other
parameters include vegetation height. LAI, resistance to transpiration. and mean rooting-zone soil water
content. They demonstrate that. of these parameters. the midday surface temperature is most sensitive to
the mean stomatal resistance of the canopy. Their model can be inverted. with a specified surface
temperature, to produce estimates of the canopy resistance to transpiration. and they give a likely error
range for such estimates of 20 sm™. or around 10%. Carlson et al. (1991) use a PBL model to investigate
the sensitivity of surface temperature in a vegetation canopy to the diurnal variation of water stress in a
progressively drying system. Their simulations show that surface temperatures are not sensitive to soil
water content until a critical water content is reached. after which the canopy begins to show a midday
depression in ET. with a corresponding rise in T,. As the soil becomes progressively dryer this daily
depression becomes deeper and more prolonged. Their results compare favorably with observations of
surface temperature and soil water content for a corn crop. The appearance of cloud cover reduced or
eliminated the midday ET depression. They suggest that midday thermal IR data may be the most
appropriate for the early detection of water stress. Diak and Whipple (1993) present a method by which
radiosonde reports are used to assess the diurnal change in the height of the PBL. which together with
satellite surface temperature data can be used to predict surface fluxes. They reiterate the needs expressed

by Taconet et al. (1986) for both an improved distribution of surface meteorological data and a better way
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to assess the land surface characteristics of relevance to sensible and latent heat fluxes at large spatial
scales.

Choudhury et al. (1986) used both similarity theory and the Penman-Monteith equation to derive a
system of four separate equations that were then solved iteratively to predict ET. canopy resistance. soil
water potential and leaf water potential. Using an initial guess for the value of soil water potential. all four
equations were solved simultaneously, then predicted canopy temperature was compared with a satellite
measurement. and the estimate of soil water potential was adjusted and this process repeated until the two
temperatures converged. Their predictions of ET for half-hourly simulations over six days with varying
weather and soil water conditions agreed well with observations over both well-watered and water-stressed
wheat.

3.2.3 Thermal infrared emission data: empirical relationships with surface resistances and fluxes

Using aircraft-mounted sensors. Bartholic et al. (1972) demonstrated that the thermal structure of
the ground in an agricultural area could be determined remotely using longwave infrared detectors in the 8-
14 um range. They recorded differences of up to 6 °C between well-watered and water stressed cotton
crop canopies. and noted the strong influence of soil temperature on their results. Stone and Kanemasu
(1975). using hand-held radiometers. observed rapid fluctuations in the canopy temperature of a sorghum
crop (3 °C in 3 min.) that were the result of clouds passing over the study site. They concluded that care
was required in the interpretation of thermal crop studies under conditions of variable radiation. They
observed that canopy heating occurred more rapidly than cooling. [dso et al. (1975) also examined the
thermal properties of soil using hand-held radiometers, and discovered that the soil water status could be
predicted from the difference between night and afternoon soil temperature. but that the relationship was
specific to the soil type.

Jackson et al. (1977) and Idso et al. (1977) used surface temperature data for the assessment of
plant stress. defining the “stress degree day™ (SDD) concept. They showed that crop yield could be
predicted by a daily accumulated index of the temperature difference between the air and the crop canopy

at about | - 1.5 hours after solar noon, where higher values were associated with lower yield. The
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midafternoon temperature difference was also shown to be a good predictor, in conjunction with estimates
of Rn and G, of daily evapotranspiration (ET) (Jackson et al., 1977), and other studies soon corroborated
their results (e.g. Walker and Hatfield, 1979).

A review by Byme et al. (1979) examined the SDD in the context of an explicit surface energy
balance. and considered the influence of fractional vegetation cover on the integrated thermal response ata
sensor. offering one of the first thermal mixing models for two components. They also considered the
influence of atmospheric water content and the spatial variation of emissivity in fractional canopies on
temperature retrievals. and indicated that errors of 1-3 °C were likely to result from these uncertainties.
They suggested that the incorporation of other meteorological variables with remotely sensed surface
temperature could lead to more accurate predictions of ET. Their review is also the first explicit reference
[ find to the utility of combining thermal and reflective remote sensing techniques to expand the range of
conditions which can be assessed. Idso et al. (1981) soon thereafter incorporated a measure of vapor
pressure deficit (VPD) into the original SDD formula, and found that it helped to normalize the parameters
obtained from calibrations at two sites with different climates. Jackson et al. (1981) presented a theoretical
basis for the inclusion of VPD, using the energy balance equations and similarity theory.

Seguin and [tier (1983) performed a detailed analysis of the ET estimation formula given by
Jackson et al. (1977). examining the theoretical basis for the application of an instantaneous measurement
to a daily integrated flux estimate, with attention to the influences of wind speed. boundary layer stability.
and surface roughness on the results of the method. This method is know as the “simple ET™ method.
They concluded that the extension of one-time-of-day measurements to the entire day was only valid for
clear days. They also note the problems with equating the diffusivities for momentum and heat. especially
for large roughness lengths (> 1 cm). which result in overestimation of fluxes. They commented that
although corrections for crops were available, the cases of forest and other very rough canopies had not
been resolved. They found the likely errors to be in the range of 20% for estimates of ET. acceptably close
to the uncertainties obtained by ground-based methods. They further suggested that for the purpose of

calibration, any satellite study would require at least one ground reference temperature.
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Carlson and Buffum (1989) contrasted the simple semi-empirical ET formula from Jackson et al.
(1977) with other more complex and mechanistic methods. observing that the initialization requirements
for the complex models are often prohibitive. They demonstrated the application of a sophisticated PBL
model in the estimation of the parameters for the simpler models proposed by Jackson et al. (1977) and
Seguin and [tier (1983). Their purpose was to generate a range of meteorological conditions with the PBL
model from which the parameters for the simpler model could be determined. They found that their model
generated coetficients very close to those estimated by the original authors, but that. in a separate field
comparison. small errors in either measurement or model initialization could result in unacceptable errors
in daily ET predictions. They noted that, given the sources of error inherent in the simple method. it may
be acceptable to use regional-scale surface winds and air temperatures as inputs. and to stratify stability and
roughness into two or three categories.

Thunnissen and Nieuwenhuis (1990) proposed a similar simple model. but instead of referencing
ET to the difference between remotely sensed crop temperature and ground-based air temperature they
used the idea of a reference crop in the thermal IR image. which was taken to be transpiring at its potential
rate. Temperature differences were then determined between the rest of the image and the reference field.
Potential ET was calculated from the usual ground-based meteorological measurements and then used to
scale the relative thermal differences to absolute ET amounts. This method has the advantage of not being
sensitive to bias between the ground-based measurements of air temperature and the remote measurements
of canopy temperature. They found that large errors were possible in fields where a lot of soil showed
beneath the canopy. a problem shared by most other methods. They note that in the absence of ground-
based measurements of potential ET rates for the reference field it is still possible to produce a map of ET
differences from some arbitrary reference.

In two papers. Seguin et al. (1991 and 1994) further developed the SDD concept. applying it over
very large regions using satellite data ranging in resolution from | km to 5 km. They redefined the
temperature difference to use the daily maximum temperature, regardless of exact coincidence with

satellite overpass. and they used the split-window technique (e.g.. Ottlé and Vidal-Madjar. 1992) to
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estimate the surface temperature from satellite data. They also proposed a normalized SDD. with a
summation of temperature differences divided by R, as a regional water stress indicator. and argued that it
is more physically associated with ET than the integrated NDVI. and therefore deserves more attention as
an indicator of productivity. at least in crops. In the later paper they demonstrated the application of the
method with AVHRR data. illustrating that estimates can be made once every 5 or ten days with reasonable
accuracy. by using the 5- or 10-day maximum air and surface temperatures. from meteorological stations
and satellites. respectively. They noted that their results were best when averaged at a scale of about 10
km. and suggested that for intermediate resolutions, down to about 100 m. the accuracy suffers from the
influence of heterogeneous land-use.

Carlson et al. (1995a) have shown a simple relationship between a scaled version of the NDVI and
the parameters for the simple ET method. Using a PBL model to determine how these parameters should
vary with respect to wind speed, surface roughness, and fractional vegetation coverage. they predicted that
these parameters are more sensitive to NDVT than to either wind speed or surface roughness. This was a
surprising result. since the parameters had been considered as surrogates for the resistance to sensible heat.
which micrometeorological studies show to be very sensitive to wind speed. [t is unclear at this point
whether the result is pertinent only to their PBL model, or if it has more general applicability.

3.2.4 Combined thermal infrared and reflectance data for surface resistance and flux estimation

An early example of the integration of shortwave and longwave remote sensing data in the
estimation of surface flux is the study by Reginato et al. (1985). in which they discuss the use of remotely
sensed shortwave radiances to estimate the shortwave components of the surface radiation budget. One
objective of their study was to show how remote sensing measurements could be used to assess the
components of the surface radiation budget that were sensitive to surface conditions and would therefore
have complex spatial distributions, while using ground-based meteorological measurements to assess the
radiation budget components that were not dependent on surface conditions (incoming shortwave and

longwave radiation) and would thus vary gradually with distance. Their objective was to maximize the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



186

distance across which ground-based meteorological measurements could be extrapolated. making the best
use of a ground based network of observations.

Goward et al.(19835) were the first to examine how thermal emissions are related to reflective
radiances over diverse vegetated land areas. They noticed a strong negative relationship between greenness
and thermal counts. relating data from two different sensor systems, and concluded that latent heat
exchanges over the vegetation were controlling surface radiant temperature. They speculated that the
relationship might be diagnostic of aerodynamic parameters and surface resistances to moisture flux. and
that if so it would be influenced by available soil water. The relationship was explored further by Hope et
al. (1986) who used a canopy reflectance and energy balance model to simulate the relationships between
spectral vegetation index and the canopy radiant temperature over a range of leaf area. These predictions
compared well with satellite observations, but they cited the need to consider soil background influences
and to compare the model results with other sources of remote sensing observations and ET measurements.
Hope (1988) further developed this modeling approach by simulating minimum canopy resistance and the
related minimum canopy temperature for a variety of meteorological conditions. and then assessing an
unknown canopy resistance on the basis of a near-linear relationship between the ratios of minimum
temperature to observed temperature and minimum resistance to actual resistance. Scatter in the low
resistance-low temperature range was large. indicating that the accuracy of the method was poor for cases
with the highest potential fluxes.

Another approach making use of thermal and reflective remote sensing data to predict surface
fluxes is provided by Pierce and Congalton (1988). They used Landsat Thematic Mapper thermal data to
determine sensible heat flux component of a surface energy balance. and incorporated visible and near-IR
information from the same sensor to perform a classification of vegetation over a mountainous watershed
in California. They introduced a suite of ground-based meteorological measurements in their method.
They concluded that their method gave reasonable trajectories of sensible and latent flux for coniferous
forest, but that more information was required to parameterize the response of vegetation to changes in

wind speed. which they found to be significant.
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Nemani and Running (1989) tested the sensitivity of the relationship between surface temperature
and canopy density to variation in surface resistance. Surface temperature was obtained from AVHRR
thermal channels by a split window method. canopy density was estimated from the AVHRR NDVI, and
ground-based meteorological measurements were incorporated in a water and energy budget model to
generate predicted canopy resistance. The experiment was carried out over a 20x25 pixel (~ 20x25 km)
area of conifer forest in Montana. The slope of the T-NDVI curve was assessed from eight different
midday images through the growing season. and they found a strong correlation between that slope and the
independently simulated canopy resistance. The seasonal pattern in both relationships showed the
influence of mid-summer drought, with high resistances correlated with low slopes for the T-NDVI curve.
They concluded that latent heat exchange was the major cause of spatial variation in the surface radiant
temperatures. and that the T,-NDVI slope was a qualitatively useful tool in regional ET research. They did
not assess the influence of fractional vegetation cover on their results.

Carlson et al. (1990) used the T,-NDVI slope and 2 PBL model to estimate fractional vegetation
cover and soil water content in the surface and rooting zones. They assumed that the primary control on
the T,-NDVI relationship for a given point in time was variation in fractional vegetation cover. and the
resulting mixture of temperature signals from sunlit vegetation and sunlit bare soil. They further assumed
that flux estimation from bare soil and vegetation mixtures could be treated in parallel. without having to
account for the interaction of adjacent vegetation clumps and bare soil patches. (Shuttleworth and Wallace.
1985). By using a plot of temperature vs. temperature variance they defined the endpoints of the soil and
vegetation mixture. and then adjusted the soil water content in their PBL model for individual cases to
reproduce observed slopes in the relationship between NDVI (which they interpreted as fractional cover)
and T,. They used data with a high spatial resolution collected from an aircraft platform for their study.
and were cautious about the extension to low resolution data (AVHRR). since it would be more difficult to
obtain the complete range of fractional cover in any one cell. They suggested that AVHRR data could be a

useful way to test the variation in these relationships over a wide variety of surface types and climates.
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Kustas et al. (1990) expanded on the development of the simple daily ET formula (Seguin and
[tier. [983) and the reference field concept (Thunnissen and Nieuwenhuis. 1990) by incorporating visible
and near-IR reflectances to calculate surface albedos in the radiation budget. and compared the results with
more complex simulations using similarity theory. They found that extrapolations from a reference field
were limited by the spatial variability of surface meteorological parameters. that the extension of
instantaneous fiux estimates to the entire day was valid under clear sky conditions. and that the problems of
partial canopy cover were very difficult to address with a one-layer canopy model. Hall et al. (1991)
reported much less positive results from experiments over a Kansas prairie during an intensive field
measurement campaign. reporting large overestimates of sensible heat flux from measurements of T.

They note that typical values for r are very small, and so small errors in temperature are translated into
large errors in fluxes. On the other hand they point out that the stomatal resistances are much larger.
making estimates of evapotranspiration more reliable than estimates of sensible heat flux. They noted the
good agreement of the simple ET method for daily flux estimation with observations. and illustrated that
the ratio between evaporation and net radiation is relatively constant for their site on a sunny day. Carlson
et al. (1995a) later criticized the theoretical treatment of similarity in these experiments. and noted that with
proper treatment of the difference between momentum and sensible heat flux resistances the agreement
between observation and prediction was improved. Sandholt and Andersen (1993) presented a method for
interpolating daily ET values in between satellite observations by the definition of a drying curve (Priestley
and Taylor. 1972). which is based on the relationship between potential ET, actual ET. and accumulated
precipitation. They reported good results when comparing these interpolated estimates to tield
measurements.

