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ABSTRACT

Remote sensing can provide long-term and large-scale products helpful for ecosystem model evaluation. 
The authors compare monthly gross primary production (GPP) simulated by the Community Land Model, 
version 4 (CLM4) at a half-degree resolution with satellite estimates of GPP from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) GPP product (MOD17) for the 10-yr period January 2000-December 
2009. The assessment is presented in terms of long-term mean carbon assimilation, seasonal mean distribu
tions, amplitude and phase of the annual cycle, and intraannual and interannual GPP variability and their 
responses to climate variables. For the long-term annual and seasonal means, major GPP patterns are clearly 
demonstrated by both products. Compared to the MODIS product, CLM4 overestimates the magnitude of 
GPP for tropical evergreen forests. CLM4 has a longer carbon uptake period than MODIS for most plant 
functional types (PFTs) with an earlier onset of GPP in spring and a later decline of GPP in autumn. Empirical 
orthogonal function analysis of the monthly GPP changes indicates that, on the intraannual scale, both CLM4 
and MODIS display similar spatial representations and temporal patterns for most terrestrial ecosystems 
except in northeast Russia and in the very dry region of central Australia. For 2000-09, CLM4 simulated 
increases in annual averaged GPP over both hemispheres; however, estimates from MODIS suggest a re
duction in the Southern Hemisphere ( —0.2173 PgCyr^^), balancing the significant increase over the Northern 
Hemisphere (0.2157 PgC yr^^). The evaluations highlight strengths and weaknesses of the CLM4 primary 
production and illuminate potential improvements and developments.

1. Introduction Friedlingstein et al. 2006; Thornton et al. 2009). Gross
primary production (GPP) is the amount of carbon as-To understand historical changes and predict future 

trends in ecosystems we must improve our understanding 
of individual ecosystem processes and their interactions 
with external environmental factors (Fung et al. 2005;

similated via photosynthesis and constitutes an important 
link in the terrestrial carbon cycle (Ciais et al. 1997). 
Because of its importance to human society and welfare, 
observations and simulations of GPP have received con
siderable attention from both academic communities and 
government agencies (Solomon et al. 2007; Beer et al. 

* Supplemental information related to this paper is available at the 2010; Bonan et al. 2011).
Journals Onhne website: http://dx.doi.Org/10.1175/JCLl-D-ll-00401.sl. enhance our ability to interpret the advan-
________  tages and disadvantages of GPP among site level ob

servation, process-based model simulation, statistical 
Corresponrf/nvflu/Aorflrfrfress; JiafuMao, EnvironmentalSciences , , . , . . , , •

Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6301, calculation, and remote sensing estimates through m-
Oak Ridge, TN 37831-6301. tercomparison of each method (Randerson et al. 2009;
E-mail: maoj@omlgov Beer et al. 2010). Mechanistic ecosystem models are
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generally based on observed ecophysiological, bio
physical, and biogeochemical processes, and constrained 
by changes in environmental conditions (Cramer et ai. 
1999; Sitch et ai. 2008). The online or offline simulation of 
such computer models at different temporal and spatial 
scales, therefore, is essential for both research and man
agement to predict changes in GPP with varying climate 
(Cox et ai. 2000; Jones et ai. 2009). Previous studies have 
shown that there is substantial uncertainty in process- 
based models regarding model structure, parameteriza
tion, and driver data (Zaehle et al. 2005; Jung et al. 2007; 
Baker et ai. 2010; Wang et ai. 2011; Bonan et al. 2011). 
llius, comprehensive evaluations using multiple data sour
ces are essential for ecosystem model improvement.

Evaluating GPP from global ecosystem models is 
hindered by the lack of extensive observations at con
tinental and global scales. Statistical methods have been 
used to upscale site-derived GPP to regions or the globe 
(Xiao et ai. 2008; Jung et ai. 2009); however, such di
agnostic models lack the capacity to explicitly simulate 
the future behavior of ecosystems under changing en
vironments. Moreover, they rely largely on the quality 
of eddy covariance flux measurement data, global frac
tion of absorbed photosynthetically active radiation 
(FPAR) retrievals, and the statistical techniques em
ployed (Beer et al. 2010).

Remote sensing techniques provide near-real-time 
metrics related to global vegetation growth and primary 
production, such as the normalized difference vegeta
tion index (NDVI), at fine spatiotemporal scales (Justice 
et al. 2002; Nemani et al. 2003; Running et al. 2004). The 
M oderate Resolution Imaging Spectroradiometer 
(MODIS) GPP product (MOD17) represents the latest 
of a series of efforts to characterize global GPP from 
space (Zhao and Running 2010, 2011). MODIS GPP 
products have been extensively evaluated (Running 
et al. 1999; Heinsch et al. 2006; Turner et al. 2006a,b; 
Kanniah et al. 2009). Although a wide range of site- 
specific fidelity between the MODIS GPP and flux tower 
estimates has been found, the satellite-derived GPP 
generally provides realistic information on widely varying 
climates, land use, and vegetation physiognomy over the 
globe, and can provide valuable global-scale constraints 
to process models (Zhao et al. 2005; Turner et al. 
2006a,b).

