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Chapter 1

Dynamical Systems

1.1  In tr o d u c t io n

We consider dynam ical system s over a finite sta te  space. We assum e th a t  updates 

are synchronous and, hence, these system s are determ inistic. Since their behavior at 

any given tim e is fully determ ined, once a previously a tta ined  s ta te  is reached the  

system  will cycle through the same states indefinitely.

We can m ake form al the  definition of those system s th a t we wish to  consider. 

We let A be a set of discrete elements. For much of the  discussion, A  — {0 ,1}, i.e. 

A  represents the  Boolean set. Then, we define the  s ta te  of the  system  as an iV-tuple 

a  E A ^ ,  i.e.

a  — (uo, , . . . ,  Ujv—1 ),

a, €  A  for 0 < i < N .  W hen we refer to  the  position of a, we are referring to  

ai in the  iV-tuple a. The dynam ical behavior of the  system  is determ ined by a  s ta te  

transition  function

F : A ^  — > A ^ .

Given an initial s ta te , ao G A ^ , the  s ta te  of the  system  at any tim e  t  is sim ply
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F ‘(ao), where

F ‘(a) =  F ( F ‘- ' ( a ) )

and we define

F °(a )  =  a, a  G A ^ .

Due to  th e  finiteness of , there  m ust exist a t i  and (g w ith ti  ^  (g such th a t

F ':(a o ) =  F*^(ao)

and

F ‘^+^(ao) =  F ‘̂ +^(ao)

for all m  6  Af.

We will add to  th is definition so th a t we m ay classify these system s. To enhance 

our definition, we will consider each position of the  Æ -tuple a  independently. Usually, 

the  num ber of positions of the  iV-tuple at tim e t  th a t affect any given position of the  

iV-tuple at tim e f +  1 is some constant K .  Given th a t, we can define projection 

functions

P i  \ A ^  — >■ A ^

for 0 <  i <  AT, which project an elem ent of N  space into K  space. Each p, is defined 

by a  subset of { 0 ,1 , . . . ,  TV — 1} of cardinality  K .  For exam ple, if W =  12, FT =  3 and 

Po is defined by {3 ,5 ,11}, then

po(a) =  (0 3 , 0 5 , a n )

is a  F - tu p le  in A ^ . We also define for each position of the  jV-tuple th e  transition  

functions

/ji  A ' ^ ^ A ,

0 < i < N , which determ ine the  setting of the  position of the  Æ -tuple as we move 

th rough  a s ta te  transition . These position transition  functions are defined by a  table;
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for exam ple, a  position transition  function would be defined by a tab le  over w ith 

values from A.

We can use the  position projection functions and the  position transition  functions 

to  redefine

F: A ^  —  ̂ A ^

as

F ( a )  =  ( / o ( p o (a ) ) , / i ( p i ( a ) ) , . . .,/AT_i(pjv_i(a))), a  G A ^ .

We will discuss four m ain classes of discrete dynam ical systems,^ and th e  behav

iors w ith which each is associated. We begin w ith a discussion of random  Boolean 

networks. As the  nam e suggests, the  random  Boolean network is a discrete dynam ical 

system  based on A =  { 0 ,1 }. As m entioned previously, m uch of the  work th a t has been 

done w ith random  Boolean networks [2, 10] assumes th a t the  num ber of positions of 

th e  iV-tuple at tim e t th a t affect each position of the  AT-tuple a t tim e t -|- 1 is some 

constan t, K .  Then, an AA-bit Boolean string w ith K  inputs to  each Boolean function 

defined as above is called a random  N K  Boolean network [2, 10]. Essentially, th is is 

th e  definition above, th a t is, there are no stipulations for th e  choice of any of th e  p ,’s 

or / I ’s o ther th an  those previously stated. T he K  positions th a t affect th e  fu tu re  of 

any given position are random ly chosen, and the  position transition  function for th a t 

position is also random ly chosen from  the 2 ^^ Boolean functions over K  bits.

W hen we th ink  of th is as a network, we can th ink  of the  p /s  as the  wiring of the  

netw ork and the  / i ’s as the  functional aspect of the  network. These are th e  essential 

elem ents of th e  networks th a t will differ in the  following classes of discrete dynam ical 

system s.

T here are two m ain subclasses of networks under the  random  Boolean networks.

 ̂These four classes of discrete dynamical system s are those discussed in [10].
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position 0position N -1

Figure 1.1: A circular N-tuple

Each of these will have structural requirem ents th a t are not present in th e  random  

networks. T he first of these will have a homogeneous rule, bu t random  wiring, th a t 

is, each of the  positions will have the  same Boolean function operating on random ly 

chosen inputs. Note th a t this network necessarily has the  num ber of positions affecting 

th e  fu ture of each position as a constant. In our chosen notation.

= / c : A K A, 0 < i <  N.

The second subclass has random ly chosen Boolean functions for each variable, 

bu t a  homogeneous wiring tem plate  for each variable. Note, for homogeneous wiring 

to  be applicable, we not only need to  consider the  set of variables as ordered, i.e. as

an A -tup le , bu t also need to consider th is A -tup le  as circular as indicated in Figure

1 .1 . Furtherm ore, position indexing is to  be considered i m od N .  For exam ple, if 

i =  N  — 2, then  the  position i -f- 3 is actually  position 1, i.e.

(i +  3) m od N  =  {N  - 2 -1 -3 )  m od N  

= {N  +  1 ) m od N  

=  1 .

In our chosen notation , th is m eans th a t the  positions chosen by pi are  dependent 

upon th e  value of i. For exam ple, if A' =  3, the  wiring tem plate  for a netw ork of th is
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subclass, Pi, could be defined from the subset {i  — l , i , i  +  1 } and

Pi(a) — , £ij, ) G ^  •

Finally, we consider the  last of our four classes, which has homogeneous Boolean 

functions and homogeneous wiring tem plates. One-dim ensional cellular au to m ata  are 

discrete dynam ical system s of this type. Note, th a t this class of system s is a  subclass 

of bo th  of th e  previous classes.

Much work has been done exam ining th e  complex or “edge of chaos” behavior 

of m any of these system s [7, 10, 2, 3, 5]. In his book The Origins o f  Order -  Self- 

Organization and Selection in Evolution,  S tuart Kauffman discusses th e  effects of 

m inim al perturbations on random  NIC  Boolean networks. A m inim al pertu rba tion  

consists of arb itrarily  changing the  setting of one of the  b its of th e  s ta te  vector. He 

finds th a t random  Boolean networks w ith K  = 2 are relatively stable w ith respect 

to  m inim al pertu rbations, th a t is, they  alm ost always stay in th e  sam e basin of a t

trac tio n  in which they were before the  perturbation . Furtherm ore, they  are relatively 

insensitive to  initial conditions, i.e. sim ilar initial states tend  to  th e  sam e basin of 

a ttrac tion . Networks w ith K  > 3, however, exhibit “chaotic” behavior w ith respect 

to  m inim al perturbations. They are also sensitive to initial conditions.

Kauffman also presents tunab ly  rugged fitness landscapes. These landscapes are 

representations of fitness functions over a string of N bits. The fitness contribution of 

each position m ay be “influenced” by K  o ther positions in the  string. T he ruggedness 

of th e  landscape can be increased by increasing th e  param eter K  [2 ], m uch like the  

behavior of a  Boolean network can be altered by changing the  param eter K .  The 

fitness of th e  entire string is ju st the  average of the  fitness contributions of each of 

th e  b its in th e  string, i.e.
1 ^
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T he N K  Boolean networks and fitness landscapes presented by Kauffman appear 

to  be a good model of m any real biological processes. T he Boolean networks have 

features m uch like the  genetic regulatory networks which are apparently  responsible 

for cell differentiation. Kauffman shows th a t the  ratio  of the  num ber of cell types 

in an organism  to th e  num ber of genes in th a t organism ’s genetic code is of the  

sam e order of m agnitude as the  ratio  of the  num ber of basins of a ttrac tion  to  the  

num ber of bits in a  Boolean network. Kauffman uses the  properties of populations 

adapting  on rugged fitness landscapes to  explain the radiation in early phylogenies 

in the  evolutionary record. These properties also explain the  stasis occurring later in 

the  record. Kauffman also uses the  structure  of these landscapes to  investigate how 

populations can best adapt toward the  optim al fitness peaks.

The goal of th is work is to  determ ine the  com plexity involved in finding an 

optim ally  fit representative of the  population w ith th is type of fitness determ ination. 

We will see th a t as the  size of the  influencing string increases, so does th e  tim e 

complexity. The linear proxim ity of the  influencing bits is also considered when 

determ ining the  com plexity of finding the  optim ally fit string. We will also investigate 

how linear proxim ity can affect the  expected behavior of N K  Boolean networks and 

how th is can be exploited to  reveal the  underlying structure  of the  basins of a ttrac tion  

for these networks.
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Chapter 2

Fitness Landscapes

2.1  D e f in it io n s

We will now discuss the  com putational complexity of finding the  optim ally  fit m em ber 

of some discrete, finite set of elements. The fitness of each m em ber of th e  set will be 

determ ined by a fitness function resembling those presented in [2]. The m odel assumes 

th a t each position or gene in the  string contributes to  th e  overall fitness based on its 

se tting  and the  settings of other genes w ith which it epistatically  in teracts. The 

m ajo r difference w ith th e  functions th a t we consider is th a t the  fitness contributions 

are  integer-valued. This is done to  avoid the  problem s w ith com plexity analysis for 

real num ber problems. We also remove the l / N  factor from the to ta l resu ltan t fitness.