Smith and Choudhury (1991). using Landsat TM data. investigated the T,-NDVI relationship over
crop. bare soil. and forest. and found an inverse-linear relationship for crops but not for forests. These
results were corroborated by a two-layer surface heat balance model. Their model also predicted that the
variation in slope of the T,-NDVI line was in opposite directions for decreases in transpiration and for

decreases in soil evaporation: their assessment of the usefulness of a simple relationship between the T-
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NDVT slope and water stress over diverse landscapes was generally pessimistic. Nemani et al. (1993) went
on to show, using AVHRR data. that grass, crop, alpine shrub. and forest biomes all had an inverse-linear
relationship of T, to NDVI. and that this relationship could be extracted from a cloud or aerosol
contaminated scene using an automated procedure. They illustrated the likely range of variation of the T -
NDVI slope under extreme conditions of both evaporation and transpiration, and their interpretations of
observed relationships agreed with Smith and Choudhury’s model results (1991) on this point. They
concluded that fractional vegetation cover is the dominant feature controlling the spatial variation of
surface temperature. as opposed to an earlier hypothesis that the variation was controlled by differences in
transpiration (Nemani and Running, 1989). A strong linear relationship was demonstrated between the T.-
NDVI slope and negative values of the Crop Moisture Index (generated weekly by the National Weather
Service) for two bi-weekly AVHRR composites over 20 climatic zones.

Moran et al. (1994) describe a method using both a spectral vegetation index and the surface-air
temperature difference that integrates the observed relationship between T, and NDVI (Goward et al..
1985: Nemani et al.. 1993: Nemani and Running, 1989) with an explicit treatment of the surface energy
balance. Their objective was to provide a means by which vegetation water stress could be assessed over
partial canopies without resorting to intensive micrometeorological measurements. The ground-based
meteorological data required by their approach are near-surface air temperature. vapor pressure. wind
speed. and net radiation. They used this information in combination with remotely sensed surface
temperature and spectral vegetation index to assess the limits to surface-air temperature differences under
conditions of maximum and minimum evaporation and transpiration, producing a graphical device they
call the vegetation index/temperature trapezoid. Their method assumes a knowledge of LAIL. maximum
leaf level stomatal conductance. maximum and minimum values for the spectral vegetation index
corresponding to complete and absent canopies, and some canopy-dependent parameters for the assessment
of aerodynamic resistance. They further assume that one value of R, is sufficient for both vegetated and
bare soil cases. that simple relationships can be derived for aerodynamic resistance as a function of wind

speed. and that soil heat flux can be estimated as a function of R, and fractional cover. Given these
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conditions, any pair of temperature difference and vegetation index values defines a point within the
trapezoid, and further simple relationships can be applied to derive the possible ranges for the
combinations of canopy and soil temperatures that make up the mixed temperature signal. A second
measurement. of bare soil temperawure for example, uniquely defines the canopy temperature in the
mixture. They demonstrate the error associated with a linear mixing model of canopy and soil
temperatures. and suggest ways to eliminate this error with a dual-source model that considers radiant and
convective exchange of heat between the soil and the vegetation.

In a recent paper (Moran et al., [996) this logic is applied over a region (~150 km x 100 km)
using Landsat Thematic Mapper data to derive the required vegetation index and surface temperature
estimates. Simple interpolations of near-surface air temperature. wind speed. and humidity observations
provided the necessary meteorological data . Solar input was assumed constant over the region. Using
eddy flux correlation equipment installed on one site within the region, they estimated the error for
predicted ET to be about [5%.

3.3 Summary of literature review with respect to the current research problem

The tirst conclusion I draw from the foregoing review is that. while many authors have
highlighted the importance of accurate spatial distributions of surface meteorological parameters in studies
of the relationship between remotely sensed surface temperature and various aspects of the surface energy
balance. no adequate effort has yet been made to generate and use such information for study areas larger
than a single agricultural field or for periods longer than a single growing season (Moran et al. 1996.
Carlson et al. 1995b. Humes et al. 1994, Seguin et al. 1994 Diak and Whipple 1993. Nemani et al. 1993.
Kustas et al. 1990. Moran et al. 1989). Having, in Chapter 2. developed a collection of methods which
begins to satisfy the needs outlined by these authors, I set out in the current study to implement these
methods, and to augment them where necessary to better match the spatial and temporal characteristics of
the remote sensing data. The surface meteorological parameters suggested to be of general importance in
explaining the observed variation in surface temperature are, in approximate order of importance. incident

shortwave radiation, air temperature, vapor pressure deficit, wind speed, and some measure of antecedent
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precipitation. Of these, all but wind speed are parameters that are explicitly treated by the methods in
Chapter 2. There are various possible solutions to the generation of distributed surface wind fields over
large regions of complex terrain. but in view of their complexity [ have elected to ignore the influence of
variable wind speed on surface energy fluxes, assuming a constant speed of I m s throughout. Because
the satellite observations are essentially instantaneous, modifications and additions to the methods
described in Chapter 2 are required in order to generate instantaneous estimates of incident radiation. air
temperature. and humidity using only the observed values of daily maximum and minimum temperature
and total precipitation. These modifications and demonstrations of their effectiveness are presented in the
description of methods. below.

My second conclusion from the literature survey is that. while the specification of a resistance to
sensible heat flux (r,) is an important first step in the quantitative explanation of observed surface
temperature. the most common methods of determining r, depend on micrometeorological observations
that are impossible to obtain over large areas, especially if those areas include rugged or remote terrain
(Kustas etal. 1996, Carlson et al. 1995b. Humes et al. 1994, Moran et al. 1994, Thunnissen and
Nieuwenhuis 1990. Moran et al. 1989, Taconet et al. 1986, Soer 1980). There is the additional
complication for studies using relatively coarsely resolved observations. such as from the AVHRR
instrument. that the heterogeneity of landcover within a single field of view can be great. This brings into
question the effectiveness of the theoretical treatment outlined above (Egs. 5-11) in explaining the
observed variation of aggregated surface temperature. If predictions from this theory can be substantiated
by observations at coarse spatial resolution and across large domains. there remains the problem of
estimating an appropriate value for r, over a region characterized by sub-resolution heterogeneity.

In combining interpolated and extrapolated surface meteorological fields with a relatively long
record of longwave emissions and shortwave reflectances. [ see a unique opportunity to test the
applicability of the surface energy balance theory embodied by Eqs. 5-11 to large, topographically and
floristically diverse landscapes. This theory is also at the foundation of the algorithms describing surface

energy dynamics in the general terrestrial ecosystem process model described in Chapter 3. and such a test
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is a step toward the estimation of the accuracy of that system of algorithms as a whole. Such validation
efforts for regional-scale flux estimation methods have been indicated by many investigators as a research
priority (Carlson et al., 1995b; Kustas et al. 1994a. Kustas et al. 1994b, Brutsaert and Sugita 1992.
Choudhury. 1991). The use of remotely sensed radiometric data shows promise for the accomplishment of
that goal, but these data by their nature introduce many complications. requiring that progress along this

avenue be painstaking.

4. Operational statement of the research problem

Eqs. 8 and 1 1. describing the fluxes of sensible and latent heat, taken together with Eq. 5.
describing the form of conservation of energy at the surface. can be solved for the surface temperature. T,.
by introducing the approximation Ae = VPD + s (T, - T,) (i.e., the Penman approximation. where VPD is
the vapor pressure deficit (Pa) and s is the slope of the water vapor pressure saturation curve with
temperature (Pa °C™)). to give:

R, _ VPD +T
&i_wa},s MaPCp&_-*-S a

I M,Pr, M.~

Eq.15 T, =

This equation is very useful because it separates the influence of the three important meteorological
parameters (radiation, humidity. and temperature) into three linear terms. This expression shows that the
quantity (T, — T,) should be more closely related than T, to meteorological variables having direct
interaction effects with the surface. This is so because T, on the right side of Eq. 15 is a simple additive
term. and is not influenced by r, or r,, which are the two intrinsic surface variables in the relationship. [
therefore rearrange Eq. 15 as follows, where AT is the difference between surface and air temperature. and
combine physical constants (c,. M., M,), parameters that are weak functions of temperature (p. 7.). and

parameters that are functions of elevation (P) into new terms, to give:

VPD
Eq. 16 AT = Ro _
C CsS r. .
Th I Th
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The behavior of Eq. 16 over a range of R, VPD, r;, and r, is rather complex. In general. an
increase in R leads to an increase in AT. with the magnitude of the increase controlled largely by r, when
r. is higher than about 500 s m™. At lower values of r, the magnitude of the increase in AT with increase in
R, is reduced. An increase in VPD is predicted to decrease AT for a constant R, with a greater influence
of VPD on AT for lower ratios of r/r;. These relationships are illustrated in Figure . which shows the
influence of varying R, on AT under a range of conditions for g, r,, and VPD.

In general. r, will always be higher than or equal to r;,. In the case of evaporation from a water
surface. both sensible heat and water vapor must pass through the same boundary layer before mixing with
the overlying atmosphere. and r, =r,. Forsoil ora leaf. sensible heat is generated by molecular kinetic
energy of the surface at the interface between the air and the surface, and moves through the surface
boundary layer to mix with the atmosphere. Evaporating water must move across an additional distance. to
the surface from the liquid water evaporation front. and must then cross the same boundary layer as does
the sensible heat. In this case r, will be larger than r,. since the two pathways are in series and their
resistances are therefore additive. As the difference between r;, and r, increases. the denominator in the R,
term on the right side of Eq. 16 becomes progressively dominated by r;,.

For the case of a bare soil. typical values for r, are in the range 30-60 s m"'. and r, can range from
this lower limit. for a saturated soil, to 1000-10000 s m™ for a field-dry soil. to practically an infinite
resistance for exceptionally dry soils (desert sand. for example) (Daamen and Simmons 1996. van de
Griend and Owe 1994, Cahnzy and Bruckler [993). For a typical value of r, for a soil. the influence of r,
on AT (at constant VPD) is negligible for r, greater than about 500 s m™.

Typical values of r,, for single leaves range from 6 s m™ for needle-leaf vegetation to about 20 s m
! for grasses. and up to 60 s m™ for very broad-leafed vegetation, banana. for example. The minimum
value forr,. except in the case of intercepted water evaporating from the leaf surface. is determined by the
stomatal density and maximum average stomatal aperture, and typical values range from 150 s m™' for
crops to 400 s m™' for many tree species (Kdmer 1995). These would be the values for r, under ideal field

conditions, i.e., plenty of water. available nitrogen, warm temperatures. and saturating radiation loads. For
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as predicted by Eq. 16.
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less favorable conditions. r, increases due to stomatal closure. With the typically lower values of r,, for
vegetation than for soils. the lower limit at which r, begins to have a significant influence on the R, term in
Eq. 16 is also reduced. and for values of r, above 400 s m™ there is little influence of r, on AT through the
influence of radiation.

Assuming constant values ofr,, r,. and VPD. the derivative of AT with respect to R, (dAT/dR,) 1s:

dAT _ 1

dR, ¢ ¢S
o T

Eq. 17

where the expression is approximate because s varies with temperature. Given the observed constraints on
the values for r, and r, for soil and vegetation surfaces. the denominator on the right side ot Eq. 17 can be
simplified by assuming that ¢,/r, >> c.s/r,. so that (¢,/ry) + (c.s/r,) = ¢//r,. Rearranging to solve for r, then
gives:

dAT
dR,

Eq.18 nr =¢

In preliminary investigations of the relationship between AT and other meteorological variables
produced by the methods in Chapter 2. I found that there was a strong positive relationship between AT
and R, which had higher slopes for regions with lower NDVI. This preliminary support led me to present
the following hypothesis:

The variation in surface temperature as derived from observations by the AVHRR

instrument, normalized as AT by including an estimate of the instantaneous near-surface air

temperature, and considered with respect to the variation in R, as predicted from sun-siope
geometry and time of satellite data acquisition, can provide an estimate of r,, assuming that

r, is not varying greatly over time.

My method in investigating this hypothesis was to perform a multiple regression analysis of the variation in
AT with respect to R, and a number of other important variables, so that [ could isolate the observed
variation in AT that was due to the variation in R, (i.e., the multiple regression coefficient for R,. or

dAT/dR,).
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[n testing this hypothesis, [ selected as my study area a region in the northwestern United States
which spanned seven degrees of latitude and ten degrees of longitude (about 800 km by 800 km). The area
was chosen for its combination of diverse terrain, including several major mountain chains as well as a
variety of large and small alluvial plains, and diverse climate and vegetation. including hot and dry semi-
desert. warm and dry shrubland. cooler and moderately dry grassland and forest. cool and wet forests. and
cold and wet alpine environments.

Radiometric observations from the AVHRR instrument. composited over bi-weekly intervals.
were converted to surface temperature values by first estimating the spatial variation in spectral emissivity
of the land surface and then performing a correction for atmospheric influences. The emissivity estimation
and atmospheric correction used multiple spectral bands. an independent estimate of atmospheric water
vapor content. and an assessment of the long-wave radiation incident on the surface based on estimates of
near-surface temperature and humidity. The spatial resolution of the radiometric observations was | km.
with an approximate temporal sampling frequency of 14 days. [ developed a simple algorithm for the
detection of snow and cloud cover in the composited satellite data, and removed grid cells so identified
from further analyses. Screening was performed to remove from further analysis all observations made
tfrom excessive otf-nadir angles. The yearday of compositing was determined for each composited cell.
From ancillary sun-sensor geometry data accompanying each composited image. [ estimated the local solar
time at which each composited cell was observed.

Using the methods described in Chapter 2. I generated estimates of daily maximum and minimum
temperatures. precipitation. humidity. radiation. and daylength over a grid that corresponded with the
satellite observation grid. From an independent dataset of observed hourly temperatures. I derived an
empirical expression which related the time of day of the maximum temperature to a set of independent
meteorological variables available in the gridded dataset. Also from the hourly dataset. [ derived an
expression relating the temperature at a particular time, within the four-hour span before or after the time
of the maximum temperature, to the maximum temperature, the minimum temperature, and a collection of’

other predictors available from the gridded dataset. From these two expressions and a knowledge of the
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composite days and observation times for each cell, I predicted the air temperature at the time of satellite
observation for each composited cell. [ likewise predicted the incident solar radiation at the time of
observation using gridded terrain data. established geometric expressions for solar illumination on slopes.
and potential atmospheric transmittances. assuming cloud-free observations. Vapor pressure deficit (VPD)
was assessed at the time of satellite observation. using the estimated air temperature at the observation time
and other variables from the gridded dataset. as described in Chapter 2.

As a preliminary test of the correspondence between surface temperature observations. estimated
meteorological fields. and surface energy balance theory. [ performed a regression analysis on the surtace
temperature observations. with estimated fractional cover and estimated meteorological parameters
coincident with the observations as independent variables. The objective of this analysis was to compare
the variation in surface temperature due to variation in individual meteorological parameters. as predicted
by theory. with the coefficients for those same interactions from a multiple regression analysis. Assuming
some reasonable qualitative agreement could be found, the next step in the analysis was to use the
regression coefficient for R, to estimate the spatial distribution of , as given in Eq. 18. This parameter has
been shown to have characteristic values for different vegetation types and for soil. but it is difticult to
assess r, over large spatial areas without an accurate knowledge of the distribution of vegetation types and
the fractional vegetation coverage. If the estimated values for r, correspond well with independent
estimates of the vegetation cover type and the fractional vegetation cover. that result would lend weight to
the validity of my hypothesis.