With the remote sensing GPP, we have evaluated 
predictions of global GPP from the Community Land 
Model version 4 (CLM4), the land component of the 
Community Earth System Model (CESM) (Oleson et al. 
2010; Lawrence et al. 2011). Providing the correct sim
ulation and prediction of terrestrial GPP for CLM4 is 
an essential step in reducing uncertainty of the future 
trends of carbon-climate feedbacks. Although many

studies have used satellite products to evaluate earlier 
versions of CLM (Oleson et al. 2003; Tian et al. 2004; 
Wang et al. 2004; Lawrence and Chase 2007; Stdckli 
et al. 2008), so far no evaluation of model results against 
remote-sensing-based GPP has been performed.

We have compared CLM4 and MODIS-based vege
tation primary production at various temporal and spatial 
scales for the period 2000-09. Our objectives are to 1) 
systematically evaluate the CLM4 capability to represent 
contemporary global patterns of GPP; 2) quantify the 
similarities and the differences between the two products; 
3) investigate GPP responses to changes in climatic forc
ings such as temperature, precipitation, and radiation; 
and 4) explain differences in and address the future de
velopment of biogeochemical dynamics in CLM4. The 
data and methods are described in section 2. In section 3 
we show the statistical comparisons between the two 
estimates. Specific findings and interpretations are dis
cussed in section 4, with conclusions given in section 5.

2. Methodology

a. CLM 4

CLM4 represents fundamental biogeochemical and 
biophysical mechanisms of terrestrial ecosystems. It is 
a coupled model from the biophysics of CLM and the 
carbon-nitrogen biogeochemistry of the Biome-BGC4.1.2 
(Diornton and Rosenbloom 2005). Die resulting model is 
fully prognostic with respect to all water, energy, carbon, 
and nitrogen variables in the terrestrial ecosystem. Gross 
primary production in CLM4 is the sum of carbon assim
ilation from both the sunlit and shaded portions of the 
canopy. It is affected by temperature through enzyme 
activity and stomatal conductance, controlled by soil 
moisture and root distribution, and limited by the avail
ability of soil and leaf nitrogen. A detailed description 
of the biophysical structures and biogeochemical com
ponents that influence the CLM4 primary production is 
given in Oleson et al. (2010).

b. M O D IS GPP

We used the improved MOD17 gross primary produc
tion (GPP) (Zhao et al. 2006; Zhao and Running 2010, 
2011) and the collection 5 (C5) leaf area index (LAI) 
(MOD15A2) (Myneni et al. 2002) for years 2000-09 for 
our comparisons. The C5 MODIS LAI has been cleaned 
by temporally filling the cloud-contaminated periods 
based on accompanied quality assessment fields (Zhao 
et al. 2005). To compare with CLM4 model results, the 
MODIS monthly GPP at 0.5° resolution was aggregated 
from the raw 1-km resolution product and calculated 
daily by the light use efficiency algorithm:
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GPP = e X 0.45 X FSDS X FPAR X fVPD X f T  ■ ,
n ia X  ' '  ' ' n i i i i

(1)

where e is the maximum light use efficiency; FSDS 
is surface downward solar radiation, of which 45% is 
photosynthetically active radiation (PAR); and FPAR is 
the fraction of PAR being absorbed by the plants. Along 
with LAI data, it was remotely sensed from the MODIS 
sensor (Myneni et al. 2002); /V PD  and fT ^ .^  are the 
daily reduction scalar from water stresses and low tem
perature, respectively. The long-term MODIS GPP/ 
NPP dataset was obtained from the Numerical Terra- 
dynamic Simulation Group, School of Forestry, Uni
versity of Montana (http://www.ntsg.umt.edu/).

c. Meteorological data

Surface meteorological data are critical drivers for 
both ecosystem model simulation and remotely sensed 
GPP estimates. The MODIS GPP algorithm used the 
daily National Centers for Environmental Prediction/ 
Department of Energy Global Reanalysis 2 (NCEP-2) 
data, including downward solar radiation and minimum 
temperature as meteorological drivers (Kanamitsu et al. 
2002). The half-degree Climate Research Unit-NCEP 
(CRUNCEP) dataset was applied to force the CLM4 
model. It is a combination of two existing datasets: the 
CRU Time Series, version 2.1 (CRU TS 2.1) (Mitchell 
and Jones 2005) 0.5° monthly climatology covering the 
period 1901-2002 and the 2.5° NCEP-2 reanalysis data 
beginning in 1948 and available in near-real time (more 
details at http://dods.extra.cea.fr/data/p529viov/cruncep/).