A nother consideration is the  difference between “arb itrarily” versus “random ly” 

chosen fitness functions. Most of the  lite ra tu re  on Boolean networks and fitness 

landscapes suggests th a t  these networks and fitness functions are random ly generated. 

We will analyze arb itrarily  chosen networks and fitness functions. It is assum ed th a t 

an a rb itrarily  chosen fitness function is, in fact, the  possible outcom e of random  

generation. This is another way of saying th a t we are doing “worst case” analysis of 

th e  com putational complexity.
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W hen discussing fitness functions, it is na tu ra l to  th ink  of th e  m em bers of the  

set as m em bers of a  population. We therefore call these m em bers organisms.

2 .1 .1  T h e  O r g a n ism s

F irst, we need a refined representation of the  organisms to  be investigated. Generally, 

the  genotype of an organism  is considered to  be a string of genetic characters of some 

given length N .  The possible values th a t each character of the  string or iV-tuple can 

assum e are generally elem ents of some finite set A. We will call any string th a t  has 

|A | possible values per position an A-ary string. Let denote the  set of all A-ary 

strings of length N .  We will denote an elem ent of A ^  by a  and note th e

a  =  (#0 ) ; ̂ iV—l)

w ith each a{ E A.

2 .1 .2  O r g a n ism  F itn e s s

We m ust also have a  clear definition of the  fitness function th a t will be used to  

determ ine th e  fitness of th e  organism. Since the  organism  can be considered an 

elem ent of A ^ ,  we will consider the  fitness function:

F : A ^  —  ̂ Z

where Z  is the  set of integers. In our analysis of the  fitness function, we will consider 

th e  m axim um  fitness to  be the  best fitness and the  m inim um  fitness to  be th e  worst 

fitness, although th is decision is arbitrary.

T he definition of F  will come from the  N K  m odel of ep istatic  in teractions [2]. 

T he idea is th a t each of the  positions of the A^-tuple makes a  fitness contribution 

which depends on the  value of th a t position as well as the  K  — I values of th e  o ther
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positions of th e  string.^ The param eter K  then  determ ines th e  am ount of epistasis 

in th e  fitness function. Therefore, as in the  N K  Boolean networks, each position i 

has an associated projection function,

Pi'. — s-

th a t defines the  positions of the  string th a t affect the  fitness contribution for position i. 

As w ith th e  N K  Boolean networks, the  p*'s are defined by a subset of { 0 ,1 , . . . ,  jV— 1} 

of cardinality  K . Since the  p^’s are linear transform ations from  A ^  to  A ^ , th e  p ,’s 

are represented hy N  x  K  m atrices, w ith each row vector being a  unique basis vector 

of A ^ , or sim ply as -tuples of single-position projection functions over N .  We will 

denote a  as the  basis vector with 1 in the  position and zeros everywhere else, or 

as th e  projection function over an elem ent of A ^  which chooses the  position of the  

jV-tuple. For exam ple, if K  = 3, N  = 7, and the fitness contribution of position 6 of 

th e  string depends upon positions 2 and 4, as well as position 6, then

Pe —

C2

64

66

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

and note th a t p6(a) =  (a 2 , a 4 ,« 6 ) E A^. These projection functions correspond to  th e  

wiring of th e  fitness network. We can also th ink  of these projections in term s of a 

vector of projection functions

N
p: A N

 ̂We use K  as the total number of positions that affect the fitness contribution at any position, 
where Kauffman uses K  as the number of additional positions that affect the fitness contribution at 
any given position.
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1 0

where

P  (PO ; P i Î • • • Ï PN —1 ) •

Also associated w ith each position is a fitness contribution function,

These fitness contribution functions correspond to  the  functional aspect of th e  fitness 

function. As suggested in [2], since we have no predeterm ined notion of w hat an 

optim ally  fit string should be, we choose these fitness contribution functions a rb itra r

ily. As w ith the  discrete dynam ical systems of C hapter 1, these fitness contribution 

functions are simply defined by an \A \^  look-up tab le  of integers. We can, again, 

th ink  of these functions together as a vector of fitness contribution functions

.N

where

T hen we can define

f  o p (a )  =  ( /o o p o (a ) , / i  o p i ( a ) , . .. , /N - i  o p N -i(a ))

for all a  G .

The to ta l fitness of th e  string is then the  sum of the  fitness contributions of its 

parts , i.e.

^ ( a )  =  IZ /i(P i(a ))-
i=l

If we have the  property  th a t

/ . ( b )  > 0 ,  V b  e  /i''", 0 <  i <  AT,
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1 1

then  we can define

F (a )  =  ||f  o p (a ) |l i

for all a  €  , where || ||i is the  / i—norm.

We will call any system  like th a t discussed above an NK fitness function. Notice 

th a t the  choice of the  fitness values for each of the  / i ’s is arbitrary , but th a t  th e  choice 

of the  P t’s can have a significant im pact on the com plexity of fitness com putations, 

as we will see later.

D e f in i t io n  2 .1 .1  Let F  be an N K  fitness function. We say that F  is a r a n d o m  

fitness funct ion i f  the K  — \ other positions that affect the fitness contribution o f  a 

position i are randomly chosen from the N  — 1 other positions o f  the network.

A random  fitness function corresponds to  the  structu re  of an N K  random  Boolean 

network. For the  following definitions, we will consider the  string upon which the  

function is calculated to be circular, th a t indices are m od N ,  and let

r ( i)  =  i m od N.

D e f in i t io n  2 .1 .2  Let F  be an N K  fitness network. We say that F  is a n e a r e s t -  

n e ig h b o r  fitness function i f  fo r  each i,

Pi

er(t)

r ( t + l )

^ T { i + K - 1 )  _

that is, the fitness contribution o f  position i depends on the K  — l  positions immediately 

to the right o f  position i.

Note, th a t th is definition is slightly removed from  the  trad itional nearest-neighbor 

definitions in th a t we use the  K  positions to  the  right of position i instead of y
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positions on either side of position i. Since we are dealing w ith fitness functions, 

th e  organism  fitness is invariant to  the  positioning of the  projection function/ fitness 

contribution pairs, so long as we keep the  property  th a t position i affects its own 

fitness contribution. This is easily seen by noting th a t a re-indexing of th e  com ponents 

of p  and f  by m apping p, to Pi+£i and m apping f i  to  leaves us w ith fitness

contributions th a t depend on the  trad itional nearest neighbors.

Nearest-neighbor fitness functions correspond to  Boolean networks w ith homoge

neous wiring but a rb itrary  functions for each position. T he following fitness network 

is a  less struc tu red  form of the  nearest-neighbor network.

D e f in i t io n  2 .1 .3  Let F  he an N K  fitness function. We say that F  is an p -n e ig h 

b o r h o o d  fitness function, K  < rj, i f  fo r  each i, the K — l other positions that affect 

the fitness o f  position i are arbitrarily chosen from the rf — I positions immediately to 

the right o f  position i, i.e.

r̂{]2)

^r{jx)

where j i  =  i and i < ja < i + P fo r  2 < a < K .

Notice th a t, in the  above definitions, the  value of position i always affects the  

fitness contribution for position i. This criterion was kept for com patibility  w ith the  

work presented in [2]. In the  next chapter, we will a ttem p t to  analyze these different 

functions in term s of the  difficulty of finding the  optim al to ta l fitness of the  fitness 

landscape, and thus finding an optim ally fit m em ber of .
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Chapter 3

Structured Behavior

3 .1  P o ly n o m ia l T im e

T he analysis of fitness landscapes and the functions th a t yield them  a ttem p ts to  show 

how th e  tim e  com plexity of finding the optim ally fit organism  a  is closely related  to  K  

and th e  m ethod of choosing p. The goal is to  determ ine w hether the  optim al fitness 

of any of th e  functions can be found in polynomial tim e. The following proofs show 

th a t as th e  random  Boolean networks show a significant change in behavior between 

K  = 2 and Æ =  3, i.e. the  “edge of chaos,” so do their fitness function counterparts 

show a significant change in complexity between functions w ith influencing strings 

of length 2 versus those w ith influencing strings of length 3. As we cross th e  border 

between order and chaos, we also cross th e  border between polynomial tim e and 

NP-com pleteness.

In th e  following proofs of polynomial tim e perform ance, we will use th e  notion 

of the  com m utative diagram

P rob lem (N )  ----> So lu t ion{N)

i  Î

Problem {N  — I) — > So lu t ion{N  — 1);

13
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th a t is, given a problem of dimension N ,  we will show th a t we can produce in reason

able tim e a like problem  of dimension N  ~~ I. Likewise, we will show th a t th e  solution 

of th is new problem  can in reasonable tim e be used to  provide the  solution to  the  

problem  of dimension N .  If each of these steps can be done in tim e of 0{p{N )) ,  

where p is a  polynomial, then  we can find the  solution to  the  original problem  in 

0 { N  * p{N))  =  0 {p '{N ))  polynomial tim e.