Independent estimates of vegetation type and fractional cover were derived from classification
work performed over parts of my study area using other satellite sensor data. and from spectral information
from other channels on the AVHRR instrument. [n the {inal analysts. I compared the values of r, predicted
from Eq. 18 over the range of classified vegetation cover types to test two hypotheses: that the predicted
values of r,, were related to fractional vegetation cover. and that the relationship between r, and tractional
cover was distinct for different landcover types. [f these two hypotheses are supported by the data. [ will

consider it evidence in favor of my overall hypothesis. that the surface energy balance theory presented
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here is applicable over the spatial resolution and scale represented by AVHRR data. and that this theory is
consistent with observations of surface meteorological variables and surface radiometric characteristics. In
addition. if [ come away with confidence in the two specific hypotheses just stated, then the observed
relationships between r, and NDVI could be used in future surface energy balance studies to parameterize
r, from a knowledge of covertype and fractional coverage. The investigation of these hypotheses is far
from a complete validation of the surface energy balance theory incorporated in the process model

described in Chapter 3. but it is an important first step in that direction.

5. Methods

5.1 Study area and topographic data layers

The study area was chosen to lie within the U.S. borders. since topographic and meteorological
data were available for the region. and to encompass a diverse range of topography and landcover. The
selected region is the entire area between 110 and 120 degrees west longitude. and between 42 and 49
degrees north latitude. The region is approximately 850 km east-west by 830 km north-south. All the
spatial data was projected in Lamberts Azimuthal Equal Area (LAZEA) projection. with the center of the
projection located in the center of the region. Figure 2 illustrates the topography of the region with some
political boundaries for reference. For a general description of the terrain. vegetation. and climate of this
region. see the discussion in section 2.7 of Chapter 2. which is for a region of nearly the same geographical
extent.

Topographic data was obtained from the United States Geological Survey (USGS) EROS Data
Center (EDC). Sioux Falls. SD. in a geographic projection. with spacing along both longitude and latitude
of three arc-seconds. or approximately 90 m. A subset of this data was extracted. and the subset was
reprojected to the LAZEA projection on a grid with 100m grid-cell spacing. using a nearest-neighbor
resampling scheme. A new grid with a grid-cell spacing of | km was then generated by taking the average
of the 100 cells inside each | km- region. Through this method, I gain confidence in the sub-grid accuracy

of the new | km grid that would be unfounded if I had used. for example, the digital elevation data
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provided by USGS-EDC as a | km grid in conjunction with their AVHRR satellite data. The 1 km
elevation grid was employed in conjunction with standard methods to generate coincident grids of terrain
slope and aspect. used in estimating incident radiation and in calculating the sun-earth-sensor geometry.
5.2 Estimation of daily surface meteorological parameters

5.2.1 Generation of Daymet input database

The raw sources of observed daily maximum temperature (Tmax). daily minimum temperature
(Tmin). and precipitation (Prcp) are the same as described in Chapter 2. i.e.. the cooperative network
administered by the National Weather Service. and the SNOTEL network of high elevation sites
administered by the Natural Resources Conservation Service. These databases were obtained in electronic
format. [ wrote software to extract all of the station records for a specified geographic range meeting
certain quality criteria. A single record here refers to one month of data for a particular station for a
particular meteorological parameter. In order to be included at this stage in the database generation. each
record in the geographic range corresponding to my study area had to have no more than seven missing
daily observations in the month. Missing observations were marked as such in the newly generated data
files. Records were extracted for the five-year period from 1990 to 1994. chosen to correspond with the
period for which remote sensing data were available (see below).

Because station locations are periodically changed. inducing changes in both horizontal and
vertical relationships between stations that bear on the Daymet algorithms. a meta-data record was created
for each monthly data record. recording its location as determined from the station history database
supplied by the network administrators. Subsequent to extracting all data records. the horizontal station
locations for each record were amended through the use of the observed station elevations and the 100 m
grid-cell spacing elevation data (described above). for the reasons and according to the methods described
in Chapter 2. section 2.7.

In preliminary investigations with this dataset. [ found that there were a number of obviously
erroneous observations of temperature that were not flagged as such in the original databases. These were

found mostly in the SNOTEL data, and were evidenced by rapid changes in temperature or repeated
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temperature values for multiple days when no such activity was observed at neighboring stations. Because
these errors were substantially above the level expected for typical instrument error. they occasionally
“hijacked™ the automated parameterization process. resulting in poor parameter choices that reflected the
influence of one or several outliers. [ identified and eliminated such errors by performing a preliminary
cross-validation assessment of daily temperature errors. using a fixed set of parameters taken from Chapter
2. Table 2. Any observation which differed from the cross-validation prediction by more than 10 °C was
reassigned as missing and dropped from further analysis. This threshold was set conservatively: [ wanted
to be careful not to eliminate data which was simply not being predicted well by the interpolation and
extrapolation algorithms. but at the same time eliminate as much of the obviously bad data as possible.
Through manual observation of the data points so identified. [ determined that this threshold eliminated
few if any reasonable data points, and passed over a number of obviously bad ones. Ifthis screening
resulted in any record exceeding the previously established threshold of seven missing observations per
month. the entire record was discarded: The number of observations removed in this way averaged around
75 per variable per year. out of approximately 180.000 observations per variable per vear. No such
screening method is possible for the precipitation data since. due to the spatial variability of the process
being undersampled by the station network. the accuracy of daily precipitation amounts is too low to allow
discrimination between bad data and poor predictions. As a result. some bad data are sure to remain
undetected in the precipitation observations.
5.2.2 Parameterization of Daymet for the study region and period

In order to implement the Daymet methods. a number of parameters must first be established. A
complete discussion of this parameterization process is given in Chapter 2. and here [ will focus only on
aspects unique to this study. The two most important parameters are the Gaussian shape parameter (GSP)
and the average number of stations (ANS) to include in predictions at a given point. which define the
behavior of the interpolation algorithm. Also of importance is the spatial smoothing width applied to the
topographic data for use in the vertical extrapolation algorithm. In Chapter 2 [ showed how the mean

absolute prediction error statistic (MAE), generated through a cross-validation procedure. could be related
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to GSP and ANS in order to select an optimal combination of these two parameters. with respect to
minimizing prediction error. [ found that for any value of ANS within a broad range. a single value of GSP
could be found to minimize the mean absolute prediction error. [ also found that the MAE at this minimum
is not much changed over a broad range of ANS, i.e.. there is typically a trough of minimized error as
opposed to a well. In this study [ took advantage of that characteristic of the interpolation algorithm by
specifving one value of ANS for all predictions for a given variable and using an automated search
procedure to find the value of GSP which minimized the MAE.

In the example application in Chapter 2, [ found a single optimal combination of ANS and GSP
for each predicted variable and used that combination for predictions on all days and across the entire
spatial domain. I noted there that it seemed likely that better results could be obtained by varying the
parameterization either spatially or temporally, or both. In the current study [ implemented a temporally
variable parameterization for GSP. finding the value that minimized MAE at the fixed ANS for each month
independently. Cross-validation predictions were made for each observation that was not flagged as
missing in the original dataset. for each station in the region. and for all days in a single month. All these
prediction errors were averaged to obtain the relevant MAE statistic for selecting the optimal value of GSP
for a given month. There was substantial temporal variation in the resulting optimal values of GSP for all
three primary variables. as well as temporal variation in the minimized values of MAE (Figure 3). The
value of ANS was fixed at 20 for Prcp predictions. and at 30 for both Tmax. and Tmin predictions.
following the results in Chapter 2, Table 2. Average MAE and bias were lower in trials using the
temporally-varying parameterization scheme than in trials using a single annual optimization for most
variables. with the exception of a significant increase in the magnitude of the estimation bias for Tmax and
Tmin under the variable parameterization scheme. Differences were small but highly significant in all
cases (Table 1). with the greatest improvements from the temporally-varying parameterization coming in

the winter months for Prcp and in the summer months for both Tmax and Tmin.
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Mean absolute errors (MAE) for monthly averages of predicted Tmax, Tmin. and Prcp, together with the

Gaussian shape parameters (GSP) found to minimize MAE, for the five year period 1990-1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



204

Table 1. Results of t-tests comparing constant with temporally-varying parameterization of GSP.

Errors for precipitation are trom predicted and observed monthly totals, and expressed on the basis of average daily tota! precipitation.

Temperature errors are from predicted and observed daily values. These trials used 24 years of data. from 1970 through 1993, and

excluded SNOTEL stations.

Variable Constant GSP  Variable GSP P
Prep: MAE (cm day™)  0.0268 0.0266 <0.01
Prep: MAE (%) 237 235 <0.01
Prcp: bias (cm day™) +0.00079 +0.00055 <0.0!
Prcp: bias (%) +0.7% +0.5% <0.01
Tmax: MAE (°C day)  1.629 1.627 <0.0!
Tmax: bias (°C day™) -0.033 -0.035 <0.0!
Tmin: MAE (°C day")  1.864 1.861 <0.01
Tmin: bias (°C day™) +0.000 -0.002 <0.01

Based on my findings in Chapter 2 and further investigation with the current dataset. [ determined
that the inclusion of a spatial smoothing parameter was only beneficial in the case of precipitation
estimates. By repeatedly performing the automatic optimization of GSP using a series of increasingly
smoothed elevation grids. [ was able to assess the impact of elevation smoothing on Prcp prediction error.
[ found that monthly errors (% of monthly totals) were minimized using a linearly tapered smoothing
window with a circular extent and diameter varying by month as shown in Figure 4. As [ have observed
for previous implementations of the Daymet logic. optimal prediction of Prcp requires some terrain
smoothing throughout the year. with the most smoothing in the summer months and the least in the winter
months. This result suggests that the sensitivity of precipitation intensity to terrain is greatest in the winter
and least in the summer. in correspondence with the increased organization of precipitation events in the
winter (frontal systems) and the more random spatial distribution of summer precipitation (convective
storms). The inclusion of terrain smoothing reduced the MAE for predictions of monthly total
precipitation from 33.5% to 33.0%. a small but significant improvement. while significantly increasing the
magnitude of the bias. from —0.0041 cm day t0 -0.0061 cm day™' (P<0.05 and P<0.01. respectively).

Based on results summarized in Chapter 2. Table 2. and further testing using the current dataset. [

set the temporal smoothing parameters. used in regressions of temperature and precipitation against station
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elevation. to | day for both Tmax and Tmin, and 5 days for Prcp. The critical proportion of stations
receiving precipitation. required in estimating precipitation occurrence. was set at 0.5. The f_ . parameter
was kept at 0.95. and the number of iterations used in estimating station density was kept at 3 (Chapter 2.
Table 2).

The results of the final cross-validation analysis of error and bias are shown in Table 2. Errors for
Tmax and Tmin are given both for daily predictions and for the 12-month average of daily predictions
accumulated to monthly average predictions. for each year from 1990 to 1994. and for the average of all
vears. Only the 12-month average of summarized monthly prediction errors are presented for Prcp. for the
same reasons discussed in Chapter 2, Section 3.2.

Table 2. Final cross-validation analysis estimates of error and bias.
MAE and bias have units (°C day™') for Tmax and Tmin. and (%) for Prep. MAE, = daily MAE. MAE,, = monthly MAE.
Variable 1990 1991 1992 1993 1994  S-year mean

Tmax MAE, 1.63 1.58 1.52 1.62 .55 1.58
Tmax MAE,, 0.87 0.87 0.82 0.85 0.83 0.85
Tmax bias -0.038 -0.031 -0.032 -0.034 -0.034 -0.034

Tmin MAE, 1.91 1.84 1.86 177 1.89 1.85
Tmin MAE,, 1.29 1.27 1.31 1.18 1.32 1.27

Tmin bias -0.014 +0.003 +0.004 +0.007 -0.003 =+0.005
Prcp MAE,, 33.9 33.9 323 29.2 359 33.0
Prep bias -7.0 -8.1 -6.4 4.7 -10.7 74

Because the bias statistics for Prcp are computed on the basis of individual months. and because
bias (underestimation) in dry months is greater than in wet months (see Chapter 2. Figures 6 and 7. and
accompanying discussion). the magnitude of Prcp biases in Table 2 are misleadingly high. As shown in
Figure 5. where the monthly Prcp prediction biases are plotted against observed monthly total precipitation
amounts for all months over the period 1990 to 1994, the biases in the driest months are very large (and

negative). but for increasingly wet months the bias rapidly approaches zero. When Prcp bias is computed
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by weighting each month according to its contribution to the annual total precipitation, the resulting 5-year
mean bias is —3.5%. with annual values ranging from —5.0% to —2.9%.
5.2.3 Daymet simulations and summary of the resulting daily surface meteorological fields

The methods described in Chapter 2 for the final predictions of Tmax. Tmin. and Prcp were
implemented here with minor modifications. One significant modification to the logic described in
Chapter 2 is the implementation of a sign-switching mechanism in the regression estimates of the influence
of elevation on temperature and precipitation. Recall from Chapter 2 that these regressions are based on all
possible unique pairs of stations in the station list at a given point. Differences in either temperature or
precipitation are regressed against differences in elevation. in order to diagnose the magnitude and sign of
the local relationship. In Eqs. 3 and 4. Chapter 2. the intercept from these regressions is included as part of
the final prediction. Since the regressions are based on differences between stations. in theory the
intercepts should be very close to 0.0, and should not have a significant impact on the predictions. I[n
preliminary testing with the current database. I found that the regression intercepts were significantly
ditferent from zero. and that inclusion of them in the prediction equations significantly reduced prediction
error and bias. I determined that this was the result of always taking the difterence between stations in a
unique pair as the first minus the second. given that my database design placed SNOTEL stations (with
generally high elevations) at the bottom of station lists and that the algorithm for finding unique station
pairs always began at the top of station lists. By implementing a sign-switching convention that alternated
the order of differencing between pairs, [ found that the magnitude of the regression intercepts was reduced
by two orders of magnitude (e.g.. from a Tmax trial, from —5.2e-4 to —2.2e-6 °C m™"). that the variance in
the intercepts was also greatly reduced. that right skewness observed in the original intercepts was
eliminated. and that the inclusion of the intercepts in the prediction equations no longer had a significant
effect on errors or biases. [ therefore retained the sign-switching convention and dropped the regression
intercepts from the prediction equations.