d. Dominant PFTs distribution

GPP comparisons in this study are made at three spatial 
scales: global, hemispheric, and aggregated by dominant 
PFT. CLM4 represents a nested subgrid hierarchy in 
which grid cells comprise a land unit, snow/soil column, 
and up to 16 plant functional types (PFTs) (Oleson et al. 
2010). For the MODIS GPP algorithm, land cover is from 
the University of Maryland Land Cover Classification 
System, based on the collection 4 MODIS 1-km land 
cover (MOD1201) (land cover type 2 in the MOD1201 
dataset). Land cover in every half-degree grid cell is the 
dominant biome t)^e based on the 1-km collection 4 
MODIS products (Fig. la). Since CLM4 and MODIS 
adopt different vegetation classification systems, the 
dominant PFT distributions from CLM4 were used to 
analyze both GPP maps. The CLM4 PFT with more than 
50% fractional area in a one-half-degree grid point is 
considered as a dominant PFT. Dominant PFTs, ignoring 
barren land cover as defined by MOD1201, are shown in 
Fig. lb. Globally, broadleaf evergreen tropical trees have

the highest coverage, while broadleaf deciduous boreal 
shrubs and needleleaf evergreen boreal trees are the 
second and third largest areas.

e. Experimental design

Surface meteorological data from the CRUNCEP 
dataset for the period 1901-2009 was applied to drive 
the CLM4 with fully coupled carbon and nitrogen cycles 
in offiine mode. Other environmental forcings such as 
historical land use and land cover, atmospheric CO2 , and 
atmospheric nitrogen deposition were prescribed to 
follow historical trends as in Bonan and Levis (2010), 
and Shi et al. (2011). Based on a subset (1901-20) of 
transient climates, CLM4 was spun up using atmospheric 
CO2 , nitrogen deposition, and land cover on year 1850. It 
was then integrated to 1901, driven by repeating the 20-yr 
meteorological variables with the transient CO2  concen
tration, nitrogen deposition, and historical land use data 
between 1850 and 1901. Beginning with the model state in 
1901, CLM4 was finally run to 2009 with the previously 
mentioned historical forcings. The half-degree monthly 
GPP output during the last 10 years (2000-09) was selected 
for direct comparison with MODIS GPP. We compared 
the CLM4 GPP against several aspects of the satellite data, 
including the climatological means, and the intraannual 
and interannual variabilities. For convenience we refer to 
the CLM4 GPP and LAI as GPPl and LAIl, respectively, 
while MODIS GPP, LAI, and FPAR are referred to as 
GPP2, LAI2, and FPAR2, respectively. CRUNCEP cli
mate drivers (input to CLM4) are referenced as surface 
temperature (TEMPI), precipitation (PRECl), and sur
face downward solar radiation (FSDSl).

3. Results

a. Spatial distribution o f  GPP climatology

1) GPP M AGNITUDE

Both CLM4 and MODIS annual mean GPP show 
high spatial heterogeneity (Figs. 2a,b). Both show the 
highest carbon assimilation in tropical ecosystems, fol
lowed by temperate and boreal forests. High-latitude 
regions with short growing seasons and dry areas have 
the lowest GPP. Globally, mean total GPP from CLM4 
is 146.30 PgC yr^^ and from MODIS it is 111.58 PgC yr^^, 
ignoring barren land cover defined using MOD1201 
(Table 1). The spatial correlation coefficient between 
the two maps is 0.90, indicating that the CLM4 and the 
MODIS are in good agreement in describing the large- 
scale GPP distribution. CLM4 GPP is consistently higher 
than MODIS GPP across the tropics and subtropics, and 
lower than MODIS GPP at high northern latitudes and 
in southern Africa (Fig. 2c). Tropical GPP is higher for