In discussing the  tim e needed to  produce a solution, we will m ake th e  following 

assum ptions. These assum ptions are based on the  prem ise th a t any integer a can 

be efficiently represented by a binary string of length log^ a. F irst, we will assume 

th a t bitwise operations can be done in 0 (1 ) tim e. This assum ption yields th a t the  

addition of integers a and b can be done in O(log(m ax{a, b})) tim e, since there  are at 

m ost two tim es th is m any bitwise operations in one addition. This assum ption also 

yields th a t comparisons between integers a and b can be done in the  sam e tim e as 

addition. Finally, we will assume th a t the  size of the  result of addition of integers a 

and b will be 0 ( 1  + log(m ax{a, 6 })), th a t is, the  result of addition can be represented 

efficiently in a string th a t is a t m ost one larger than  the representation of th e  larger 

addend. This stems from the fact th a t a t m ost one carry is generated from  th e  last 

(leftm ost) bitwise operation of an addition.

W hen discussing the  solvability of a problem , we m ust consider the  size of the  

input to  the  program  th a t will solve the problem . We will refer to  the  m axim um  

value of all of the  fitness contributions as fmax, i.e.

/maor =  m ax I  m a x { / i ( b ) } | .

In th e  case of the  N K  fitness function, we see th a t we can represent the  fitness contri

bution  functions efficiently in 0 { \ A \ ^ N  log fmax) space. T he projection functions for 

each position can be efficiently represented in 0 { K N  log N )  space. W hen considering
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nearest-neighbor fitness functions th is space will not be considered, as we can repre

sent all of the  projection functions as a function of the  position i. For jy-neighborhood 

fitness functions, we can represent the  projection functions in 0 { K  N  logT]) space.

We will begin w ith a discussion of nearest-neighbor fitness functions w ith K  — 2. 

In the  following discussion, we will freely move elem ents between the  sets and 

^JV-i ignoring one of the positions. This can be accomplished w ith a projection 

function

where S  is any type of set. Then Pi is defined by

P ; (s) — Pi ("SO) • • • j 1 ? » • • • »

("^Oî • • • ) 15 * Î "®JV—1 )

for s €  S ^ .  To move back to  N  space, we will use an injection function

: S  X

w ith //^  defined by

— (Sqî • ■ • 7 ■®î-l J 5̂ ■̂17 ■ - • 5 ĴV—l)

for a lH  G *5 and s ' Ç. S^~ ^ .  Note th a t by definition

l ! ' { 3 i ,  P f  ( s ) )  =  S

and

/7"(/f(«,s')) = s' 

for all i  G 5", s G , and s ' G S^~^ .
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We will also use a replacem ent function 

w ith Ri  defined by

(^î ®) (^) (*®0 ) • • • 1 1 1 1 • • • 1 ^N~\ ) )

' (^Oj • • • 1 1 5 f 5 ‘5j+l Î • • • 5 '®JV —l)

for all f G 5 , s G .

L e m m a  3 .1 .1  Let F  he an N K  nearest-neighbor fitness function over the alphabet A  

with K  = 2. Then we can construct F ' , an {N  — 1)K  nearest-neighbor fitness function  

over the alphabet A  with K  = 2 in 0 (|/1 |^(1  +  log fmax)) time with the properties:

m ax { F (a )}  =  m ax {i^ '(a ')}

and given a ' is an optimally fit  member o f  A^~^  with respect to F ' , we can f ind v £  A  

such that

a  =  /f^ (u ,a ')

is an optimally f it  member o f  A ^  with respect to F  in 0 ( |/1 |(1  +  lo g /m ai)) time, fo r  

some i, 0 < i < N  — 1.

Proof: Given F ,  defined by p  and f , each position i of a  G A ^  is chosen by only K  = 2 

projection functions, and p,-, and therefore affects only K  = 2 fitness contribution 

functions of F ,  nam ely f i - \  and fi .  Thus we choose position i and elim inate it and 

f i  from  consideration.

Consider the  nearest-neighbor vector of projection functions

p ' :  A ' ' - '  — .  ( A ^ )
N - l
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where

p '( a ')  =  ( a ',a '+ i )

for 0  <  j  — 1 , and a ' E A^~^.

It is im portan t to  notice th a t given a ' =

P j { a )  for 0 <  i  <  i -  1,

P j(a  ) < 01 4̂.1 ) for j  = i 1 ,

Pj+i(a) for z <  j  <  Æ -  1.

Also consider the  function

g : A ^ — >Z

where

g{b, c) =  m ax{/i_ i(6 , d) +  fi{d, c)}clEA

for all b,c £  A.  Then we define

f': (A^)
N - l r N

as

th a t is, given i,

Note th a t

f'

— {/o') • • • 1 f i —2i ĝ  ̂f i+l‘) • • • 1 f N —l)

f i

f j  for 0  <  j  <  z -  1 ,

g for jf =  i — 1 ,

/j+ i for % <  ;  <  Æ -  1 .

/ j  o p '( a ')  = 1
f i ° P i ( ^ )  f o r O < j < i - l ,

s ( « L i .“0 =  s ( “i- i ,« i+ i)  for j  =  1 - 1 ,

/j+ i 0 Pj+ i(») (or i <  j  <  JV -  I

(3.1)

(3.2)

(3.3)
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for all a  G , af G w ith a ' =  P^^(a).

Notice th a t each of the  \A\^ elements th a t define the  tab le  for / /_ j  =  g takes 

0 ( |/4 |(1  4- log /mar)) tim e to  com pute. Therefore, the  developm ent of f ' can be done 

in 0 ( |^ p ( l  +  l o g t i m e .  Then the  fitness function,

is defined as

n a ' )  =  r o p V ) i i i

for all a ' G

Now we m ust show th a t the  optim al fitness value from th is reduced fitness 

function is th e  sam e a s  th a t of the  original fitness function, and th a t we can, in 

0{\A\{1 + log/max)) tim e, use th e  solution to  the  problem  of size jV — 1 to  provide a 

solution to  th e  problem  of size N .

Note th a t for any a  G let a ' =  Tf^(a). Then

F (a )  =  | | f o p ( a ) | | i  

=  Z ) / i ( P j ( a ) )

=  / - i ( P i - i ( a ) )  +  / (P t ( a ) )  +  ^ / j ( P j ( a ) ) +  ^  /i(P i(a ))
j = o  i=î+i

i - 2  N - l

= f ai )) + tti+i)) + Y l  fj{pj{a))  +  ^  fj{Pj{^))
j=o i=i+i

i - 2  N - l

<  m ax{/i_ i((ai_j, u)) +  / / ( u ,  o,+i))} +  fÀPii^))  +  IZ  f j iPi i^))
" j=0 i=i+l

t~ 2  iV—1

=  ^(a,_i,a i+i) +  5Z/j{Pj(^)) +  %Z /j(Pi(a))
j=0 j=i+l

=  f ' i - i{pUii^ ' ))  +  IZ  f j iP j i^ ' ) )  +  5 Z fjip 'j i^' ))
j = 0  j = i

= Ë
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=  | |f 'o p '( a ') l | i  

=  H a l .

Furtherm ore, given a ' 6  and the  position i, we can use a ' to  find a  G with

f ( a ) = r ( a ' ) ,

i.e.

a  =  I i { v  ̂a  ),

where v £  A  is chosen such th a t

yii_l , u) -f" — / i —1 (®t—1 ) ®»+l )■

Then

F '(a ')  =  | | r o p V ) | | i

=  //- i(P i- i(a ') )  +  Z ) fjip'M')) +  Ë  fj(p'jM)
j —0 j z z i

Î—2 /V—1

=  fi^j{ai-j,ai) +fi{ai,ai+i) + J2fjiPj{^))+ Y1 fj(PÀ )̂)
j = o  j=«+i

= E /,fe (a ) )
j=o

=  l |f o p ( a ) |l i  

=  F (a ) .

Now let x ' be an optim ally  fit m em ber of w ith respect to  F ’'. T hen let

X  E A ^ be such th a t

F '(x') =  F (x )

by th e  argum ent above. Then,

F '(x') =  F (x )

>  F '(y ) for all y  G A^~^

>  F ( l f ‘ - ' ( b , y ) )  tor all y  6 A>^-\ b e  A.
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Therefore x  is an optim ally fit m em ber of with

F'(x') =  F (x ).

■
In Lem m a 3.1.1, it was assumed th a t given an optim al solution to  th e  problem  

of size — 1 and the  position i, we could refer to  the  original fitness function to  

determ ine an optim ally fit m em ber of the  problem  of size N .  In the  following proof 

we will m aintain  fitness functions at every level of iteration , so th a t we can provide 

not only th e  optim al fitness value, bu t also determ ine from th is value an optim ally  

fit m em ber of the  population.