The only other significant modification to the Daymet logic from the description in Chapter 2 is

for the estimation of the daytime average vapor pressure deficit (VPD). In the example in Chapter 2. I
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used the assumption from Running et al. (1987) that dewpoint temperature was equal to night minimum
temperature in calculating VPD. In the current implementation I could not find sufficient evidence to
support the assumption that the proposed relationship between minimum temperature and dewpoint
temperature is valid for the case of minimum temperature varying over short distances in response to
elevation. I therefore generated a second set of minimum temperature predictions for estimating dewpoint
temperature. by eliminating the correction for elevation.

The final modification to the Daymet methods was a correction to the values for the monthly
variation in the solar constant. [ found that the average of the values from the original MTCLIM code
(Running et el. 1987. Hungerford et al.. 1989) was too high by 43 W m™, or 3.1% (1403 W m™~ instead of
1360 W m™ as given by Gates (1980), Jones (1992). and others). [ subtracted 43 W m™ from all the
original monthly values to obtain the new solar constant array.

Results from the Daymet simulations are summarized in Table 3. For temperatures as well as for
precipitation. 1990 and 1991 were typical of the 5-year mean conditions, while 1992 and 1994 were
warmer and drier than average. and 1993 was cooler and wetter than average. Solar radiation was higher
than average in 1990. 1992, and 1994. and lower than average in 1993. Monthly spatial averages of
temperature, precipitation. and solar radiation (Srad) for the five years are shown in Figure 6.

Table 3. Annual and S-year mean statistics for Daymet output

Values for Tmax and Tmin are for 365-day average temperature (°C). values for Prep are for 365-day total precipitation (cm). and
values for Srad are 365-day averages of daylight radiant flux density (W m™). Mean and standard deviation (stdev) are taken over all
I km? pixels (n=606526).

Variable 1990 1991 1992 1993 1994 S-year mean

Tmax (mean) 1290 12,73 13.71 IL13 1346 12.78

Tmin (mean) -098 -08 -021 -1.88 -0.58 -0.90

Prcp (mean) 54.7 54.5 47.5 59.8 48.3 53.0

Srad (mean) 289.4 2831 2904 2732 2910 2

Tmax (stdev) 3.53 3.19 3.35 3.00 3.23 3.25
Tmin (stdev) 292 2.74 2.76 2.71 2.80 2.77
Prep (stdev) 39.6 28.4 26.4 24.6 290 28.7
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Figure 6

Results of Daymet estimation of meteorological parameters. Temperatures and radiation are shown as
averages of the daily results over the study region for each month. and precipitation is shown as the

monthly accumulated depth (water equivalent) averaged over the study region.
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5.3 Estimation of subdaily meteorological parameters

In order to assess the influence of meteorological conditions on observed variation in landsurface
temperature as detected from a polar-orbiting spacecraft, I require estimates of the most important
meteorological variables at the time of data acquisition. i.e. at the time of day of satellite overpass. In
particular. estimates of the near-surface air temperature. the incident solar radiation. and the vapor pressure
deficit at the time of overpass must be obtained. The methods described in Chapter 2 are designed to
provide daily summaries of these variables. Qualitative relationships could be drawn between these daily
average estimates and the observed surface temperatures, but my purpose here is to investigate the
quantitative relationship between meteorological parameters. surface energy balance theory. and the
remotely observed surface temperatures. In this section [ describe the methods by which [ arrived at the
subdaily estimates of meteorological parameters that allowed me to make a quantitative as opposed to
qualitative analysis.

The application of these methods depends on a knowledge of the date and time of day of satellite
data acquisition for each grid cell. In this section I will only discuss the general case of subdaily
meteorological variable estimation. and will postpone a discussion of the specific application until after [
have described the database of radiometric observations and associated temporal compositing and viewing
geometry variables.

5.3.1 Subdaily air temperature estimates

[ reduced the problem of subdaily air temperature estimation to two separate sub-problems. Given
that [ already had an estimate of the daily maximum temperature. and that the time of satellite overpass was
in the approximate neighborhood of the time of the maximum temperature. my tasks were first to estimate
the time of day of the maximum temperature, and second to estimate the shape of the diurnal temperature
curve around the time of maximum temperature. Then, from the Daymet database already described and a

knowledge of the local time of satellite data acquisition. I could derive the relevant air temperature. My
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criteria in tackling these two problems was that the eventual solution should rely only on the information
already available from the Daymet database.

In order to assess the factors influencing the time of day of maximum temperature. [ gathered
hourly meteorological data from several sources. From the Western Regional Climate Center. [ obtained
hourly temperature data for nine airport stations within the study region, over the period 1983-1994.
Preliminary tests with those data indicated a possible inverse relationship between the long-term growing-
season average time of day of maximum temperature (T,,) and the long—term average maximum
temperature. [ intended to use these hourly data to derive an empirical relationship that [ could then apply
to predict T, over the entire study region, but the range of topographic settings for the airport stations was
limited. and the highest elevation was 1357 m (Pocatello. ID). [ sought additional data from higher
elevations and in more topographically complex settings to test the generality of the patterns observed in
the airport data. The science staff at Glacier National Park (GNP) provided hourly observations of
temperature from four stations within the Park, having various topographic settings and ranging in
elevation from 965 m to 2276 m.

Observations at these stations are made either on the hour (airport stations) or as hourly averages
reported at the end of the hour (GNP), in both cases with respect to local standard time. Because the
stations are located at various longitudes within their time zones, the local solar time for reporting is not
directly comparable between stations. Since it is the diurnal pattern of temperature with respect to local
solar time which is of interest in coordinating air temperature estimates with satellite observations of
surface temperature. and since the difference between stations in T, is of the same order of magnitude as
the potential error from this longitudinal bias. a correction was required. An offset (AT) was assigned to
each station on the basis of its longitude (L,), the central longitude of its time zone (L,), and the number of
degrees of longitude per hour of solar time (15.0):

Eq.19 AT=(L,~-L)/15.0
Because the GNP stations recorded the average temperature over the previous hour, the most likely time of

the true maximum temperature is one half hour prior to the reporting time at which T, is observed. and so
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for these stations AT from Eq. 19 was amended by subtracting a half hour. Because the airport stations

report the instantaneous temperature on the hour, the most likely time for the true T 4 is on the reporting

hour. and so this additional correction is not necessary for these stations. Table 4 lists all stations. their

elevations. geographic coordinates. and values for AT.

Table 4. Station data for 13 stations used in assessment of subdaily air temperature.

Station name  Elev.

(m)

Airport stations
Boise. ID 865
Lewiston. [ID 438
Pocatello. ID 1357
Great Falls, MT 1116
Helena. MT 1167
Kalispell, MT 909
Missoula. MT 972
Pendleton. OR 452
Spokane. WA 718

GNP stations (all in MT)

Mt. Brown 2276
Mt. Otokomi 2227
Sun Point 1453

West Glacier 9635

Lat.
)

43.57
46.38
42.92
47.48
46.60
48.30
46.93
45.68
47.63

48.63
48.71
48.68
48.51

Long.
©)

-116.22
-117.02
-112.60
-111.37
-112.00
-114.27
-114.10
-118.85
-117.53

-113.83
-113.53
-113.58

-114.00

AT
(hrs)

-0.75
+0.20
-0.51
-0.42
-0.47
-0.62
-0.61
+0.08
+0.16

-1.09
-1.07
-1.07
-1.10

The hourly temperature data were screened to remove days with missing data between the hours

of 9 AM and 9 PM. Since the analysis of observed surface temperatures is concerned only with the

growing season. defined here to be the period from April I to October 31. only those days were extracted

from the original hourly temperature data for further analysis. For each day. the time of the maximum

temperature was determined as the final reporting period having the day’s maximum temperature. Many

days have the same temperature recorded for multiple reporting periods in the middle of the day. and this

method assured a consistent interpretation of the shape of the diurnal temperature trend.
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[ found that the long-term average growing-season maximum temperature (Tmax,) was a good
predictor of the long-term growing-season average of the daily times of maximum temperature obtained by
this method (T,,). This relationship is illustrated in Figure 7. where different symbols are used for airport
stations (diamonds) and GNP stations (stars). The regression line has the formula:

Eq.20 T,=12.51 +0.1247 Tmax,

with an R* of 0.79 and a mean absolute prediction error of 0.21 hrs. Figure 7 demonstrates that the
relationship observed for the airport stations extrapolates reasonably well to the higher elevation stations in
complex terrain.

Using Eq. 20 as a first order approximation of the spatial variability in the time of Tmax. [
explored methods to allow predictions at finer temporal resolution. For these further investigations [ used
only the airport stations. since their records were more complete and of longer duration. My approach was
to calculate the deviation in the time of Tmax away from T, for each 14-day period throughout the
growing season (T,,) as a new dependent variable. [ found that a multiple regression based on the 14-day
average deviations of Tmax. Tmin. and Srad from their long-term growing season averages (ATmax,.
ATmin,. and ASrad,). and the average warming or cooling per day over the 14-day period (dTmax,. °C day”
"). gave reasonable predictions of T,;. The observed and predicted 14-day anomalies from T, are shown in
Figure 8a. The regression equation is:

Eq.21 T, =0.005 +0.036 ATmax; — 0.030 ATmin, + 0.032 ASrad; + 0.177 dTmax,
with an R* of 0.35 and a mean absolute prediction error of 0.33 hrs.

As the final step in predicting the time of Tmax. I calculated the deviations from T, for each day
(T..) as a new dependent variable. [ found that a multiple regression similar in form to Eq. 21 helped to
explain a small proportion of this daily variance. The independent variables selected for this prediction
were the daily deviations of Tmax and Tmin away from their 14-day average values (ATmax, and
ATmin,), the difference between this day’s and the next day’s Tmax (dTmax, = Tmax,., - Tmax,). and the
difference between this day’s and the previous day’s diurnal temperature range (dDTR., = DTR, - DTR ).

The observed and predicted daily anomalies from T,, are shown in Figure 8b. The regression equation is:
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The purpose for the step-wise regression employed here is to ensure that at least the medium- and
long-term averages of T, are reasonably well predicted. [ was unable to find any regression relationship
that provided good predictions at the daily level. using either step-wise or one-step regressions. [ found
that a single-step regression to predict daily variation gave poor daily results, and that upon averaging to
14-day and long-term periods the results were worse than with the step-wise regressions. The step-wise
method gains what little it can at the daily level without sacrificing accuracy over the 14-day and long-term
periods.

The forms of Egs. 2, 3. and 4 are congruent with a simple thought model of the physical forces
driving the diumnal temperature variation. In Eq. 20. the positive correlation of T, with Tmax, suggests
that more time is required to reach a higher maximum temperature. and so the maximum temperature in
hotter environments is reached later in the day. The positive relationship between T, and ATmax, in Eq.
21 follows this same logic. The negative relationship with ATmin, may be related to the influence of cloud
cover on Tmin. since cloudy conditions would be expected to increase Tmin and to decrease the energy
absorbed at the surface. causing an earlier peak temperature. The positive relationship with ASrad, tends to
support this inference. During a period of warming a shift toward a later time of maximum temperature
should occur. as illustrated by the extreme case of a warming trend which causes the maximum
temperature to occur after dark. By the same logic a cooling trend should shift the time ot Tmax to earlier
hours. as again in the extreme example of the maximum temperature at sunrise before an arriving cold air
mass. These arguments are in accord with the positive relationship to dTmax, in Eq. 21. All the same
arguments apply to the relationships expressed in Eq. 22. In that case [ found that DTR was a better
predictor than Srad. but the two quantities are directly related.

The second part of the subdaily air temperature prediction problem is to estimate the shape of the
temperature curve in the vicinity of the maximum temperature. My approach was to generate separate
regressions to predict the temperature for the four hours preceding and the four hours following the time of
Tmax. Each regression predicts the relevant temperature as a fraction of the difference between Tmin and

Tmax. where the current day’s value of Tmin is used for the hours before Tmax. and the next day’s Tmin is
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used for the hours after Tmax. Preliminary examinations of temperature curves for the nine airport stations
showed that there were few significant differences between them in their shapes, when normalized
according to the difference between Tmax and Tmin. Figure 9 shows the long-term average values for the
normalized temperature curve (NTC) before and after the time of Tmax. with the average of all stations
plotted as a solid line and symbols marking the values for individual stations. [ was not able to explain the
variation between stations in the long-term averages of NTC, and so I did not include a spatial component
of variation (such as Eq. 20) in the regressions for NTC.

[ found that one third to one half of the variance in 14-day average values for NTC (NTC4,.
where h indicates the number of hours away from T.,) could be explained using a multiple regression with
Tmax,;. DTR,,. Prcp,;. and Srad, (the 14-day means of these parameters) as predictors. Table 5 lists the
resulting regression coefficients for each hour.

Table 5. Regression coefficients for the prediction of NTC14,.
Coetlicients marked ~ are not significantly different from 0.0 (P>0.1).
MAE is for the normalized traction of” DTR. unitless.

Other units: Tmax and DTR (°C). Prep (em). Srad (W m2).
Hour R? MAE intept. Tmax DTR Prcp Srad

-4 46 043 561 -0001" .0049 -.1431 .0055
-3 43 035 682 .0008° .0047 -.1227 .0028
-2 40 .027 789 .0007 .0046 -.0895 .00l10
-1 34 018 .382 0007 .0033 -.0587 -.0002°
=1 .50 019 810 .0007 .0047 -.0886 .0002°
-2 42 .033 686  .001t .0027 -.1147 .0029
+3 32 041 582 0012 -0004° -.0948 .0044
+4 .19 .044 488  .0004" -.0001° -.0538 .0038

[ was not able to account for a significant amount of the daily variance in NTC observations using the
variables available from Daymet predictions.

In some cases. the temperature betore or after the 8-hour period covered by the regressions in
Table 5 may be required. In those cases [ use a simple linear interpolation from the temperature at the last

predicted hour to that day's or the previous day’s minimum temperature. assuming that the minimum
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temperature occurs at sunrise and using the Daymet predictions of daylength to estimate the time of
sunrise. A schematic of the complete diurnal temperature prediction algorithm is given in Figure 10. In
order to illustrate the effectiveness of the entire subdaily temperature prediction algorithm. [ generated
predictions of the instantaneous hourly temperature between the hours of 12 and 6 pm (local solar time) for
all of the days with good observations from the airport station network. over the | I-year period from 1983-
1994. Observed temperatures were interpolated between reporting times to obtain values on the hour in
local solar time for the generation of error statistics. The mean absolute prediction errors for each station at
each hour are listed in Table 6.

Table 6. ¥ean absolute prediction errors (°C) for subdaily temperature.