http://www.ntsg.umt.edu/
http://dods.extra.cea.fr/data/p529viov/cruncep/


5330 J O U R N A L  O F  C L I M A T E V o l u m e  25

60N -

30N -

0  -

30S -

0 Water

1 ENF

2 EBP

90W 60W 30W

2 I  3 I 4 I 5 I 6

3 DNF 6 CShrub

4 DBF 7 OShrub

5 MF 8 W Savanna

60E 90E 120E 150E

9 11 I  12 I  13 I 14 I  15 I 16 I

9 Savanna 12 Crop 15 Noveg

10 G rass 13 Urb 18 Bare

11 Noveg 14 Noveg

60N -

SON

SOS

150W 120W

J U
0 Noveg

1 NETemTree

2 NEBorTree

90W 60W SOW 0 30E 60E

B ^ n ~ 4 ~ T 5 ~ r i^  1 7 1 8 19~i^B^i in~i2~

3 NDBorTree 6 BDTroTree 9 BE Shrub

4 BETroTree 7 BDTemTree 10 BDTem Shrub

90E 120E 150E

5 BETemTree 8 BDBorTree 11 BDBor Shrub

12 C3A G rass

13 C3NA G rass

14 C4 G rass

15 Corn

16 W heat

Fig . 1. (a) Global vegetation map of the University of Maryland Land Cover Classification System. Water body 
(Water), evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), 
deciduous broadleaf forest (DBF), mixed forests (MF), closed shrublands (CShrub), open shrublands (OShrub), 
woody savannas (WSavanna), savannas (Savanna), grassland (grass), croplands (Crop), urban (Urb), and bare 
ground (Bare). Note that in this figure, there are no vegetation classifications for types 11, 14, and 15 (Noveg). (b) 
Dominant plant functional types of CLM4. Area without vegetation (Noveg), needleleaf evergreen temperate tree 
(NETem Tree), needleleaf evergreen boreal tree (NEBor Tree), needleleaf deciduous boreal tree (NDBor Tree), 
broadleaf evergreen tropical tree (BETro Tree), broadleaf evergreen temperate tree (BETem Tree), broadleaf 
deciduous tropical tree (BDTro Tree), broadleaf deciduous temperate tree (BDTem Tree), broadleaf deciduous 
boreal tree (BDBor Tree), broadleaf evergreen shrub (BE Shrub), broadleaf deciduous temperate shrub (BDTem  
Shrub), broadleaf deciduous boreal shrub (BDBor Shrub), C3 arctic grass (C3A Grass), C3 nonarctic grass (C3NA  
Grass), C4 grass, corn, and wheat.
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CLM4 than for MODIS throughout the year (Figs. 3a-d). 
In Arctic tundra regions the low bias in CLM4 GPP rela
tive to MODIS is most severe during the summer (Fig. 3b).

2) GPP PHASE

To evaluate differences in seasonal timing of GPP 
variation independent of biases in GPP magnitude, we 
normalized the long-term mean seasonal cycles of 
CLM4 and MODIS GPP by their climatological maxi
mum values in each grid cell and compared the seasonal

differences in these normalized values between CLM4 
and MODIS (Fig. 4). Normalized GPP from CLM4 is 
higher than MODIS across the boreal forest zone in 
spring (Fig. 4a) and across much of the Northern Hemi
sphere midlatitudes in fall (Fig. 4c). Seasonality of GPP 
is also notably different (sometimes higher, sometimes 
lower) between CLM4 and MODIS in some dry regions 
such as interior Australia, interior western North Amer
ica, and the Kirghiz Steppe north of the Caspian and Aral 
Seas. These dry regions are classified as grasslands or
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T a b le  1. Mean values, standard deviations, and trends of spa
tially averaged annual GPP and climate variables for the globe, the 
Northern Hemisphere, and the Southern Hemisphere from 2000 to 
2009. Bold values represent trends with significance (P <  0.05) 
during the study period.

Mean Std dev Trend P  value

Globe

GPPl 146.30 3.09 0.8260 0.0046
GPP2 111.58 0.85 -0.0016 0.9876
TEMPI 13.80 0.18 0.0355 0.0670
PRECl 919.55 40.77 10.2767 0.0102
FSDSl 159.77 0.79 -0.1882 0.0197

Northern Hemisphere

GPPl 87.02 2.01 0.5341 0.0051
GPP2 64.75 0.97 0.2157 0.0327
TEMPI 9.95 0.19 0.0349 0.0883
PRECl 787.34 28.85 7.4773 0.0072
FSDSl 149.32 0.62 0.1865 0.0002

Southern Hemisphere

GPPl 59.29 1.63 0.2919 0.1060
GPP2 46.83 1.24 -0.2173 0.1149
TEMPI 22.65 0.21 0.0368 0.1113
PRECl 1223.10 86.91 16.7064 0.0775
FSDSl 183.74 1.91 -0.1921 0.3913

open shrub lands in the MODIS products, while the 
dominant cover type is bare ground in the CLM4 subgrid 
classification (Fig. 1).

b. Seasonal cycle o f  GPP summarized by 
vegetation zones

Both the half-degree CLM4 and MODIS GPP are 
derived from subgrid-scaie GPP based on different single- 
type definitions. CLM4 includes multiple plant func
tional types at the subgrid scale, while the half-degree 
MODIS product is aggregated from the raw dataset at 
1-km resolution. To minimize ambiguity in our compar
isons, we summarized seasonality of GPP and LAI from 
both CLM4 and MODIS over regions dominated by in
dividual plant function types in the CLM4 classification 
(Figs. 1, 5, and 6).