T h e o re m  3 .1 .2  Let F  be an N K  nearest-neighbor fitness function over the alphabet 

A, with K  = 2. Then the optimal fitness value can be found in space and time o f  

0 ( \ A f  N  (1 + log f

Proof: W ithout loss of generality, we assume N  = 2 ^ ,  for some integer m . We ite ra te  

as follows: We can apply the  process of position elim ination from Lem m a 3.1.1 to 

every other position of th e  fitness function, i.e. we have y  applications of th e  lem m a, 

each taking 0(|v4 |^(l +  log/max)) space and tim e. Therefore, the  tim e for iteration  

j  is O +  log/m ax)), where ^  represents the  num ber of applications of the

lem m a and j  +  log fmax represents the  increzising size of the  integers involved in the 

com putation. After m  steps, we reach the  point where we have only two positions left 

in th e  string; there are only |A|^ m em bers of the  original set of strings left to  consider, 

thus we can find an optim ally  fit string in 0{\A\ '^{mA\ogfmax))  tim e. Using the  facts

<  1
-

and

2 ,
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and th a t m ultiplicative constants can be ignored when determ ining the  order of the 

com putation, the  entire process takes

AT \
E  +  io g /m ..) j  =  o ( | / ip j v ( i  +  log

space and tim e. ■

We will next look aX K  > 2 fitness functions in which the  ep istatic  interactions 

of the  function are contained in a localized neighborhood. We will find th a t, from 

these too, we can determ ine th e  optim al fitness in polynomial tim e.

We will see th a t the  difference between the  K  = 2 and K  > 2 nearest-neighbor 

fitness functions is sim ply a change in the  alphabet A.  W hen discussing changing 

a lphabets, we are really only talking about a base change in the  underlying num ber 

system . For exam ple, if the  original alphabet is the  Boolean or binary set {0,1} and 

K  =  4, then  the alphabet =  A? is ju st the  octal a lphabet, { 0 , 1 , . . . ,  7} with

the  norm al m apping
binary^ octal

000 0

001 1

111 7.

Likewise, we can th ink  of any 3n length binary string as an n  length octal string.

T h e o r e m  3 .1 .3  Let F  be an N K  nearest-neighbor fitness function over the alphabet 

A. Then the optimal fitness value can be found in -f \og{Kfmax)))

space and time, where Q = I N / { K  — 1)].

Proof: We will show th a t, with slight modifications, we can view the  nearest-neighbor 

fitness function, F ,  over the  alphabet as a nearest-neighbor fitness function, F',
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over an alphabet A ‘ =  with K '  = 2 . Then we can apply Theorem  3.1.2 to

show th a t  the  optim al fitness can be found in +  log/maa;))

For simplicity, we’ll assume th a t N  = Q {K  — I), i.e. th a t N  is evenly divisible 

by /iT — 1. Then A ^  is equivalent to  {A')^  and we can re-index positions and choice 

and fitness contribution functions as follows:

= Xi € A,

where j  = [ i / ( K  — 1 )J and k = i mod { K  — 1 ). Note th a t 0 < j  < Q, and 0  <  A: <  

K  — I. We will use x' to  denote an element of { A ' ) ^ . Then we have

. . . ,  Zj.K-g) €  A'

for 0 < j  <  Q. Note, th a t since f  is a  nearest-neighbor function, using K  — 1 a,s the  

divisor of N  gives us th e  property th a t projection functions reach exactly two m ajor 

positions, i.e. pj^k can only choose positions from Xj and for all 0 <  A: <  ÜT — 1 . 

T hen  we define

p'(x') =

where indices are taken mod Q, and note th a t there m ust exist

(A ') '

such th a t

V 0 <  A: <  % -  1, 0 <  J <  Q.

Then we define

/ i ( b )  =  E '
k = 0

for all b  e  . Note th a t <  Kfmax- Then define

3=0
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where

f'(x') = T,mM)
j = o

Q - l  K - 2

j = 0  A:=0

i=0

=  ;" (x )

for all X  G and

F '  : { A ' f  —  ̂ Z

is a  nearest-neighbor fitness function over the  alphabet A'  =  w ith K '  = 2. F '

was developed in 0{\A*\ ‘̂ Q{\og{Kfmax)))  space and tim e. Then, by Theorem  3.1.2, 

the  optim al fitness can be found in

0 ( |A f Q ( l  +  l o g / L J )  =  +  log(A :/„ ,_)))

tim e. ■

The next theorem  deals w ith a slightly less struc tu red  form of th e  nearest- 

neighbor N K  fitness function.

T h e o r e m  3 .1 .4  Let F  be an N K  t]-neighborhood fitness function over the alphabet 

A .  Then the optimal fitness value can be found in 0{\A\^^^~^^Q{1 + \og{g fmax))) space 

and time, where Q = \Nj{r} — 1)].

Proof: We will show th a t, w ith slight modifications, we can view th e  //-neighborhood 

fitness function over the  alphabet A  w ith K  <  // as a  nearest-neighbor fitness function 

over th e  alphabet A  with K '  = rj. Then we can apply Theorem  3.1.3 to  show th a t 

th e  optim al fitness can be found in -f \og{îjfmax))) tim e.
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Note th a t  even though each contribution function, / i ,  only explicitly depends on 

K  elem ents of x , we know th a t all of the  positions of x  th a t  affect f i  are contained 

in (z;, Z i+ i,. . . ,  We can therefore redefine p, and f i  to  m ake explicit the

dependence on r} positions by defining

P^(x) — 5 • • • 5 1 )

and note th a t there m ust exist 

w ith

PiiP ii^))  =  P,(x)

for all X G . Then define

for all b  G A'', and note th a t now each fitness contribution function, / / ,  is dependent 

on Tj positions of x. Then

=  Ë fi(P ii^))
1=0 1=0

is an A-ary nearest-neighbor fitness function w ith K  =  77. Then, by Theorem  3.1.3, 

th e  optim al fitness can be found in +  \og{r)fj^ax))) space and tim e. ■

We now discuss a less structured  form of the  K  — 2 fitness function. We m aintain  

the  restriction th a t each position affects its own fitness contribution, bu t pu t no 

criteria  on the  other position th a t affects this contribution.

We begin by looking a t the  graph defined by the  system . Each position of the  

system  defines a node of the  graph, thus there are N  nodes; each of th e  projection 

functions, pi, defines an edge of the  graph, thus there  are N  edges in the  graph. Since 

we kept the  criterion th a t each position affects its own fitness contribution function.
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pii

plO

Figure 3.1: G raph w ith two components.

Pi chooses position i and one other position, j ,  of the  system . Due to  keeping this 

criterion, we can th ink  of each node as having a trivial edge which s ta rts  and ends 

a t th a t node, although th is is unnecessary. We use p, to  define the  edge connecting 

nodes j  and i, and note th a t every node of the  graph is contained in some non-trivial 

edge.

A quick observation of the  graph yields the  components of the  graph, as seen in 

Figure 3.1. Given a node i of the  graph, every node th a t is reachable from i, including 

i, belongs to  one com ponent of the  graph. All nodes th a t are not reachable from  i 

(and thus are not reachable from any node reachable from i) are independent in the  

sense th a t no fitness contribution function can be dependent upon nodes from  two 

different com ponents of the graph. Let n  be the  num ber of disjoint com ponents of 

th e  graph, and label these sets of nodes 5 i , 0 < i < n  — 1. Let Ni =  |5 ,|. Each 

com ponent i of the  original graph represents a connected graph w ith Ni nodes and 

Ni edges. Since th is is true  for all each of the  com ponents will contain exactly  one 

cycle. Note th a t since N  = Ni, we have

n
j= 0
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{ A - f  = n  ( A - ) " ' .
1 = 0

and
71—1

R ^ = Y l R ^ ' .
1 = 0

We will abuse notation by letting Vi denote all of the  projections

V , { A x f  ^  {AX f ,

and

Vi-.  ̂ Z ^ '

for each 0 <  i <  n. Due to  the  fact th a t p is used to  determ ine the  sets Si, there 

m ust exist pt and fj for each 0  <  i <  n with the  property

P
N

r ,  1 i  p,-

and
f

. N

V i i  i  V i

f,.

T hen for 0 <  i <  n, we define

Fi -.  ̂ Z
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by

FiiViiai)) = \îi o p i{Vi{R))\.

N ote th a t

f  W  =  Z  (%  ( a ) ) .
t=l

Furtherm ore, since the  Fi's are independent,

m a x { f (a )}  =  m ax | g  Fi (-p, (»))

Then if we can find the  m axim um  fitness value for each of the  independent fitness 

functions in 0 (|A|^A^^(log N  ̂+  log /ma®)) tim e, we can find the  m axim um  fitness value 

for the  entire system  in

o ( E M P W '.{ l  +  lo g /^ „ ) ')  =  A
\t=0 /  V i=0 /

=  0 ( |4 p i V ( l + l o g / „ „ ) )

tim e.

T h e o r e m  3 .1 .5  Let F  be a random N K  fitness function over the alphabet A  with 

K  = 2 and the graph o f  F  is connected. Then the optimal fitness value can be found  

in 0 (|A |^jV(l -f lo g /ma®)) time.