Hour of prediction (pm)

Station 12 1 2 3 4 5 6
Boise. [D 2.64 238 223 2.11 1.77 1.58 1.76
Lewiston, ID 217 2.13 2.12 2.05 1.63 1.61 t.91

Pocatello. [D 2.29 2.04 1.88 1.75 1.51 1.59 1.66
Great Falls. MT 1.95 1.78 .72 1.68 1.63 1.80 t.96
Helena. MT 213 2.08 207 1.97 1.80 1.98 2.08
Kalispell. MT ~ 2.52 245 2.40 222 .85 1.98 2.01
Missoula. MT  1.78 1.76 .77 1.68 1.50 1.71 1.97

Pendleton. OR  2.55 242 2.36 227 {.80 1.79 1.91
Spokane. WA 2.19 1.99 1.86 .79 1.46 1.51 1.72

w

Mean prediction errors summarized by yearday are plotted for the growing season (April through October.
veardays 90 to 300) in Figure 1 1. illustrating the seasonal pattern of prediction accuracy. As an illustration
of the distribution of prediction errors. all observations and predictions are plotted in Figure [2. An
example of the temporal pattern of prediction skill is shown in Figure [3. where observed (solid lines) and
predicted (dashed lines) hourly temperatures between noon and 6 pm are plotted together for two 14-day
periods for the Missoula station. Note that during a warming trend or when the maximum temperature is

high and stable over a number of days the predictions are quite good. but that during a period of cooling
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Observed and predicted hourly air temperatures at Missoula, MT. Observed (solid line), predicted (dashed
line). Hourly values from noon till 6 PM are plotted for each day.
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passage of fronts with strong spatial temperature gradients. The mean prediction error over all hourly
predictions was 1.95 °C, with a bias of +0.09 °C.
5.3.2 Subdaily radiation estimates

In order to apply the surface energy balance theory outlined earlier to instantaneous observations
of surface temperature. a knowledge of the instantaneous net radiation flux density is required. The
Daymet methods use a logic relating average daily atmospheric shortwave transmissivity to the diurnal
temperature range (Bristow and Campbell 1984, Running et al. 1987, Hungerford etal. 1989). It has been
shown that a high value for DTR is related to a high transmissivity and therefore an increased radiation
load. and conversely that a low DTR is characteristic of a low transmissivity and a reduced radiation load.
The physical explanation for this relationship is that clouds damp the mid-day temperature increase and
radiate toward the surface at night. keeping minimum temperatures high. Under clear conditions during
the day. the surface is exposed to direct radiation, some of which is converted to sensible heat which
contributes to an increase in surface air temperature, while at night the surface radiates to a cold
atmosphere and near surface air temperature is reduced.

As [ will discuss below. the radiometric data for this study were composited from a large number
of daily observations in an effort to reduce the occurrence of cloud cover in the final dataset. Although the
cloud removal by compositing is not complete (also discussed below). in general the satellite view is
through a relatively unobscured atmosphere, and at least for the instant of data acquisition. and in the
direction of the sensor. the sky should be clear. [ therefore eliminated the correction to clear-sky
transmissivity from DTR in the estimation of instantaneous incident shortwave radiation. By doing so [ am
assuming that the sampled area on the surface has an unobstructed view of both the sensor and the sun at
the time of data acquisition. i.e.. that the surface observed by the sensor is not shadowed by clouds. This
assumption is not likely to be met during relatively cloudy periods when views through broken cloud fields
are incorporated in the final composited data. [ am also assuming that haze and aerosols are not

contributing significantly to spatial variation in otherwise clear-sky transmissivities. Both of these
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assumptions. if not met. will contribute to error in my results. [ do include spatially homogeneous
corrections of clear-sky transmissivity due to elevation and optical air mass.

After computing a transmissivity, the rest of the original MTCLIM radiation algorithm is
employed unchanged (except for solar constant correction noted above). The original logic iterates
through a series of calculations for each day of prediction. accumulating the solar radiation inputs
according to varying sun-slope geometric relationships over the course of the day. Here I use those same
equations. but perform only one calculation of instantaneous incident radiation. for the local solar time of
satellite data acquisition.

5.3.3 Subdaily humidity estimates

Vapor pressure deficit (VPD) is an important variable in the surface energy balance equation.
contributing to the control over partitioning of absorbed radiation between sensible and latent heat fluxes.
VPD is exponentially related to air temperature for a constant absolute humidity, or mass of water vapor
per volume of air. as a result of the exponential relationship between air temperature and the saturation
water vapor pressure. Diurnal variation in air temperature therefore has a strong influence on VPD. while
the absolute amount of water vapor in the air may remain relatively constant over the course of a day. In
estimating instantaneous (subdaily) VPD, [ assumed that the near-surface atmospheric vapor pressure was
constant over the day. and that the minimum temperature (without correction for elevation) was an
adequate surrogate for the dewpoint temperature (Running et al. 1987). I then used the instantaneous air
temperature derived by the previously discussed methods and the daily average dewpoint temperature to
assess the instantaneous VPD. according to the empirical relationship between temperature and saturation
water vapor pressure given by Abbott and Tabony (1985):

VPD = es(Tair) — es(Tmin)

es(T)=610.7 exp(17.38 T/(239.0 + T))
where Tair and Tmin are in °C. VPD is in Pa, and es(T) is the function giving the saturation vapor pressure
in Pa at a given air temperature, T in °C.

5.4 AVHRR database generation
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The radiometric information for this study is from the AVHRR instrument onboard the National
Oceanographic and Atmospheric Administration’s NOAA-1{ polar-orbiting spacecraft. The spacecraft
was launched in September 1988, and the AVHRR instrument was operational between November 8. 1988
and September [3. 1994. The instrument records radiance in five spectral bands. or channels. Channel |
records visible wavelengths (0.58 — 0.68 um), channel 2 records near-infrared wavelengths (0.73 — 1.10
um). and channels 3. 4, and 5 record longwave, or thermal. infraded wavelengths (3.55 - 3.93 um. 10.3 -
11.3 um.and [ 1.5 — 12.5 pum. respectively) (Kidwell. 1995). I required radiometric data from AVHRR
channels 1 and 2. for the estimation of vegetation density and fractional cover, and channels 4 and 5. for
the determination of surface temperature. Channel 3 data were incorporated in a cloud-screening
algorithm. My objective was to obtain these data, together with the relevant view timing and geometric
variables. for the 600.000 km- study region. over as many days as possible in the spring, summer. and fall
seasons, for a sequence of years that included some unusually wet and some unusually dry periods.

Obstacles in the processing of raw AVHRR data include the geographic registration of imagery,
the calibration of digital sensor output to radiometric information and then to reflectance viaues (channels 1
and 2) or temperature values (channels 3. 4. and 3). the mosaicing of overlapping orbits. the derivation of
view timing and geometry. and the contamination of imagery by cloud cover and cloud shadow
(Eidenshink 1992. Kidwell 1995. Moody and Strahler 1994, Stoms et al. 1997). All of these problems are
addressed and at least partially overcome in the 14-day composited AVHRR imagery available on CD-
ROM for the conterminous U.S. from the U.S. Department of [nterior. Geological Survey. National
Mapping Division. EROS Data Center (EDC) in Sioux Falls, SD (Eidenshink [992. Moody and Strahler
1994). The EDC database resamples the AVHRR data to a grid with cell spacing of | km. Rather than
undertake all of these corrections to raw imagery myself. I used the EDC data.

Compositing refers to the selection of one value for each grid-cell in an image from a collection of
possible values. In the case of EDC bi-weekly composited AVHRR data. the collection of possible values
for each cell in a single bi-weekly image is from all of the satellite orbits which recorded data from that cell

during the compositing period. The EDC data is composited using a maximum NDVT algorithm. The
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primary purpose for this compositing algorithm is to reduce the occurrence of cloudy or hazy views. since
both clouds and atmospherically scattered radiation tend to reduce the NDVI below its observed value
through a clear atmosphere (Eidenshink 1992). The data provided for each compositing period include the
calibrated reflectances/temperatures for the five AVHRR channels, a date image indicating the day of data
acquisition for each grid-cell, a satellite zenith angle image. a solar zenith angle image. and a relative
satellite-sun azimuth angle image. Details of the geographic registration. calibration and compositing
process are given by Eidenshink (1992).

For the years from 1990 through 1994, [ extracted a spatial subset of the biweekly composite
imagery (all channels and ancillary information) from all compositing periods between April and October.
The EDC dataset uses an Alber’s conformal equal area projection that is appropriate to imagery over the
entire conterminous U.S. [ reprojected the spatial subset to a grid with | km cell spacing and a Lambert’s
azimuthal equal area projection centered on my study area. retaining only those grid cells within the region
bounded by longitudes 110 °W to 120 °W and latitudes 42 °N to 49 °N, using nearest neighbor resampling.
[ wrote a program to perform the subsetting and nearest-neighbor resampling. The projection
transformation was accomplished with the General Cartographic Transformation Package. a series of
software subroutines released by the U.S. Geological Survey, which [ incorporated in my program.

In preliminary investigations of the seasonal patterns of reflectances and temperatures. | noticed
that several compositing periods in 1990 had unusually high temperatures. On consultation with EDC
personnel it seemed that there may be a data scaling error for the 1990 data on the CD-ROM (J.
Eidenshink. personal communication. 1997), and so [ eliminated that year's data from further investigation.
The remaining four years included two warm. dry years (1992 and 1994). one cool. wet year (1993). and
one year with precipitation and temperature close to the 5-year mean (1991). so [ felt that dropping 1990
(another rather typical year) would not impair my analysis.

5.4.1 Cloud and snow detection and screening
Another conclusion from preliminary investigation was that significant cloud contamination

remained in the composited data, as has been noted by others (Moody and Strahler 1994. Eklundh 1995).
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Since cloud contamination has a strong influence on radiometric temperature as observed by the sensor (Ou
et al. 1996). and since the observations of radiometric surface temperature are central to my analysis. it was
imperative that as much cloud contamination be removed as possible, including contamination by thin
cirrus clouds. which are relatively transparent but which influence the observed temperature (Ou et al.
1996).

[n addition to cloud contamination, [ noticed a pattern of low surface temperature and high surface
reflectance, localized over high terrain and diminishing in spatial extent through the spring. [ interpreted
this pattern as mountain snow cover. Since the existence of a snow pack, whether underneath an open
canopy or on top of short vegetation. will have a strong influence on the observed surface temperature. and
since [ was not confident in my ability to generate an accurate prediction for snowpack surface
temperature. [ tried to eliminate snowy grid cells along with cloud contaminated grid cells from further
analysis. In fact. [ was not able to find in the literature or derive on my own a general method for
discriminating between cirrus cloud contamination and snow cover in the AVHRR data. Other authors
have commented on the difficulty of discriminating complete or partial cloud cover from snow in AVHRR
data (Gutman et al. 1994, Cihlar 1996).

The problem of cloud detection in AVHRR imagery has been addressed at length in the literature.
and the importance of identitying and removing cloud contamination from imagery used in land-surface
analysis has been stressed by many authors (Saunders and Kriebel 1988. Eck and Kalb 1991. Gutman et al.
1994. Cihlar 1996. Simpson and Gobat 1996). A principal distinction between methods proposed for the
removal of cloud contamination is whether they are designed for application to composited or
uncomposited imagery. The methods applied to uncomposited imagery (single orbital samples) typically
rely. in part, on estimates of spatial heterogeneity. These methods are not applicable to composited
imagery. since the composite mosaic introduces spatial patterns unrelated to cloudiness. Detection in
composited imagery must rely on values for individual grid cells. and most methods are based on a single

temporal sample. although methods have been proposed that use the temporal sequence of observations at a

single point.
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For methods using a single temporal sample, four basic cloud detection criteria have been
suggested. First. the visible reflectance values (channel 1) for cloudy grid cells are usually higher than for
vegetation or bare soil, and so a channel | reflectance threshold for clouds can be established. Second. the
ratio between near infrared and visible reflectance (Q) is generally lower for clouds than for vegetation or
bare soil. but is typically higher than for water. In order to retain water grid cells in the filtered database.
two thresholds are set. but if water can be excluded then only a single (lower) limit for Q needs to be
established. Third. the radiometric temperature from AVHRR channel 4 or channel 5 is typically lower for
clouds than for vegetation or bare soil, and so a lower temperature threshold can be established. Fourth.
and finally, the difference between radiometric temperatures in channel 4 and 5 (dT,;) is high for optically
thin clouds or for partially cloudy gridcells. Such partial cloud cover can be confused with soil and
vegetation if only the first three criteria are used. In addition to these criteria, [ found that the difference
between channel 3 and channel 4 radiometric temperature (dT;;) was also diagnostic of partial cloud cover
at the edges of cloudy regions detected by the other criteria.

Given these criteria, the basic problem becomes one of selecting appropriate thresholds. One
difficulty in parameterizing the single-channel temperature threshold is that cloud temperature can vary
greatly depending on air temperature. and surface air temperature is generally not known over the spatial
domain of the satellite data. [n particular. for areas with strong diumnal variation in surface air temperature
it may be difficult to assign an appropriate threshold value (Gutman et al. 1994). Here I take advantage of
the instantaneous estimate of air temperature at the time of satellite data acquisition to normalize this
threshold. Surface energy balance theory suggests that in very few cases will the surface temperature be
lower than the air temperature under sunny conditions, and so observed surface temperatures substantially
below air temperature are likely cloud-contaminated. Water surfaces are the primary exception. being
usually cooler than air temperature during the day, but [ am not concerned with water surfaces in this study
and so they may be safely confused with cloudy gridcells and eliminated from the dataset. A similar
approach, using interpolated air temperatures with very coarse spatial resolution (1° x 1°) and a general

circulation model to estimate the diurnal temperature patterns, was used in a study by Eck and Kalb (1991).
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Based on values suggested in the previously cited studies and on a graphical analysis of
instantaneous air temperature and all five channels of AVHRR data for each 14-day composite. I arrived at
the cloud-detection parameters given in Table 7. A gridcell was classified as cloud-contaminated and
dropped from further analysis if it met one or more of the criteria in Table 7.

Table 7. Cloud detection criteria.
1) Channel [ reflectance > 0.20

2) Q<1.20

3} dT;s>4.5(K) ordT,<-1.5(K)
4) dT4 > 15(K)

3) (T,-T,) <-5(K)

The number of composite periods that were dropped due to cloud and/or snow contamination. for
each gridcell. is shown as a gray-scaled image in Figure 14. The total number of composite periods in the
analysis is 57. and the average over all cells of the number of periods dropped due to cloud/snow
contamination is about 7. As shown in Figure 14, some areas are habitually identified as cloud/snow
contaminated. particularly over water bodies, over barren land (the lava fields north of American Falls. ID.
are a good example). and over the highest elevation terrain. The histogram of the number of cloud/snow
contaminated periods over all gridcells is shown in Figure 15. where it can be seen that the great majority
of cells have 20 or fewer contaminated periods. The maximum number of contaminated periods for a
single cell was 57. and the minimum was 0.