In the boreal zone, CLM4 evergreen GPP has a mid
summer peak similar to MODIS, with an increase earlier 
in the spring and a later decline in the fall (Fig. 5b). For 
boreal deciduous needleleaf trees, CLM4 has a lower 
midsummer GPP than MODIS (Fig. 5c). For boreal 
deciduous broadleaf trees, however, CLM4 GPP has a 
higher midsummer peak than MODIS and a later de
cline in fall (Fig. 5h). Similar differences are seen in 
the timing of CLM4 and MODIS LAI for these types 
(Fig. 6). CLM4 has relatively little seasonal variation in 
boreal evergreen LAI, while MODIS shows a sharp 
decline in LAI over the winter (Fig. 6b). CLM4 LAI for 
boreal deciduous trees is maintained at midseason peak

values for an extra month in the fall compared to 
MODIS (Figs. 6c,h).

In northern temperate regions the timing of spring 
and fall changes in CLM4 GPP are in good agreement 
with MODIS for both evergreen and deciduous types, 
but CLM4 has an overall higher GPP for evergreens 
(Figs. 5a,g; 6a,g). CLM4 temperate evergreen forest 
LAI is relatively constant over the year, while MODIS 
shows variation of approximately a factor of 2 from 
winter to summer (Fig. 6a). Similar to the boreal zone, 
CLM4 temperate deciduous forest LAI is maintained at 
peak values for about a month longer in the fall than 
MODIS LAI (Fig. 6g).

Neither CLM4 nor MODIS shows significant sea
sonality for either GPP or LAI in tropical deciduous or 
evergreen forests (Figs. 6d,f). CLM4 GPP is higher than 
MODIS GPP in all months for tropical evergreen forests 
(Fig. 5d), but CLM4 and MODIS GPP are of similar 
magnitude in tropical deciduous forests (Figs. 5f).

Arctic shrub GPP is lower in CLM4 than in MODIS 
(Fig. 5j) and, while the seasonal timing of GPP between 
the two products is similar, CLM4 LAI remains near its 
midsummer peak almost two months longer in the fall 
than with MODIS LAI (Fig. 6j). Arctic grass has a sim
ilar peak GPP in CLM4 and MODIS, but here again the 
CLM4 LAI remains high for about two months longer 
than with the MODIS LAI (Figs. 5k and 6k), corre
sponding to higher autumn GPP in CLM4 compared to 
MODIS for this vegetation type (Fig. 5k).

Because C3 and C4 grasses have significant distribution 
in both Northern and Southern Hemispheres, with dis
tinctive seasonality, we analyzed the two hemispheres 
separately for these types. In both hemispheres the sea
sonality and magnitude of C3 grass GPP are similar for 
CLM4 and MODIS (Figs. 51,m). For C4 grass, CLM4 and 
MODIS GPP have similar timing in both hemispheres, 
but the Northern Hemisphere CLM4 has a higher mag
nitude throughout the year (Figs. 5n,o).

c. Intraannual variability

We used an empirical orthogonal function (EOF) 
analysis to characterize the dominant modes of monthly 
variability in both CLM4 and MODIS GPP (Fig. 7). 
Following North et al. (1982), we calculated the per
centage variance accounted for by the first four modes of 
the two monthly GPPs (Fig. 7a). During each month, the 
first and second modes of the MODIS and CLM4 GPP 
are well distinguished from the rest of the monthly 
EOFs in terms of the one standard deviation (SD) of the 
sampling errors. The first two eigenfunctions (EOFl and 
EOF2) explain, respectively, 48.5% and 12.7% of the 
monthly GPP variability in CLM4 and 51.8% and 16.2% 
of the monthly GPP variability in MODIS. The spatial
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and temporal patterns of EOFl are similar for CLM4 and 
MODIS, and capture the annual cycle of peak GPP as it 
shifts between the Northern and Southern Hemispheres 
under the fundamental influence of incident radiation and 
its effects on temperature. Some exceptions to this overall 
pattern are seen in central Australia and the northern 
Amazon basin. Spatial and temporal patterns of EOF2 
also are remarkably similar for CLM4 and MODIS GPP, 
capturing a weaker seasonality in the tropics and are also 
apparently influenced by monsoon regions in Asia, Aus
tralia, and southwestern North America. A notable ex
ception for this EOF is over northeast Russia where 
CLM4 and MODIS have opposite signs.

d. Interannual variation

Interannual variability in global GPP is higher for 
CLM4 than for MODIS, with interannual standard de
viations (SDs) of 3.09 and 0.85 PgC yr^^, respectively, 
for the period 2000-09 (Table 1 and Fig. 8). The spatial 
distributions of the amplitude of interannual variation of

GPP for CLM4 and MODIS are shown in Fig. SI. 
Globally, main features of the 10-yr standard deviations 
of the two GPP products are generally similar, with larger 
interannuai variability over the low and midiatitudes, 
such as tropical Africa and southeastern America, than 
in high latitudes, such as the tundra of northeastern 
Russia (Figs. Sla,b). The amplitude of the interannuai 
variation of CLM4 GPP is stronger than the satellite 
product over most ecosystems, especially in the tropical 
trees, C4 grasses, and low and midiatitude crops (Fig. Sic 
and Fig. 1). Major underestimations exist in the tropical 
Amazon, in southern Africa, and in the boreal shrub areas.