Proof: Assum ing each position affects its own fitness contribution function, then  the  

graph of F  has N  nodes and N  edges. Since this graph is connected, it m ust have 

exactly  one cycle. Then each position in a A  =  2 fitness function m ust fall into one 

of th ree  disjoint categories:

•  It affects only one fitness contribution function;
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•  It affects exactly two fitness contribution functions;

•  It affects more than  two fitness contribution functions.

We begin by discussing the  case where each position of the  A-ary string affects 

exactly two fitness contribution functions of F .  Since the  graph of F  is connected, 

each node acts as a link between two other nodes of the  graph, and the  graph is sim ply 

a circuit w ith every node of the  graph on th is circuit. Then th e  fitness function F  

is ju st a  perm utation  of a  nearest-neighbor fitness function w ith K  = 2 and can be 

solved in 0 (|A p7V (l + log fmax)) tim e using the  m ethods of Theorem  3.1.2.

We now discuss the  case where at least one position of the  .4-ary string affects 

only one of th e  fitness contribution functions of F.  We begin the  reduction of such 

a fitness function by removing the  dependence from those positions th a t only affect 

one of the  fftness contributions. W ithout loss of generality, we assum e th a t position 

— 1 is a  position th a t affects only one fitness contribution function, namely, / n - i - 

Let th e  o ther position th a t affects / n - i be position f, i.e.

Piv-i(a) =  («N -1, a,)-

We can m axim ize / n - i w ith respect to  position N  — 1, thus m aking /a t - i  dependent 

upon only one position, nam ely i, by defining g by

g: A  — > Z

with

^ ( 6 ) =  m ax{/yv-i(c, b)}c6 A

for all b E A .  This calculation takes O(jylj(log fmax)) tim e for each elem ent of th e  tab le  

defining g. Now g can be added appropriately to any fitness contribution function 

th a t depends upon position z, nam ely f i .  Let w be the  o ther position th a t affects / i ,
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i.e.

and define

 ̂ Z

as

g'(b,c) =  g(b) +  fi(b,c)

for all b,c G A. Note th a t the  development of g' takes 0 ( |y lp ( l  +  log tim e, i.e.

each of th e  \A\'^ elem ents of the  table defining g* takes 0 ( |y l |( l  +  log /maa;)) tim e to 

com pute.

Then we define the  vector of projection functions

J    dN

and note th a t

p':  ̂ { A ^ ) N - l

and th a t

for 0  <  J <  TV — 1.

We then  define

f' =

Again, notice th a t these definitions yield

r> I  f i  ° P i(^) for 0 <  i  <  TV -  1; j  ^  i,

I S' op^(a) for j  =  2 ,

where a ' =  T°^v_i(a). Then we define the  fitness function F '  as

f '( = ')  =  E
j=o
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for all a ' 6  A^~^.

Note th a t for any a  E

F{a) = | | f o p ( a ) | | i

=  Ë  fÀ P ji^ ) )
i=o

= M pM )  +fN-i{pN-i{a.)) + J2fj(P3i^))+ Ê  fÀPÀ^))
j = 0  J=î+1

3—1 iV—2
=  /t((ai,an)) + /AT_i((ajv-i,ai)) +  X )/j(P i(a)) +  X) f i i P j i ^ ) )

j=o i=»+i

<  /,((a ,-,a^)) +  rnax{/^^_i((6,ai))} +  X / j ( P i ( a ) ) +  X  f j(P j{^))
3=0 j=i+l

= /.((a»-,«n))+S'(ai) + X/i(Pi(a))+ X /j(Pi(̂ ))
j=o i=î+i

= g'dai.ttn)) + J2f3iPj{^))+ X fÀPÀ̂ ))
3=0 i=i+l

= /;(p:(a')) + E /'(p '(a '))+  e ' /i(p5(a'))
j = 0  i=i+l

— X
=  r o p V ) i i i  

=  f '( a ') .

Furtherm ore, note given a ' E there  m ust exist a  E A ^  with

f  (a) = '̂'(a'),

i.e.

a  =  lN -i{v,a .') ,

where v £ A  such th a t

/ W— 4" (<%,, dn) — An).
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T hen

f ' (a ' )  =  | |f 'op '(a ') | | ,

= /'(P'(a')) + E  /'(P'(a')) + E  /j(p;(a'))
j= 0  j = î + l

i~l N-2
=  fi{ai, a„) +  fN - i{ a N - i ,a i )  +  +  S) f i iP j i^ ) )

j=0 j=i+l

=  Ë  / i ( f t ( a ) )
i=o

=  | | fo p (a ) | | i

=  F (a).

Again, as in Lem ma 3.1.1, th is implies th a t

m ax {F (a)}  =  m ax {i^Ya')}.

Notice th a t the  categorization of position j  m ay have changed in F '  since now j  

affects one less fitness contribution function, namely, / n - i - We continue by e lim inat

ing those positions and their corresponding fitness contribution functions th a t only 

affect one contribution function, each step taking 0 ( |A j^ (l -f- logyLar)) tim e. W hen 

we can find no more positions th a t affect only one contribution function, all of the  

rem aining positions m ust affect exactly two fitness contribution functions. Then we 

are again left with a perm utation  of a, K  = 2 nearest-neighbor fitness function, which 

can be solved by the  m ethod of Theorem  3.1.2. ■

As we can see, when we keep the  condition th a t each position of the  string affects 

its own fitness contribution and the  length of th e  influencing strings is two or less, the 

op tim ally  fit organism can be found in polynomial tim e. We also have the  situation  

th a t, if the  epistatic  interaction is contained within a localized neighborhood, the  

optim ally  fit organism can be found in polynomial tim e. In th e  next chapter, we 

investigate K  = 2 fitness functions th a t do not have the  property  th a t each position
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affects its own fitness contribution. We will see th a t th a t finding th e  optim al fitness of 

these functions, as well as any random  fitness functions w ith ÜT >  3, is NP-com plete.
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Chapter 4

Crossing the Border?

4 .1  N P -c o m p le te n e s s

In th is chapter we will discuss two problems th a t we could not solve w ith m eans used 

in the  previous chapter. The problems discussed here are those of the  random  N K  

fitness functions w ith K  =  2, where positions don’t necessarily affect their own fitness 

contribution, and those w ith K  =  3. We will find th a t the  problem  of finding the 

optim al fitness for each of these problems, and thus an optim ally  fit m em ber of the  

population, is NP-complete.^

Before we begin, a  discussion of the  problem of SATISFIABILITY (SAT) is in 

order, as well as a  general approach to  proving NP-completeness. SA TISFIA BILITY 

is a problem  from Boolean logic, which is described as follows:^

Let U  =  {«1 , U2 , , Um} be a set of Boolean variables. A truth assignment for U 

is a  function t\ U — > { T , If t{u) =  T  we say th a t u is “tru e” under i; if f(w) =  T  

we say th a t  u is “false.” If u is a  variable in U, then  u and ü  are literals over U. The 

literal u is true  under t if and only if the variable u is true  under t] th e  literal û  is

^See [1] for an indepth discussion of NP-completeness.

^The discussion of SATISFIABILITY is taken almost entirely from [1].

33
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tru e  if and only if the  variable u is false.

A clause over 17 is a set of literals over f/, such as {ui,Ü 3 , itg}. A clause is satisfied 

by a tru th  assignm ent if and only if a t least one of its m em bers is true  under th a t 

assignm ent, thus a clause represents the  disjunction of its literals. The clause above 

will be satisfied by t unless t (u i)  = JF ,^(«3 ) =  T , and t{us) =  JF. A collection C  of

clauses over U is satisfiable if and only if there  exists some tru th  assignm ent for U

th a t sim ultaneously satisfies all th e  clauses in C. Such a tru th  assignm ent is called 

a satisfying truth assignment for C. The SATISFIABILITY problem  is specified as 

follows:

S A T IS F IA B IL IT Y

INSTANCE: A set U of variables and a collection C  of clauses over U.

QUESTION: Is there  a satisfying tru th  assignm ent for (7?

T he problem  rem ains NP-com plete even if each c £ C  satisfies |cj =  3 and, for 

each u £  U, there  are a t m ost 3 clauses in C  th a t contain either u or ü  [1 ].

The problem  of SATISFIABILITY was proved to  belong to  the  class NP of deci

sion problem s tha t can be solved in polynomial tim e by a nondeterm inistic com puter 

by Stephen Cook in 1971 [1 ].

To prove N P-com pleteness, we m ust first phrase the  N K  fitness problem  as a  deci

sion problem , show th a t th is problem  is an elem ent of NP, and then  find a polynomial 

transform ation from a known NP-com plete problem to  the  N K  fitness problem . We 

sta te  the  N K  decision problem  as follows:

M A X IM U M  A R B IT R A R Y  N K  F IT N E S S  w ith  K  = 2

INSTANCE: An N K  fitness function F  w ith K  = 2 inputs for each of N  fitness 

contributions, where bo th  inputs are arb itrarily  chosen, and positive integer T.  