5.4.2 Satellite zenith angle screening

Subsequent to the cloud detection and screening process. [ screened the remaining cells in each
composite period to remove from further analysis any cell with the satellite zenith angle (SATZ) greater
than 50°. Large angles are problematic because the sensor’s field of view increases with increasing SATZ.
making accurate registration difficult and introducing bias from surrounding terrain in regions of strong
spatial heterogeneity in reflectances or emittances (Moody and Strahler 1994). The number of composite
periods that were dropped due to high SATZ. for each gridcell. is shown as a gray-scaled image in Figure

16. The average over all cells of the number of periods dropped due to high SATZ is about 5. Areas that
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tend to have high satellite zenith angles in the composited imagery include water bodies. steeper west-
facing slopes. and edge regions between dense and sparse vegetation (e.g.. around the irrigated agricultural
regions in the Snake River Valley). The histogram of the number of cloud/snow contaminated periods
over all gridcells is shown in Figure 17. where it can be seen that the great majority of cells have 15 or
fewer contaminated periods. The maximum number of contaminated periods for a single cell was 26. and
the minimum was 0. Considering both cloud/snow contamination and high SATZ. the average number of
periods dropped per gridcell was about L. or about 20% of the original dataset.
5.4.3 Estimation of time of day of satellite data acquisition

The local solar time of day of satellite overpass and data acquisition (t,,. hours) for each cell in the
original composited data was not given explicitly. [ estimated it using the solar zenith angle. which was
given. and the same equations for earth-sun geometry as used in MTCLIM and Daymet for the estimation
of radiation. These equations allow a prediction of the hour angle (h. 0° = noon) from the solar zenith
angle (z). the cells latitude (1). and the declination of the Earth’s rotational axis with respect to the
principal solar plane (decl). as:
Eq.23 h =acos[ ( cos(z) - sin(l) sin(decl) ) / ( cos(l) cos(decl) ) ]

decl =-23.45 cos{(vearday + 11.25) 0.9863]

t,=12.0+(l/15)h (to convert hour angle to hours)
Because the original data store z as whole degrees. the value for z entering Eq. 23 has a potential error of
£0.5°. which causes some error in the estimate of h and therefore t,,. Asshown in Figure 8. the errorin ¢,
is small. on the order of 5 minutes. for typical growing-season ranges of the variables. The largest errors
occur near solar noon and in the spring and fall. Note that this method is unable to distinguish between
true values of t, occurring the same distance away from solar noon in opposite directions. i.e.. z has the
same value at [ 1:00 and at 13:00 hours. Since the times of acquisition are all after noon this does not
impede the current application.

The orbital parameters of the NOAA-11 spacecraft have changed slowly since its launch. resulting

in the local solar time of equator crossing drifting to later times (Gutman et al. 1994). Orbital drift resulted
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in a significant variation in t,, over the period 1990-1994 (Privette et al. 1995). The average value of t, for
each growing season compositing period is plotted in Figure 19, showing a shift of more than three hours.
The shift in ¢, is associated with changing solar zenith and satellite zenith angles (not shown). all of which
influence the observed surface temperatures.

Having estimated t,, for each good gridcell in each composite image. [ proceeded to generate
composited. instantaneous values of air temperature, incident solar radiation. and vapor pressure deficit.
using the methods already described.

5.4.4 Estimation of sun-sensor angle

The plane angle at a particular gridcell between the sun and the sensor at the time of data
acquisition (8) should have an influence on the observed surface temperatures. When this angle is zero all
shadowing in the sensor’s field of view is eliminated. whether from terrain or canopy or soil roughness
elements. This is true regardless of the zenith or azimuth angles. As 0 increases the amount ot shadow in
the field of view increases. until for 8 = 180° the entire view should be shadowed (with the sensor looking
directly into the sun). The original dataset did not include 0 explicitly. but it did include the solar zenith
angle (z). the satellite zenith angle (Z), and the relative azimuth between the sun and sensor (RELA. the
angle formed by the horizontal projection of the two zenith angles). From these angles [ derived the
tollowing expression for 6:

Eq. 24 6 = acos[cos(z) cos(Z) + sin(z) sin(Z) cos(RELA)]
5.5 Estimation of land surface temperature using a split-window algorithm

The AVHRR thermal IR sensors for channels 4 and 5 record radiances in a spectral region where
the atmosphere is mostly transparent (10.3 — [2.5 um, transmissivity of 0.7-0.8). Much of the thermal
energy emitted from the surface in these wavelengths can reach the sensor. Atmospheric gases (primarily
H-O. CO.. and O;) absorb some of this energy. and also emit energy in these same wavelengths according
to their vertical distribution. the temperature profile of the atmosphere. and their emissivity (0.2-0.3. or 1.0-
transmissivity). Without knowing the vertical distribution of these gases in the atmosphere and the

atmospheric temperature profile, measurement in a single channel can only provide an approximate
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estimate of true surface temperature (worst-case errors for water surface temperature of around 7 K.
Sobrino etal. 1991). It has been demonstrated, for the case of surface temperature retrievals over the
ocean or other water body. that when observations in two closely-spaced spectral bands are available. a
correction for this atmospheric interference is possible without having to know the distribution of
absorbing gases or the atmospheric temperature profile (Prabakhara et al. 1974). This is known as the
split-window method for temperature retrieval, and it relies on differential atmospheric ransmissivities in
the two observation spectral bands. This method is particularly valuable for temperature retrievals over
water surfaces. because the emissivity of water in the 10-12 um spectral range is uniform and very close to
1.0 (about 0.99). Typical emissivity values for the land surface vary between 0.9 and 0.99 (Salisbury and
D" Aria 1992). with significant differences occurring between emissivities in the AVHRR channel 4 (g;)
and channel 5 (g;) spectral bands (Rubio et al. [997). These factors make the application of a split-window
algorithm difficult. since the spectral variation in emissivity can not be directly separated from the effects
of differential atmospheric transmissivity (Price 1984, Becker 1987).

In general. the solution to this problem requires some knowledge of the average surface emissivity
as well as the spectral variation in emissivity between the two observation spectral bands. Of these. the
difference (Ac. defined here as €4-€3) is the more important in terms of accurate temperature predictions
from a split-window algorithm (Becker 1987). Coll et al. (1994b) present a form of the split-window
method which is applicable to midlatitude atmospheric conditions and which contains a term for the
correction of surface emissivity effect. depending on knowledge of both €, and Ae. In a second paper by
Coll et al. (1994a) a method is presented by which an estimate of Ae can be made from observed
differences between brightness temperatures in AVHRR channels 4 and 3. given some knowledge of the
atmospheric state. They develop their method with the use of radiosonde measurements of vertical
temperature and humidity profiles. and make use of an atmospheric radiative transfer model to derive
certain parameters.

[ adopted the general approach outlined by Coll et al. (1994a) for the estimation of As. but [ made

certain key simplifications to avoid using radiosonde data or a radiative transfer model. Various authors
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have suggested that both g; and Ae should be closely related to the fractional cover of vegetation over land
surfaces. since living vegetation has generally high and spectrally uniform emissivity in this spectral region
while vegetation litter. soil, and rock typically have lower average emissivity and larger absolute values for
Ag (Caselles et al. 1997. Rubio et al. 1997, Salisbury and D"Aria 1992. Price 1984). The influence of
errors in g, on eventual surface temperature retrievals has been shown to be rather small (Becker 1987).
and so [ made the simplifying assumption that fractional vegetation cover was linearly related to ¢,. and
that NDVI could be used as a linear surrogate for fractional vegetation cover (Asrar et al. 1992). Data
collected by van de Griend and Owe (1994) show a linear relationship between emissivity and NDVI. and
a theoretical basis for this relationship has been developed by Valor and Caselles (1996). [ estimate &,.
using a linear function. fit by hand to the data of van de Griend and Owe (1994) (see Valor and Caselles
1996. Figure 6). as:

Eq.25 ¢,=0.99 -0.09 [(0.7 — NDVI)/0.6]

The estimation of surface temperature is more sensitive to error in Ae. with an accuracy of £0.005
required in order to keep temperature errors below 0.4 K (Coll et al. 1994b). and so [ took more care in its
estimation. Coll et al. (1994a) present the following equation for calculating Ae:

Eq.26 Ae=[T,"-T: - (1.0 - &) (bs-b,)]/ b,

where T," and T." are. respectively. the brightness temperatures that would be observed immediately above
the surtace for channels 4 and 3 (i.e. atmospherically corrected values. assuming surface emissivity of
unity). and b, and b, are parameters having units of temperature. In Coll et al. (1994b). the atmospherically

corrected brightness temperatures are given as:

. -1 n
Eq.27 T =T, +[—LJ(T -T) )
T
where i represents the channel (4 or 5). 1, is the atmospheric transmittance in channel i. and T, is the
radiative temperature of the atmosphere in the upward direction.

Values for b, and b, depend on atmospheric conditions and on the sensor characteristics. and are

given by:
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where n; and y are parameters that depend on the sensor characteristics (n, = 4.673 and n. = 4.260 for
NOAA-11 (Sobrino and Caselles 1990), and y = 0.51 (Schmugge et al. 1991)). and T," is the temperature
of the atmosphere corresponding to the downward radiance emitted by the atmosphere.

Using a radiative transfer model and considering only the influence of water vapor. Coll et al.
(1994b) showed that t, and t; are related to each other through the following two relationships:

Eq.29 1 +05W=(l-t)/(t;-71s)

0.0474 W=1, -1
where W is the total column water vapor content of the atmosphere (g cm™). These two expressions can be
solved simultaneously to give 7, and 7 as functions of W:

Eq.30 t,=1.0-0.00474 W -0.000237 W*

1= 1.0 - 0.00948 W - 0.000237 W*

[ obtained a dataset of daily, gridded. total column atmospheric water vapor content from the
National Aeronautic and Space Association’s Water Vapor Project (NVAP). This dataset has global
coverage on a 1° by 1° grid. and includes daily observations for two of the years in my study. 1991 and
1992. The data are derived from a combination of radiosonde and satellite observations. [ extracted a
spatial subset of the data and used a cubic convolution algorithm (Research Systems. Inc. 1995) to
interpolate the coarse grid over my study area.

The final variables required to estimate Ag using Eq. 26 are the apparent atmospheric temperatures
for upward and downward atmospheric radiances, T, and T,". I estimated T, using an empirical
expression given by [dso (1981), which relates the apparent atmospheric temperature to the instantaneous

air temperature (T,.. K) and vapor pressure (¢,, Pa) as:

Eq. 31 Tf = Tai,{/0.7 +0.00000595- ¢, -exp(1500.0/T,;, )
where T, was obtained from the composited instantaneous air temperature database described earlier. and

e, was estimated from the composited daily minimum temperature. Sobrino et al. (1991) note that. since
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water vapor is primarily responsible for the atmospheric radiance in the spectral region in question. and
since it is concentrated at lower layers, the downward radiance and apparent temperature will be slightly
greater than the upward radiance and apparent temperature. Lacking any justification for a correction
between these two temperatures. I assumed that they were the same. which is the same assumption made by
Sobrino et al. (1991) in their study. By substituting from Eqs. 27. 28. 30. and 31 into Eq. 26. I arrived at
an estimate of A for each grid cell with good data for each compositing period in 1991 and 1992 (the
years for which [ had data for W).

The possible sources of error in this process are numerous. Perhaps most significant is the lack of
spatial resolution in the data for W, and its apparently noisy temporal patterns (not illustrated). Of
secondary importance are the errors related to subdaily predictions of air temperature and daily predictions
of humidity. [ have little confidence. therefore. in the estimated values for Ae for individual grid cells for
single compositing periods. On the other hand, [ know that the biases in the subdaily and daily surface
meteorological data are quite low. and [ can only assume that the same is true for data from the NVAP
dataset. in which case the temporal average values of Ae for individual grid cells should be meaningtul. [
tested the two-year average values of estimated Ae against the suggestion from observation and theory that
they should have values close to 0 for grid cells with high NDVI. and should have increasingly larger
negative values for lower NDVI. approaching approximately —0.02 for bare soils and rock (Rubio et al.
1997. Salisbury and D"Aria 1992). Average values of Ag are plotted against values of NDVI averaged over
the same two-vear period in Figure 20. together with the regression line predicting Ag = f(NDVI):

Eq.32 Ae=-0.02938 + 0.04957 NDVI (R*=.254)

Although this relationship explains only 25% of the variance in predicted Ae. it is highly significant
(P<0.01) and consistent with theory. giving Ae = -0.003 for NDVI = 0.6 (dense canopy). and an intercept at
NDVI = 0.0 which is in the range typical of bare soils and rock. The mean absolute prediction error from
this relationship is 0.006. which indicates that the likely error in surface temperature introduced by using

Eq. 32 in place of the estimated values of Ae would be about 0.6 K.
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Given the magnitude of errors in air temperature estimates (1.5 to 2.5 K), and postulating that a
substantial amount of the variance exhibited in Figure 20 is due to bias in estimation of Ag at a single point.
[ replaced the original estimates of Ae with values estimated from Eq. 32 for the remainder of my analysis.
The purpose of going to the trouble of estimating Ae and then resorting to a simple linear regression is that.
although a general relationship between Ae and NDVT has been mentioned in the literature. I could find no
quantitative examples of how such a relationship would be parameterized. Through this investigation [
was able to derive a simple. plausible relationship. relying as much as possible on a theory-driven method.

[ used the following generalized form of the split-window equation which includes separate terms
for atmospheric and emissivity effects (Coll et al. 1994b) to predict actual surface temperature (T,):

Eq.33 T,=T,+[l.0+0.58(T,-T)HT,-Ts)+Aeg,—~BAec+0.51

Where A =50.0 is a constant that is valid globally, and B is a constant depending on climatological
atmospheric type. Coll et al. (1994b) suggest B = [50 for mid-latitude winter conditions and B = 75 for
mid latitude summer conditions. Since my analysis covers the spring. summer. and fall. [ chose B = 100 as

a constant value.