At the global scale, CLM4 GPP shows a significant 
positive trend over this period (0.8260 PgC yr^^), while 
MODIS GPP shows no significant trend (Table 1). Both 
CLM4 and MODIS GPP show significant positive trends 
over the Northern Hemisphere but not over the South
ern Hemisphere (Table 1). Both CLM4 and MODIS 
GPP estimates are anomalously low in 2005 over the 
Southern Hemisphere, associated with low precipitation
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and high temperatures (Fig. 8c). Pearson correlation 
analysis was used to explore relationships among GPP, 
LAI, FPAR, and climate forcings at global and hemi
spheric scales based on interannuai variability (Table 2). 
CLM4 GPP has a significant positive correlation with 
CLM4 LAI on a global basis and in each hemisphere, 
while MODIS GPP is not significantly correlated with 
MODIS LAI. MODIS GPP has a significant positive 
correlation with its FPAR in the Southern Hemisphere. 
CLM4 GPP and LAI show no significant correlation 
with temperature, while MODIS GPP has a significant 
positive correlation with temperature in the Northern 
Hemisphere and a significant negative correlation in the 
Southern Hemisphere. CLM4 GPP and LAI show sig
nificant positive correlations with PRECl for the globe 
and in both hemispheres, while MODIS GPP shows a 
significant positive correlation with PRECl for only the 
Northern Hemisphere. Both CLM4 GPP and LAI show 
significant negative correlation with incident shortwave 
radiation for the globe and in both hemispheres, while 
MODIS GPP has a significant negative correlation with 
FSDSl in the Northern Hemisphere only.

4. Discussion

a. Uncertainties o f  the remote sensing GPP

Our analysis examined differences in the GPP using 
two different products at different temporal and spatial 
scales. The comparisons, however, are complicated since 
there are a number of possible reasons for the differences 
in CLM4 and MODIS GPP estimates due to different 
parameter values, calculation algorithms, and environ
mental inputs. Strictly speaking, the MODIS GPP is also 
a modeled product. The performance of the MODIS 
GPP can be largely influenced by uncertainties from in
puts such as land cover, FPAR/LAI, reanalyzed meteo
rological observations, and the algorithm itself (Zhao et al. 
2006). Also, the scaling of high resolution (1 km) raw data 
to the coarse (0.5°) product can introduce considerable 
uncertainties of the remote sensing GPP. As a result, it 
may contain systematic errors in some regions. More de
tailed discussions of these aspects can be found elsewhere 
(Coops et al. 2009; Heinsch et al. 2006; Zhao et al. 2005).

Nonetheless, among a variety of measurements and 
simulations, the MODIS satellite remains a unique tool
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for monitoring terrestrial primary productivity and is a 
benchmark for gauging ecosystem model improvement 
because of its globally high spatiotemporal resolution 
and continuity. More importantly, at the global scale the 
MODIS GPP estimates are likely very reasonable and 
some general observations may be warranted (Zhao and 
Running 2010,2011; Frankenberg et al. 2011). Hence, in 
the following we mainly focus on discussions of possible 
causes from the perspective of CLM4 for the evident 
discrepancies of GPP as shown in the results section.

b. Evaluation o f  tropical GPP

Spatial correlation [ section 3a(l)] and EOF analysis 
(Fig. 7) suggest that CLM4 and MODIS algorithms, in

spite fundamental differences in structure and inputs, 
generate very similar information regarding the clima
tological mean state of the global GPP distribution at 
annual and seasonal scales. First-order differences be
tween climatological means for the two approaches in
clude high estimates of tropical evergreen forest GPP 
from CLM4, longer high-latitude growing season in 
CLM4, and stronger seasonality of needleleaf evergreen 
leaf area from MODIS.