Q U ESTIO N: Is there  an element a  6  w ith F{a.) > T?
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If we can answer this question in polynomial P {N )  tim e and we have an up- 

perbound B  on the  value of the  fitness, we can then find the  optim al fitness in 

0 (P (A ^ ) lo g ^ )  by testing only logB  of the num bers less than  or equal to  B  using 

m ethods sim ilar to  those of a binary search. In this case, th e  upperbound

B  =  N  f m a x

can be found in 0 { A ^ N )  tim e and is 0 { N S )  size where S  is the  size of th e  input 

problem . We will see th a t the  decision problem as sta ted  is NP-com plete.

T he NP-com plete problem  th a t we will transform  is a  form of th e  SATISFIA

BILITY  problem sta ted  as follows:

M A X IM U M  2 -S A T IS F IA B IL IT Y

INSTANCE: A set U of variables and a collection C  of clauses over U, such th a t each 

c E O has |c| =  2, and positive integer T  < |C |.

QU ESTIO N: Is there a  tru th  assignment for U th a t sim ultaneously satisfies a t least 

T  of the  clauses of C? [1]

From th is instance of an NP-com plete problem, we will construct a random  N K  

fitness function over the  character set A  = { 0 ,1 } w ith N  ~  m ax { |t/ |, \C\} and K  = 2. 

A solution to  the fitness function decision problem  would provide a  solution to  the  

M AXIMUM 2-SATISFIABILITY problem.

T h e o r e m  4 .1 .1  Without loss o f generality, assume that A  = {0,1}. The M A X I

M U M  A R B I T R A R Y  N K  F IT N E S S  with K  =  2 problem is NP-complete.

Proof: F irst, we m ust show th a t F  E NP. We need to  show th a t given â  E A ^  

and T  E Z , we can verify w hether F  {a) >  T  in polynomial tim e. Given a , the  

com putation  of F{3l) consists of the  addition of N  tab le  lookups, which can clearly 

be done in polynomial tim e.
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We m ust now m ap the  instance of the  previously m entioned SA TISFIA BILITY 

problem  to  a  random  N K  fitness function with K  =  2. Let (U, C, T )  be an instance 

of MAXIMUM 2-SATISFIABILITY.

We define N  =  m ax{ |f/|, |C |} , and let the  first \U\ positions of th e  string represent 

the  elem ents of U. We begin by arb itrarily  assigning the  clauses of C  to  th e  positions 

of the  string. If \U\ > |C |, we assign the false Boolean function of two inputs to  the  

positions th a t are not assigned a clause of C  and arb itrarily  pick two inputs for these 

positions.

N ext, we define pi to  select those positions of the  string th a t affect th e  clause 

assigned to  position i, and define

{ 1 if b  satisfies the clause assigned to  position i 

0 otherwise

where b  G 2^. Finally, we define

=  E  /i(P i(a))-
1=0

Now we m ust show th a t f  (a) >  T  if and only if a t least T  clauses of C  are 

sim ultaneously satisfiable. F irst, let a  be a  string such th a t the  fitness F (a )  >  T . 

Then, since

f ( a )  =  E /<(%(»))
1 = 1

and each /,• can add at m ost 1 to  the  to ta l fitness, there m ust be at least T  contribution 

functions th a t are of value 1. But the  only / , ’s th a t can contribute to  the  to ta l fitness 

are those th a t  were m atched to  clauses of C. Since the  to ta l fitness is g reater than  

or equal to  T , then a t least T  of those f i 's  m ust have contributed, which implies th a t 

a t least T  of th e  clauses of C  m ust be true. This implies th a t the  first |£/| elem ents 

of th e  b it string a  represent a tru th  assignment of U th a t sim ultaneously satisfies at 

least T  of th e  clauses of C.
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Now let a be a tru th  assignment of U such th a t a t least T  clauses of C  are 

satisfied. Then let b G 2̂ ,  such th a t the  first \U\ elem ents of b are equal to  a. Then, 

by th e  definition of F ,  each of the  positions th a t is assigned a satisfied clause of C  

contributes 1 to  the  to ta l fitness of b. Then, if a t least T  clauses of C  are satisfied, 

a t least T  of the  fitness contributions are 1, and since none detract from  th e  to ta l 

fitness,

F (a) >  T.

All th a t rem ains is to  show th a t the  transform ation was done in polynom ial 

tim e, which is straightforward, since each pi and f i  was determ ined locally w ith the 

inform ation from th e  clause of C  assigned to  position i. ■

We can use the  results of th e  proof of the  NP-com pleteness of the  MAXIMUM 

A RBITRA RY  N K  FITNESS w ith K  = 2 problem  to  show th a t the  a rb itrary  N K  

fitness function optim ization problem  with K  > 3 is NP-com plete, even w ith the  

additional restriction th a t each position affects its own fitness contribution. We begin 

by sta ting  th e  K  = 3 problem as a decision problem.

M A X IM U M  A R B IT R A R Y  N K  F IT N E S S  w ith  A =  3

INSTANCE: An N K  fitness function w ith K  = 3 inputs for each on N  fitness con

tributions, where each position affects its own fitness contribution and the  o ther two 

inputs are arb itrarily  chosen, and positive integer T.

QUESTION: Is there  an element a 6  w ith F{a) > T?

T he result is presented in the  following theorem .

T h e o r e m  4 .1 .2  The M A X IM U M  A R B I T R A R Y  N K  F IT N E SS  with K  =  3 problem 

is NP-complete.

Proof: Again, we m ust first show th a t F  G NP. We need to  show th a t given â  G A ^  

and T  £  Z ,  we can verify w hether F  {si) > T  in polynom ial tim e. As in the  K  = 2
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case, given â , the  com putation of F{a)  consists of the  addition of N  tab le  look-ups, 

which clearly can be done in polynomial tim e.

Now we will m ap an instance of th e  MAXIMUM A RBITRA RY  N K  FITNESS 

problem  w ith K  = 2 to  the  K  = 3 problem. Let (F , f , p ,T )  be an instance of the 

K  = 2 problem . All we really need to do to tu rn  th is instance into the  K  =  3 problem  

is to  add dependence on position i for each contribution function, / , .

Let

Pi(a) =

th a t is, il and i;  represent th e  positions th a t affect fitness contribution f i .  We define

as th e  projection function th a t selects position i as well as those positions th a t affect 

/ , .  T hen we define

f i i P i i ^ ) )  =

for all positions i and

F'(a) = E  M p» ) -
i = 0

Clearly F'{a.) = F{a) for all a  G , therefore jP'(a) >  T  if and only if F{a) > 

T .  Also, it is clear th a t th is transform ation is done in polynomial tim e, since the  

developm ent of p ' and f '  were simple modifications of p  and f. ■

In th e  next chapter, we will extend some of the  findings discussed in C hapters 

3  and 4  to include o ther systems of interest, namely, some of the  com plexity in

volved w ith the  original Boolean networks, and extensions of our understanding of 

th e  SA TISFIA BILITY problem  in general.
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Extensions

We now extend our results to  include other systems of interest. In C hapter 3, we found 

th a t, if the  NK fitness function had locality in the  way th a t p  chose th e  elem ents of 

a , we could find the  optim al fitness in polynomial tim e. In C hapter 4, we saw this 

was not th e  case for fitness functions th a t were affected by random ly chosen elem ents 

of a. We will extend both  of these results.

5 .1  B o o le a n  N e tw o r k s  R e v is ite d

We begin by re-examining the N K  Boolean networks discussed in C hapter 1. One 

of the  means for studying these networks is in term s of their basins of a ttrac tion . 

One way of finding the  basins of a ttrac tion  is to  construct a  m ap showing all of the  

s ta te  transitions of th e  system . To generate this m ap one m ust, for each sta te , know 

all of the  pre-images. An algorithm  has been presented [10] th a t has, on average, 

b e tte r  perform ance than  a to ta l sta te  space search. Here, we a ttem p t to  analyze th is 

problem  in more detail.

The question we propose to  answer is w hether a pre-image for a given s ta te  of 

th e  system  exists. Following W uensche, we call a s ta te  th a t has no pre-images a

39
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garden-of-eden state[10]. We sta te  the  problem  as follows:

G A R D E N -O F -E D E N  S T A T E  w ith  K  = 3

INSTANCE: An N K  a rb itrary  Boolean network w ith K  = 3 and s € {0 , 1 }^ . 

QUESTION: Is s a garden-of-eden state?

We can easily see th is problem  is NP-com plete if K  > 3. All one need realize 

is the  fact th a t 3-SAT problems are actually a subset of the  random  N K  Boolean 

networks w ith K  =  3. The 3-SAT problem  is sta ted  as follows:

3 -S A T IS F IA B IL IT Y  (3 -S A T )

INSTANCE: A set U of variables, collection C  of clauses over U  such th a t each clause 

c £  C  has |c| =  3.

QUESTION: Is there  a satisfying tru th  assignment for C? [1]

We present the  result in the  following corollary.

C o ro l la ry  5 .1 .1  The G ARD EN -O F-ED EN S T A T E  problem is NP-complete.

Proof: F irst, it is obvious th a t the  problem  is in NP, for we could guess a pre-im age, 

a , and check in polynomial tim e w hether a  is a  pre-im age of s.