5.6 Prediction of r,

For each good grid-cell in each composited image. [ generated a value for AT as the difference
between T, from Eq. 33 and T, from the subdaily temperature algorithms. The core of my analysis is the
prediction of ry using Eq. 18. and for this [ required a single estimate at each grid-cell of the influence ot R,
on AT. other factors assumed invariant. [ used a multiple regression to obtain this estimate. by including
R, as one independent variable. in addition to several other variables that [ knew from preliminary
investigations to influence AT. The primary purpose of including other variables. instead of performing a
simple linear regression on R, is to isolate the partial effect of R, on AT in the face of variation due to
other influences. A secondary purpose is to be able to make at least some qualitative statements about the

influence of these other variable on the observed variation in AT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



247

The variables that [ elected to include in the multiple regression. in addition to R, are NDVI,
VPD. an index of antecedent precipitation (P,.). and the plane angle between the sensor and the sun with
respect to the observation point (8). VPD is included because of its theorized role in determining AT.
according to Eq. 17. The antecedent precipitation is included as a crude surrogate for the variation inr,
that is expected as the result of changing water availability. NDVI is included because it is assumed to be
linearly related to fractional vegetation cover (Asrar et al. 1992), and because the difference in energy
balance components between canopy elements and the underlying soil or litter has been shown to result in
an approximately linear mixing relationship for sensor fields of view large enough to integrate
contributions from each in a single recording (Norman et al. 1995, Caselles et al. 1992, Gillespie 1992).
This effect of fractional cover has been shown to occur in conjunction with variation in the illumination
and viewing geometry (Caselles et al. 1992. Kimes et al. [980). Because of the theorized importance of
sunlit vs. shaded canopy and soil fractions in determining the radiance observed at the sensor (Caselles et
al. 1992. Sobrino and Caselles 1990), [ included the sun-sensor angle 6 as the final independent variable in
the multiple regression for AT.

The instantaneous net radiation at the time of data acquisition (R,) depends on the incident solar
radiation. the surface shortwave albedo, and the ground heat flux. [ ignored the angular effects of surface
reflectance. and took the albedo () to be the average reflectances from AVHRR channel | (visible band)
and channel 2 (near infrared band) converted from percent to a proportion. [ ignored the contribution of
incident solar radiation to heat storage in the soil (i.e.. G =0 in Eq. 3).

The antecedent precipitation index at each grid-cell for each composited day was calculated as the
weighted total precipitation over the previous 20 days. with weights decreasing linearly away from the
prediction day. Estimated daily precipitation from the Daymet database was used to generate this index.

For each grid-cell. a single multiple regression was performed. using as samples all of the
composited daily observations that were not rejected due to cloud contamination or scan-angle violations.
A prediction for r, was then performed for each grid-cell according to Eq. 18. using the regression

coefficient for R, as dAT/dR,, and calculating ¢, as the composited average air density (p) multiplied by c,.
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5.7 Evaluation of predicted r,,

[ obtained a spatial database of landcover classification and qualitative classes of canopy closure
from the Wildlife Spatial Analysis Laboratory at the University of Montana. for the purpose of comparing
the predicted values of r, against independent estimates of two of the physical factors hypothesized to
exercise significant control over this parameter, namely. characteristic leaf dimension and fractional
canopy cover. From a large database covering all of Montana and parts of Idaho. [ obtained a series of
spatial subsets. chosen to include a variety of topographic. floristic. and land-use patterns (see Figure 22 for
the locations of these spatial subsets and their reference numbers). These landcover data are the result of
supervised classifications performed on Landsat Thematic Mapper imagery. guided by observations of
landcover. canopy closure. and other parameters from many thousands of field plots. The original database
has a nominal spatial resolution of 30 m. and is grouped into polygons of grid-cells having similar spectral
characteristics prior to final classification (R. Redmond. personal communication. 1997). The spatial
subsets used in this study were reprojected and resampled to a regular 100 m grid. using nearest neighbor
resampling. The size of the original polygons is such that this resampling results in very little loss of
spatial detail.

From approximately 90 landcover classes in the original dataset. I merged classes to obtain the list
shown in Table 8. The original data set contains a categorical canopy closure varable for forest. shrub.
and grass classes that ranges from | (open canopy) to 3 (closed canopy). These rankings were assigned on
the basis of spectral vegetation indices (from single-date Thematic Mapper data) and ground observations
of canopy closure. The total frequency across all five spatial subsets is given for each merged landcover
tvpe in Table 8. as well as the frequencies of different canopy closure classes where appropriate.

Table 8. Frequencies of landcover and canopy closure classes

All frequencies are given as km”.
Canopy closure classes

(low) (high) no canopy
Covertype Total 1 2 3 closure class
Conifer forest 10759 2246 6284 2228 -
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Broadleaf forest 179 45 121 13 -
Mixed conifer/broadleaf 98 62 36 - -
Xeric shrubs 1868 1682 133 44 9
Mesic shrubs 1026 243 314 447 22
Grassland/meadow 3339 1117 1112 710 409
Dry agriculture 115 115
[rrigated agriculture 729 729
Standing burnt forest 1290 1290
Barren 783 783

Landcover classes were merged in a way that was consistent with the hypothesis that characteristic leaf
shape and vertical canopy structure would be the strongest determinants of landscape-level values forr,,.

After merging landcover classes, [ aggregated the 100 meter resolution data to coincide with the 1
km" cells used in the rest of the study. This aggregation was performed by assigning to the new grid cell
the class with the most frequent occurrence within it from the original dataset. In the case of a tie between
class frequencies. one was selected at random. The same procedure was performed for both cover type and
canopy closure data.

As discussed in the literature review. the assignment of relevant values of r,, for coarse resolution
gridcells characterized by sub-grid scale landcover heterogeneity. such as is true for the ~1 km- grid cells
from the AVHRR database, is a difficult problem. It is generally supposed that the grid-scale value of'r,
relevant to aggregated fluxes of heat and water vapor should be inversely related to the fractional
vegetation cover within a grid cell (Qualls and Brutsaert 1996, Norman et al. 1995). Ifthat is the case. then
the predicted values of r,, from Eq. 18 should show an inverse relationship with fractional cover. since they
rely on the spatially aggregated surface radiometric temperature. Furthermore. at any given level of
fractional cover, a grid cell dominated more by needleleaf than by broadleaf vegetation. or one dominated
more by a vertically complex canopy structure than a vertically simple structure. should have a lower value
for r,, assuming a linear mixing model and the constancy of the characteristic value for r, over the non-
vegetated fraction over all grid cells. [n other words. assuming that the *“soil” component of the

heterogeneous sensor view is similar between two vegetation components with different characteristic leaf
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dimensions or vertical structure. then the relative values for r,, between these two vegetation types should
reflect the expected differences due to canopy architecture. [f, on the other hand. the expected r, for the
“soil” fractions are greatly different between vegetation types. for example if in one type the non-vegetated
view-fraction is dominated by standing dead litter while in another type it is dominated by bare soil. then
this relative difference in r, between the vegetation types at the same fractional cover (as predicted by Eq.
18) would not necessarily be representative of the difference expected due to vegetation structure.

[ tested the dependence of predicted r, on canopy cover in a three step process. First. [ used the
independent dataset of vegetation type and canopy closure to stratify the r, predictions over a number of
spatial subsets of the study region. In this step, [ have only qualitative fractional cover information (the
canopy closure classes) to work with. There is not necessarily a correspondence of the canopy closure
classes between vegetation types in the same spatial subset, nor between spatial subsets considering the
same vegetation type. In this step then. [ was interested only in establishing. from independent data. that a
qualitative relationship between fractional cover and r, existed. I compared the ranking of average r;. as
stratified in each spatial subset and in each vegetation type for which canopy closure was included as a
variable. against the ranking of canopy closure codes.

In the second step of this analysis [ accepted the hypothesis that fractional cover was related to r,
and sought to place this relationship on a more quantitative basis by comparing average values for NDVI
with average values for r,. using the same stratification of the spatially subsetted data as in the first step
(i.e.. stratification by independent estimates of landcover type and canopy closure). In this step I assumed
that NDVTI was closely related to fractional cover, and that this relationship was consistent between
vegetation types (Asrar et al. 1992). The new hypothesis being explored in this step was that at least two
different responses would be observed between r, and NDVI. one for needleleaf forest vegetation and
another for the combination of shrubby and broadleaf vegetation.

In the third and final step of this analysis. having accepted the hypothesis that at least two distinct
relationships could be observed between r, and NDVT in the spatial subset of my study region. [ employed

another landcover database, created by Loveland et al. (1991) from AVHRR data. which was available
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over the entire study region. [ reclassed this data to a few very coarse vegetation types (Table 9). and
evaluated the relationship between r, and NDVI separately for each of these classes. This evaluation was
performed by taking the average predicted r;, for equally sized subsets of the total population of cells in a
given landcover class. ranked by NDVI. These average values of r, were plotted against average NDVI to
obtain curves for each vegetation type over the range of NDVI. A map of the recoded landcover types is
shown in Figure 21.

Table 9. Landcover types reclassed from the Loveland classification

Class # 1 km* cells Original Loveland values
Agriculture (wet and dry) 50391 1-34

Mixed ag/grassland/woodland 31917 35-54

Grassland 109088 55-65. 157-159

Grassland/shrubland 151072 66-83

Deciduous forest 8565 90-97

Evergreen forest 286161 86-89.99-132. 136. 137. 141-148. 136
Barren 4560 155

6. Results

6.1 Multiple regression analysis

Results from the multiple regression analysis are summarized by landcover type (Loveland
recode) in Table 10. The multiple regressions explain on average 50% of the variance in observed
temporal variation ot AT. with somewhat more variance explained in sparsely vegetated types and
somewhat lesss in forested types. Mean absolute prediction errors for instantaneous AT predictions are
2.0-2.5 °C for non-forest covertypes. and about [.5°C for forested covertypes.

The intluence of R, is seen to be positive for all covertypes. and to increase for more arid
covertypes. as anticipated by Eq. |5. The orbital drift mentioned earlier. and illustrated in Figure 19. was
actually fortuitous in this study, since it allowed a wider range of R, to enter into the regressions than

would have been the case if the orbit were stable. As the orbit drifted to later overpass times. the sensor
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recorded the response of the surface to progressively reduced R,. The other primary source of variation in
R, is due to the seasonal cycle. The influence of NDVT is always negative, as expected from the arguments
presented above concerning fractional vegetation cover and the difference in r;, between vegetation and
soil. The influence of VPD is mixed. A negative influence is expected from Eq. 15. and is observed for
forested covertypes. but a positive relationship is observed for all other covertypes. [t may be that the
influence of air temperature on some parameter such as s (a positive, non-linear effect), which is not
included in the regression. is overwhelming the expected behavior of AT with respect to VPD. since VPD
is very closely and positively related to air temperature. The influence of antecedent precipitation on AT is
negative in all cases. as expected from the arguments concerning the influence of soil water contenton r,
for soil and for vegetation. and the influence of varying r, on AT. illustrated in Figure 1. There appears to
be a strong influence of covertype on this relationship, with a progressive increase in the magnitude of the
response with increasingly arid vegetation types. This is the variation in sensitivity that would be expected
if the typical values for r, were higher in the more arid vegetation types. since the potential reduction in AT
for a given reduction in r, is greater for the case of large r, than for small r, (Eq. 15. Figure 1). Finally. the
influence of © on AT is negative in every case, as expected from the arguments above concerning the
fraction of sunlit vs. shaded canopy and soil visible to the sensor. The effect is rather large. with an
increase of 3 °C for agricultural landcover or 4-4.5 °C for grasslands and forests as the sun-sensor angle
shifts from 90° to 0°. Values of 0 in the range of 90° are common in the composited AVHRR data.
averaging around 60°. for a typical reduction from full-sun view surface temperatures of 2.5° C.

Table 10. Multiple regression results for AT vs. (R,, NDVI, VPD, P,,,, 6), averaged by landcover type

Units in parentheses are for the regression coefTicients. R* are the simple correlation coefticients

R, (°C/Wm?) NDVI (°C)

Coefficient R? Coefficient R®
Covertvpe L g il g U (o3 u g
Evergreen for. 0.005 0.007 0.07 0.09 -9.4 10.0 0.10 0.11
Deciduous for. 0.004 0.006 0.04 0.05 -125 7.6 0.25 0.15
Agriculture 0.015 0.007 0.10 0.10 -22.0 8.1 0.22 0.16
Mixed ag/other 0.013 0.007 O.11 0.11 -18.7 938 0.14 0.14
Grassland 0.017 0.006 0.18 0.12 -18.8 9.2 0.08 0.08
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Grass/shrub 0021 0.006 0.27 0.13 -18.6 147 0.06 0.07

Barren 0.020 0.005 0.27 0.14 -20.1 243 027  0.14
VPD (°C/Pa) P, (°C/em)
Cocfficient R? Coefficient R*
Covertvpe u o u c Lt o 1! o
Evergreen for. 4e-5 0.0011 0.06 0.07 -0.23 046 0.03 0.05
Deciduous for. -5e-4  0.000! 0.13 0.12 -0.05 0.37 0.04 0.05
Agriculture 0.0004 0.0012 0.14  0.12 -048 0.78 0.07 0.07
Mixed ag/other 0.0006 0.0011 0.06 0.07 -0.52  0.60 0.05 0.06
Grassland 0.0010 0.0010 0.10  0.08 -0.73 0.60 005 0.06
Grass/shrub 0.0013 0.0010 0.17 0.1 -1.20 090 0.07 0.07
Barren 0.0006 0.0009 0.10  0.09 -1.47  0.70 0.08  0.07
8 (°Cr)
Coefficient R? Intercept (°C)
Covertype L o] u o1 1 o
Evergreen for. -0.045 0.026 0.i6 0.13 12.6 3.8
Deciduous for. -0.035 0.022 0.12 0.11 13.0 3.0
Agriculture -0.033 0.030 0.05 0.07 15.1 3.5
Mixed ag/other -0.047 0.032 0.1 0.12 155 3.8
Grassland -0.050 0.032 0.08 0.10 14.0 3.7
Grass/shrub -0.050 0.032 0.06 0.07 15.0 3.9
Barren -0.040 0.038 0.04 0.05 17.1 43
Multiple R* Mean absolute error (°C)
Covertvpe 1] (o] 1} o
Evergreen for. 042 0.15 1.71 043
Deciduous for.  0.47 0.15 1.58 0.40
Agriculture 0.54 0.14 244 0.54
Mixed ag/other 0.51 0.13 228 0.47
Grassland 055  0.11 236 042
Grass/shrub 0.59 0.12 254 047
Barren 057 0.13 225 041

6.2 Predicted r,: variation with canopy closure and NDVI
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The means and standard deviations for predicted values of r, and observed NDVI are presented in
Table L 1. stratified by covertype. A map of the predicted values of r, over the study region is shown in
Figure 22. A histogram of the predicted values is shown in Figure 23. Figure 24 shows a map of average
NDVI. taken over all growing season composite periods from [991[-1994. and excluding periods for a
given cell that were labeled as cloudy or as having excessively off-nadir viewing angles. The
accompanying NDVT histogram is shown in Figure 25. Predicted negative values for r, are frequent in the
forested regions with the highest NDVI. Negative resistances have no physical meaning. but [ retain them
through the rest of this analysis in order to examine the relationship between predicted r,, and NDVI over
the entire range of the predicted values. Since r, is a function of the regression coefficient for R,. the same
patterns are observed in Table 11 as in Table 10. The more densely vegetated areas have low r, and the
more sparsely vegetated area have higher r;, suggesting that the characteristic difference in values for this
parameter between soils and vegetation is realized in these predictions.