Mean GPP for tropical evergreen forest is 360 gC m^^ 
month^^ in CLM4, compared to 214 gC m^^ month^^ 
for MODIS and 194 gC m^^ month^^ from a third in
dependent estimate (Beer et al. 2010). A possible ex
planation for this difference is related to the current
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treatment of nutrient dynamics and nutrient limitations 
on GPP in CLM4. The availability of mineral nitrogen 
provides an important constraint on GPP in CLM4, 
but other nutrient cycles have so far been ignored. 
Of particular concern is the phosphorus cycle since 
phosphorus is generally believed to be more limiting 
than nitrogen to tree growth in lowland tropical moist 
forests (Townsend et al. 2011). While the current model 
predicts both instantaneous and long-term constraints 
on GPP from nitrogen limitation in this region (Fig. 8 
in Thornton and Zimmermann 2007), we expect that 
the real limitation from phosphorus availability in this

region is even stronger. We are currently developing a 
version of CLM4 that includes a prognostic phosphorus 
cycle as a partial test of this hypothesis. Additional eval
uation of this hypothesis against site-level observations 
and experimental manipulations is also warranted.

Another possible explanation for high CLM4 GPP in 
the tropics has to do with the representation of the 
vertical canopy gradient in specific leaf areas. The linear 
relationship proposed by Thornton and Zimmerman 
(2007) is a good empirical fit to their observations, but it 
permits unrealistically high leaf area at high canopy leaf 
carbon content. Truncation of the relationship due to
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T a b l e  2. Pearson correlations among the spatially averaged 
annual GPP, LAI, FPAR, and climate variables for the globe and 
two hemispheres from 2000 to 2009. Bold values mean correlations 
with significance (P <  0.05) during the 10-yr period.

Parameter

GPPl GPP2 LAII L A E  FPAR2 TEMPI PRECl FSDSl 

Globe

GPPl 1.00 0.16 0.89 -0 .2 0  -0 .03 0.21 0.91 0.93
GPP2 1.00 0.13 0.38 0.59 - -0.44 0.33 -0 .3 4
LAII 1.00 -0 .21  -0 .0 7  - -0.05 0.74 0.81
L A E 1.00 0.95 -0.40 0.14 -0 .0 6
FPAR2 1.00 -0.37 0.33 -0 .27
TEMPI 1.00 0.16 -O.IO
PRECl 1.00 0.99
FSDSl

Northern Hemisphere
1.00

GPPl 1.00 0.40 0.88 -0 .31  O.OI 0.49 0.86 0.86
GPP2 1.00 0.16 0.04 0.38 0.78 0.66 -0 .7 3
LAII 1.00 -0 .33  -0 .03 0.33 0.67 -0 .7 1
L A E 1.00 0.84 -0.14 0.05 0.12
FPAR2 1.00 0.20 0.45 -0 .3 2
TEMPI 1.00 0.65 -0 .7 3
PRECl 1.00 0.93
FSDSl

Southern Hemisphere
1.00

GPPl 1.00 0.24 0.92 -0 .1 4  -0 .0 6  - -0.21 0.88 0.81
GPP2 1.00 0.32 0.40 0.65 - 0.93 0.28 -0 .5 2
LAII 1.00 -0 .09  -0 .0 5  - -0.26 0.72 0.67
L A E 1.00 0.92 -0.50 0.23 -0 .27
FPAR2 1.00 0.73 0.28 -0 .4 2
TEMPI 1.00 -0 .33 0.58
PRECl 1.00 0.93
FSDSl 1.00

physical limits on (low) leaf thickness would reduce high 
bias in LAI. However, because the model assumes, in 
correspondence with observations, a constant leaf C:N 
ratio regardless of canopy position, this modification is 
unlikely to have a strong influence on canopy-scale GPP. 
Preliminary studies suggest that CLM4 GPP and bio
mass in this region are sensitive to the specification 
of tree mortality rates. As we have specified a single 
nonflre mortality rate for all vegetation types worldwide 
(0.5% yr^^), it is possible that refinements by climate 
zone or PFT could influence the tropical forest GPP 
differences.

c. Evaluation o f  high-latitude GPP

Several factors make interpreting high-latitude dif
ferences in the predicted length of growing season and 
seasonal cycles of GPP and LAI difficult. For example, 
snow cover and low light obscure remote sensing signals 
in early and late winter seasons at high latitudes. Also, 
the phenology algorithms in CLM4 have been derived

mainly from temperate zone observations, so we have 
a low a priori confidence in model performance in the 
boreal forest. We find the strong seasonality in boreal 
evergreen forest LAI from MODIS suspicious, given the 
multiyear leaf longevity observed for these forests and 
the dominance of forest cover imposed by our analysis 
(section 2d). This suggests that some combination of 
snow cover and low light is producing a low bias in the 
MODIS LAI product for this PFT and that snow cover 
may also play a role in the strong seasonality of MODIS 
LAI in temperate evergreen needleleaf forest (Figs. 
6a,b). It is also possible that the model controls on GPP 
at low temperatures are not stringent enough, leading to 
higher CLM GPP in the shoulder seasons in the boreal 
zone. Evaluations of model predictions against obser
vations at individual sites, including boreal deciduous 
and evergreen sites, are under way and should help to 
clarify this issue.