Now, we m ust transform  a known NP-com plete problem  to the  GARDEN-OF- 

EDEN STATE problem . We will transform  an instance of the  3-SAT to  th is problem . 

Let {U, C)  be an instance of 3-SAT. Let N  =  m ax{ |U |, |C |} . Since in random  Boolean 

networks we m ake no stipulation th a t each position affect its own future, we arb itrarily  

assign th e  clauses of C  to  the  positions of the  network. Let the  variables of U 

correspond to  the  first \U\ elem ents of the  network. If we have positions of the 

netw ork th a t have no clauses m atched to  them , we random ly assign th ree  positions 

th a t  will affect th e  fu ture of each of these positions and assign them  to  th e  TR U E 

Boolean function of th ree  variables.
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Now we define the components of the  N K  Boolean network as follows; For each 

position, Î, we define

Pt(s) =  (Sij , 5̂ 2 , <Sj3 ),

where Zg, and *3 are the  positions the represent th a t variables of U th a t affect the  

clause of C  th a t has been assigned to  position i. Since all of the  clauses are Boolean 

functions, th e  assignment of f  is simply

fi{pi{s)) =  C j ,

where cj is the  clause th a t is assigned to  position i.

Then we ask, is the  s ta te  1  (the sta te  w ith all ones) a garden-of-eden sta te?

We m ust now show th a t the  sta te  1  has a pre-image if and only if the  clauses of 

C  are satisfiable. Let a  be a pre-image of 1 . Then clearly all of the  clauses of C  are 

satisfied, so the  first \U\ elements of a  represent a satisfying tru th  assignm ent of U 

for C.

Now let b  be a satisfying tru th  assignment of U for the  clauses of C.  T hen all of 

the  positions of the  network th a t are m atched to  clauses of C  will be 1 , and all of the  

rest of th e  positions always return  1 , the  sta te  1  has a pre-im age and, thus, is not a 

garden-of-eden state. A pre-image is represented by the  first \U\ positions being set 

to  th e  values represented by b  and the  rest of the  positions arb itrarily  set.

All th a t rem ains is to  show th a t the  transform ation from 3-SAT was done in 

polynom ial tim e which, again, is straightforw ard since p and f  were developed w ith 

inform ation obtained locally from the clause assigned to  each position i. ■

5 .2  S a tis f ia b ility

A nother extension of th e  work of Chapters 3 and 4 is in the  solution to  th e  problem  

of SA TISFIA BILITY  if some locality structure  exists in the  problem. T he struc tu re
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necessary is stated  in the  following corollary.

C o ro l la ry  5 .2 .1  L e t S  be an instance o f  the S A T IS F IA B IL IT Y  problem, and assume 

that the set U o f Boolean variables be indexed, i.e.

U  { n g ,  W j ,  ,  W 7 1 — 1 } •

Let C  =  {co, Cl, b e  the set o f clauses over U and k be a constant integer. 

Suppose that fo r  each clause Ci, there is an integer j i  so that the literals o f  c, are taken 

from  the set o f  variables {uj^ to where the indices are taken mod n.

Then, i f  k is considered to be constant, the question o f  whether a satisfying truth  

assignment o f  U exists fo r  the clauses o f C  can be answered in time which is polyno

mial in N .

Proof: To prove this corollary, we will develop an N K  nearest-neighbor fitness func

tion, F ,  w ith the  property  th a t

m ax {F (a )}  > N

if and only if the clauses of C  are satisfiable. Since the m axim um  fitness can be found 

in 0{A^^^~^^N)  tim e, we can answer th e  satisfiablity problem in polynom ial tim e. 

We begin by partitioning C  into N  sets

Ci =  {cj : Cj is dependent on variables chosen from u,-,. . .  Ui+%}.

We can construct these C /s  to  be disjoint, i.e. even though some clauses could fit 

the  description of more th an  one Ci; once a  clause is in one subset it is unavailable 

to  o ther subsets.

Then, for each position we define the fitness contribution function

, 1 if Ci =  0 , or if b  satisfies the  clauses of Ci
/*(b) =  .

0  otherwise
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for all b  G {0 ,1}^ . Note th a t each of the  2^  elem ents of f i  can be determ ined in tim e 

linear in \Ci\. Therefore, the  entire function set, f, can be determ ined in 0(2^A^|C7|) 

tim e.

All th a t is left is to  show th a t a s ta te  s of the  variables of f / is a  satisfying tru th  

assignm ent of the clauses of C  if and only if

F{s) > N,

which is straightforw ard from the definition of the  fitness contribution functions, f .

Let s represent a  satisfying tru th  assignment of th e  variables of U for th e  clauses 

of C. Then for each i, either Ci =  0, or the  clauses of Ci are satisfied by s. In either 

case, f i  will re tu rn  1 for all 0  <  i <  A , which implies th a t

F{s) = N.

Now let s represent a sta te  such th a t F{s) = N .  Then, since each f i  can con

trib u te  a t most 1 to  the to ta l fitness, all of these contribution functions m ust con

trib u te  1 . This implies th a t either the  clauses of Ci are satisfiable or Ci =  0 for all 

z, which implies th a t s represents a satisfying tru th  assignm ent of the  variables of U 

for the  clauses of C . I

Again, we see th a t th e  local linear structure  in the  problem  yields polynomial 

solvability, and lack of sufficient struc tu re  leads us to  N P-com pleteness. In the  next 

chapter, we discuss these and previous findings.
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Chapter 6

Discussion

We now discuss our discoveries of Chapters 3 and 4. In C hapter 3, we showed th a t 

the  optim al fitness for a function w ith local epistatic  interaction can be found in 

polynom ial tim e. In C hapter 4, it was dem onstrated th a t the  loss of th e  locality 

of these interactions causes th e  problem  of finding th e  optim al fitness to  become 

N P-com plete. We m ight expect th a t more heuristic m easures of fitness function 

com plexity would also indicate an increase in complexity as locality is lost. Several 

m ethods for measuring the  correlation of these landscapes are presented in [4]. One 

of th e  global measures of landscapes is the  m ean length of a hill-climbing walk from 

a  random  position on th e  landscape to  a local fitness optim um .

W hen we look at results in [2 ], we see th a t th e  statistical difference between 

nearest-neighbor and random  interactive networks is minim al in term s of th e  m ean 

walk length to  a local optim a. This appears to  be in contrast to our previous findings. 

The results of [2] suggest th a t, in th e  realm  of fitness landscapes, the  hill-climbing 

algorithm  sees no difference in difficulty between an NP-com plete problem  and one 

which is polynom ially solvable. This could indicate th a t th e  struc tu re  apparent in the  

fitness function is not transla ted  into structure  usable by the  hill-climbing algorithm  

in th e  corresponding fitness landscape.

44
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A nother possibility is th a t the  extent of the  system s th a t are presented in [2 ] is 

not large enough to  show a significant difference between these two distinct system s. 

In [2], we can see a slight difference between these two classes of systems. One could 

hypothesize th a t if the  difference between N  and K  were greater, then the  statistical 

differences would become apparent. A lthough the  nearest-neighbor fitness functions 

can be optim ized in polynomial tim e, they  are dependent upon a factor of 

which, although a constant, could be large enough to  cause th e  sta tistical differences 

to  be small for N  <  96. Further work could be done to  support or reject th is notion.

A lthough the  hill-climbing algorithm  apparently  sees no difference between a fit

ness landscape generated from a nearest-neighbor versus random  ep istatic  fitness func

tion, we m ight not expect th e  same result using a genetic algorithm  w ith crossover. 

Assuming th a t we have two point crossover since we are dealing w ith a circular string, 

we would expect th a t two highly fit parents would produce highly fit offspring with 

high probability in the  fitness landscapes generated from nearest-neighbor fitness 

functions. As discussed in [2], the  reasoning behind this is th a t if K  <C N , d istan t 

regions are functionally independent. Crossover in the  nearest-neighbor fitness func

tion  would affect only 2{K  — 1) fitness contributions { K — 1 for each of the  two breaks 

in th e  string) of the  genome. \ i  K  N , we would expect th is affect to  be negli

gible, thus yielding two half genomes w ith high fitness contributions. Furtherm ore, 

although it is noted th a t crossover performs b e tte r w ith parents close together (in 

term s of Ham m ing d istance)[6 ], no assum ption of the  relative position of the  parents 

is necessary in th is hypothesis.

In the  landscapes representing fitness functions w ith random ly chosen ep istatic  

in teractions, we expect the  num ber of fitness contributions affected by crossover to 

be proportional to  N^ th a t is, each fitness contribution is affected by A  — 1 random ly 

chosen genes of the  string; if any of these is contained in th e  portion of the  string
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to  be crossed-over, the  fitness contribution m ay change. If we began w ith highly 

fit parents, we would assume th a t more of the  affected fitness contributions would 

be lower after crossover than  would be higher. However, in [2 ] it is shown th a t 

recom bination is useful in landscapes generated from random  N K  fitness functions 

if K  <C N .  The reasoning behind this is th a t the  highest optim a are near one 

another in the  landscape. Crossover is a means of searching the  areas of the  landscape 

between highly fit positions. It is clear th a t crossover would perform  b e tte r w ith 

parents close together (in term s of Hamming distance) [6 ] on these landscapes. The 

reasoning is th a t the  portion of the string th a t is crossed over is close (in term s of 

Ham m ing distance) to  the portion of the  string being replaced. This yields m any 

fitness contributions th a t are unchanged during the  crossover. A lthough crossover 

is apparently  beneficial for overall fitness, it is unclear w hether the  am ount of tim e 

for a population to  reap th e  benefits of crossover on this type of landscape is of the 

same order of m agnitude as a  population using crossover on an N K  landscape w ith 

local ep istatic  interactions. Again, further work could be done to  investigate these 

properties of genetic algorithm s on these types of landscapes.