Table 11. Predicted r, and observed NDVI, average by covertype

r, NDVI

Covertype il (o] i (o]
Evergreen for. 6.0 8.0 0.391 0.038

Deciduous for. 4.4 7.3 0.456 0.040

Agriculture 179 8.1 0.337 0.067
Mixed ag/other 154 8.0 0.327 0.047
Grassland 20.5 7.0 0.262 0.051
Grass/shrub 252 7.3 0.186 0.037
Barren 247 65 0.134 0.016

Results from the stratification of predicted r,, with respect to canopy closure estimates from TM
data are presented in Table 12, the format of which requires some explanation. [ndividual entries.
delimited by horizontal bars. show means and standard deviations of predicted r, and NDVI. Each entry is
stratified by two or three canopy closure classes within a single landcover type from one of the five spatial
subsets shown in Figure 22. Only combinations of covertype and canopy closure represented by 30 or

more | km" grid cells in a given spatial subset are included in Table 12. Only covertypes with two canopy
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are being assessed here. because the canopy classes are categorical, because they are not consistent
between cover types. and because they are not necessarily consistent between spatial subsets. The
maximum number of closure classes is three, and with three classes the number of possible independent
comparisons is also three (1 vs. 2. 2 vs. 3, and 1 vs. 3). For cases with only two classes. a single
comparison can be made (1 vs. 2). The number of rankings favorable to my hypothesis is recorded for
each entry. The total number of favorable rankings over all entries is compared to the number expected
under from a random relationship between canopy closure and predicted r,. This comparison is made using
a one-sided z-test. The expected frequency of favorable comparisons in each three-way case is 1.333.
while the expected frequency for the two-way case is simply 0.5. for the null hypothesis of a random
relationship.

Table 12. Comparison of predicted r, against independently determined canopy closure classes.
Cover codes: I=conifer forest. 2=xeric shrub, 3=mesic shrub. 4=grass'meadow
Closure codes: [=low. 2=medium, 3=high

r, NDVI
Subset# Cover# Closure# n 1! o 1} o1 #favor #expected
1 1 1 365 -0.09 331 0475 0.031
1 1 2 1428  -1.34 356 0485 0.029
l 1 3 1047 -3.02 353 048! 0.030 3 1.333
[ 3 2 32 217 443 0464 0.043
1 3 3 32 1.L1I0 358 0500 0.0l6 1 0.5
2 ] 1 148 826 772 0369 0.034
2 1 2 1015 345 529 0388 0.031
2 l 3 442 053 371 0402 0031 3 1.333
2 3 1 51 1235 832 0383 0.038
2 3 2 43 1639 7.64 0399 0.029 0 0.5
2 4 1 85 2262 4.66 0324 0.048
2 4 2 496 2277 5.2 0348 0.037 0 0.5
3 1 1 482 12.82 525 0310 0.032
3 1 2 817 9.02 5.6 0345 0.027
3 I 3 53 879 691 0362 0.027 3 1.333
4 { L 640 410 529 0374 0.042
4 1 2 2220 096 403 0398 0.045
4 ] 3 558 -1.27 382 0452 0.045 3 1.333
4 4 l 143 13.60 7.839 0354 0.052
4 4 2 63 1253 695 040! 0.033
4 4 3 38 11.29 8.02 0415 0041 3 1.333
5 1 1 171 8.52 650 0329 0.036
5 1 2 911 826 485  0.369 0.027
5 1 3 386 3.58 3.65  0.383 0.022 3 1.333
5 2 l 1686 18.35 6.63  0.268 0.068
N 2 2 124 14.10 580 0364 0042 1 0.5
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35 4 l 1062 2196 530 0.261 0.081
5 4 2 351 1746 6.10 0.351 0.074
5 4 3 135 12.73  7.60 0.354 0.045 3 1.333
Totals 23 11.333
z=(23-11.333)2.5 = 4.67
P<0.001

This evidence strongly contradicts the null hypothesis of a random relationship between r, and canopy
closure.

Values for NDVI have been included in Table 12 for the purpose of illustrating that within the
canopy closure classes for a given entry there is an excellent agreement with rank of NDVI. This evidence
leads to the new hypothesis that NDVI could be a good predictor of r,. at least for certain covertypes or
groups of covertypes. A plot of the average values of r, and NDVI stratified by landcover (Loveland) over
the entire study area (data from Table 1 1. plot in Figure 26) suggests the same hypothesis. although this
plot contains no information on the form of the relationship within a particular landcover class. As a first
look at the relationship between predicted r, and observed ND VI within landcover types. [ used the TM-
based landcover and canopy closure data to stratify the r, and NDVI data for a regression analysis. Two
regressions were performed. one for conifer forest and another for grass and shrub cover types. [ndividual
points in the regressions were based on the spatial average of r, and NDVT within a given spatial subset. for
a given covertype. and for a particular canopy closure class (Figure 27). Only partitions covering more
than 30 gridcells are included in the regressions and in Figure 27. For reference, points from the agriculture
covertypes are shown in Figure 27. although they were not included in the regressions. The resulting
regression equations are:

Eq.34 r,=31.6-71.37NDVI R*=0.63 (conifer forest)

r, =49.2-90.73 NDVI R*=0.69 (other types)

For these regressions [ aggregated a “standing burnt forest™ class and a “barren™ class into the
conifer forest group. Standing bumt forest was assumed to be a case of very low fractional cover conifer
forest. and subjective evaluation of the barren class indicated that it was mostly alpine rock environments

along narrow ridges. These rocky patches are usually not fully resolved at the AVHRR sampling
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resolution, and so [ assume that they will be radiometrically mixed with the surrounding vegetation. which
in this case is conifer forest.

The results plotted in Figure 27 suggest that there is in fact a unique relationship between r, and
NDVI for each of these two broad categories of landcover. The range of NDVI from the independent
landcover subsets is not adequate to resolve the form of these relationships at low NDVI. I[f the theoretical
framework that [ have been building in this study is accurate. [ would expect to tind that the relationships
for different vegetation types converge at the low end of the NDVI range. with increasing variation
between vegetation types at moderate and high NDVI. As fractional cover decreases. the vegetation type
becomes less important to the surface energy balance and the influence of the unvegetated surface
increases. until at very low fractional cover. regardless of the vegetation type. the energy partitioning
characteristics of the bare surface dominate the response of AT to R,. and so will dominate the predicted r,.
using my method. Conversely. at high fractional cover the stronger atmospheric coupling (lower r)
characteristic of leaves dominates the aggregate response in the sensor’s field of view. For vegetation
types. such as forests. that show an increase in vertical complexity with increasing fractional cover (Munro
1989. Hall et al. 1995) there is an additional downward influence on canopy-scale r, due to increased
turbulence that creates higher average wind speeds within the canopy (Domingo et al. 1993). Thus at high
fractional cover in vertically complex types. the values of r, should decrease. approaching zero. Some
aspects of this assumption have recently been tested and supported by comparing the surface temperature
from AVHRR with observed air temperature over dense grass and riparian forest canopies in Kansas
(Prihodko and Goward 1997). They found that surface temperature was very close to. but slightly higher
than. near-surface air temperature over a range of other conditions. This indicates a value for r close to
zero. An exception to this pattern is expected for canopies that do not develop significant vertical
complexity as fractional cover increases. such as in grasses. shrubs. and crops. For such canopies. the
values of r, characteristic of individual leaves should be maintained even at high fractional cover. although

it is still expected that r, would approach the value for the unvegetated ground surface with low fractional

cover.
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I explored this more explicit set of arguments using the graph-of-averages approach (Freedman et
al. 1991). This method provides information similar to a regression analysis. but is better suited to the
identification of nonlinear variations. Using the Loveland landcover classification. [ divided the study
region into five covertypes: forest (including both evergreen and deciduous forest), grassland.
shrub/grassland. agriculture. and barren. Within each region [ sorted the NDVI values, and then calculated
the average predicted r, and the average NDVI for each subset of 500 grid cells. progressing through the
list of sorted NDVI values. By plotting these averages against each other, the shape of the average
relationship between r, and NDVI is revealed, including any potential nonlinearities. These plots are
shown in Figure 28. and they indicate that the arguments presented above provide a plausible explanation
for the general patterns in the data. Forest covertypes have a nearly linear decline in predicted r, with
increasing NDVL reaching the zero-line for r, at an NDVI of about 0.5, and remaining at this level through
the rest of their NDVI range. up to about 0.55. The relationships for grasslands. shrub/grass mixtures. and
agricultural areas are all distinctly different from the relationship for forests. These differences are
consistent with the hypothesis that. for grass and shrub types, r, should be characteristic of the leaf-scale
value at high fractional cover. without showing the decline to lower values characteristic of rough
canopies. Assuming a leaf width of | cm for a grass or crop. the value for r predicted from engineering
principles is 16 s m™'. for an average windspeed of | m s™* (Nobel 1991). in good agreement with Figure 28.
There is considerable variation between the curves for these non-forest covertypes. and [ am not able to
venture an explanation for it. There may be considerable confusion between the classification by Loveland
and the reality of vegetation cover over the study area, especially with respect to the discrimination
between grass, shrub. and dry agriculture. An explanation of differences between these types would rely
on a more accurate assessment of landcover, perhaps as undertaken in the TM-based classification.

An additional observation from Figure 28 is that all the curves appear to converge at low NDVIL.
which is the expected result if the bare-ground has a relatively constant characteristic r, for the different
covertypes. Visual inspection of the curves for vegetated cover types suggests a value of around 30 s m™

for the bare-surface r;. and the small amount of data for the barren covertype supports this conclusion (the
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Graph-of-averages, r, vs. NDVI, by landcover
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red line in the upper-left of Figure 28). This is a lower value than suggested by measurements made over
very small areas of flat soil. For example, van de Griend and Owe (1994) find a value of about 50 s m™
using similarity theory and observations over a bare soil with an area of | m*. The difference may be due

to the additional roughness at the | km- grid-cell scale that is not included in small-scale measurements.

7. Summary of results and discussion of applications

[ found that the observations of radiometric surface temperature are broadly consistent with the
surface energy balance theory summarized by Eq. 15. In particular, I found that the variation of AT with
respect to meteorological parameters expected from the theory embodied in Eq. 15, with the exception of
the sensitivity to VPD. is observed over a broad range of covertypes in a region with diverse climate and
topography. An examination of the variation in AT with respect to variation in R, was suggested by the
form of Eq. 15 and implemented in terms of a predicted value for r,. The variation over landcover type and
fractional vegetation cover in values of r; derived from observations of surface radiometric properties and
estimates of near-surtace meteorological conditions. according to Eq. 18. was consistent with: (a) the
general principles known to govern r as observed for single canopy or soil elements: (b) considerations
from a simple. qualitative theory of mixing for data from sensors with a heterogeneous field-of-view: and
(c) observations from other studies.

None of this evidence alone is conclusive. but taken together I find that it supports the hypothesis
that the radiometric observations and the surface meteorological data are in agreement with at least one part
of'the theory presented in Eq. 135, that is. with the theory embodied in the first term. showing the
dependence of AT on R,. The explicit purpose of this investigation is accomplished. then, but an important
question remains: How are these results pertinent to the application of the model described in Chapter 37? [
believe they are pertinent in the following two ways:

(1) They indicate that the algorithms presented in Chapter 3 for the treatment of the surface energy fluxes.
although having been derived from theory developed mostly at very small spatial scales. may be

applicable to predictions at large spatial scales. In other words, the results presented here support the
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transfer of the “one dimensional BGC™ algorithms to a “two dimensional™ case. In particular. they

support the idea that the basic ecophysiological theory embodied in Eq. 15 is consistent with

observations at a much larger resolution (or level of aggregation) than the conditions under which it
has been most studied. i.e., at the plant or plot scales. This conclusion is of practical importance for
the development of global ecological monitoring strategies. Such strategies will necessarily rely on
observations from satellite remote sensing platforms for information on spatial and temporal
variability at the land surface. but in order to generate useful information on ecological processes from
the radiometric data they will have to rely on an integrative numerical framework such as the one
proposed in Chapter 3 (Running et al. 1994). My results here show a promising degree of
correspondence between the radiometric observations from a satellite sensor with daily global
sampling frequency and one piece of an integrative numerical ecological process simulation model.

(2) The 1D-BGC logic requires an estimate of r,. By using radiometric data collected over several years.
in conjunction with a database of surface meteorological conditions, an estimate of r, can be derived
for a range of landcover types and fractional vegetation coverage. The determination of this parameter
has been problematic in the past, because of its scale-dependence. and because of its dependence on
atmospheric conditions such as stability and turbulence, which are difficult to derive from the
commonly available meteorological data.

An additional potential application of the work presented here is in the qualitative estimation from
remotely sensed radiometric data of regional-scale drought. This has been a major objective of the recent
thermal remote sensing literature, as reviewed earlier, and many methods have been proposed. These
methods have generally relied on the radiometric surface temperature to provide a relative index of
drought. but they have usually ignored the influence of incident radiation and near surface air temperature
on the surface temperature. The value of r,, as predicted by the methods proposed here incorporates both of
these influences. and represents the long-term average thermal response of the surface to variation in

incident radiation. This long-term average response would be useful as a baseline for the detection of
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unusually high (or low) values of AT under a particular incident radiation load, with unusually high values
indicative of drought.

One liability of this method, in comparison to the method proposed by Nemani et al. (1993) and
reviewed above. is that it requires an estimate of incident radiation and near-surface air temperature. The
radiation estimate is not very problematic, since it can be derived from the time of data acquisition and the
sun-slope geometry. Surface air temperature presents more of a problem, and the methods employed in the
this study can not yet be applied operationally. since the majority of the surface air temperature
observations are not available until at least months after they would be needed. However. an adequate
approximation for the purpose of a qualitative drought index might be obtained from only the primary
station reports. which are available almost immediately after they are taken. Additional information could
be obtained. if necessary. from the thermal remote sensing data itself. using the observation. reported by
Prihodko and Goward (1997). and also observed in this study, that canopy and air temperatures are nearly
equal over dense forest vegetation.

An advantage of this method. in addition to the normalization for the influence of air temperature
and radiation on the surface temperature, is that once the baseline values are determined. an estimate of
drought severity can be made for each individual grid cell, provided it passes the cloud filtering procedure.
The method proposed by Nemani et al. (1993) uses data from many grid cells in a region around the point
of interest (they suggest a 400 km" region), and so results in a drought severity map with less spatial
resolution. An improvement in the spatial resolution of such a map may be of'little importance in the
identification of regional trends in drought severity, but it could be of more importance to a land manager

trving to assess the finer spatial details of drought severity.
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