d. Evaluation o f  interannuai GPP variability 
in long-term trends

CLM and MODIS in GPP variability on seasonal time 
scales (Fig. 7) are in broad agreement; however, their 
interannuai variability, long-term trends, and correla
tions of GPP with potential forcing factors and related 
ecosystem states are quite different. We note with par
ticular interest that interannuai variations in GPP and LAI 
as predicted by CLM are highly correlated in both hemi
spheres, while GPP and LAI derived from MODIS ob
servations have no correlation in the Northern Hemisphere 
and only a weak (nonsignificant) correlation in the South
ern Hemisphere. CLM GPP and LAI also show strong 
positive correlation with precipitation and strong negative 
correlation with incident shortwave radiation in both 
hemispheres. MODIS GPP shows weaker, but still signifi
cant, correlations with these variables in the Northern 
Hemisphere and nonsignificant correlations in the South
ern Hemisphere. MODIS LAI has no significant correla
tions with precipitation or incident shortwave radiation in 
either hemisphere. Both MODIS and CLM GPP show 
positive (negative) correlation with temperature in the 
Northern (Southern) Hemisphere, but these correlations 
are strong and significant for MODIS and nonsignificant 
for CLM.

It is not clear if these differences reflect biases in CLM, 
MODIS products, or both. Our analysis does, however, 
suggest a testable hypothesis, which would help to resolve 
these differences. We hypothesize that interannuai vari
ations in precipitation have a direct and positive influence 
on interannuai variation in GPP at global and hemi
spheric scales and that increased cloudiness associated 
with higher precipitation leads to a negative correlation 
between GPP and incident radiation. An additional
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factor in this causal framework is the direct influence of 
increased fraction of diffuse radiation under cloudier 
conditions, which could also lead to enhanced GPP for 
limited ranges of variation in total incident shortwave 
radiation. We further hypothesize that the same causal 
framework has a direct effect on LAI, as LAI is de
termined at least in part by current year GPP. Finally, we 
h)^othesize a reinforcing effect of the variation in LAI on 
variation in GPP through the variation in fractional ab
sorption of photosynthetically active radiation at higher 
LAI. Evaluations against observed GPP at individual flux 
measurement sites in both hemispheres are underway 
and should provide at least a partial test of this set of 
h)^otheses, helping to quantify the prediction error as
sociated with the CLM and MODIS GPP and LAI 
products.

e. Next steps for hypothesis testing

Our extension of the evaluation process using satel
lite GPP provides alternatives for understanding the 
strengths and weaknesses of process-oriented models. It 
also identifies several areas that should have priority in 
further evaluating and improving GPP in the satellite 
observation. From the perspective of remote sensing 
products, the 10-yr MODIS GPP is relatively short and 
restricts further intercomparison on the interannuai and 
even decadal scales. Therefore, we speculate that more 
long-term datasets and the range of uncertainty associ
ated with each product still need to be created. In view 
of the discrepancies of CLM4 performance on GPP, we 
would thus need to test the various factors controlling 
photosynthetic production and phenological parame- 
terizations in the CLM4 to quantify potential errors 
arising from the representation of ecosystem mecha
nisms themselves. Future work includes tests such as 
exploring how uncertainties from external inputs, inter
nal parameters, and model structure propagate to GPP. 
Furthermore, because no single measure is adequate to 
evaluate the performance of CLM4 GPP, we strongly 
propose more comprehensive estimations such as tower 
flux measurements, data-based diagnostic approaches, 
and multimodel intercomparisons to systematically 
investigate and improve the predictions of GPP, 
which would also improve simulations of the entire 
biogeochemical cycle in CESM.

5. Conclusions

Global intercomparisons and multistatistics have been 
analyzed to assess the GPP biases between the CLM4 and 
MOD17 GPP for a full 10-yr period between 2000 and 
2009. We conclude that the CLM4 is in rough agreement 
with the remotely sensed primary production in describing

the large-scale seasonal-spatial patterns and temporal 
variations. However, some substantial GPP differences 
still remain. CLM4 systematically overestimated tropical 
GPP, underestimated the boreal deciduous needleleaf 
tree and boreal deciduous shrub primary production, 
predicted a stronger and longer GPP seasonal cycle over 
some plant function types, and showed stronger sensi
tivity to interannuai variation in precipitation. We ex
plored the possible reasons behind those GPP differences 
between the two products. Several interpretations and 
testable hypotheses about existing GPP errors were 
addressed. These understandings, combined with our in
tercomparison results, highlight key steps necessary for 
the improvement of CLM4 diagnostics of biogeochemical 
cycles at multiple temporal and spatial scales.
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