A nother goal of th is work is to  add meaning to  the term  “edge of chaos” as it 

applies to  Boolean networks. We m ust begin first w ith some notion of “chaos” as it 

applies to  the  real num ber system.

D eterm inistic chaos in the real num ber setting is described by th ree  essential 

properties.^ F irst, chaotic systems show sensitivity to  in itial conditions. This prop

erty  can also be discussed as the  exponential growth of propagated errors. Second, 

these system s exhibit m ixing behavior, i.e. small open subintervals of the  dom ain 

which, when iterated , will eventually yield points in every small open subinterval of 

th e  dom ain. Finally, periodic points are dense in chaotic system s. Periodic points

^This discussion of chaos is taken from [9].
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are starting  points which, through iteration, a tta in  only a finite num ber of different 

values.

W ith  Boolean networks, we have only a finite num ber of states. How then  can 

we discuss these systems w ith the  notion of chaos? We find in Boolean networks th a t 

a  small proportion of gates th a t can be perturbed w ithout affecting the s ta te  cycle 

th a t is entered corresponds to  the  sensitivity to  initial conditions. The existance of 

large s ta te  cycles resembles the  non-periodicity of chaotic system s[5].

Again, we found th a t w ith arbitrarily  chosen wiring in a A  =  2 fitness function 

w ith each position affecting its own contribution, the  problem of finding the  optim al 

fitness (and hence an optim ally fit individual) is solvable in tim e polynomial in the  

size of the  problem , i.e. N .  However, when we go to  a fitness function w ith arb itrarily  

chosen wiring w ith K  > 2 , the  problem becomes NP-com plete. The discussions of

[2 ] suggest th a t we cross a sim ilar border when we look a t the  differences in the 

behavioral aspects of random  Boolean networks w ith 2 inputs per bit versus 3 inputs 

per bit. We might consider the  tim e complexity of the  optim ization problem  to  be a 

good indication of the  behavior of a  sim ilarly structured  Boolean network, however 

th is is not the  case. O ther work with random  Boolean networks [2, 5, 7, 10], as well 

as cellular au tom ata , shows th a t the  complexity of the  behavior can be controlled 

in networks by biasing the  set of Boolean functions from which to  choose. Most 

of the  difference in behavior between K  = 2 and K  = 3 can be a ttrib u ted  to  this 

phenom enon. Of the  sixteen functions from which to  build networks for K  =  2 , all 

bu t two are canalizing (controlled by only one input), yielding a network th a t is not 

sensitive to  initial conditions. W hen we consider the  256 functions from which to  

build networks for K  =  3, the  percentage of canalizing functions is m uch reduced. 

T here  exists a strong link between the  complexity of the  behavior of the  dynam ical 

system  and the  types of functions th a t are considered available to  build th e  network
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[2, 5, 7]. O ur assum ptions of Chapters 3 and 4 only considered the  structu re  of the 

wiring of the  fitness functions w ith no stipulations on the  integer-valued functions of 

th e  num ber of inputs per position.

We m ust look closer at the  work of [10, 11, 12, 13] to  find a more likely m atch 

between the  tim e com plexity analysis of C hapter 3 and the behavioral aspects of 

the  corresponding dynam ical systems. In [10], the  dynam ical systems discussed are 

separated into the  aforementioned groups: random  Boolean networks, homogeneous 

wiring with random  functions, homogeneous functions w ith random  wiring, and ho

mogeneous wiring w ith homogeneous functions, i.e. cellular autom ata. The results 

of [1 0 ] indicate th a t the  complex patterns th a t emerge in m any cellular au tom ata  are 

lost when the  wiring is random ized. We can relate such results to  the  difference in 

tim e com plexity between the  nearest-neighbor networks versus random ly wired fit

ness networks. Furtherm ore, in cellular au tom ata  w ith random  wiring constrained 

to  a neighborhood of cells, m any complex features rem ain, which coincides w ith the 

77-neighborhood analysis of C hapter 3. There is no m ention of K  =  2  networks in

[10], however, sample runs of N K  Boolean networks w ith K  = 2 show significantly 

ordered behavior. In essence, K  = 2 networks are ju st perm utations of one or more 

nearest-neighbor networks.

An interesting si de-effect of the  analysis of Chapters 3 and 4 is th a t the  3-SAT 

problem  was used to  show when we cross the border between polynomial tim e and 

NP-com pleteness. Much of the  work done w ith random  Boolean networks deals w ith 

the  “canalizing” natu re  of the  functions involved in the network. It is found th a t 

if th e  percentage of canalizing functions is high in the  set of functions used for the  

netw ork, th e  behavior of the  network is more structured . Using a 3-SAT problem  

provides the  m ost canalizing environm ent in th a t all of the  functions chosen are OR 

clauses. T he behavior of the  network is very structured , yet finding pre-im ages m ust
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be N P-com plete (at least finding one of the  pre-images is). Likewise, finding the  

optim al fitness in a like-structured fitness landscape was found to  be NP-com plete. 

This is another indicator th a t the  proposed m atch between behavior of the  dynam ical 

system s and the  com plexity of their counterpart fitness landscapes is m arginal a t best.
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Chapter 7

Conclusions

7 .1  C o n c lu s io n s

We see th a t the random  epistatic interactions seem to be the  cause for the  NP- 

completeness of the  problem of finding optim ally fit beings in fitness landscapes. 

A lthough th e  statistical differences between random  versus nearest-neighbor interac

tions in term s of m ean walk length to  local optim a seems insignificant, it is hypothe

sized th a t th is may be, in fact, due to  the size of the  test landscapes. The techniques 

used to  show th a t fitness landscapes are NP-com plete in term s of finding the  optim al 

fitness can also be applied to  show th a t finding the  pre-images of a given s ta te  in a 

random  N K  Boolean network is also NP-com plete.

A nother property of N K  Boolean networks th a t is not addressed by th is work 

is the  canalizing na tu re  of the  functions from which the  network is built. In our 

analysis of the  fitness landscapes, there were no restrictions on the  integer-valued 

contribution functions for each position. Further work could be done to  determ ine 

w hether some sub-classes of integer valued functions would yield different analyses in 

term s of complexity.

A lthough we do not achieve a good m atch  between the “edge of chaos” behavior

50
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of Boolean networks and the  complexity analysis of fitness landscapes, sim ilarities do 

exist. We believe this work does expose some of the  intricacies of fitness landscapes. 

In try ing  to  add meaning to  the  phrase “chaotic behavior in finite system s,” any clues 

th a t help us be tter understand the causes or effects of th is behavior are welcome.

A nother benefit of this work is a b e tte r understanding of when com binatorial 

optim ization problems actually do become NP-com plete. The locality of the  epistatic  

interactions in the N K  fitness landscapes causes these problems to  be solvable in 

polynomial tim e. A known NP-com plete problem  (SATISFIABILITY) also becomes 

solvable in polynomial tim e if sim ilar locality is present in the  problem. U nderstand

ing the  im portance of locality in these problems could lead to  b e tte r search strategies 

by taking advantage of any locality th a t exists in instances of these types of problems.

U nderstanding the  boundary at which these problems become NP-com plete also 

gives us a means of testing algorithm s th a t a ttem p t to  solve these problem s. It is 

hoped th a t various “genetic” algorithm s will provide good solutions to  N P-com plete 

problem s in a  reasonable am ount of tim e. Com paring the  perform ance of those algo

rithm s on either side of the NP-completeness boundary m ay give us an indication of 

how well suited a particular algorithm  is to solve a given problem.

Finally, the  N K  Boolean networks and fitness landscapes presented by Kauffman 

appear to  be a good model of m any real biological processes. The Boolean networks 

have features much like the genetic regulatory networks which are apparently  respon

sible for cell differentiation. Kauffman uses the  properties of populations adapting 

on rugged fitness landscapes to explain the  radiation in early phylogenies in the  evo

lu tionary  record and stasis occurring later in the  record. Kauffman also uses the 

s truc tu re  of these landscapes to investigate how populations can best adapt toward 

th e  optim al fitness peaks. U nderstanding the  com putational com plexity of these 

landscapes should help us understand the subtleties of how well and how quickly
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populations can achieve a reasonable fitness value.

In conclusion, we see m any applications for the  fitness landscapes representing 

the  N K  model of epistatic  interactions presented by Kauffman. U nderstanding the 

com putional complexity of finding the  optim a of these landscapes can help us b e tte r 

understand  those applications th a t are modeled by these landscapes.
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